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Abstract

Control parallelism refers to concurrent execution ded#nt instruction streams.
Data parallelism refers to concurrent execution of the same instruction stream on multiple
data. There are a number of languages which support control parallelism as well as several
which support data parallelism. As yet, there is no language which combines the two. The
Mentat Programming Language, MPL, is designed to express control parallelism. While
expression of data parallelism is possible, it is awkward and unsupported by the current
language features. In this research, we propose a set of data parallel extensions to the MPL.
We define a new type of mentat class, dataparallel mentat class, to complement the
existingregular, persistent andsequential mentat classes. In a dataparallel mentat class, the
programmer defines the structure of an element and the methods that operate on these
elements. These methods are annotated to convey the distribution of the data set and inter
and intra data set communication. All other data parallel languages to date simply allow
element level parallelism. Our language extensions support subset level parallelism as well.
In this work, we present the language design, a description of the implementation model,
and the translations of the dataparallel class to Mertatitrol parallel model.
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Data parallelism refers to concurrent execution of the same instruction stream on multiple
data. There are a number of languages which support control parallelism as well as several
which support data parallelism. As yet, there is no language which combines the two. The
Mentat Programming Language, MPL, is designed to express control parallelism. While
expression of data parallelism is possible, it is awkward and unsupported by the current
language features. In this research, we propose a set of data parallel extensions to the MPL.
We define a new type of mentat class, dawparallel mentat class, to complement the
existingregular, persistent andsequential mentat classes. In a dataparallel mentat class, the
programmer defines the structure of an element and the methods that operate on these
elements. These methods are annotated to convey the distribution of the data set and inter
and intra data set communication. All other data parallel languages to date simply allow
element level parallelism. Our language extensions support subset level parallelism as well.
In this work, we present the language design, a description of the implementation model,

and the translations of the dataparallel class to Mentatitrol parallel model.
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Chapter 1 Introduction

Control parallelism refers to concurrent execution of different instruction streams.
Data parallelism refers to concurrent execution of the same instruction stream on multiple
data. Significant applications exist that contain both control and data parallel components.
Global climate and geophysical models are examples of multi-level models of natural
phenomena which exhibit mixed forms of parallelism. Likewise, the progression from
image processing to feature extraction and finaly image understanding presents many
opportunities for the exploitation of both control and data parallelism.

Current parallel languages support either control parallelism or data parallelism,
unfortunately we are not aware of any languages which support both. Given this situation,
developers of applications exhibiting mixed parallelism are faced with one of two choices.
The first aternative is to write the control parallel components using an existing control
parallel language, and develop the dataparallel components using a data parallel language.
These components will most likely be distinct executables. The downside of this solution
is that the programmer must provide an interface between the resulting components. This
isatiresometask at best. The second option for thistype of application development isuse
one language type to exploit the corresponding type of parallelism within the application.
This solution is to the detriment of the remaining application components which cannot be
easily expressed using the chosen language. Given these options, the need for programming
environments (a language, compiler and run-time system) to support development of
applications containing mixed parallelism is clear.

We address this problem at the language design level. Our objectiveisto provide a
language in which both control and data parallelism are easily expressible and readily used
in conjunction with one another. We begin with a control parallel language, the Mentat
Programming Language (MPL), and extend its features to support the data parallel style of
programming. The MPL is an object-oriented parallel programming language which
provides control parallelism at the method level. Data parallel applications have been
implemented using this language[9]. However, many of the techniques used to develop

these applications are automatically provided in current data parallel languages such as



Dataparallel C[1] and pC++[2]. A great deal of handcoding was required to achieve the
same result with the MPL. &believe this lack of support is a deficiency of the language.

There are a number of data parallel languages in existence @ualagxtensions
build on the previous research done to develop these languages, howevalso
generalize a number of known mechanisms, provide more flexibility in terms of data set
manipulation, and incorporate several new features. In this thesis we describe the new
language constructs which have been added to the MPL, an implementation model for these
constructs and a description of the translations from our constructs to the implementation
model.

As yet, we have not implemented a compiler for our language extensions, however
we believe dfcient implementations exist for the code translations. This belief is justified
by the work of Karpovich and Judd[13], who have implemented libraries which provide
much of the functionality needed for our implementation, and by the pioneering work of
Hatcher and Quinn [4. In addition, the author conducted proof-of-concept experiments
prior to the bulk of this research to test the feasibility of pursuing the chosen solution. For
simplicity, our language only supports one and two dimensional array data structeres. W
accepted this limitation in order to focus on thegdarissues of the language design.
Incorporating more elaborate data set structures will be thet taf future research.

The thesis is ganized as follows. Chapter 2 includes a background discussion of
data parallelism, the Mentat Programming Language, and presents a short description of a
number of existing data parallel languages. The data parallel language extensions we have
added to the Mentat Programming Language are related in Chapter 3. Chapter 4 discusses
the implementation model for our data parallel extensions, and explains the translations
needed to map the extensions to the control parallel paradigm of the Mentat system. W
conclude in Chapter 5 with a discussion of our contributions and possible research avenues

to be explored in the future.



Chapter 2 Background and Related Work

2.1 DataParallelism

A dataparallel computation is characterized by aparticular data set whose el ements
have the same basic properties. For example, a 1024x1024 image will have approximately
a million elements, each of which has the same representation (say, an integer). The
elements are only distinguished by their particular values and/or relative ordering within
the data set. Computations which manipulate this data set involve the simultaneous
application of an operation to the elements of the data set. The multiplicity of data is
responsible for the parallelism that can be extracted from the computation. Currently, there
is little consensus in the literature concerning the specifics of data paralel operation
semantics. This disparity is a result of the evolution of the data parallel style from an
instruction level paradigm used to program SIMD (single-instruction, multiple-data)
architectures into a more genera style which encompasses MIMD (multiple-instruction,
multiple-data) architectures as well. We delay detailed discussion of these semantic issues
to Section 2.2 (Related Work).

In the origina SIMD paradigm, parallel execution proceeds in lockstep at the
instruction level for each element of the data set. This means that updated values of the
elements are visible at instruction boundaries even when such synchronization is
unnecessary. In the MIMD data parallél style, the SIMD style of lockstep instruction level
execution produces too fine a granularity to translate to reasonable performance on a
MIMD architecture. The style that has evolved isto form a coarser grained computation by
distributing subsets of elements and have each processor iterate over its subset. However,
in a distributed memory environment, logically simultaneous application of instructions
must be enforced in some fashion.

Data paralel implementationson aMIMD architecture are typically writteninan a
different style as opposed to the dtrictly synchronous SIMD style. Generaly,
communication points in the program must be indicated by the programmer using send/

receive constructs. Therefore, synchronization occurs only when processes need to



exchange data as opposed to after every instruction that is executed in parallel. The
resulting style of programming is often called SPMD (single-program, multiple-data).

Because of its rigid structure and usually deterministic semantics, SPMD
programming is often considered a conceptually easier than general control parallel
programming. Howeveilthere are a number of tedious issues that the programmer must
address. In addition to concurrent access and synchronization, the paradigm introduces
issues such as data decomposition, distribution and alignment, data structure representation
and addressing, and specialized data communication patterns. Data decomposition
involves specifying the amount of data (in terms of individual data elements) that will be
located on distinct processors. Data distribution deals with assigning data, or subsets of
data, to a particular process@dignment is primarily (although not entirely) a Fortran
artifact. In Fortran, structures are not allowed, and therefore multiple arrays must be used.
In more modern languages a single array of a single user defined structure alleviates the
need to align multiple arrays. The representation aganization of the data are crucial to
generating an &tient data parallel computation. For this reason, a great dedbdf isf
often expended in designindiefent data structures, in particular minimizing the number
of non-local accesses. Until recentlthese tedious tasks were the progransner
responsibility Recent attempts at a data parallel language design have attempted to
automate these tasks for the programmer (see Section 2.3).

In order to clarify the notion of a data parallel operation, we present some specific
examples and order them by increasing complexity

1. Scalar Addition: A scalar addition is performed on every element of the data
set.

2. Neighbor Operation: A neighbor operation involves updating each element of
the data set using its neighboring values. Examples include image convolution
and the solution of PDE’using iterative methods such as Jacobbi iteration.

3. Matrix Addition: Matrix addition is done by a simple element to element
addition between two data sets. The complexity arises due to the use of
multiple data parallel objects that may not be correctly aligned.

4. Matrix Multiply: In matrix multiplication, each element of the result data set is
the dot product of a row of one data set and a column of anBter of the
dot products is independent of the others, and can be performed in parallel.

5. Non-traditional Data Parallel Operations. The previous examples are numeric
matrix examples. The data parallel style can also be applied in other domains
such as gene sequence comparison. In this case, each element (gene sequence)



isastring of characters. These elements form a data set (sequence library) and
each element is compared against a single unknown element (gene sequence)
using heuristic methods.

All of these examples are amenable to data parallel solutions because the same operations
are performed on each element of the data set. Note that the operations range from simple
scalar addition, to regular but computationally expensive dot products, to complex
heuristics.

With the exception of matrix multiply each of the above examples involves the
application of a function to each element of the data set. Matrix multiply (C=A*B) is
conceptually different. Rather than apply an operation in parallel to all elements of the set,
the two input matrices can be thought of as being partitioned into subsets of rows and
columns. Matrix multiply is the application of a dot-product operator applied to the
structured subsets of the data parallel matrices. For each row in the A matrix apply dot-
product to each column of the B matrix. Alternatively, for each subset of A, apply an
operator to each subset of B. We call such data parallel formulations subset data
parallelism. In matrix multiply the subsets are rows and columns. In general the subsets
may betheindividual elementsaswell. In that case subset parallelism subsumestraditional
element level data parallelism.

The remainder of this chapter is divided into two sections. Section 2.2 is a brief
overview of the Mentat programming language. Readers familiar with Mentat may wish to
skip to the description of related work in Section 2.3.

2.2 TheMentat Programming Language

The three primary design objectives of Mentat are to provide: 1) easy-to-use
paralelism, 2) high performance via parallel execution, and 3) applications portability
across a wide range of platforms. The underlying premise is that writing programs for
parallel machines does not haveto be hard. It isthe lack of appropriate abstractionsthat has
kept parallel architectures difficult to program, and hence inaccessible to mainstream,
production system programmers.

The Mentat approach exploits the object-oriented paradigm to provide high-level

abstractions that mask the complex aspects of parallel programming, communication,



1. nmentat class bar {

2: |/ private menber functions and vari abl es
3: public:

4: int opl(int,int);

5: int op2(int, int);

6: };

Figure2.1 A Mentat classdefinition. Without the keyword “mentat”, it
is alegitimate C++ class definition.

synchronization, and scheduling from the programmer. Instead of worrying about and
managing these details, the programmer is free to concentrate on the details of the
application. The programmer uses application domain knowledge to specify those object
classes that are of sufficient computational complexity to warrant parallel execution. The
complex tasks are handled by Mentat.

There are two primary components of Mentat: the Mentat Programming Language
(MPL) [17] and the Mentat run-time system (RTS). The MPL is an object-oriented
programming language based on C++ [20] that masks the complexity of the parallel
environment from the programmer. The granule of computation is the Mentat class
member function. Mentat classes consist of contained objects (loca and member
variables), their procedures, and a thread of control.

The most important MPL extension to C++ is the keyword “mentat” as a prefix to
class definitions, as shown on line 1 of Figure 2.1. This keyword indicates to the compiler
that the member functions of the class are computationally expensive enough to be worth
doing in parallel. Mentat classes are defined to be either regular, persistent, or sequential.
Regular Mentat classes are statel ess, and their member functions can be thought of as pure
functions in the sense that they maintain no state information between invocations. As a
consequence, the run-time system may instantiate a new instance of aregular Mentat class
to service each invocation of amember function from that class, even while other instances
of the same function already exist.

On the other hand, persistent and sequential Mentat classes maintain state
information between member function invocations. Since state must be maintained, each
member function invocation on a persistent Mentat object is served by the same instance
of the object. The difference between persistent and sequential classes is that invocations

from a particular caller to a sequential mentat object are guaranteed to be executed in the



order they were invoked. Invocations on persistent objects, on the other hand, will be
executed as soon as the required data dependencies have been met. The result may be that
the functions are executed in an order other than the invocation order.

Instances of Mentat classes are called Mentat objects. Each Mentat object possesses
aunigue name, an address space, and asingle thread of control. Because Mentat objects are
address space-digoint, all communication is via member function invocation. Because
Mentat objects have a single thread of control, they have monitor-like properties. In
particular, only one member function may be executing at atime on a particular persistent
object. Thus, there are no races on contained variables.

Variables whose classes are Mentat classes are analogous to variables that are
pointers. They are not an instance of the class; rather, they name or point to an instance. We
call these variables Mentat variables. Aswith pointers, Mentat variablesareinitially unbound
(they do not name an instance) and must be explicitly bound. A bound Mentat variable
names a specific Mentat object. Unlike pointers, when an unbound Mentat variableis used
and amember functionisinvoked, it isnot an error. Instead, if the classisaregular Mentat
class, the underlying system instantiates a new Mentat object to service the member

function invocation. The Mentat variable is not bound to the created instance.

2.2.1 Mentat Member Function Invocation

Member function invocation on Mentat objectsis syntactically the same asfor C++
objects. Semantically, however, there are threeimportant differences. First, Mentat member
function invocations are non-blocking, providing parallel execution of member functions
when data dependencies permit. Second, each invocation of a regular Mentat object
member function causes the instantiation of a new object to service the request. This,
combined with non-blocking invocation, means that many instances of a regular class
member function can be executing concurrently. Finally, Mentat member functions are
always call-by-value because the model assumes distributed memory. All parameters are
physically copied to the destination object. Similarly, return values are by-value. Pointers
and references may be used as formal parameters and as results, but the effect is that the
memory object to which the pointer pointsis copied. Variable size arguments are supported

aswell, since they facilitate the writing of library classes such as matrix algebra classes.



The features of the MPL support a task parallel programming model in very natural
way. One can implement data parallel programs using task parallel Mentat objects. Each
Mentat object contains, or manages, a set of smaller element objects. Halheberden
of managing the distribution of data rests with the programasedoes the generation of
iteration code to loop over contained elements, and other mind-numbing detalils.

Details of the computation model (macro-data flow), the Mentat programming

language and the Mentat run-time system can be found elsewhere [7, 8, 17].

2.3 Related Work
Dataparallel C [10,1, 18, 19], pC++ [2, 15] C** [14] Fortran D [5] Fortran 90 [10]

and High Performance Fortran (HPF) [16] are the languages from which we have borrowed
ideas and which are related to our worle Méve also developed some new ideas. C** and
pC++ are based on C++. Dataparallel C is based on C, but uses some ideas from object-
oriented language design. HBIerigins are obvious. All of these languages are strictly data
parallel languages, and wefdif from them all in that we are combining both control and

data parallelism within the same language.

Dataparallel C

In [19], Quinn and Hatchethe designers of Dataparallel C, show that a strictly
SIMD program can be compiled to a distributed memory architecture without sacrificing
performance. This entails loosening the synchronization points by synchronizing only
when communication between physical processors is nece&aty locality is also
important, and they provide mechanisms for the programmer to convey this information to
the compiler

Dataparallel C is an extension of Thinking Machines C* language. The conceptual
model presented to the programmer is a front-end and a back-end. Statements within the
domai n select { stnmt list; } construct are applied to the data set in parallel by the
back-end module. Synchronization between elements is only important within the domain
statements, and is handled at the statement level. The compiler determines when

synchronization is necessary instead of synchronizing after each instruction. The data set



can be distributed among the processors, however, alignment and distribution are left up to
the programmer. Each data set must be statically declared in a global name space.

Rather than the statement level synchronization semantics of Dataparallel C we
support a deterministic pre-copy semantics with synchronization at member function
boundaries. An advantage of our approach is that it is both deterministic and does not
require heroic compiler efforts to minimize communication and synchronization. In
addition we differ from Dataparallel C in that we allow not only element level parallelism
within the data set, but subset parallelism. We provide alignment of multiple data sets,
dynamic creation of data sets, and allow for the specification of general reduction methods
as opposed to predefined reduction methods.

pC++

Lee and Gannon [15] have developed a distributed collection model and a C++
based language to support the model. The language provides mechanisms alowing the
programmer to exploit memory locality, abstractions for implementing synchronous
operations on distributed data structures, and mechanisms to express massive parallelism.

The model is based on Concurrent Aggregates 4] and allows them to de-couple the
structure of the data from the element type. A collection, essentially a data set, is defined
with the C++ class mechanism. Element types are defined in separate classes. Operations
are applied concurrently to all elements of the collection. Invocation of parallel methods
involves sending a message to a collection which then oversees the method's concurrent
application to every element of the collection. The single control thread splitsinto multiple
threads, the programmer is responsible for synchronization between threads and for
resynchronization of the threads upon completion of the operation. A barrier call is
provided for this purpose.

Distribution of data to take advantage of memory locality is done using a two step
method in which collections are assigned the same abstract “template distribution”. The
template distributions are then mapped to processors, effectively collocating the collections
at the same processors.

There are severa features of pC++ that might make the language difficult for the

novice to master. First, the semantics are non-deterministic, the programmer must
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explicitly control potential race conditions. Races may occur for seveialatif reasons;
for example one processor may use an out of date value that another processor is updating,
e.g., at a boundary region between processors. In fact programmstbe aware of
whether a neighbor element is local or remote, and be aware dfiffeeent access
semantics. A second @dulty is with the MethodOfElement functions. Each physical
processor must iterate over the entire element space, to determine whether or not the
element is local. Third, there are two views of a collection, as the whole object, explicitly
indexed, or as elements. One cannot define natural decompositions such as rows and
columns. The result is that the programmer is responsible for explicitly managing indexing,
knowing the dat& location, and enforcing dependencies (or living with the non-
determinism caused by races).

In our work, we do not require the programmer to manage synchronization at any
level. We allow the programmer more flexibility in the application of parallelism; we allow
subset level parallelism as well as element level paralleliseralgd provide distribution

mechanisms for data sets.

Cr*

Larus, the designer of C++ based C**, believes that previous data parallel
languages reflect the lockstep synchronization of SIMD architectures too cldselgtes
that these languages allow non-determinism with respect to updates of variables external to
the scope of the elements. He claims that one advantage of data parallelism is the ability to
reason about program behavioarus maintains that such reasoning is not dependant upon
lockstep execution.

In C** all classes are parallel classes, and elements of the data set are limited to a
single member variable. C*%’semantics preserve some of the properties of the SIMD
programming model. Referenced data is copied to local scope before the execution of a
parallel method. Upon completion of the method, all modified values are written back to
their original location. Intermediate values are not visible to neighboring element
computations. Up to this point, Larus’ semantic techniques are the same as our own.
However C** allows multiple updates of the same global variable. The value that persists

after the completion of an operation is non-deterministic. Mechanism is provided which
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allows the definition of subsets, however, these subsets must have their own explicitly
defined methods. Methods of the data set may not be applied to any subset.

Fortran D

Fortran D is a data parallel extension of Fortran developed by Kennedy, Fox, and
others [5]. It has many similarities to Vienna Fortran [3], which was simultaneously and
independently developed. The basic ideain Fortran D is that data movement is costly and
should be avoided. The programmer defines data structures (arrays) that are to be
distributed to the processors. The programmer specifies the distribution of data to
processors and specifies which data structures are to be aligned. The compiler then detects
loops which are independent (DOALL loops) and generates code using the owner
computes rule to move data to satisfy data dependencies. Fortran D has had a maor
influence on HPF Fortran. Many of the features of Fortran D have been directly
incorporated into HPF.

Our work differs from Fortran D in several ways. Most importantly, our language
supports both control and data paralelism by alowing one or more control parallel
components to execute in parallel with a dataparallel operation. Second, alignment and
distribution are de-emphasized. Instead we seek information on logical communication
patterns from the user. Third, iteration is managed by the compiler, rather than being done
by hand.

Fortran 90

While Fortran 90 is not a data parallel language, it is one of the first languages to
support the notion of parallel array operations. For example, C = A + B, where A, B, and
C are all equal dimension matrices of the same primitive type for which addition is defined.
The programmer may not define operations between matrices, rather they are provided only

for arithmetic operations on primitive data types.

High Performance Fortran
High Performance Fortran, HPF, builds on Fortran D and Fortran 90. It is a

collaborative effort between industry, academia, and government. Several vendors have
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promised HPF compilersin the near future. HPF was specifically designed to be compiled
onto massively parallel architectures. In addition to the array operations developed in
Fortran 90, HPF provides mechanisms for the distribution of data across processorsto take
advantage of data locality in distributed memory architectures. They originally developed
the two stage distribution mapping that is used by pC++.
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Chapter 3 Data Parallel Extensionsto the Mentat
Programming L anguage

There are two characteristics of devel oping complex iterative control structuresthat
can make data parallel programming a tedious endeavor. First, repetitious iteration over a
(possibly large) data set is one of many tasks required of the data parallel application
programmer. Often times, the for-loop structure of two separate data parallel operationsis
exactly the same. The only variations between the operations are the instructions executed
at the innermost level. Thus, a great deal of work must be done that is not intellectually
challenging. Secondly, at a glance, every for-loop is similar to every other for-loop.
However, there may be a wide variation in the details of the for-loop structure of the
operations, thus requiring the programmer to pay close attention to each new operation
written. Any experienced C programmer who has been bitten by the <= vs. < bug can attest
tothisfact. Therefore, thetime spent making sure adataparallel operationiscorrect isoften
not proportional to the actual complexity of the function being devel oped.

One of the primary methods of increasing the performance of a data parallel
application isto distribute the data among a set of processorsin such away asto minimize
communication. Managing this task by hand can rapidly become complex, and must be
repeated for every set of data handled within the application. Factors influencing the
complexity of the task are the interaction among the various data sets, the number of
processors in the system, and the interconnection network of the processors. Should one of
these parameters change, the performance of the application is in jeopardy.

Oncethe data has been distributed among processors, the programmer must arrange
for the correct communication of intermediate values. Border, or end cases make this job
particularly complex. Data distribution is a tedious task and as the size of the application
and the number of data sets increase, it can become overwhelming.

Each of the components of dataparallel application devel opment mentioned above,
the basic function applied to the data set, iteration over the data space, data distribution
among processors, and communication of intermediate values, are common to all data
parallel applications. The extensions we have added to the MPL are designed to free the

programmer from concentrating on these mundane details of the data parallel style. Since
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we are removing the tedious burdens from the programmer, some other part of the system
must become responsible for them. In our case, the compiler will recognize the keywords
and constructs that comprise the extensions, and will generate code that manages iteration,
synchronization, distribution, and communication for the programmer.

In our subsequent discussions, we will refer to theindividual members of a data set
as elements. The data set as awhole will be referred to as the data parallel object. We will
begin our discussion of the data parallel mechanisms by explaining the nature of the data
parallel class and the syntax used to define such a class in Section 3.1. We also discuss
communication semantics in this section. In Section 3.2, we explain the syntax and
semantics of the data parallel method types the language provides. Section 3.3 will dedl
with the creation and distribution of a data parallel object. We then turn to the additional
tasks needed to support data parallel objects in Section 3.4. Finally, we will discuss the
combination of our data parallel extensions with the original control parallel mechanisms
of Mentat in Section 3.5.

3.1 Data Parallel Class Definition

The definition of a data parallel class is the primary means by which the
programmer conveys information to our compiler about a data paralel computation. All
data parallel applications are concerned with one or more data sets. Thus, it is natural to
capture the data set representation and the data parallel operations for the data set within a
single class. We have taken advantage of thisfact in our extensions.

Data parallel computations are also characterized by the fact that every element is
structurally identical to every other element of the data set'. The actual values of each
element and their relative ordering within the set are the only distinguishing factors among
the elements. The operations applied to a single element are identical to the operations
applied to every other element of the data set. Thus, an entire data parallel data set and its
operations can be defined by specifying the structure of asingle element, and the operations

applied to that element. Specifying adata parallel computation in terms of a single element

1. This characterization has been true in the past, however, the emergence of nested parallelism may
cause arealignment of this view. For this thesis we will assume that all elements of a data set
are structurally equivalent. Nested parallelism is one of the primary areas for expansion of the
research described in this thesis. At that time, this assumption will be re-examined.
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dat aparal l el nentat class inage{
[l private nenber variabl es which specify an el enent.
int pixel;
fl oat anot her_pi xel ;
publi c:
/1 public menmber functions expressing the data parall el
I nmet hods.
voi d AGG scal e ELEMENT (int val ue);
void OVR overlay_pixel (RVMAJ int *pixel _data);
int RED min_elen(int curr_nmin,int curr_elemnbr);

RBo®NoORhwbR

e e

Figure 3.1 Data paralel class definition.

is the approach we have used in creating our data parallel extensions to the MPL. We call
this approach element-centered. Fundamentally, this concept is not new to data parallel
languages [2, 11, 14, 15, 18, 19]. However, we have extended the notion to encompass
subset parallelism.

Figure 3.1 illustrates a simple example of adataparallel class and conveystheidea
of an element-centered approach to data parallel class definition. Data parallel mentat
classes are designated by pre-pending the keywords dat apar al | el nent at infront
of the C++ keyword, cl ass. The new keywordsindicate to the compiler that data parallel
transformations must be applied to this class. The structure of the data parallel classis
similar to a C++ class in that member variables describe the data managed by the member
functions of the class. However, the method definitions differ from those of C++ classes.
The member functions of a data parallel class are annotated to convey information to the
compiler. In this section, we give brief descriptions of the member variables and member

functions of the data parallél class and explain the semantics of data parallel operations.

3.1.1 Dataparallel ClassMember Variables

The programmer should think of the data portion of the data parallel class definition
as a template? for an element. The member variables of the class definition represent a
single element of the data set. In our example, an element would have two components, an
integer value (pi xel) and a floating point value (anot her _pi xel ). These member
variables are declared on lines 3 and 4. Any primitive or user defined typeis alowable as

amember variable of an element®. The effect of thistype of datarepresentation isthat each

2. The term template in this context should not be confused with C++ templates.
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element of the data set is essentially a structure whose members are the member variables
declared in the data portion of the class definition.

The programmer does not specify the actual size of the data set in the data parallel
mentat class definition. Also, the member variables are not defined as arrays unless the
programmer is specifying a data set in which the elements themselves are arrays. When an
instance of the class is declared, multiple elements will be created. The actual number of
elementsis specified at thistime. Once created, the elements can bereferred to individually,

in subsets, or asawhole. We will discuss both object creation and element addressing later.

3.1.2 Dataparallel ClassMember Functions

Our extensions include three types of member functions which are specifically
designed as data parallel operations. These types are overlay operations, which are used to
initialize the data parallel object, aggregate operations, which are applied to all elements of
the data parallel object, and reduction operations, which allow the programmer to distill
certain information from the values of the data set.

The semantics and communication characteristics are different for all three types.
For example, aggregate and overlay operations straightforwardly iterate over each element
subset applying an operation to each in turn. On the other hand, reduction operations
automatically merge intermediate results of the computation on each element. Method
annotations provided by the programmer serve to discriminate between operation types. In
addition to distinguishing the method types, the annotations specify the subset of the data
dealt with in the operation and determine the size of the return type.

All types of data parallel methods: aggregate, reduction, and overlay, may have
local variables and arguments of primitive or user defined types*. These variables are used
in the same manner as C++ arguments and local variables. As with regular C++ classes,
data parallel member functions are defined within the class definition as shown in Figure
3.1, lines 8-10.

3. Allowing data parallel classes as member variablesisone step in enabling nested data parallelism.
Again, thistopic is not considered in thisthesis but is the subject of future research.
4. Dataparallel objects aslocal variables would result in nested data parallelism.
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3.1.3 Deerministic Data Parallel Semantics

Typically, when the communication semantics of a parallel language are discussed,
communication occurs between two processors. In contrast, our language extensions
attempt to shield the programmer from hardware specific details such as the number of
processors or the interconnection network topology. Therefore, in the following discussion
and in reference to our data parallel extensions, data parallel objects should be thought of
as independent, interacting entities which communicate by exchanging the values of
particular elements or subsets of elements.

There are three types of communication that occur with respect to data paralel
objects. Thefirst, simple communication, involves only the value of the element that is the
target of the current method. Local communication implies that values of the data parallel
object other than the current element are required. Non-local communication occurs when
element values of a data parallel object other than the one upon which the method is
invoked are required.

The member function annotations and the internal definition of the function body
determine the type of communication of a method. A method uses simple communication
if the only value used within the function body isthat of the current element. A method falls
into the local communication category if relative addressing mechanisms, explained in
Section 3.4.3, are used within the function body to address neighbor elements of the current
element. Finally, methods which have a data parallel argument fall into the non-local
communication category.

Of the three types of data parallel methods, aggregate, reduction, and overlay, only
aggregate methods may reference neighbor elements or accept a data parallel object as an
argument. Therefore, aggregate methods are the only type of data parallel method to exhibit
non-local communication. Overlay and reduction operations are restricted to simple
communication since they can only access the current element. Figure 3.2 summarizes the
communication possibilities for each method type.

An aggregate method is not limited to one category of communication, rather, any
combination of simple, local, and non-local communication may occur within a data

parallel method. However, when methods are classified according to their communication
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Method Communication Types

Types Simple Local Non-Local

Aggregate O O O

Overlay O O O

Reduction O [ O
Figure 3.2 Communication capabilities by method type.

types, non-local communication has precedence over local communication which in turn
has precedence over simple communication. For example, a method with non-local and
simple communication would be classified as a non-local type of operation.

Simple communication is straightforward for the programmer to understand. The
programmer simply uses the name of an element member variable to access the value of
the current element. Local and non-local communication is more complex. Accessing the
values of neighboring elements and elements of data paralel arguments requires an
understanding of the pre-copy semantics of our data parallel extensions. Next, we present
adiscussion of pre-copy semantics in conjunction with our explanation of local and non-
local communication.

The main characteristic of a data parallel computation is that the operation being
applied to the data set isapplied “logically simultaneously” to every element of the data set.
This is the reason that this style of programming is considered parallel. Another way to
understand this concept is to realize that each element is being operated upon concurrently.
If there happen to be enough physical processorsto manage one element per processor, then
the operation will truly proceed in parallel across the data set. In most cases though, each
processor will be responsible for managing anumber of data elements. When multiple data
are assigned to a single processor, the degree of parallelism decreases. This situation
demands that the computation proceed as if there were as many processors as elements.
Each processor must iterate through the data elements for which it is responsible, applying
the operation to each in turn. Difficulties arise when the operation must appear as if it is
occurring in parallel for all elements even though the implementation is actually sequential

at each processor.
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As an example, assume we have a processor which is responsible for five
neighboring elements (a vector indexed from O to 4) of a data paralel object and the
processor has been directed to execute op1() 5 which updates the value of each element.
Also assumethat whenop1() isapplied to an element, neighboring element valuesare used
to compute the value assigned to the element. Before op1() has been applied to any of the
elements, all elements have the same value a. The desired result of op1() is that all
elements will have the value b. After processing the first element, el ement 0 has the new
value b that was computed by op1() using the values (a and a) of its neighboring elements
(inthiscaseel enent 2 and el enent 4). Therefore, our vector hasthe values<b, a, a, a, a>.
Next, op1() isapplied to el ement 1 with two possible outcomes.

The first outcome is the expected outcome of a sequential program, the second is
the outcome according to the data paralel style where the operation is applied
simultaneously to all elements. In the first case, the neighbors of el enent 1 are accessed,
returning b and a. The result of op1() isthen computed and is c. Thus our vector has the
values<b, ¢, a, a, @ and isincorrect according to data parallel semantics.

In the second case, a copy is made of the vector before the iteration over the
elements of the vector begins. All references to the elements are then resolved using this
pre-copy of the elements and all updates are made to the current copy. Therefore, when
opl() isapplied to el enent 1, the values of neighboring el enent 0 and el ement 2 are a
and a respectively, not b and a because the values were retrieved from the pre-copy instead
of the current copy. Theresult of op1() appliedtoel enment 1 isbasit waswhenopl() was
applied to el enent 0.

The pre-copy approach isemployed in our data parallel extensions. Whilethe actual
mechanisms for achieving the desired results are discussed in Chapter 4, we address the
implications of using this technique here. Pre-copies of data parallel object data are made
whenever adata parallel operation isinvoked. For local communication, the copy is made
from the current copy of the data parallel object that is being invoked. For non-local
communication, the copy is filled in with data communicated from the processor(s) at
which the data parallel argument isbeing maintained. The programmer isnot given explicit

access to these pre-copies, i.e. they may only be modified by the compiler. Mappings are

5. The actua function of opl1() could be as simple as addition.
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maintained between the pre-copy and the current copy. Subsequently, references to the
current copy are resolved from the pre-copy. Thus, local updates of an element are not
visibleto any other element in the data set until the operation is complete. At that point, the
pre-copies are considered invalid, and the newly computed values are considered the

current values of the data set.

3.2 DataParallel Method Types

As mentioned previously, the more tedious tasks of data parallel method
development are the construction of iteration control statements for a data set and
communication of data values which are not local to a processor. In our approach to data
parallel language design, the compiler manages many of these details automatically. We
only require the programmer to annotate the method definition and specify the body of the
function in an element-centered fashion. The annotations essentially extend the type of the
function. Using this information, the compiler determines the values (other than the value
of the current element) that are needed to complete the computation and infers the
remaining control structures that are needed to complete the operation.

Recall that we distinguished three types of data parallel operationsin Section 3.1.2.
Function prototypes for all three types of methods are shown in the example of Figure 3.1.
Figure 3.4 gives a brief grammar that defines the annotation syntax for each type. In the
following sections, we will discuss the details of each method type. We start with a subset
of AGG methods which we call simple aggregate methods. This method type illustrates
many of the important concepts of dataparallel objects, including the mechanics of writing
a data parallel method body. We then turn to more complex aggregate types since they
illustrate the various communication semantics. Finally, we handle reduction and overlay
methods.

3.2.1 Simple Aggregate Methods

The scal e() function prototype on line 8 of Figure 3.1 has been annotated to
indicate the type of the data parallel operation and the size of the data portion that the
method deals with. The first production of the <dp_nbr f cn> non-terminal in Figure 3.4
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1 dat aparal | el nentat class image{
2: /Iprivate member variables - “single element”.
3: int pixel;
4: f loat another_pixel;
5: public:
6: // public member functions - data parallel methods.
7 void AGGscale ELEMENT (int value);
8: void OVRoverlay_pixel ( RMAJ int *pixel_data);
9: int  RED min_elem();
10: %
11:
12: void AGGimage::scale ELEMENT (int value){
13: pixel = pixel * value;
14: }
15:
16: int REDimage::min_elem(int curr_min,int curr_elem_mbr) {
17: if (curr_min < curr_elem_mbr) return curr_min;
18: else return curr_elem_mbr;
19: }
20:
21: void OVRimage::overlay_pixel(int RVAJ *value) {
22: pixel = *value;
23: '}
24:
25: int*value;
26:
27: my_image.scale(10); * Invocation on a matrix */
28: my_image[1].scale(10); [* Invocation on a row */
29: my_image[4][4].scale(10); [* Invocation on an element */
30: intx =my_image.min_elem(pixel);
31: my_image.overlay_pixel(value);
Figure 3.3 Dataparallel class and method definition.

shows the grammar for annotating this type of function. In this case, the scale()  function
is an aggregate function as designated by the annotation AGG.

An aggregate function is applied to every element (or subset) of the data set. The
simplest kind of data parallel operation, of which scale() isagood example, is one in
which each individual element receives the same “treatment”. However, there are often
cases in which the programmer may wish to apply an operation to every row instead of
every element, i.e. the operation only has meaning when applied to arow. In this case, the
data must be split into subsets and each subset is then treated as a unit during the operation.
The <subset_specif  ier> annotation (shown in the example production), in combination
with theinstructions of the actual function, allowsthe programmer to make thisdistinction.

In our example scale() method, the annotation is ELEMENT. This indicates that
the method should be applied to each individual element of the data set. Alternative
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Grammar:
<dp_mbrfcn>: <return_type> AGG <fcn_name> <subset_specifier> ([<arg> | <agg_arg>], <arg>*); |
void OVR <fcn_name> ([<arg> | <ovr_arg>]*); |
<return_type> RED <fcn_name> (<arg>*);
<arg>: any regular C++ argument...
<agg_arg>: <subset_specifier> <combination_rule> <dp_operand_type> <dp_operand_name>
<ovr_arg>: <major_order_ind> <operand_type> <operand_name>

<subset_specifier>: ELEMENT |[ROW | COLUMN
<combination_rule>:  1x1| IxN | Nx1

<major_order_ind>: RMAJ |CMAJ

Figure 3.4 Grammar for data parallel object methods.

annotations, ROWor COL, specify the additional types of subsets that can become the target
data of an aggregate operation.

There are two points to remember when developing a data parallel member
function: the structure of the subset being operated upon and “location independent”
references to data elements. First, the body of the function must be written as if the
operation is being performed upon a single subset. This subset is indicated by the
<subset _speci fi er> annotation. The programmer is responsible for providing any
iteration required within the subset, while the compiler provides iteration across the
subsets. For example, aROWspecifier denotesthat the programmer will specify theiteration
within arow of the data parallel object, while the compiler will specify the iteration across
rows of the data parallel object. Secondly, the body of the function must be written without
reference to any specific element. This is what is meant by a “location independent”
reference. In our scal e() example, the member variable pi xel is assigned its value
multiplied by the argument val ue. No reference is made by the programmer to a particular
element such asobj ect [ 5] [ 10] . pi xel . The compiler will use the information contained
in the annotations and the invocation of the method in order to index into the data set
properly. Thus, the function body must be devoid of any reference to a specific element or
subset. Mechanism is provided to allow the programmer to reference other elements of the

data set in arelative fashion. The starting point is the element to which the operation is
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being applied, and the relative addresses are resolved at run-time. The relative addressing
mechanisms will be discussed in Section 3.4.3.

Thesetechniques, the<subset _speci f i er > annotation and theinterior style of the
member function, fit with our element-centered approach to data parallel class definition.
The important point to note is that the word “element” in the term element-centered really
means subset. The programmer must think in terms of a single abstract subset when
developing an aggregate method®. If this is done correctly, the iteration required for
applying the operation to each individual subset in the entire data set will be managed by
the compiler without any further intervention from the programmer.

Invocation of an aggregate operation isshown on lines 27-29 of Figure 3.1. Assume
that a data parallel object identified ny_i mage has been declared as atwo dimensional data
parallel object of typei mage. Object declaration will be discussed further in Section 3.3.
Theinvocation syntax isexactly the same asthe C++ invocation of amember function. The
compiler ensures that the iteration provided within the operation is restricted to the
elementsindicated by the invocation. Therefore, the invocation on line 27 will result in an
application of scal e() to every element of my_image; each element of the second row of
my_i mage Will be operated upon as a result of the invocation on line 28; finally, the fifth
element of thefifth row will be the only element of ny_i mage to be scaled asaresult of the
invocation on line 29. In this manner, the programmer is given agreat deal of flexibility in
invocation of data parallel methods on aparticular data parallel object and the details of the
iteration required to perform the desired effect are hidden within the annotations and the
data paralel class definition.

A primitive or user defined type may serve asthe return type of adata parallel class
member function. Data parallel objects are not allowed as return values. Again, the notion
of an element-centered operation comes into play. Since the programmer is specifying the
action of the operation in terms of one element (or subset), then thelogical return result will
be a single result. The actual number of results returned is specified completely by the
annotations and the invocation which indicate the number of subsetsin the invoked object.

The compiler arranges for the allocation of the proper amount of space given the number

6. Note that data parallel member functions may have different <subset_specifier> annotations.
Thus, the “subset” may vary from method to method.
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of actual resultsto be returned. For example, suppose that our scal e() method returned an
integer. Then the invocation on line 27 would cause space for k integers to be allocated,
where k = n x m the dimensions of the invoked object. The variable to which the result of
the function is to be assigned then points to this newly allocated space. The results
computed for each element would be collected by the compiler and assigned to the

corresponding positions of the return variable.

3.2.2 Complex Aggregate Methods

Our data parallel mechanisms also allow the programmer to specify a data parallel
object as a parameter to an aggregate operation. Data parallel arguments require two
annotationswhich indicate the subset size, and the manner in which subsets of the argument
object and subsets of the invoked object will be combined. The syntax of an aggregate
method argument is shown in Figure 3.4 asthe production of the<agg_arg> non-terminal.

The first of these annotations is identical in form and meaning to the
<subset_specifier annotation described above for invoked objects. The annotation is
associated with the data parallel object listed as the actual parameter, and indicates the
portion of the argument object for which the programmer will provideiteration. Again, this
portion must betreated in a*location independent” manner within the data parallel function
body.

The second annotation, a <combination_rule> indicates how the subsets of the
operand will be combined with the subsets of the invoked object. For instance, the
programmer may want to have each subset of the invoked object combined with a
corresponding subset of the argument object. Matrix addition is an example of this type of
combination. The programmer would indicate this with a 1X1 <comnbi nati on_rul e>
annotation’. Alternatively, the desired functionality may be to combine one subset from the
invoked object with every subset of the argument object, or vice versa. These options may
be indicated with the 1xN and Nx 1 annotations respectively. An intuitive example of this
type of combination is matrix multiply where every row of one matrix is combined with

every column of another matrix.

7. This annotation implies that there are an equal number of subsetsin each object.
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3.23 Overlay Methods

Overlay operations provide for the initialization of the member variables of data
parallel objects and require an OVR annotation (see the second production in Figure 3.4).
Because this method type is meant primarily for initialization of data parallel objects, the
return type is aways void. The arguments to overlay operations may be any primitive or
user defined type other than adata parallel type. The values passed viaactual argumentsare
assigned in either arow-major or column-major order to the member variables of the data
parallel object. This choice, row- or column-major, isindicated by the use of either RMAJ
or CVAJ respectively as the annotation to the formal argument. For example, to initialize
the pi xel valuesof my_i mage with an integer vector of values, perhapsread in from afile,

theoverl ay_pi xel () method shown on lines 21-23 in Figure 3.1 would be invoked.

3.24 Reduction Methods

Reduction operations are global operations that reduce a set of values to a single
value. These operations are tagged with a RED annotation. Reduction operations must be
binary, commutative, and associative. Examples of reduction operations include minimum,
maximum, and sum.

Standard reduction operations are often included in data parallel languages. Rather
than define a set of supported reduction operations we have chosen to alow the
programmer to define their own reduction operations. The compiler will then generate code
to perform the required operations and necessary data movement. For example, consider
the ni n_el em function of Figure 3.1. We recognize that the syntax for this method typeis
abit non-intuitive. The reduction function must take two parameters, and return avalue (or
reference). The two parameters and the result must be of the same type. When the function
is invoked the programmer specifies which member variable should be used within the
operation by using it's name as the actual argument to the function. The result is that
m n_el em is applied iteratively to each element’s pi xel member and the result of the

previous invocation.
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3.3 Allocation and Initialization of Data Parallel Objects

3.3.1 Object Creation and Distribution

Arguments to new()

Data paralel objects must be explicitly created using the operator new(). In
particular, the data parallel extensions to the MPL require the use of an overloaded new()
operator. The programmer isrequired to specify the size and dimensions of the data parallel
object, and optionally to specify both local and non-local communication patterns. This
information is used by the run-time system to allocate data items to processors in such a
way that communication between processors is reduced. Figure 3.5 demonstrates the
creation of adata parallel object.

The arguments used to overload new( ) fall into three categorieswhich wewill refer
to as dimensions, local communication, and non-local communication. Each category
encompasses two of the arguments to new() . For the dimension category, the first two
arguments specify the size of the data parallel object in the row and column dimensions
respectively, an 8x8 array in the example. If either of these arguments is given the value
one, then the data parallel object is treated as a vector. If both arguments are assigned a
positive value other than one, then the data parallel object is treated as a two dimensional
array. If both arguments are specified as one, then the data parall el object isassumed to have
only asingle element. A zero or negative value for either argument is considered an error.
The argument values may be expressions. Currently, our data parallel additionsto the MPL

support one and two dimensional arrays and single elements. Future work will explore the

1 dat aparal l el nentat class natrix{

2 /lprivate nmenber variables that specify an
3: /el ement.

4: public:

5: /1 public nmenber functions expressing the
6 /1 data parallel operations.

7}

8:

9: mai n()

10: {

11: matrix *matrix_A, *matrix_B;

12: matri x_A = new (8, 8, 4PT, 2, matrix_B, matrix_nult()) matrix ();
13: }

Figure 3.5 Dataparallel object declaration and communication patterns.
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feasibility of allowing the programmer to declare data parallel objects using a variety of
structures such as atree or an unstructured group of elements.

For thelocal communication category the third and fourth arguments enumerate the
type of communication that will be dominant within the data parallel object. As explained
in Section 3.1.3, local communication occursin terms of the datarather than the processors.
Types of local communication that may be indicated by the programmer are NONE, PRED-
SUCC, NS, EW4PT, and 8PT. PRED- SUCC appliesto vectorswhile NS, EW4PT, and 8PT
apply to two dimensional arrays. NONE appliesto both vectors and two dimensional arrays.
The local communication characteristic is conveyed in the first argument of the second set.
The radius argument is the second argument in the set, and simply specifies the radius of
the local communication (when NONE is the pattern specified, the radius value is 0,
otherwise it must be a positive value). Examples of local communication patterns with a
radius greater than one are shown in Figure 3.6.

The local pattern and radius arguments are the mechanism by which this
information is communicated to the compiler. We recognize that a number of member
functions may be defined for the data parallel class, and that all methods will not exhibit
the same local communication pattern. Thus, in order to achieve the best performance, the
programmer should indicate the pattern that will be used most often in the methods of the
object.

We do not alow for the dynamic changing of the communication pattern in the

current language implementation. Thistype of functionality can either increase or decrease

a) b) c)
Figure3.6 Threetypesof local communication pattern each with aradius of
two.The darkly shaded element is the element to which the
neighboring values are “ communicated”. a) EW pattern. b) 4PT
pattern. c) 8PT pattern.
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1 void AGG matrix::mat_nmult RON(COL 1xN matrix);
2: matrix *grid_spacel, *grid_space2;
3: grid_spacel = new (64, 64, 4PT, 2, grid_space2, mat_mult()) matrix();

Figure 3.7 Object Allocation and Distribution.

performance depending upon the skill with which it is employed. We feel that at the very
least, the programmer should be aware of the dominant communi cations patterns within the
computation and be able to communicate this information at compile time.

The arguments of thefinal category, non-local communication, provideinformation
about interactions between the data parallel object being created and another data parallel
object of the application. The sixth argument to the new( ) operation specifies the dominant
function of the data parallel object being created. Thefifth argument to thenew() operation
indicates the object which ismost often used as the actual argument to the method specified
by the sixth argument. Again, the programmer should be familiar enough with the
application to specify the dominant non-local communication characteristics.

Allocation and Distribution

While the programmer supplies the actual arguments to the overloaded new()
operator, the method isimplemented by the compiler. The purpose of thenew() operator is
to allocate space for the object on the processors of the system. This is done using the
information conveyed by the argumentsto new( ) . Figure 3.7 shows amethod prototype for
a data paralel class mat ri x, the declaration of two instances of that class, gri d_spacel
and gri d_space2, and the creation of the data parallel object gri d_spacel. We will use
this example to motivate our discussion of data parallel object allocation and distribution.

The dimension category of the arguments to new() indicates the base amount of
memory that needs to be allocated for the data parallel object. In our example 64 * 64, or
4096 elements would be allocated. In some cases, the programmer will want to define
border regions around the data set to handle edge conditions. Therefore, additional memory
must be allocated for the border elements. The compiler performs an analysis of the data
parallel classto determine the maximum local communication radius over all data parallel
methods of the class. This number indicates the maximum width of any border which may

be defined for the object. The maximum is added to the amount specified by the dimension
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argumentsto get the total amount of data that must be allocated for the data parallel object.
We will explain the mechanism for defining and manipulating border regions in Section
34.1.

Once the proper amount of space is determined, the compiler must establish a
distribution pattern for the elements across the processors. Again, thisis accomplished in
the body of the overloaded new() operation. As explained in Section 3.2.1, the
<subset _speci fi er > method annotations for the invoked object and the argument object
shown on line 1 of Figure 3.7 indicate the subset of the corresponding object for which the
programmer is responsible. In this case, the <subset _speci f i er s> are ROWand COL for
the invoked object and the argument object respectively. However, in the context of data
parallel  object distribution, the invoked object and argument object
<subset _speci fi er s> serve the additional purpose of expressing the optimal distribution
of the two objects with respect to each other.

For an operation such as matrix multiplication, it is obvious that the proper
distribution should place the rows of the invoked object and the columns of the argument
object on the same processors. This distribution minimizes the communication needed to
complete the operation for the object and thus results in the best performance. Exactly this
type of information is conveyed by the method annotations and the argumentsto the new( )
operator.

In our example, gri d_spacel is the invoked object, and gri d_space2 is the
argument object. The arguments specified in the non-local communication category of the
arguments to new() are an object name and a method name. The method mat _rul t (),
defined on the mat ri x class, will be invoked on the object gri d_spacel more often than
any other method. Additionally, the object gri d_space2 will serve asthe actual argument
to the mat _nul t () method for the greatest percentage of those invocations. The
identification of themethod mat _nul t () indicatesthe subsets of the invoked and argument
objects that will be used when the method is applied. In particular, these subsets will be
referenced in conjunction with one another. Therefore, the subsets indicated by the method
annotations are precisely the subsets which should be jointly distributed to the same

jprocesses.
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The compiler passes the information concerning the number and distribution of
elements to be allocated for the object being created to the run-time system. These hints
indicate the general form of the decomposition, alignment, and distribution of the data
among processors. Joint research is now being conducted within the Mentat group to allow
the run-time system to combine the compiler hints with information about the current
machine architecture. The run-time system will employ heuristic algorithms to
automatically handle the decomposition, distribution and alignment of the data parallel
object [21, 22]. Cooperating with the run-time system in this manner allows us to divorce
ourselves from the underlying machine architecture.

We believe that the decomposition, distribution and alignment as described in
Fortran-D and other data parallel languages (see Section 2.3) are equivalent to our
mechanisms of specifying the communication patterns. These languages require the
programmer to know the topology of the underlying processors and interconnection
network in advance. In contrast, our extensions allow the programmer to simply indicate
which method will dominate the computation. This serves to remove not only the job of
data placement from the programmer, but to also aleviate the need for the programmer to

explicitly reference off-host data.

3.3.2 DataParallel Class Constructors

Constructors of data parallel mentat classes are analogous to constructors defined
on regular C++ classes. The actions specified within the constructor are carried out after the
object has been created and before any other methods are applied to the object. The
programmer is responsible for defining the constructor, but we impose certain limits on the
content of the constructor. The constructor can be thought of asadata parallel operation for
which the annotations have default values. The method type is aggregate (AGG), the
<subset _speci fi er > ISELEMENT and data parallel objects are not allowed as arguments.
Because the method being defined is a constructor, no results may be returned. Also, data
parallel methods defined on the class may not be invoked within the constructor. Therefore,
the programmer must develop the body of the constructor in the same manner as the
scal e() example of Figure 3.1. This functionality alows the programmer to initialize the

elements of the data parallel object to any default values they feel are necessary.
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3.4 DataParallel Object Support

34.1 Border Management

Consider adata parallel object which has been created as atwo-dimensional matrix
and which has an aggregate method using local communication defined on the class. The
local communication pattern of the method is4PT with aradius of one. For the mgjority of
elements internal to the data parallel object, the neighbor elements of the current element
will themselves be elements of the data parallel object. However, Figure 3.8 illustrates the
situation when a current element (the darkly shaded element in the figure) on the edge of
the object must reference neighbor elements. The neighbor elements are not a part of the
data parallel object. To prevent the neighbor element references from returning undefined
values, we alow the programmer to define border regions for data parallel objects.
Currently, the extensions allow three types of border management to be used for a data
parallel object. These are wrap-around, cyclic, and buffer. The programmer specifies a
border management policy by using one of the predefined border methods provided for
every data parallel class. These methods may be invoked for a member variable of a data
parallel object at the same scope as the object name, but not within a method of the data
parallel class.

Figure 3.9 lists the form of the methods and gives a pictorial representation of the
resulting border management for each. The wrap-around policy returns the element from
the opposite border in the same row or column of the current element. Thus, if an element
on the north border of the object referencesit’s north neighbor the value returned is that of
the southern-most element of the same column. If a cyclic management is specified, the

programmer must specify adirection for the cycle. The element returned isthen the element

Figure 3.8 Reference pattern for an edge element.
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Border Method Prototypes
1 obj . menber _vari abl e- >bor der _wr ap( <edge>) ;
2: obj . menber _vari abl e- >border _cycl i c(<edge>, <direction>);
3: obj . menber _vari abl e- >bor der _buf f er (<edge>, range, value, w dth);

Examples

1 A. pi xel - >border_wrap(N);

2 A. pi xel ->border_cyclic(N, E);

3: A pixel->border_buffer(N, [-2:5], 0, 2);
4: A pixel ->border_buffer(E, [-2:5], 0, 2);
5: A pixel ->border_buffer(W [-2:5], 0, 2);
6 A. pi xel - >border_buffer(S, [-2:5], 0, 2);

r— - - — — — a r— " — — — — a r— - - — — — a

Buffer, width=2
for al Borders

Wrap-around, for
North Border

Cyclic, Easterly direction

I
I
I
I
I
[
|
I
for North Border |

Figure 3.9 Border management methods.

from the opposite border in the next row or column in the direction specified. For example,
a cyclic policy with an easterly direction defined for the north border would return the
southern-most element of the column immediately to the right of the current column.
Finaly, if a buffer management is specified, then a padding of dummy elements are
initialized to the value specified inthe bor der _buf f er () invocation. Referencesto anorth
neighbor will simply return the value contained in the dummy element immediately above
the current element. The range argument allows the programmer to assign different values
to the elements within the same buffer.

The border management methods can be invoked for an object multiple times
during the application. This allows the programmer a great deal of control over the edge
conditions because a certain border policy isnot tied to a particular data parallel method. If
the programmer chooses not to specify a border management policy, then wrap-around is
the defaullt.



33

voi d AGG i mage: : sum rows ROW ()
{
for (int i =0; i <this.numrows(); i++)
this[0].pixel += this[i].pixel;

Figure 3.10 Predefined method use.
3.4.2 Predefined Methods

Because the programmer must have access to information such as the number of
rows or columns in an object, certain methods are predefined for all data parallel classes.
These include num rows(), num col s(), and num el enent s() . These integer functions
will typically be invoked within data parallel operations as part of the programmer defined
iteration, and return exactly what one would expect from their names. Figure 3.10
illustrates the use of a predefined method on line 3.

3.4.3 Relative Addressing Mechanisms

Relative Addressing

Within an aggregate member function, neighboring subsets of the current subset of
the invoked object may be accessed in a read-only fashion. The relative addressing
mechanisms are used for this purpose. Access to the neighboring subsets of an argument
object using the relative addressing is not allowed. Subsets to the north, south, east, and
west of the current subset are referenced using N(), S(), E() , and W) respectively. These
functions are defined for al data parallel classes and return a pointer to an element. Thus,
S() - >pi xel refersto the subset below the current subset in atwo dimensiona array.

Relative addresses may be chained together to form more complex reference
patterns. Thus, S() - >W) refers to the subset diagonally south and west from the current
subset. We restrict relative access to static patterns, e.g., N() - >E() , rather than dynamic
patterns that are run-time dependent. By restricting ourselves to static patterns we can
analyze the communication requirements of amember function at compiletime. In addition
to the NEWS methods, we also define PRED( ) and succ() for one-dimensional objects and
subsets. Not all combinations of relative addressesarelegal. Someillegal combinations can
be detected at compile time, e.g., N() in a function that is annotated with a COL

<subset - speci fi er>.



Subset Element Addressing

Within the subset specified by the <subset_specifier> annotation of a data parallel
method, the programmer uses the standard array indexing notation to reference the

elements of both invoked and argument objects. See Figure 3.10, line 4 for an example.

3.5 Integration of Control and Data Parallelism

For control parallel objects, the Mentat Run-Time System monitors the use of
results of mentat object member function invocations. Data parallel objects are monitored
in the same fashion. We demonstrate the combination of control and data parallelism in
Figure 3.11. Inthisexample, the results of the mentat object member functionsarex, y, and
z. The semantics allow the method calls on lines 16-18 to be executed in parallel. On line
19, theresult of the data parallel method is used as an argument to acontrol parallel method.
Furthermore, the entire code fragment itself could be a mentat object member function
implementation executing concurrently with other mentat object member functions.
Although thisis not an actual application, this example clearly demonstrates that the data
parallel extensions we have developed allow Mentat to support both types of parallelism.
In addition, the simplicity of thisintegration isastrong argument for the design of our data

parallel extensions.

1 dat aparall el mentat class data_parallel _obj {
2 /1 private nenber variabl es
3 public:

4: /1 public menber functions
5: int AGG row_suns ROW ();

6: S

7}

8

9: S

10: float x, z;

11: int vy;

12:

13: control _parallel _obj A B;
14: data_parallel _obj ny_imge;

15:

16: x = A opl();

17: 'y = ny_i mage. row_suns();
18: z = B.opl();

19: B.op2(y);

20: ...

Figure3.11 Control and data parallel method invocations.
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Chapter 4 Implementation M odel and Translations

To be useful, programming languages require an implementation. The compiler
must translate a source language program onto a target language program. In procedural
languages such as C and Pascal, the target is an assembly language. Many details must be
handled, such as the stack. The assembly language provides a call-return mechanism,
however it is up to the compiler of the source language to implement a procedure stack
using the mechanisms provided by the assembly language.

The data parallel Mentat programming language is no different. In control parallel
Mentat, the translated source code handles recognizing which portions of the code can be
executed in parallel. For our data parallel extensions the target language is the run-time
library of the Mentat programming language. Among the details that need to be managed
for the extensions are data distribution, recognition of what data must be communicated
before an operation to ensure all of the datais local to the processor once the computation
begins, and inserting the proper iteration type for the operation to proceed on the invoked
object (or subset of an object). Therefore the target of a data parallel source is a control
parallel code which synchronizes cooperating objects at the proper points.

Quinn [19] has demonstrated that a data parallel program can be converted to run
efficiently on a MIMD machine by synchronizing at the proper points. Our extensions
differ in that the programmer is allowed to operate on distinct el ements of data parallel
objects (versus all elements of atype), and may al so operate on any subset of adataparallel
object.

We do not intend to show that oursis the best implementation possible. Rather, we
will demonstrate that an implementation exists. In amost every case the implementation is
naive, there are optimizations that could be done which would greatly improve the
performance and the elegance of the implementation.

The basic structure of the implementation is a master and a slave. The dlave is a
separate mentat object, the master is a C++ object. Between the master and the dlaves,
distribution, communication, and synchronization is handled for al data parallel objects
declared in the source program. In the following sections we explain the implementation

model and explain the code tranglations which are necessary to support the model.
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4.1 Implementation Model

In many ways, the issues that we must resolve with respect to the implementation
of our data parallel extensions are very similar to the issues that the designer of a SIMD
architecture faces. We have chosen the master-dave paradigm as the basis of our
implementation model for the data parallel extensions to the Mentat Programming
Language. This same model is used in many SIMD architectures. Such architectures
employ a host node, or master, which executes the application program and sends
instructions to the processing elements, or slaves, each of which apply the instructionsto a
particular portion of the data. Because the host node is a single point of control,
synchronization of the processing elementsis straightforward. Thismodel iswell suited to
producing semantics that are easily understandable by the programmer. While the master-
save paradigm of the SIMD architecture model is constructed in terms of host and node
processing elements, our implementation depends on master and slave components which
are designed as mentat objects (processes) assigned to particular processors which are
connected in aMIMD fashion. The master process acts as the source of asingle instruction
stream, while the slaves manage the multiplicity of the data. Thus, data paralelism is
mapped onto control parallelism.

Once we chose the master-slave paradigm, the remaining model design decision
was to determine the delegation of data parallel objectsto slave processes. Given that every
data parallel object would be distributed across multiple processors, we faced two
possibilities in designing the master-slave relationship. These are illustrated in Figure 4.1.
In the first aternative, one slave per data parallel object is created on each processor. The
second choice is to create one slave per processor which manages a portion of every data
parallel object within the same address space. We chose to implement asingle slave process
per processor in order to minimize the amount of communication required between address
spaces on a single processor. This type of communication will occur with a method
exhibiting non-local communication patterns; i.e. references are made to the data parallel
argument of the method. This paradigm aso simplifies the management task of the master
process because instructions only need to be sent to one process per processor instead of
multiple processes per processor. Therefore, we create one slave process per processor, and

each new data parallel object that is created is distributed among these slave processes. As
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Legend :
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O Datapardlel object 1 & Dataparallel object 3!

& Dataparallel object 2 @ Dataparallel object 4 |
|

Figure4.1 Example of two scenarios a) One data parallel abject per dave
process b) Multiple data parallel objects per slave process.

an example, consider four data parallel objects with twenty elements each and five
processors. In this case, one master process and five slave processes would be created. Each
slave would manage four elements of each data parallel object and the master process
would transmit instructions to the five slaves. We will now present specifics about the

implementation of both the master and the slave classes.

411 TheMaster

Figure 4.2 shows a pseudo-code definition of a master class. The master classisa
C++ class which is defined by the compiler in the main program of the application. The
master is responsible for creating and maintaining information about a slave process on
each processor in the system. The master isan “intelligent” object which controlsthe action

of the slaves. The slaves are essentially automatons that receive guidance from the master.



1 struct olist {

2: /1 range of elenments assigned to this slave process
3: /1 list of nethods defined on the data parallel class
4: /1 i ncl udi ng the communication type and a pl ace
5: /1 hol der for return val ues

6: /1 dinmensions of the data parallel object

7: /1 border information for the data parallel object
8: 4

9:

10: struct slist {

11: Monane sl ave_handl e;

12: olist object_list;

13: };

14:

15: class master {

16: /| menber variabl es

17: slist *slave_list;

18: public:

19: /1 menber functions

20: master() {// create a slave on each processor};

21:

22: /1 add a new object to object_list of each slave
23: /1 partition overlay data and pass it to the sl aves
24: /1 determ ne conmuni cation pattern needed for a

25: /1 gi ven operation and instruct slaves to

26: /1 exchange data

27: /'l pass invocation of data parallel operation to the
28: /1 sl aves

29: /1 collect return results fromslaves and return to
30: /1 the caller

31: }

Figure 4.2 Pseudo code for master class definition.
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An instance of the master classis created by the compiler when the main function

of the data parallel application comes into scopel. Since all control of the data parallel

objects flows through the master, any creation or invocation on adata parallel object in the

programmers source code is converted to an invocation on the master by the compiler. The

master then performs the necessary tasks to ensure that the correct datais available at each

slave for the ensuing computation, and oversees the invocation of the requested operation

on every dave that is responsible for a portion of the data parallel object in question.

Specifically, the duties of the master include:

agrwNE

Distributing newly created objects among the slaves.
Distributing overlay data among the slaves.

Directing the communication of data among the slaves.

Directing the invocation of data parallel operations by the slaves.
Collecting and consolidating partial results from the slaves.

1. Or when amentat object is created which “contains’ the data parallel object.
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We will address each of these dutiesin turn.

Object Distribution. The master isresponsible for distributing anewly created data
parallel object among the slaves. When a new object is created, the master conveys the
information concerning the dominant local and non-local communication patterns of the
object to the run-time system. As explained in Section 3.3.1 this information is distilled
from method annotations and argumentsto thenew() operator. Using this advice, the run-
time system determines the appropriate decomposition of the object given the current
system architecture, and returns it to the master. The master then distributes the object
among the slaves located on each processor according to the directions from the run-time
system. Note that this mechanism does not require a portion of the data parallel object be
assigned to every processor, nor doesit require equal portions of the datato be allocated to
each participating slave. This mechanism enables the exploitation of a heterogeneous
system architecture as well as the ability to adapt to a unevenly loaded system. It is the
responsibility of the master to recognize when the data has been unevenly distributed and
ensure that communication of data is properly managed in this case. The research to
develop the run-time side of thismechanismis currently being conducted within the Mentat
research group [21, 22].

Overlay Distribution. Administering the invocation of overlay operations is the
second responsibility of the master. Upon invocation of an overlay operation on a data
parallel object, the master receives the data to be assigned to the elements of the data set.
The master possesses information about which data elements are located at which slave.
The master uses this information to split the incoming overlay data into the appropriate
pieces and forwards them to the corresponding slaves.

Communication between slaves. Directing the communication of data among the
daves is the most complicated task of the master. When an invocation of an aggregate
operation requiring either local or non-local communication occurs, the master initiatesthe
communication of data between slaves (and thus processors) before the invocation of the
operation proceeds. This ensures that once the operation is underway, al necessary datais
local to each processor, and that race conditions on updated element values will not occur

during the execution of the operation. The actions of the master vary depending upon the
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Slave[2] Slave[3

oghw

Figure 4.3 @) An undistributed data parallel object (abstract representation) b)
Distributed data parallel object with guard regions at each processor.

type of communication required: local or non-local. We discuss local communication first
followed by non-local communication.

Loca communication requires that there be “guard regions’ for the data held by a
particular slave. These guard regions are place holdersfor any datawhich is not maintained
at that slave that may be referenced during an operation. Figure 4.3 illustrates adata parall el
object that is distributed by rows among four slave processes, and the guard regions that
each slave maintains to ensure that there is space for al needed data. The shaded datarows
indicate actual data assigned to a slave. The unshaded guard rows are comprised of actual
elements and contain copies of data elements that are maintained by neighboring slave
processes.

At compile-time, every method of a data parallel class is analyzed to discover it's
local communication pattern. Every data paralel method that employs loca
communication must use the relative addressing mechanisms defined in Section 3.4.3. The
use of these mechanisms uncovers any local communication pattern to the compiler. The
aggregate method in Figure 4.4 exhibits alocal communication pattern. The reader will
recall that possible communication patterns are NONE, PRED, SUCC, NS, EW 4PT, and 8PT.

Each pattern must have an associated radius. The communication pattern of the example
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void AGG i mage: :stencil _ave ELEMENT ()

1
20 {

3: pi xel = (N()->pixel + E()->pixel + W)->pixel + S()->pixel) +
4: N()->N() - >pi xel + E()->E()->pixel +

5: W) ->W) ->pi xel + S()->S()->pixel)) / 4

6: '}

Figure 4.4 Aggregate with local communication. Communication pattern is detected by
the use of the relative addressing mechanisms.

stenci | _ave() operation is4PT with aradius of two. The pattern type, 4PT, is determined
by the actual directions referenced. In this case, since all four are referenced, the pattern
type is 4PT. The radius is determined by the number of occurrences of the same direction
in a sequence of references. In our example N() - >N() - >2 indicates that the radius should
be two. The radius value indicates to the master how many guard rows (or columns) must
be exchanged before that operation may proceed, the pattern indicates on which border the
guard rows should be located. (More precisely, the pattern specifies the neighboring slave
from which the necessary data must be obtained.)

Each operation may have different space requirements for guard regions. This is
determined by the radius portion of the communication pattern of the method. In order to
avoid reallocating the guard and data regions before each operation, the compiler makes
note of the largest radius of all communication patterns used in the methods of a data
parallel class definition. When the object is created, enough guard rows are allocated to
handl e the maximum requirement of the object, even though they may not be used on every
method invocation.

Recall that a data parallel operation that employs non-local communication must
have a data parallel argument. Also recall that data parallel objects are distributed in order
to minimize the data communication required for the method that is invoked most often
(See Section 3.3.1). Therefore, when a method requiring non-local communication is
invoked on adataparallel object, one of two situations must bein effect. Either the invoked
object and the argument object were distributed to facilitate their interaction, or they were

not.

2. E()->E()-> (or any of the other relative referencesin lines 4 and 5) also indicates a radius of two.
Notethat areference sequence such as E()->N()->would haveradius one, while E()->N()->N()-
> would have radius two.
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In the first case, the data subsets of the invoked object and the argument object that
must interact during the operation are locally maintained at each processor. The master
does not need to arrange for any pre-communication of data between the slavesin order for
the operation to commence. In the second casg, it is possible that the appropriate data are
not co-located at the processor. Therefore, the master arrangesfor copies of the needed data
from the argument object to be communicated among the slaves. In order to accommodate
such transfers of data, enough space to store the entire argument object must be allocated
at every dave. This space must be allocated for every object since every object has the
potential to be an argument to a data parallel method. This approach is problematic, since
it seriously limits the problem sizes of applications using our extensions. However, it isnot
unique, and has previously been used by Hatcher and Quinn [11] to ensure proper accessto
needed data.

A solution to this problem entails the support of dynamic redistribution of objects.
Such support would eliminate the need for alocating enough space for entire objects at
every processor. By allowing aredistribution of the objects prior to method invocations, the
correct data could be placed at the slaves without unnecessarily allocating enough space for
the entire object. We believe that our current design is amenable to inclusion of adynamic
redistribution feature, however, it is beyond the scope of this thesis to implement such a
feature. Additionally, we believe this shortcoming of the implementation does not affect the
elegance of the language.

Directing Operation Invocation. The fourth task of the master, directing the
invocation of data parallel operations, is straightforward. The master simply invokes the
operation on each of the slaves. The slaves then proceed to asynchronously compute their
results.

Collecting Results. If a particular method generates a return result, the master is
responsiblefor collecting, organizing, and returning these resultsto the point of invocation.
Each dave forwards its individual result to the master upon completion of their portion of
the operation. The master then organizes the results in the proper order that is expected by

the caller and returns the aggregate result.
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4.1.2 TheSave

We now describe the functionality of the slave class. Figure 4.5 illustrates the
pseudo code of atypical slave class. As with the master class, the lave class is generated
by the compiler. However, the slave classisdefined asasequent i al persi st ent nent at
class (line 9). The reader will recall from Section 2.2 that a sequenti al persi stent
ment at class guarantees that all invocations by object A on object B are received a B in
the same order as their invocation at A. Instances of the slave class are distinct processes
which communicate with the master class via member function invocation. Data parallel
objects are decomposed and portions are distributed to the slaves by the master. Thus, each
slave may be responsible for managing a portion of a number of data parallel objects.

Each dave will maintain alist of the objects for which it is responsible (line 11).
For each of these objects, the members of the structuresol i st (lines 1-7) describe the state
of an object at a particular dave. The primary copy (line 2) of an object represents the
current values of the data elements before an operation. During a data parallel operation,
these values are modified as directed in the method. The second copy (line 4) of the datais
the mechanism used to prevent race conditions on the element values of the invoked object,
and is the implementation of the pre-copy approach discussed in Section 3.1.3. Again, the
values of the second copy reflect the state of the invoked object before the operation begins.

1: struct solist {
2: [l primary copy of the data of the object nmintained by
3: I this slave.
4. /'l second copy of the data - used to prevent race conditions
5: I on | ocal comuni cati on.
6: /1 return value place holder for each nmethod of the object.
7.}
8:
9: sequential persistent nmentat class slave {
10: /] nmenber variabl es
11: solist slave_object_list;
12: public:
13: /] nenber functions
14: /1 marshall and send the data of a data parallel object to
15: I a peer slave using instructions fromthe naster.
16: /1 add received data to guard regions of a data parallel
17: I obj ect
18: /1 invoke a data parallel nethod on |ocally nmaintai ned data
19: /] return results to the naster
20: /1 two-copy the values of a data parallel object
21}
Figure 4.5 Pseudo-code for slave class definition.
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Data parallel operations at the slaves are conducted by iterating over the local data
set of the invoked object; thus they are operated upon sequentialy as opposed to
concurrently. We will refer to the element corresponding to the current index of theiteration
as the “current” element and all others as “neighbor” elements. Elements of argument
objects are referred to as “argument” elements. Updates of the current element value are
recorded in the primary copy of the data, and are visible aslong asthat element remainsthe
current element. Updates of neighbor and argument elements are not allowed by the
language. During an operation, a read request may reference the current element, a
neighbor element, or an argument element. Because element values of an argument object
cannot be updated during adata parallel operation, requests for these values are filled from
the primary copy of the argument object i.e. no pre-copy of the object is made, the primary
copy issimply restricted to read-only access. Requestsfor the current element are met using
the value recorded in the primary copy of the invoked object. This allows the programmer
to computeintermediate resultsfor the current element that are visible aslong asthe current
element isin scope. However, as soon as an operation is complete for a current element, its
statusrevertsto that of aneighbor element. VValuesfor neighbor elements are supplied using
the second copy of the invoked object. Thus, the values of neighbor elements are constant
for every current element while in the scope of the data parallel operation.

In addition to the primary and second copies of the element data of each object, the
daves maintain a place holder (line 6) for the return values of every non-void data parallel
operation defined for each object. These place holders are used to collect the result of the
invoked operation on each element until every element possessed by the slave has been
processed. These results are then collectively returned to the master. The master then
collates the results and returns them to the caller of the data parallel method.

We proceed to the description of slave functionality. Each type of data paralel
method, OVR, RED, and AGG, requires a dlightly different sequence of events to occur
between the master and the slaves.

Overlay Operations. First, upon invocation of an overlay operation, the slaves
receivethe new datafrom the master asalist of values. Each datapoint sent from the master
represents the new value of amember variable of an element. The master has organized the

values in the proper order for each slave, so the slave can simply iterate over the elements
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of the object assigning the new values to the member variable of the elements. Since there
can be no local or non-local communication in an overlay operation, the new values are
assigned directly to the primary copy of the object. After the overlay operation has
completed but before executing the next instructions from the master, the slave performs a
transfer of the primary data to the second copy. This operation can proceed concurrently
while the master is preparing the next operation. The reason for making the copy at this
timeis performance. Subsequent operations which require local communication will not be
slowed by waiting for the second copy to be made.

Reduction Operations. Reduction operations are applied to the el ements of the data
parallel object as described in Section 3.2.4. Each slave therefore produces a local result
that is the reduction over the elements that it maintains. Each slave returns their result to
the master who then performs the fina reduction over all slave results. Recall, reduction
operations must be binary, associative, and commutative. Since updates are not alowed as
part of areduction, element values are read directly from the primary copy of the object
during the operation.

Aggregate Operations. Aggregate operations are the most complex of the three
types. They require greater cooperation between the master and the slaves than overlay or
reduction operations. Figure 4.6 illustrates the interactions of the master and slaves each
time an aggregate operation is invoked. Upon receiving an invocation of an aggregate
operation, the master determines if local or non-local communication is required by the
operation. If local communication is required, then the master assembles instructions for
the slaves to exchange data from the invoked object. If non-local communication is
involved, the master assembles instructions for each slave regarding this exchange as well.
Finally, the object upon which the operation isto beinvoked isindicated in the instructions.
These instructions are then passed to the slaves (message 1). The slaves marshall and send
the data indicated in the communication instructions and wait for the receipt of similar
messages from their counterparts (message 2). Once the data has been exchanged, the
slaves record the valuesin the appropriate variables. At this point each slave will accept an
invocation from the master (message 3). This invocation specifies which data parallel
operation should be applied to the elements of the particular data parallel object. After

computing their local results, the slaves return these values to the master (message 4). The
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aggregate
invocation

collated
result

Figure 4.6 Master/daveinteractions for
aggregate operations.

master collates and returns the results to the caller. Since aggregate methods will typically
modify the current element of the operation, the primary data of the invoked object will be
transferred to the second copy after the completion of the operation for al elements. Again,
this copy is done at the end of the operation to save time at the beginning of the next

operation invoked on the object.

4.2 Trandations

The annotations and communication characteristics upon which our data parallel
extensions are based delineate four classes of data parallel methods. These classes may be
ordered in terms of their increasing tranglation complexity. We have isolated eight types of
transformation which are required to convert a programmer defined data parallel method
into aworking data parallel operation. Asthe complexity class of the method increases, so
does the number of transformations which must be applied to generate the master/slave

model we described in the preceding section. Currently, applications devel oped using these
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data parallel extensions are hand trandlated into the master and dave classes. Actua
compiler support is atopic for future consideration.

In the remainder of this section, we first define the complexity classes and identify
what translations are needed for each class. Then, to explain the trandlations, we present an

example from each complexity class and the translations associated with that class.

421 Method Complexity Classes

The method complexity classes, in order of increasing complexity, are:
1. Type 1: Overlay, Reduction, and Simple aggregate methods with an
ELEMENT <subset_specifier> annotation.

2. Type 2: Simple aggregate methods with a ROW or COLUMN

<subset_specifier> annotation.

3. Type 3: Local aggregate methods.

4. Type4: Non-local aggregate methods.

The distinguishing characteristic of type 1 methods is the <subset specifier>
assigned to the method. The subset for every method in this class is ELEMENT. These
types of methods represent the concept of data parallelism most closely because each
individual element of the object is operated upon concurrently”3. For methods in this
class, values of other elements of the invoked object, or any other object within the
application, are not required to complete the computation for any one element.

A type 2 operation is any simple aggregate method for which the specified subset is
ROW or COL. Recall that an annotation indicates the subset of the data parallel object for
which the programmer is assuming responsibility. For example, aROW annotation implies
that the programmer intends to access multiple elements of a row as opposed to a single
element®. Therefore, for performance reasons, the subsets must be organized so that no
subset is divided across processors. If the initial distribution of the invoked object is not
equivalent to the distribution mandated by the invoked operation, then a redistribution of

the data may be required before the computation can proceed. Therefore, type 2 operations

3. Again, because of physical limitations such as the number of processors in the system the
operations only appear to occur concurrently. Realistically, a number of the operations occur
sequentially.

4. However, there are no references to the elements of a neighboring subset.
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requireall of the transformations applied to type 1 operationsin addition to transformations
designed to handle the redistribution of the invoked object.

All methods which make use of local communication asdefined in Section 3.1.3 are
grouped into the type 3 class of data parallel methods and are referred to aslocal aggregate
methods. These methods may be annotated with all possible <subset_specifier>. As with
type 2 methods, any type 3 method with a ROW or COL annotation may require a
redistribution of the object before the operation proceeds. The additional complexity of this
class arises from the fact that subsets other than the “ current” subset are referenced by the
programmer in the body of the function using the relative addressing mechanisms
described in Section 3.4.3. Thus, those subsets must be locally available, in read-only form,
at the same processor asthe “ current” subset. Thisrequires atransformation which enables
the communication of these values in addition to the transformations required for type 1
and type 2 methods. Also, the relative addresses must be trandated to actual addresses.

Thefinal class of methods are those designated as type 4 methods and referred to as
non-local aggregate methods. These methods take a second data paralel object as an
argument. As described in Section 3.1.3, references to values within the argument object
arereferred to as non-local communication. The transformations applied to type 2 and type
3 methods are aimed at the distribution of the data parallel object upon which an operation
has been invoked. These same transformations must be applied to the data parallel object
named as the argument to a type 3 method. Because there are two data parallel objects
involved in non-local computations, there are two groups of subsets dealt with in the body
of the method. The interaction among the subsets of the two objects is specified by the
<combination_rule> annotation. This interaction is the differentiating factor for all type 4
methods and requires a new transformation in addition to the transformations applied to all
other method types. The additional transformation handles the proper nesting and

placement of iteration control structures for the object and argument.

4.2.2 Required Trandations

The classification of data parallel methods into the various complexity classes can
be done by evaluating the reference patterns within the methods, the method annotations,

and any data parallel arguments to the method. This task is handled by the compiler.
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Therefore, the programmer does not need to be aware of the particular class of a method,;

instead, the compiler detects the method class and applies the appropriate transformations

automatically. The eight transformations alluded to in the previous paragraphs are:

1.

2.

Iteration. Provision of iteration control over the subsets of the invoked object
as specified by the <subset_specifier>.

Indexing. Insertion of required array indicesto all data parallel object
references.

Result Cardinality. Allocation of space for the result set of each slave and for
the operation as awhole.

Object Distribution. Coordination of the current distribution of the data
parallel object with the distribution expected for the method.

Guard Regions. Allocation and management of space for guard regions of a
dataparalel object.

Relative Address Conversion. Conversion of relative addressing mechanisms
to actual addresses within a data parallel object.

Argument Distribution. Coordination of the current distribution of the data
parallel argument with the distribution expected for the method.

Loop nesting. Proper nesting of iteration control structures to handle
combination of object and argument subsets.

Figure 4.7 illustrates the correspondence between each class of methods and the

transformations. In order to explain each transformation in detail, we will provide an

example of each method type. We will treat the four method classes in order of increasing

complexity, and therefore at each level will only discuss the new transformations required

for that particular type. A number of the transformations are parameterized by information

Iteration
Type 1 Indexing
Result Cardinality
Type 2 Object Distribution
Guard Regions
Type3 Relative Address Conversion
Argument Distribution
Type4 Loop Nesting

Figure4.7 Classtypes and translations required.
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1: voi d master::class_opl()
2: {
3: /1 conmmuni cation - redistribution and guard regions.
4: /1 operation invocation.
5: /] return results to caller.
6: /] communication - redistribution.
7: }
a)
1 voi d sl ave::class_opl()
2: {
3: /1 allocate result space
4: /1 iterate over subsets (object and argunent)
5: I progranmer defined met hod body
6: /] return results to master
7: /1 two_copy (see Section 3.1.3)
8: }
b)
Figure 4.8 a) Generated master class method. b)
Generated slave class method.

that can only be known at run-time. Additionally, certain transformations are conditionally
applied given certain run-time information.

Before proceeding with the actual examples, adiscussion of the general form of the
methods resulting from the transformations is in order. Each method defined by the
programmer is converted into two new methods. One of these methods is defined within
the master class, and oneis defined within the slave class. Figure 4.8 illustrates the general
structure of these two generated methods. Additional methods are defined on the slave class
to handle the various communi cation patterns needed to ensure that all dataare local to the
appropriate slave (processor) before a computation begins®. These additional methods are
invoked by the master during the communication phase of the generated master class
method. We now turn to the method class trand ations.

Simple aggregate (ELEMENT), Overlay, and Reduction methods. Figure 4.9
illustrates a simple aggregate (ELEMENT) operation which returns an integer result. The
translations required for this method type are tranglations 1 through 3. The portions of the
master and slave class methods generated using transformations 1 through 3 appear in

boldface. The same trandlations apply to overlay and reduction operations.

5. These communication methods are defined in a base class aswas done in [13].
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10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:

Original Data Parallel Method Definition and Invocation

Simple Aggregate (ELEMENT)
int AGG image::scale ELEMENT (int val ue)

{
int result;
result = pixel * value
return(result);

! .

i mge pic;

pic = new ()i nmage();
val ues = pic.scale();

Master Class Method Definition

int *master::image_scal e(handl e dpob_id, int val ue)

{
/1 initial comunication unnecessary.
/1 allocate an int pointer to hold the results of each slave
for (int dp_i = 0; dp_i < numslaves(); dp_i++)

result_set[dp_i] = slave[dp_i].imge_scal e(dpob_id, val ue);

/1 conbine result sets into a single set.
/1 post conmuni cation unnecessary.
/1 return single result set to caller

Slave Class Method Definition

int *slave::inmage_scal e(handl e dpob_id, int val ue)

{
int result;
/1 allocation of result space for each el enent.
for (int dp_i = 0; dp_i < dpob_id.numrows _held(); dp_i++)
for (int dp_j = 0; dp_j < dpob_id.numcols_held(); dp_j++) {
result = dpob_id[dp_i][dp_j].pixel * value
result_set[dp_i][dp_j] = result;
/] return results to master
/'l pre-copy new val ues
}

Figure 4.90riginal, master and slave method definitionsfor scal e() .

The first trandlation, iteration, makes use of the invocation and the

<subset_specifier> in order to provide the iteration bounds on lines 24 and 25 of the slave

method i mage_scal e(), and to control the invocations by the master on lines 14 and 15.

Recall that a method may be invoked on a single element, a subset of elements, or all

elements of a data parallel object. Therefore, the invocation indicates to the master and the

slave which elements should be the subject of the operation. Our example invocation on

line 9 involves al elements of the object pi c. Notice that line 4 and line 26 are similar
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except for the array indexing. We will refer to line 4 as the method body and line 26 asthe
trandated version of the method body. The <subset _speci fi er > is the mechanism by
which the compiler determinesit’sresponsibility for iteration over the subsets of the object.
In our example, the <subset _speci fi er> ELEMENT indicates that all elements managed
by every slave should be operated upon. Therefore, adoubly nested loop isinserted around
the translated version of the method bodly®.

The second transformation, indexing, makes use of information conveyed by the
<subset _speci fier> as well. Because a doubly nested loop has been inserted by the
compiler, all dataparallel object member variablesreferenced within the method body must
be indexed to provide iteration control. In our example (line 26), two index variables have
been added to all referencesto the member variablepi xel . In the case of a ROWannotation,
only one index variable would be added since the programmer would presumably provide
the second one if needed. For example, pi xel [ k] in the method body would become
pi xel [i][k] in the trandated version. Likewise, a COL annotation and pi xel [ k]
reference would result in pi xel [k][i].

Finaly, the third trandation, result cardinality, depends upon information from the
object <subset _specifier> and the invocation. Essentialy, the number of subsets
specified by the <subset _speci fier> for the portion of the object indicated by the
invocation is equal to the number of results that must be returned by the master. The slaves
figuretheresult cardinality for their portion of the object similarly. Thisinformationisused
to allocate space to hold the results in both the master and the slaves (lines 13 and 23
respectively). Code initiating the return of the resultsisinserted on lines 16 and 18 of the
master class method and line 28 of the slave class method. Thisthird tranglation is slightly
more complicated for non-local aggregate methods. We will delay explanation of the
trandation for non-local aggregate methods for now.

Simple aggregate (ROW or COL) methods. Figure 4.10 illustrates a simple
aggregate (ROWor COL) method which returns an integer result. In addition to translations
1 through 3, this type of method requires translation 4, object distribution. As before, the

6. All objects are assumed by the compiler to be two dimensiona arrays at compile-time. If at run-
time this is not the case, then num rows_hel d() and/or num col s_hel d() will return a
value of one as appropriate. Thusthe compiler allowsfor all possible configurations of the data
parallel object.
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Original Data Parallel Method Definition and I nvocation
Simple Aggregate (ROW or COL)

1: int AGG matrix::row _sums ROWN)

2: {

3: int result;

4: for (int j =0; j <this.numcols(); j++)
5: result += this[j].value

6: return(result);

7: }

8: matrix A

9: A =new ()matrix();

10: sums = A row_suns();

Master Class M ethod Definition

11: int * master::matrix_row suns(handl e dpob_id)

12: {

13: /1 if current distribution of object is not RON

14: /1 then direct slaves to redistribute object by rows.

15: /1 allocate an int pointer to hold the results of each slave
16: for (int dp_i = 0; dp_i < numslaves(); dp_i++)

17: result_set[dp_i] = slave[dp_i].nmatrix_row _suns(dpob_id);
18: /1 if elenent values were nodified and dom nant distribution
19: /1 is not ROW

20: /1 then direct slaves to redistribute object according
21: /1 to dom nant distribution.

22: /1 conmbine result sets into a single set.

23: /1 return single result set to caller

24: '}

Slave Class M ethod Definition

25: int * slave::matrix_row_sums(handl e dpob_i d)

26: {

27: int result;

28: /1 allocation of result space for each el ement.

29: for (int dp_i = 0; dp_i < dpob_id.numrows_held(); dp_i++)
30: for (int j =0; j < dpob_id.numcols_held(); j++) {
31: result += dpob_id[dp_i][j].value

32: result_set[dp_i][j] = result;

33: }

34: /1 return results to master

35: /1 pre-copy new val ues

36: }

Figure4.10 Original, master and slave method definitions
forrow suns().

portions of the master class generated using this transformation appear in boldface. For this
type of method, the <subset_specifier> of the method and the dominant distribution of the

object must be compared. If they are not the same, then the data of the object must be



54

redistributed to avoid the cost of off-host communication during the application of the
operation. The master accomplishes this task by invoking inherited methods defined in the
slave class. These methods are a collection of operations which handle the marshalling and
sending of specific object subsetsto apeer slave. Lines 13 and 14 of our example show that
this redistribution takes place prior to the invocation of the data parallel method on the
slaves. The semantics of the data parallel operations require that the processor managing
the elements must maintain their values locally. Therefore, if elements of the data parallel
object have been modified during the operation, it is necessary to undo the effects of the
object redistribution. The master again overseesthis action in the same manner astheinitial
redistribution as shown on Lines 18-21 of our example.

Local Aggregate methods: Local aggregate methods require the fifth and sixth
translations, guard regions and relative address conversion respectively, in addition to the
previous four tranglations. Both trand ations make use of information conveyed by the use
of relative addressing mechanisms in the body of the programmer defined method. Figure
4.11 illustrates alocal aggregate method using these mechanisms and the master and slave
class methods which are generated by applying the transformations. For an operation of this
type, the master is responsible for directing the population of slave guard regions prior to
the method invocation. The compiler determines the amount of data needed on a per
method basis by analyzing the use of the relative addressing mechanisms. This analysis,
discussed in Section 3.1.3, returns a radius which indicates how many rows or columnsin
a certain direction are needed. In our example, a single guard row or column in each
direction is sufficient. The master uses the compiler supplied methods mentioned earlier to
achieve the transfer of the proper data regions. The pseudo-code for the guard regions
trandation is shown on lines 11 and 12. As with the object distribution translation, this
transfer takes place before the invocation of the method.

The relative addressing mechanisms also direct the compiler to generate references
to actual data elements in the body of the slave class method. The actua references
generated comprisethe sixth trangdlation, relative address conversion. Since the needed data
will be available within the same data structure as the elements which are the target of the

operation, the N() - >, S() - >, etc. relative addresses are converted into expressions. These
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Original Data Parallel Method Definition and I nvocation
L ocal Aggregate

voi d AGG i mage: : stencil _ave ELEMENT()
pi xel = (N()->pi xel + E()->pixel + W)->pixel + S()->pixel) / 4;
i mage pic;

pic = new ()i mage();
pic.stencil _ave();

NoghkwhR

Master Class M ethod Definition

8: void master::inmage_stencil _ave(handl e dpob_id)

9: {

10: /1 redistribution unnecessary since annotation is ELEMENT
11: /1 if guard regions are needed for invoked object
12: /1 then transfer regi ons anbng sl aves.

13: /1 result allocation unnecessary.

14: for (int dp_i = 0; dp_i < numslaves(); dp_i++)

15: slave[dp_i].i mage_stencil| _ave(dpob_id);

16: /1 result conbination unnecessary for this exanple
17: /1 return of results unnecessary for this exanple.
18: /1 redistribution unnecessary for this exanple.

19: }

Slave Class M ethod Definition

20: void slave::inmage_stencil_ave(handl e dpob_i d)

21: {

22: /1 result allocation unnecessary.

23: for (int dp_i = 0; dp_i < dpob_id.numrows_held(); dp_i++)

24: for (int dp_j = 0; dp_j < dpob_id.numcols_held(); dp_j++)
25: this[dp_i][dp_j].pixel = dpob_id[dp_i-1][dp_j].pixel +
26: dpob_id[dp_i][dp_j +1]. pi xel +
27: dpob_id[dp_i][dp_j-1].pixel +
28: dpob_id[dp_i +1][dp_j]. pi xel)
29: | 4;

30: /1 return of results unnecessary.

31: /'l two-copy new val ues.

32: }

Figure4.11 Original, master and slave method
definitionsfor st enci | _ave().

expressions are used to index the array data structure of the data parallel object as shown
on lines 25-28.

Non-local aggregate methods: An example of the final data parallel method
complexity class is shown in Figure 4.12. This method implements matrix multiplication

for two data parallel objects. As before, all previous translations described are applied to
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26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:

int

{

}

Original Data Parallel Method Definition and I nvocation
Non-L ocal Aggregate

AGG matrix::mat_nul RONCOL 1xN matrix B)

int result;

for (int j =0; j < this.numcols(); j++)
result += this[j].value * B[j].val ue;

return (result);

matri x A, B;
A = new () matrix();
B = new () matrix();
A mat _mul (B);

}

Master Class M ethod Definition

* master::nmatrix_nmat_mul (handl e dpob_id, nmatrix B)

/1 if current distribution of object is not RON

/1 then direct slaves to redistribute object by rows.
/1 guard regi ons unnecessary.

/1 if current distribution of argunent is not COL

/1 then direct slaves to redistribute argument by col ums.
/1 allocate an int pointer to hold the results of each slave.
for (int dp_i = 0; dp_i < numslaves(); dp_i++)

slave[dp_i].matrix_mat_nul (dpob_id, B);
/1 conbine result sets into a single set.
/1 return single result set to caller.
/1 redistribution unnecessary.

Slave Class M ethod Definition

* slave::matrix_mat _nul (handl e dpob_id, matrix B)

int result;
/1 allocation of result space for each el enment.
for (int obj i = 0; obj_i < dpob_id.numrows_held(); obj_i++)

for (int arg_j = 0; arg_j < B.numcols_held(); arg_j++)
for (int j=0; j < dpob_id.numcols_held(); j++) {
result += dpob_id[obj_i][j].value * B[j][arg_j].val ue;
result[obj _i][arg_j] = result;
}
// return results to master.
/1 two-copy new val ues.

Figure4.12 Original, master and slave method definitions for mat _mul () .
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methods of this class, and the generated code affected by the trandations is shown in

boldface.
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Thethird tranglation, result cardinality, is more complex for this method class than
the previous three method classes. In the simpler method classes, the result cardinality was
dependent upon the <subset _speci fi er > of the object and the invocation of the method.
In the case of local aggregate methods, the <conbi nation_rul e> annotation and the
<subset _specifier> of the argument contribute information as well. The
<conbi nation_rule> annotation may have one of three vaues. If the
<conbi nat i on_r ul e> for the argument is 1x 1, then the compiler assumes that there are
an equal number of subsetsin the object and in the argument. Since they will be combined
in a pairwise fashion,

number_of results= subsets of object = subsets of argument.

However, if the combination ruleis 1xNor Nx 1, then:

number of results = subsets of object * subsets of argument.

The argument distribution tranglation is analogous to the object distribution
tranglation described for simple aggregate (ROWor COL) methods. However, it is applied
to the dataparallel argument of the method as opposed to the object upon which the method
was invoked. Again, any communication generated by this translation occurs before the
operation isinvoked at the slaves (lines 17 and 18). However, since the data of an argument
object isrestricted to read-only access, the redistribution does not need to be undone asin
the case of the simple aggregate (ROWor COL) methods.

The final tranglation required for the method complexity classes is loop nesting.
This translation ensures that the iteration over both the invoked object and the argument
object proceeds correctly. The <conbi nati on_r ul e> indicates the type of loop nesting
required for the operation. For a1x1 annotation, asingle iteration control is required, and
the same index is used for both the object and the argument. For a 1xN annotation, two
loops are needed. The outermost |loop governs iteration over the object, and the innermost
loop handles iteration over the argument. Consequently, the indexes used for the two
objects correspond to the control loop index variables respectively. The translated body of
the method should be at the innermost nesting level. This scenario is demonstrated in our
example on lines 30-33. For an Nx1 annotation, the nesting of the object and argument

control loopsisreversed.
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Chapter 5 Conclusionsand Future Work

In thisthesis, our objective was to design alanguage in which both data and control
parallelism are easily expressible and readily usable in conjunction with one another. The
approach we used was to augment an existing control parallel language, the Mentat
Programming Language, with data parallel extensions. Our extensions improve on
previous work with data parallel languages in several ways. We generalize a number of
known mechanisms and provide more flexibility in terms of data set manipulation. In
particular, we generalize reduction operations, allow subsets of data parallel objects to be
treated as data parallel objects themselves, allow flexible treatment of data set border
regions by the programmer, and provide automatic generation of iteration control
constructs. Our annotations allow elegant expression of data parallel method properties.
Finally, we describe the requisite tranglations needed to map data parallel constructs to a
control parallel paradigm.

Continuing work needsto be donein the areas of nested dataparallelism, promotion
of data parallel objects to first-class citizens, support of dynamic redistribution controlled
by the programmer, and consideration of more complicated data set organizations. The
compiler needs to be built both to test our translations and to expose issues that have
escaped our notice. To truly prove the efficacy of a combined task and data parallel
language, we would like to implement an application which requires both forms of

parallelism.
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