
Combining Control and Data Parallelism:
Data Parallel Extensions to the Mentat

Programming Language

Emily A. West

Computer Science Report No. CS-94-16
May 18, 1994

Abstract

Control parallelism refers to concurrent execution of different instruction streams.
Data parallelism refers to concurrent execution of the same instruction stream on multiple
data. There are a number of languages which support control parallelism as well as several
which support data parallelism. As yet, there is no language which combines the two. The
Mentat Programming Language, MPL, is designed to express control parallelism. While
expression of data parallelism is possible, it is awkward and unsupported by the current
language features. In this research, we propose a set of data parallel extensions to the MPL.
We define a new type of mentat class, thedataparallel mentat class, to complement the
existingregular, persistent andsequential mentat classes. In a dataparallel mentat class, the
programmer defines the structure of an element and the methods that operate on these
elements. These methods are annotated to convey the distribution of the data set and inter
and intra data set communication. All other data parallel languages to date simply allow
element level parallelism. Our language extensions support subset level parallelism as well.
In this work, we present the language design, a description of the implementation model,
and the translations of the dataparallel class to Mentat’s control parallel model.

Combining Control and Data Parallelism:
Data Parallel Extensions to the Mentat Programming Language

Emily A. West
Department of Computer Science

University of Virginia
Charlottesville, VA 22903

west@virginia.edu

A Thesis

Presented to

the Faculty of the School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment

of the Requirements for the Degree

Master of Science (Computer Science)

by

Combining Control and Data Parallelism:
Data Parallel Extensions to the Mentat Programming Language

Emily Archer West

May 1994

APPROVAL SHEET

This thesis is submitted in partial fulfillment of the
requirements for the degree of

Master of Science (Computer Science)

Emily A. West

This thesis has been read and approved by the Examining Committee :

Thesis Advisor: Andrew S. Grimshaw

Committee Chair: William A. Wulf

Committee Member: Jack W. Davidson

Accepted for the School of Engineering and Applied Science:

Dean Edgar A. Starke, Jr.
School of Engineering and Applied Science

May 1994

Abstract

Control parallelism refers to concurrent execution of different instruction streams.

Data parallelism refers to concurrent execution of the same instruction stream on multiple

data. There are a number of languages which support control parallelism as well as several

which support data parallelism. As yet, there is no language which combines the two. The

Mentat Programming Language, MPL, is designed to express control parallelism. While

expression of data parallelism is possible, it is awkward and unsupported by the current

language features. In this research, we propose a set of data parallel extensions to the MPL.

We define a new type of mentat class, thedataparallel mentat class, to complement the

existingregular, persistent andsequential mentat classes. In a dataparallel mentat class, the

programmer defines the structure of an element and the methods that operate on these

elements. These methods are annotated to convey the distribution of the data set and inter

and intra data set communication. All other data parallel languages to date simply allow

element level parallelism. Our language extensions support subset level parallelism as well.

In this work, we present the language design, a description of the implementation model,

and the translations of the dataparallel class to Mentat’s control parallel model.

iv

Dedication

For my husband, Charlie.

v

Acknowledgments

I thank my advisor, Andrew Grimshaw, for his continuing faith in the value of this

work and for his unflagging support throughout. General Electric’s financial support

through the Faculty for the Future program made it possible for me to concentrate on this

work for the past year. The love and support of my parents has been extremely important

to me throughout my life. I will be forever indebted to Ezmerelda for providing me with

the hardest deadline anyone could ever imagine. Finally, my most sincere gratitude is

reserved for my husband Charlie, whose love and encouragement are without bound.

vi

Table of Contents

Chapter 1: Introduction ... 1

Chapter 2: Background and Related Work ... 3
2.1: Data Parallelism ...3
2.2: The Mentat Programming Language ...5

2.2.1: Mentat Member Function Invocation ...7
2.3: Related Work ...8

Chapter 3: Data Parallel Extensions to the Mentat Programming Language 13
3.1: Data Parallel Class Definition ..14

3.1.1: Dataparallel Class Member Variables ..15
3.1.2: Dataparallel Class Member Functions ..16
3.1.3: Deterministic Data Parallel Semantics ...17

3.2: Data Parallel Method Types ..20
3.2.1: Simple Aggregate Methods ..20
3.2.2: Complex Aggregate Methods ...24
3.2.3: Overlay Methods ...25
3.2.4: Reduction Methods ...25

3.3: Allocation and Initialization of Data Parallel Objects26
3.3.1: Object Creation and Distribution ..26
3.3.2: Data Parallel Class Constructors ...30

3.4: Data Parallel Object Support ...31
3.4.1: Border Management ...31
3.4.2: Predefined Methods ..33
3.4.3: Relative Addressing Mechanisms ...33

3.5: Integration of Control and Data Parallelism ..34

Chapter 4: Implementation Model and Translations.. 35
4.1: Implementation Model ...36

4.1.1: The Master ..37
4.1.2: The Slave ..43

4.2: Translations ..46
4.2.1: Method Complexity Classes ...47
4.2.2: Required Translations ...48

Chapter 5: Conclusions and Future Work ... 58

Bibliography:..59

vii

List of Figures

Chapter 2: Background and Related Work
Figure 2.1: A Mentat class definition. Without the keyword “mentat”, it is a

legitimate C++ class definition...6

Chapter 3: Data Parallel Extensions to the Mentat Programming
Language

Figure 3.1: Data parallel class definition..15
Figure 3.2: Communication capabilities by method type.....................................18
Figure 3.3: Data parallel class and method definition..21
Figure 3.4: Grammar for data parallel object methods...22
Figure 3.5: Data parallel object declaration and communication patterns............26
Figure 3.6: Three types of local communication pattern each with a radius of

two.The darkly shaded element is the element to which the
neighboring values are “communicated”. a) EW pattern. b) 4PT
pattern. c) 8PT pattern...27

Figure 3.7: Object Allocation and Distribution..28
Figure 3.8: Reference pattern for an edge element...31
Figure 3.9: Border management methods...32
Figure 3.10: Predefined method use...33
Figure 3.11: Control and data parallel method invocations..................................34

Chapter 4: Implementation Model and Translations
Figure 4.1: Example of two scenariosa) One data parallel object per slave

process b) Multiple data parallel objects per slave process............37
Figure 4.2: Pseudo code for master class definition...38
Figure 4.3: a) Undistributed data parallel object (abstract representation) b)

Distributed data parallel object with guard regions at each
processor..40

Figure 4.4: Aggregate with local communication. Communication pattern is
detected by the use of the relative addressing mechanisms..............41

Figure 4.5: Pseudo-code for slave class definition...43
Figure 4.6: Master/slave interactions for aggregate operations............................46
Figure 4.7: Class types and translations required...49
Figure 4.8: a) Generated master class method. b) Generated slave class method.50
Figure 4.9: Original, master and slave method definitions forscale().51
Figure 4.10: Original, master and slave method definitions forrow_sums().53
Figure 4.11: Original, master and slave method definitions forstencil_ave(). 55
Figure 4.12: Original, master and slave method definitions format_mul().56

1

Chapter 1 Introduction

Control parallelism refers to concurrent execution of different instruction streams.

Data parallelism refers to concurrent execution of the same instruction stream on multiple

data. Significant applications exist that contain both control and data parallel components.

Global climate and geophysical models are examples of multi-level models of natural

phenomena which exhibit mixed forms of parallelism. Likewise, the progression from

image processing to feature extraction and finally image understanding presents many

opportunities for the exploitation of both control and data parallelism.

Current parallel languages support either control parallelism or data parallelism,

unfortunately we are not aware of any languages which support both. Given this situation,

developers of applications exhibiting mixed parallelism are faced with one of two choices.

The first alternative is to write the control parallel components using an existing control

parallel language, and develop the data parallel components using a data parallel language.

These components will most likely be distinct executables. The downside of this solution

is that the programmer must provide an interface between the resulting components. This

is a tiresome task at best. The second option for this type of application development is use

one language type to exploit the corresponding type of parallelism within the application.

This solution is to the detriment of the remaining application components which cannot be

easily expressed using the chosen language. Given these options, the need for programming

environments (a language, compiler and run-time system) to support development of

applications containing mixed parallelism is clear.

We address this problem at the language design level. Our objective is to provide a

language in which both control and data parallelism are easily expressible and readily used

in conjunction with one another. We begin with a control parallel language, the Mentat

Programming Language (MPL), and extend its features to support the data parallel style of

programming. The MPL is an object-oriented parallel programming language which

provides control parallelism at the method level. Data parallel applications have been

implemented using this language[9]. However, many of the techniques used to develop

these applications are automatically provided in current data parallel languages such as

2

Dataparallel C[11] and pC++[2]. A great deal of handcoding was required to achieve the

same result with the MPL. We believe this lack of support is a deficiency of the language.

There are a number of data parallel languages in existence today. Our extensions

build on the previous research done to develop these languages, however, we also

generalize a number of known mechanisms, provide more flexibility in terms of data set

manipulation, and incorporate several new features. In this thesis we describe the new

language constructs which have been added to the MPL, an implementation model for these

constructs and a description of the translations from our constructs to the implementation

model.

As yet, we have not implemented a compiler for our language extensions, however,

we believe efficient implementations exist for the code translations. This belief is justified

by the work of Karpovich and Judd[13], who have implemented libraries which provide

much of the functionality needed for our implementation, and by the pioneering work of

Hatcher and Quinn [11]. In addition, the author conducted proof-of-concept experiments

prior to the bulk of this research to test the feasibility of pursuing the chosen solution. For

simplicity, our language only supports one and two dimensional array data structures. We

accepted this limitation in order to focus on the larger issues of the language design.

Incorporating more elaborate data set structures will be the target of future research.

The thesis is organized as follows. Chapter 2 includes a background discussion of

data parallelism, the Mentat Programming Language, and presents a short description of a

number of existing data parallel languages. The data parallel language extensions we have

added to the Mentat Programming Language are related in Chapter 3. Chapter 4 discusses

the implementation model for our data parallel extensions, and explains the translations

needed to map the extensions to the control parallel paradigm of the Mentat system. We

conclude in Chapter 5 with a discussion of our contributions and possible research avenues

to be explored in the future.

3

Chapter 2 Background and Related Work

2.1 Data Parallelism

A data parallel computation is characterized by a particular data set whose elements

have the same basic properties. For example, a 1024x1024 image will have approximately

a million elements, each of which has the same representation (say, an integer). The

elements are only distinguished by their particular values and/or relative ordering within

the data set. Computations which manipulate this data set involve the simultaneous

application of an operation to the elements of the data set. The multiplicity of data is

responsible for the parallelism that can be extracted from the computation. Currently, there

is little consensus in the literature concerning the specifics of data parallel operation

semantics. This disparity is a result of the evolution of the data parallel style from an

instruction level paradigm used to program SIMD (single-instruction, multiple-data)

architectures into a more general style which encompasses MIMD (multiple-instruction,

multiple-data) architectures as well. We delay detailed discussion of these semantic issues

to Section 2.2 (Related Work).

In the original SIMD paradigm, parallel execution proceeds in lockstep at the

instruction level for each element of the data set. This means that updated values of the

elements are visible at instruction boundaries even when such synchronization is

unnecessary. In the MIMD data parallel style, the SIMD style of lockstep instruction level

execution produces too fine a granularity to translate to reasonable performance on a

MIMD architecture. The style that has evolved is to form a coarser grained computation by

distributing subsets of elements and have each processor iterate over its subset. However,

in a distributed memory environment, logically simultaneous application of instructions

must be enforced in some fashion.

Data parallel implementations on a MIMD architecture are typically written in an a

different style as opposed to the strictly synchronous SIMD style. Generally,

communication points in the program must be indicated by the programmer using send/

receive constructs. Therefore, synchronization occurs only when processes need to

4

exchange data as opposed to after every instruction that is executed in parallel. The

resulting style of programming is often called SPMD (single-program, multiple-data).

Because of its rigid structure and usually deterministic semantics, SPMD

programming is often considered a conceptually easier than general control parallel

programming. However, there are a number of tedious issues that the programmer must

address. In addition to concurrent access and synchronization, the paradigm introduces

issues such as data decomposition, distribution and alignment, data structure representation

and addressing, and specialized data communication patterns. Data decomposition

involves specifying the amount of data (in terms of individual data elements) that will be

located on distinct processors. Data distribution deals with assigning data, or subsets of

data, to a particular processor. Alignment is primarily (although not entirely) a Fortran

artifact. In Fortran, structures are not allowed, and therefore multiple arrays must be used.

In more modern languages a single array of a single user defined structure alleviates the

need to align multiple arrays. The representation and organization of the data are crucial to

generating an efficient data parallel computation. For this reason, a great deal of effort is

often expended in designing efficient data structures, in particular minimizing the number

of non-local accesses. Until recently, these tedious tasks were the programmer’s

responsibility. Recent attempts at a data parallel language design have attempted to

automate these tasks for the programmer (see Section 2.3).

In order to clarify the notion of a data parallel operation, we present some specific

examples and order them by increasing complexity.

1. Scalar Addition: A scalar addition is performed on every element of the data
set.

2. Neighbor Operation: A neighbor operation involves updating each element of
the data set using its neighboring values. Examples include image convolution
and the solution of PDE’s using iterative methods such as Jacobbi iteration.

3. Matrix Addition: Matrix addition is done by a simple element to element
addition between two data sets. The complexity arises due to the use of
multiple data parallel objects that may not be correctly aligned.

4. Matrix Multiply: In matrix multiplication, each element of the result data set is
the dot product of a row of one data set and a column of another. Each of the
dot products is independent of the others, and can be performed in parallel.

5. Non-traditional Data Parallel Operations: The previous examples are numeric
matrix examples. The data parallel style can also be applied in other domains
such as gene sequence comparison. In this case, each element (gene sequence)

5

is a string of characters. These elements form a data set (sequence library) and
each element is compared against a single unknown element (gene sequence)
using heuristic methods.

All of these examples are amenable to data parallel solutions because the same operations

are performed on each element of the data set. Note that the operations range from simple

scalar addition, to regular but computationally expensive dot products, to complex

heuristics.

With the exception of matrix multiply each of the above examples involves the

application of a function to each element of the data set. Matrix multiply (C=A*B) is

conceptually different. Rather than apply an operation in parallel to all elements of the set,

the two input matrices can be thought of as being partitioned into subsets of rows and

columns. Matrix multiply is the application of a dot-product operator applied to the

structured subsets of the data parallel matrices. For each row in the A matrix apply dot-

product to each column of the B matrix. Alternatively, for each subset of A, apply an

operator to each subset of B. We call such data parallel formulations subset data

parallelism. In matrix multiply the subsets are rows and columns. In general the subsets

may be the individual elements as well. In that case subset parallelism subsumes traditional

element level data parallelism.

The remainder of this chapter is divided into two sections. Section 2.2 is a brief

overview of the Mentat programming language. Readers familiar with Mentat may wish to

skip to the description of related work in Section 2.3.

2.2 The Mentat Programming Language

The three primary design objectives of Mentat are to provide: 1) easy-to-use

parallelism, 2) high performance via parallel execution, and 3) applications portability

across a wide range of platforms. The underlying premise is that writing programs for

parallel machines does not have to be hard. It is the lack of appropriate abstractions that has

kept parallel architectures difficult to program, and hence inaccessible to mainstream,

production system programmers.

The Mentat approach exploits the object-oriented paradigm to provide high-level

abstractions that mask the complex aspects of parallel programming, communication,

6

synchronization, and scheduling from the programmer. Instead of worrying about and

managing these details, the programmer is free to concentrate on the details of the

application. The programmer uses application domain knowledge to specify those object

classes that are of sufficient computational complexity to warrant parallel execution. The

complex tasks are handled by Mentat.

There are two primary components of Mentat: the Mentat Programming Language

(MPL) [17] and the Mentat run-time system (RTS). The MPL is an object-oriented

programming language based on C++ [20] that masks the complexity of the parallel

environment from the programmer. The granule of computation is the Mentat class

member function. Mentat classes consist of contained objects (local and member

variables), their procedures, and a thread of control.

The most important MPL extension to C++ is the keyword “mentat” as a prefix to

class definitions, as shown on line 1 of Figure 2.1. This keyword indicates to the compiler

that the member functions of the class are computationally expensive enough to be worth

doing in parallel. Mentat classes are defined to be either regular, persistent, or sequential.

Regular Mentat classes are stateless, and their member functions can be thought of as pure

functions in the sense that they maintain no state information between invocations. As a

consequence, the run-time system may instantiate a new instance of a regular Mentat class

to service each invocation of a member function from that class, even while other instances

of the same function already exist.

On the other hand, persistent and sequential Mentat classes maintain state

information between member function invocations. Since state must be maintained, each

member function invocation on a persistent Mentat object is served by the same instance

of the object. The difference between persistent and sequential classes is that invocations

from a particular caller to a sequential mentat object are guaranteed to be executed in the

1: mentat class bar {
2: // private member functions and variables
3: public:
4: int op1(int,int);
5: int op2(int, int);
6: };

Figure 2.1 A Mentat class definition. Without the keyword “mentat”, it
is a legitimate C++ class definition.

7

order they were invoked. Invocations on persistent objects, on the other hand, will be

executed as soon as the required data dependencies have been met. The result may be that

the functions are executed in an order other than the invocation order.

Instances of Mentat classes are called Mentat objects. Each Mentat object possesses

a unique name, an address space, and a single thread of control. Because Mentat objects are

address space-disjoint, all communication is via member function invocation. Because

Mentat objects have a single thread of control, they have monitor-like properties. In

particular, only one member function may be executing at a time on a particular persistent

object. Thus, there are no races on contained variables.

Variables whose classes are Mentat classes are analogous to variables that are

pointers. They are not an instance of the class; rather, they name or point to an instance. We

call these variables Mentat variables. As with pointers, Mentat variables are initially unbound

(they do not name an instance) and must be explicitly bound. A bound Mentat variable

names a specific Mentat object. Unlike pointers, when an unbound Mentat variable is used

and a member function is invoked, it is not an error. Instead, if the class is a regular Mentat

class, the underlying system instantiates a new Mentat object to service the member

function invocation. The Mentat variable is not bound to the created instance.

2.2.1 Mentat Member Function Invocation

Member function invocation on Mentat objects is syntactically the same as for C++

objects. Semantically, however, there are three important differences. First, Mentat member

function invocations are non-blocking, providing parallel execution of member functions

when data dependencies permit. Second, each invocation of a regular Mentat object

member function causes the instantiation of a new object to service the request. This,

combined with non-blocking invocation, means that many instances of a regular class

member function can be executing concurrently. Finally, Mentat member functions are

always call-by-value because the model assumes distributed memory. All parameters are

physically copied to the destination object. Similarly, return values are by-value. Pointers

and references may be used as formal parameters and as results, but the effect is that the

memory object to which the pointer points is copied. Variable size arguments are supported

as well, since they facilitate the writing of library classes such as matrix algebra classes.

8

The features of the MPL support a task parallel programming model in very natural

way. One can implement data parallel programs using task parallel Mentat objects. Each

Mentat object contains, or manages, a set of smaller element objects. However, the burden

of managing the distribution of data rests with the programmer, as does the generation of

iteration code to loop over contained elements, and other mind-numbing details.

Details of the computation model (macro-data flow), the Mentat programming

language and the Mentat run-time system can be found elsewhere [7, 8, 17].

2.3 Related Work

Dataparallel C [10, 11, 18, 19], pC++ [2, 15] C** [14] Fortran D [5] Fortran 90 [10]

and High Performance Fortran (HPF) [16] are the languages from which we have borrowed

ideas and which are related to our work. We have also developed some new ideas. C** and

pC++ are based on C++. Dataparallel C is based on C, but uses some ideas from object-

oriented language design. HPF’s origins are obvious. All of these languages are strictly data

parallel languages, and we differ from them all in that we are combining both control and

data parallelism within the same language.

Dataparallel C

In [19], Quinn and Hatcher, the designers of Dataparallel C, show that a strictly

SIMD program can be compiled to a distributed memory architecture without sacrificing

performance. This entails loosening the synchronization points by synchronizing only

when communication between physical processors is necessary. Data locality is also

important, and they provide mechanisms for the programmer to convey this information to

the compiler.

Dataparallel C is an extension of Thinking Machines C* language. The conceptual

model presented to the programmer is a front-end and a back-end. Statements within the

domain select { stmt list; } construct are applied to the data set in parallel by the

back-end module. Synchronization between elements is only important within the domain

statements, and is handled at the statement level. The compiler determines when

synchronization is necessary instead of synchronizing after each instruction. The data set

9

can be distributed among the processors, however, alignment and distribution are left up to

the programmer. Each data set must be statically declared in a global name space.

Rather than the statement level synchronization semantics of Dataparallel C we

support a deterministic pre-copy semantics with synchronization at member function

boundaries. An advantage of our approach is that it is both deterministic and does not

require heroic compiler efforts to minimize communication and synchronization. In

addition we differ from Dataparallel C in that we allow not only element level parallelism

within the data set, but subset parallelism. We provide alignment of multiple data sets,

dynamic creation of data sets, and allow for the specification of general reduction methods

as opposed to predefined reduction methods.

pC++

Lee and Gannon [15] have developed a distributed collection model and a C++

based language to support the model. The language provides mechanisms allowing the

programmer to exploit memory locality, abstractions for implementing synchronous

operations on distributed data structures, and mechanisms to express massive parallelism.

The model is based on Concurrent Aggregates[4] and allows them to de-couple the

structure of the data from the element type. A collection, essentially a data set, is defined

with the C++ class mechanism. Element types are defined in separate classes. Operations

are applied concurrently to all elements of the collection. Invocation of parallel methods

involves sending a message to a collection which then oversees the method’s concurrent

application to every element of the collection. The single control thread splits into multiple

threads, the programmer is responsible for synchronization between threads and for

resynchronization of the threads upon completion of the operation. A barrier call is

provided for this purpose.

Distribution of data to take advantage of memory locality is done using a two step

method in which collections are assigned the same abstract “template distribution”. The

template distributions are then mapped to processors, effectively collocating the collections

at the same processors.

There are several features of pC++ that might make the language difficult for the

novice to master. First, the semantics are non-deterministic, the programmer must

10

explicitly control potential race conditions. Races may occur for several different reasons;

for example one processor may use an out of date value that another processor is updating,

e.g., at a boundary region between processors. In fact programmersmust be aware of

whether a neighbor element is local or remote, and be aware of thedifferent access

semantics. A second difficulty is with theMethodOfElement functions. Each physical

processor must iterate over the entire element space, to determine whether or not the

element is local. Third, there are two views of a collection, as the whole object, explicitly

indexed, or as elements. One cannot define natural decompositions such as rows and

columns. The result is that the programmer is responsible for explicitly managing indexing,

knowing the data’s location, and enforcing dependencies (or living with the non-

determinism caused by races).

In our work, we do not require the programmer to manage synchronization at any

level. We allow the programmer more flexibility in the application of parallelism; we allow

subset level parallelism as well as element level parallelism. We also provide distribution

mechanisms for data sets.

C**

Larus, the designer of C++ based C**, believes that previous data parallel

languages reflect the lockstep synchronization of SIMD architectures too closely. He notes

that these languages allow non-determinism with respect to updates of variables external to

the scope of the elements. He claims that one advantage of data parallelism is the ability to

reason about program behavior. Larus maintains that such reasoning is not dependant upon

lockstep execution.

In C** all classes are parallel classes, and elements of the data set are limited to a

single member variable. C**’s semantics preserve some of the properties of the SIMD

programming model. Referenced data is copied to local scope before the execution of a

parallel method. Upon completion of the method, all modified values are written back to

their original location. Intermediate values are not visible to neighboring element

computations. Up to this point, Larus’ semantic techniques are the same as our own.

However, C** allows multiple updates of the same global variable. The value that persists

after the completion of an operation is non-deterministic. Mechanism is provided which

11

allows the definition of subsets, however, these subsets must have their own explicitly

defined methods. Methods of the data set may not be applied to any subset.

Fortran D

Fortran D is a data parallel extension of Fortran developed by Kennedy, Fox, and

others [5]. It has many similarities to Vienna Fortran [3], which was simultaneously and

independently developed. The basic idea in Fortran D is that data movement is costly and

should be avoided. The programmer defines data structures (arrays) that are to be

distributed to the processors. The programmer specifies the distribution of data to

processors and specifies which data structures are to be aligned. The compiler then detects

loops which are independent (DOALL loops) and generates code using the owner

computes rule to move data to satisfy data dependencies. Fortran D has had a major

influence on HPF Fortran. Many of the features of Fortran D have been directly

incorporated into HPF.

Our work differs from Fortran D in several ways. Most importantly, our language

supports both control and data parallelism by allowing one or more control parallel

components to execute in parallel with a dataparallel operation. Second, alignment and

distribution are de-emphasized. Instead we seek information on logical communication

patterns from the user. Third, iteration is managed by the compiler, rather than being done

by hand.

Fortran 90

While Fortran 90 is not a data parallel language, it is one of the first languages to

support the notion of parallel array operations. For example, C = A + B, where A, B, and

C are all equal dimension matrices of the same primitive type for which addition is defined.

The programmer may not define operations between matrices, rather they are provided only

for arithmetic operations on primitive data types.

High Performance Fortran

High Performance Fortran, HPF, builds on Fortran D and Fortran 90. It is a

collaborative effort between industry, academia, and government. Several vendors have

12

promised HPF compilers in the near future. HPF was specifically designed to be compiled

onto massively parallel architectures. In addition to the array operations developed in

Fortran 90, HPF provides mechanisms for the distribution of data across processors to take

advantage of data locality in distributed memory architectures. They originally developed

the two stage distribution mapping that is used by pC++.

13

Chapter 3 Data Parallel Extensions to the Mentat

Programming Language

There are two characteristics of developing complex iterative control structures that

can make data parallel programming a tedious endeavor. First, repetitious iteration over a

(possibly large) data set is one of many tasks required of the data parallel application

programmer. Often times, the for-loop structure of two separate data parallel operations is

exactly the same. The only variations between the operations are the instructions executed

at the innermost level. Thus, a great deal of work must be done that is not intellectually

challenging. Secondly, at a glance, every for-loop is similar to every other for-loop.

However, there may be a wide variation in the details of the for-loop structure of the

operations, thus requiring the programmer to pay close attention to each new operation

written. Any experienced C programmer who has been bitten by the <= vs. < bug can attest

to this fact. Therefore, the time spent making sure a data parallel operation is correct is often

not proportional to the actual complexity of the function being developed.

One of the primary methods of increasing the performance of a data parallel

application is to distribute the data among a set of processors in such a way as to minimize

communication. Managing this task by hand can rapidly become complex, and must be

repeated for every set of data handled within the application. Factors influencing the

complexity of the task are the interaction among the various data sets, the number of

processors in the system, and the interconnection network of the processors. Should one of

these parameters change, the performance of the application is in jeopardy.

Once the data has been distributed among processors, the programmer must arrange

for the correct communication of intermediate values. Border, or end cases make this job

particularly complex. Data distribution is a tedious task and as the size of the application

and the number of data sets increase, it can become overwhelming.

Each of the components of data parallel application development mentioned above,

the basic function applied to the data set, iteration over the data space, data distribution

among processors, and communication of intermediate values, are common to all data

parallel applications. The extensions we have added to the MPL are designed to free the

programmer from concentrating on these mundane details of the data parallel style. Since

14

we are removing the tedious burdens from the programmer, some other part of the system

must become responsible for them. In our case, the compiler will recognize the keywords

and constructs that comprise the extensions, and will generate code that manages iteration,

synchronization, distribution, and communication for the programmer.

In our subsequent discussions, we will refer to the individual members of a data set

as elements. The data set as a whole will be referred to as the data parallel object. We will

begin our discussion of the data parallel mechanisms by explaining the nature of the data

parallel class and the syntax used to define such a class in Section 3.1. We also discuss

communication semantics in this section. In Section 3.2, we explain the syntax and

semantics of the data parallel method types the language provides. Section 3.3 will deal

with the creation and distribution of a data parallel object. We then turn to the additional

tasks needed to support data parallel objects in Section 3.4. Finally, we will discuss the

combination of our data parallel extensions with the original control parallel mechanisms

of Mentat in Section 3.5.

3.1 Data Parallel Class Definition

The definition of a data parallel class is the primary means by which the

programmer conveys information to our compiler about a data parallel computation. All

data parallel applications are concerned with one or more data sets. Thus, it is natural to

capture the data set representation and the data parallel operations for the data set within a

single class. We have taken advantage of this fact in our extensions.

Data parallel computations are also characterized by the fact that every element is

structurally identical to every other element of the data set1. The actual values of each

element and their relative ordering within the set are the only distinguishing factors among

the elements. The operations applied to a single element are identical to the operations

applied to every other element of the data set. Thus, an entire data parallel data set and its

operations can be defined by specifying the structure of a single element, and the operations

applied to that element. Specifying a data parallel computation in terms of a single element

1. This characterization has been true in the past, however, the emergence of nested parallelism may
cause a realignment of this view. For this thesis we will assume that all elements of a data set
are structurally equivalent. Nested parallelism is one of the primary areas for expansion of the
research described in this thesis. At that time, this assumption will be re-examined.

15

is the approach we have used in creating our data parallel extensions to the MPL. We call

this approach element-centered. Fundamentally, this concept is not new to data parallel

languages [2, 11, 14, 15, 18, 19]. However, we have extended the notion to encompass

subset parallelism.

Figure 3.1 illustrates a simple example of a data parallel class and conveys the idea

of an element-centered approach to data parallel class definition. Data parallel mentat

classes are designated by pre-pending the keywords dataparallel mentat in front

of the C++ keyword, class. The new keywords indicate to the compiler that data parallel

transformations must be applied to this class. The structure of the data parallel class is

similar to a C++ class in that member variables describe the data managed by the member

functions of the class. However, the method definitions differ from those of C++ classes.

The member functions of a data parallel class are annotated to convey information to the

compiler. In this section, we give brief descriptions of the member variables and member

functions of the data parallel class and explain the semantics of data parallel operations.

3.1.1 Dataparallel Class Member Variables

The programmer should think of the data portion of the data parallel class definition

as a template2 for an element. The member variables of the class definition represent a

single element of the data set. In our example, an element would have two components, an

integer value (pixel) and a floating point value (another_pixel). These member

variables are declared on lines 3 and 4. Any primitive or user defined type is allowable as

a member variable of an element3. The effect of this type of data representation is that each

2. The term template in this context should not be confused with C++ templates.

1: dataparallel mentat class image{
2: //private member variables which specify an element.
3: int pixel;
4: float another_pixel;
5: public:
6: // public member functions expressing the data parallel
7: // methods.
8: void AGG scale ELEMENT (int value);
9: void OVR overlay_pixel (RMAJ int *pixel_data);
10: int RED min_elem(int curr_min,int curr_elem_mbr);
11: };

Figure 3.1 Data parallel class definition.

16

element of the data set is essentially a structure whose members are the member variables

declared in the data portion of the class definition.

The programmer does not specify the actual size of the data set in the data parallel

mentat class definition. Also, the member variables are not defined as arrays unless the

programmer is specifying a data set in which the elements themselves are arrays. When an

instance of the class is declared, multiple elements will be created. The actual number of

elements is specified at this time. Once created, the elements can be referred to individually,

in subsets, or as a whole. We will discuss both object creation and element addressing later.

3.1.2 Dataparallel Class Member Functions

Our extensions include three types of member functions which are specifically

designed as data parallel operations. These types are overlay operations, which are used to

initialize the data parallel object, aggregate operations, which are applied to all elements of

the data parallel object, and reduction operations, which allow the programmer to distill

certain information from the values of the data set.

The semantics and communication characteristics are different for all three types.

For example, aggregate and overlay operations straightforwardly iterate over each element

subset applying an operation to each in turn. On the other hand, reduction operations

automatically merge intermediate results of the computation on each element. Method

annotations provided by the programmer serve to discriminate between operation types. In

addition to distinguishing the method types, the annotations specify the subset of the data

dealt with in the operation and determine the size of the return type.

All types of data parallel methods: aggregate, reduction, and overlay, may have

local variables and arguments of primitive or user defined types4. These variables are used

in the same manner as C++ arguments and local variables. As with regular C++ classes,

data parallel member functions are defined within the class definition as shown in Figure

3.1, lines 8-10.

3. Allowing data parallel classes as member variables is one step in enabling nested data parallelism.
Again, this topic is not considered in this thesis but is the subject of future research.

4. Data parallel objects as local variables would result in nested data parallelism.

17

3.1.3 Deterministic Data Parallel Semantics

Typically, when the communication semantics of a parallel language are discussed,

communication occurs between two processors. In contrast, our language extensions

attempt to shield the programmer from hardware specific details such as the number of

processors or the interconnection network topology. Therefore, in the following discussion

and in reference to our data parallel extensions, data parallel objects should be thought of

as independent, interacting entities which communicate by exchanging the values of

particular elements or subsets of elements.

There are three types of communication that occur with respect to data parallel

objects. The first, simple communication, involves only the value of the element that is the

target of the current method. Local communication implies that values of the data parallel

object other than the current element are required. Non-local communication occurs when

element values of a data parallel object other than the one upon which the method is

invoked are required.

The member function annotations and the internal definition of the function body

determine the type of communication of a method. A method uses simple communication

if the only value used within the function body is that of the current element. A method falls

into the local communication category if relative addressing mechanisms, explained in

Section 3.4.3, are used within the function body to address neighbor elements of the current

element. Finally, methods which have a data parallel argument fall into the non-local

communication category.

Of the three types of data parallel methods, aggregate, reduction, and overlay, only

aggregate methods may reference neighbor elements or accept a data parallel object as an

argument. Therefore, aggregate methods are the only type of data parallel method to exhibit

non-local communication. Overlay and reduction operations are restricted to simple

communication since they can only access the current element. Figure 3.2 summarizes the

communication possibilities for each method type.

An aggregate method is not limited to one category of communication, rather, any

combination of simple, local, and non-local communication may occur within a data

parallel method. However, when methods are classified according to their communication

18

types, non-local communication has precedence over local communication which in turn

has precedence over simple communication. For example, a method with non-local and

simple communication would be classified as a non-local type of operation.

Simple communication is straightforward for the programmer to understand. The

programmer simply uses the name of an element member variable to access the value of

the current element. Local and non-local communication is more complex. Accessing the

values of neighboring elements and elements of data parallel arguments requires an

understanding of the pre-copy semantics of our data parallel extensions. Next, we present

a discussion of pre-copy semantics in conjunction with our explanation of local and non-

local communication.

The main characteristic of a data parallel computation is that the operation being

applied to the data set is applied “logically simultaneously” to every element of the data set.

This is the reason that this style of programming is considered parallel. Another way to

understand this concept is to realize that each element is being operated upon concurrently.

If there happen to be enough physical processors to manage one element per processor, then

the operation will truly proceed in parallel across the data set. In most cases though, each

processor will be responsible for managing a number of data elements. When multiple data

are assigned to a single processor, the degree of parallelism decreases. This situation

demands that the computation proceed as if there were as many processors as elements.

Each processor must iterate through the data elements for which it is responsible, applying

the operation to each in turn. Difficulties arise when the operation must appear as if it is

occurring in parallel for all elements even though the implementation is actually sequential

at each processor.

Method
Types

Communication Types

Simple Local Non-Local

Aggregate ✓ ✓ ✓

Overlay ✓ ✕ ✕

Reduction ✓ ✕ ✕

Figure 3.2 Communication capabilities by method type.

19

As an example, assume we have a processor which is responsible for five

neighboring elements (a vector indexed from 0 to 4) of a data parallel object and the

processor has been directed to execute op1()5 which updates the value of each element.

Also assume that when op1() is applied to an element, neighboring element values are used

to compute the value assigned to the element. Before op1() has been applied to any of the

elements, all elements have the same value a. The desired result of op1() is that all

elements will have the value b. After processing the first element, element0 has the new

value b that was computed by op1() using the values (a and a) of its neighboring elements

(in this case element2 and element4). Therefore, our vector has the values <b, a, a, a, a>.

Next, op1() is applied to element1 with two possible outcomes.

The first outcome is the expected outcome of a sequential program, the second is

the outcome according to the data parallel style where the operation is applied

simultaneously to all elements. In the first case, the neighbors of element1 are accessed,

returning b and a. The result of op1() is then computed and is c. Thus our vector has the

values <b, c, a, a, a> and is incorrect according to data parallel semantics.

In the second case, a copy is made of the vector before the iteration over the

elements of the vector begins. All references to the elements are then resolved using this

pre-copy of the elements and all updates are made to the current copy. Therefore, when

op1() is applied to element1, the values of neighboring element0 and element2 are a

and a respectively, not b and a because the values were retrieved from the pre-copy instead

of the current copy. The result of op1() applied to element1 is b as it was when op1() was

applied to element0.

The pre-copy approach is employed in our data parallel extensions. While the actual

mechanisms for achieving the desired results are discussed in Chapter 4, we address the

implications of using this technique here. Pre-copies of data parallel object data are made

whenever a data parallel operation is invoked. For local communication, the copy is made

from the current copy of the data parallel object that is being invoked. For non-local

communication, the copy is filled in with data communicated from the processor(s) at

which the data parallel argument is being maintained. The programmer is not given explicit

access to these pre-copies, i.e. they may only be modified by the compiler. Mappings are

5. The actual function of op1() could be as simple as addition.

20

maintained between the pre-copy and the current copy. Subsequently, references to the

current copy are resolved from the pre-copy. Thus, local updates of an element are not

visible to any other element in the data set until the operation is complete. At that point, the

pre-copies are considered invalid, and the newly computed values are considered the

current values of the data set.

3.2 Data Parallel Method Types

As mentioned previously, the more tedious tasks of data parallel method

development are the construction of iteration control statements for a data set and

communication of data values which are not local to a processor. In our approach to data

parallel language design, the compiler manages many of these details automatically. We

only require the programmer to annotate the method definition and specify the body of the

function in an element-centered fashion. The annotations essentially extend the type of the

function. Using this information, the compiler determines the values (other than the value

of the current element) that are needed to complete the computation and infers the

remaining control structures that are needed to complete the operation.

Recall that we distinguished three types of data parallel operations in Section 3.1.2.

Function prototypes for all three types of methods are shown in the example of Figure 3.1.

Figure 3.4 gives a brief grammar that defines the annotation syntax for each type. In the

following sections, we will discuss the details of each method type. We start with a subset

of AGG methods which we call simple aggregate methods. This method type illustrates

many of the important concepts of data parallel objects, including the mechanics of writing

a data parallel method body. We then turn to more complex aggregate types since they

illustrate the various communication semantics. Finally, we handle reduction and overlay

methods.

3.2.1 Simple Aggregate Methods

The scale() function prototype on line 8 of Figure 3.1 has been annotated to

indicate the type of the data parallel operation and the size of the data portion that the

method deals with. The first production of the <dp_mbrfcn> non-terminal in Figure 3.4

21

shows the grammar for annotating this type of function. In this case, the scale() function

is an aggregate function as designated by the annotation AGG.

An aggregate function is applied to every element (or subset) of the data set. The

simplest kind of data parallel operation, of which scale() is a good example, is one in

which each individual element receives the same “treatment”. However, there are often

cases in which the programmer may wish to apply an operation to every row instead of

every element, i.e. the operation only has meaning when applied to a row. In this case, the

data must be split into subsets and each subset is then treated as a unit during the operation.

The <subset_specif ier> annotation (shown in the example production), in combination

with the instructions of the actual function, allows the programmer to make this distinction.

In our example scale() method, the annotation is ELEMENT. This indicates that

the method should be applied to each individual element of the data set. Alternative

1: dataparallel mentat class image{
2: //private member variables - “single element”.
3: int pixel;
4: f loat another_pixel;
5: public:
6: // public member functions - data parallel methods.
7: void AGG scale ELEMENT (int value);
8: void OVR overlay_pixel (RMAJ int *pixel_data);
9: int RED min_elem();
10: };
11:
12: void AGG image::scale ELEMENT (int value){
13: pixel = pixel * value;
14: }
15:
16: int RED image::min_elem(int curr_min,int curr_elem_mbr) {
17: if (curr_min < curr_elem_mbr) return curr_min;
18: else return curr_elem_mbr;
19: }
20:
21: void OVR image::overlay_pixel(int RMAJ *value) {
22: pixel = *value;
23: }
24:
25: int *value;
26:
27: my_image.scale(10); /* Invocation on a matrix */
28: my_image[1].scale(10); /* Invocation on a row */
29: my_image[4][4].scale(10); /* Invocation on an element */
30: int x = my_image.min_elem(pixel);
31: my_image.overlay_pixel(value);

Figure 3.3 Data parallel class and method definition.

22

annotations, ROW or COL, specify the additional types of subsets that can become the target

data of an aggregate operation.

There are two points to remember when developing a data parallel member

function: the structure of the subset being operated upon and “location independent”

references to data elements. First, the body of the function must be written as if the

operation is being performed upon a single subset. This subset is indicated by the

<subset_specifier> annotation. The programmer is responsible for providing any

iteration required within the subset, while the compiler provides iteration across the

subsets. For example, a ROW specifier denotes that the programmer will specify the iteration

within a row of the data parallel object, while the compiler will specify the iteration across

rows of the data parallel object. Secondly, the body of the function must be written without

reference to any specific element. This is what is meant by a “location independent”

reference. In our scale() example, the member variable pixel is assigned its value

multiplied by the argument value. No reference is made by the programmer to a particular

element such as object[5][10].pixel. The compiler will use the information contained

in the annotations and the invocation of the method in order to index into the data set

properly. Thus, the function body must be devoid of any reference to a specific element or

subset. Mechanism is provided to allow the programmer to reference other elements of the

data set in a relative fashion. The starting point is the element to which the operation is

Grammar:

<dp_mbrfcn>: <return_type> AGG <fcn_name> <subset_specifier> ([<arg> | <agg_arg>], <arg>*); |

void OVR <fcn_name> ([<arg> | <ovr_arg>]*); |

<return_type> RED <fcn_name> (<arg>*);

<arg>: any regular C++ argument...

<agg_arg>: <subset_specifier> <combination_rule> <dp_operand_type> <dp_operand_name>

<ovr_arg>: <major_order_ind> <operand_type> <operand_name>

<subset_specifier>: ELEMENT | ROW | COLUMN

<combination_rule>: 1x1 | 1xN | Nx1

<major_order_ind>: RMAJ | CMAJ

Figure 3.4 Grammar for data parallel object methods.

23

being applied, and the relative addresses are resolved at run-time. The relative addressing

mechanisms will be discussed in Section 3.4.3.

These techniques, the <subset_specifier> annotation and the interior style of the

member function, fit with our element-centered approach to data parallel class definition.

The important point to note is that the word “element” in the term element-centered really

means subset. The programmer must think in terms of a single abstract subset when

developing an aggregate method6. If this is done correctly, the iteration required for

applying the operation to each individual subset in the entire data set will be managed by

the compiler without any further intervention from the programmer.

Invocation of an aggregate operation is shown on lines 27-29 of Figure 3.1. Assume

that a data parallel object identified my_image has been declared as a two dimensional data

parallel object of type image. Object declaration will be discussed further in Section 3.3.

The invocation syntax is exactly the same as the C++ invocation of a member function. The

compiler ensures that the iteration provided within the operation is restricted to the

elements indicated by the invocation. Therefore, the invocation on line 27 will result in an

application of scale() to every element of my_image; each element of the second row of

my_image will be operated upon as a result of the invocation on line 28; finally, the fifth

element of the fifth row will be the only element of my_image to be scaled as a result of the

invocation on line 29. In this manner, the programmer is given a great deal of flexibility in

invocation of data parallel methods on a particular data parallel object and the details of the

iteration required to perform the desired effect are hidden within the annotations and the

data parallel class definition.

A primitive or user defined type may serve as the return type of a data parallel class

member function. Data parallel objects are not allowed as return values. Again, the notion

of an element-centered operation comes into play. Since the programmer is specifying the

action of the operation in terms of one element (or subset), then the logical return result will

be a single result. The actual number of results returned is specified completely by the

annotations and the invocation which indicate the number of subsets in the invoked object.

The compiler arranges for the allocation of the proper amount of space given the number

6. Note that data parallel member functions may have different <subset_specifier> annotations.
Thus, the “subset” may vary from method to method.

24

of actual results to be returned. For example, suppose that our scale() method returned an

integer. Then the invocation on line 27 would cause space for k integers to be allocated,

where k = n x m, the dimensions of the invoked object. The variable to which the result of

the function is to be assigned then points to this newly allocated space. The results

computed for each element would be collected by the compiler and assigned to the

corresponding positions of the return variable.

3.2.2 Complex Aggregate Methods

Our data parallel mechanisms also allow the programmer to specify a data parallel

object as a parameter to an aggregate operation. Data parallel arguments require two

annotations which indicate the subset size, and the manner in which subsets of the argument

object and subsets of the invoked object will be combined. The syntax of an aggregate

method argument is shown in Figure 3.4 as the production of the <agg_arg> non-terminal.

The first of these annotations is identical in form and meaning to the

<subset_specifier> annotation described above for invoked objects. The annotation is

associated with the data parallel object listed as the actual parameter, and indicates the

portion of the argument object for which the programmer will provide iteration. Again, this

portion must be treated in a “location independent” manner within the data parallel function

body.

The second annotation, a <combination_rule>, indicates how the subsets of the

operand will be combined with the subsets of the invoked object. For instance, the

programmer may want to have each subset of the invoked object combined with a

corresponding subset of the argument object. Matrix addition is an example of this type of

combination. The programmer would indicate this with a 1x1 <combination_rule>

annotation7. Alternatively, the desired functionality may be to combine one subset from the

invoked object with every subset of the argument object, or vice versa. These options may

be indicated with the 1xN and Nx1 annotations respectively. An intuitive example of this

type of combination is matrix multiply where every row of one matrix is combined with

every column of another matrix.

7. This annotation implies that there are an equal number of subsets in each object.

25

3.2.3 Overlay Methods

Overlay operations provide for the initialization of the member variables of data

parallel objects and require an OVR annotation (see the second production in Figure 3.4).

Because this method type is meant primarily for initialization of data parallel objects, the

return type is always void. The arguments to overlay operations may be any primitive or

user defined type other than a data parallel type. The values passed via actual arguments are

assigned in either a row-major or column-major order to the member variables of the data

parallel object. This choice, row- or column-major, is indicated by the use of either RMAJ

or CMAJ respectively as the annotation to the formal argument. For example, to initialize

the pixel values of my_image with an integer vector of values, perhaps read in from a file,

the overlay_pixel() method shown on lines 21-23 in Figure 3.1 would be invoked.

3.2.4 Reduction Methods

Reduction operations are global operations that reduce a set of values to a single

value. These operations are tagged with a RED annotation. Reduction operations must be

binary, commutative, and associative. Examples of reduction operations include minimum,

maximum, and sum.

Standard reduction operations are often included in data parallel languages. Rather

than define a set of supported reduction operations we have chosen to allow the

programmer to define their own reduction operations. The compiler will then generate code

to perform the required operations and necessary data movement. For example, consider

the min_elem function of Figure 3.1. We recognize that the syntax for this method type is

a bit non-intuitive. The reduction function must take two parameters, and return a value (or

reference). The two parameters and the result must be of the same type. When the function

is invoked the programmer specifies which member variable should be used within the

operation by using it’s name as the actual argument to the function. The result is that

min_elem is applied iteratively to each element’s pixel member and the result of the

previous invocation.

26

3.3 Allocation and Initialization of Data Parallel Objects

3.3.1 Object Creation and Distribution

Arguments to new()

Data parallel objects must be explicitly created using the operator new(). In

particular, the data parallel extensions to the MPL require the use of an overloaded new()

operator. The programmer is required to specify the size and dimensions of the data parallel

object, and optionally to specify both local and non-local communication patterns. This

information is used by the run-time system to allocate data items to processors in such a

way that communication between processors is reduced. Figure 3.5 demonstrates the

creation of a data parallel object.

The arguments used to overload new() fall into three categories which we will refer

to as dimensions, local communication, and non-local communication. Each category

encompasses two of the arguments to new(). For the dimension category, the first two

arguments specify the size of the data parallel object in the row and column dimensions

respectively, an 8x8 array in the example. If either of these arguments is given the value

one, then the data parallel object is treated as a vector. If both arguments are assigned a

positive value other than one, then the data parallel object is treated as a two dimensional

array. If both arguments are specified as one, then the data parallel object is assumed to have

only a single element. A zero or negative value for either argument is considered an error.

The argument values may be expressions. Currently, our data parallel additions to the MPL

support one and two dimensional arrays and single elements. Future work will explore the

1: dataparallel mentat class matrix{
2: //private member variables that specify an
3: //element.
4: public:
5: // public member functions expressing the
6: // data parallel operations.
7: }
8:
9: main()
10: {
11: matrix *matrix_A, *matrix_B;
12: matrix_A = new (8, 8, 4PT, 2, matrix_B, matrix_mult()) matrix ();
13: }

Figure 3.5 Data parallel object declaration and communication patterns.

27

feasibility of allowing the programmer to declare data parallel objects using a variety of

structures such as a tree or an unstructured group of elements.

For the local communication category the third and fourth arguments enumerate the

type of communication that will be dominant within the data parallel object. As explained

in Section 3.1.3, local communication occurs in terms of the data rather than the processors.

Types of local communication that may be indicated by the programmer are NONE, PRED-

SUCC, NS, EW, 4PT, and 8PT. PRED-SUCC applies to vectors while NS, EW, 4PT, and 8PT

apply to two dimensional arrays. NONE applies to both vectors and two dimensional arrays.

The local communication characteristic is conveyed in the first argument of the second set.

The radius argument is the second argument in the set, and simply specifies the radius of

the local communication (when NONE is the pattern specified, the radius value is 0,

otherwise it must be a positive value). Examples of local communication patterns with a

radius greater than one are shown in Figure 3.6.

The local pattern and radius arguments are the mechanism by which this

information is communicated to the compiler. We recognize that a number of member

functions may be defined for the data parallel class, and that all methods will not exhibit

the same local communication pattern. Thus, in order to achieve the best performance, the

programmer should indicate the pattern that will be used most often in the methods of the

object.

We do not allow for the dynamic changing of the communication pattern in the

current language implementation. This type of functionality can either increase or decrease

Figure 3.6 Three types of local communication pattern each with a radius of
two.The darkly shaded element is the element to which the
neighboring values are “communicated”. a) EW pattern. b) 4PT
pattern. c) 8PT pattern.

c)a) b)

28

performance depending upon the skill with which it is employed. We feel that at the very

least, the programmer should be aware of the dominant communications patterns within the

computation and be able to communicate this information at compile time.

The arguments of the final category, non-local communication, provide information

about interactions between the data parallel object being created and another data parallel

object of the application. The sixth argument to the new() operation specifies the dominant

function of the data parallel object being created. The fifth argument to the new() operation

indicates the object which is most often used as the actual argument to the method specified

by the sixth argument. Again, the programmer should be familiar enough with the

application to specify the dominant non-local communication characteristics.

Allocation and Distribution

While the programmer supplies the actual arguments to the overloaded new()

operator, the method is implemented by the compiler. The purpose of the new() operator is

to allocate space for the object on the processors of the system. This is done using the

information conveyed by the arguments to new(). Figure 3.7 shows a method prototype for

a data parallel class matrix, the declaration of two instances of that class, grid_space1

and grid_space2, and the creation of the data parallel object grid_space1. We will use

this example to motivate our discussion of data parallel object allocation and distribution.

The dimension category of the arguments to new() indicates the base amount of

memory that needs to be allocated for the data parallel object. In our example 64 * 64, or

4096 elements would be allocated. In some cases, the programmer will want to define

border regions around the data set to handle edge conditions. Therefore, additional memory

must be allocated for the border elements. The compiler performs an analysis of the data

parallel class to determine the maximum local communication radius over all data parallel

methods of the class. This number indicates the maximum width of any border which may

be defined for the object. The maximum is added to the amount specified by the dimension

1: void AGG matrix::mat_mult ROW (COL 1xN matrix);
2: matrix *grid_space1, *grid_space2;
3: grid_space1 = new (64, 64, 4PT, 2, grid_space2, mat_mult()) matrix();

Figure 3.7 Object Allocation and Distribution.

29

arguments to get the total amount of data that must be allocated for the data parallel object.

We will explain the mechanism for defining and manipulating border regions in Section

3.4.1.

Once the proper amount of space is determined, the compiler must establish a

distribution pattern for the elements across the processors. Again, this is accomplished in

the body of the overloaded new() operation. As explained in Section 3.2.1, the

<subset_specifier> method annotations for the invoked object and the argument object

shown on line 1 of Figure 3.7 indicate the subset of the corresponding object for which the

programmer is responsible. In this case, the <subset_specifiers> are ROW and COL for

the invoked object and the argument object respectively. However, in the context of data

parallel object distribution, the invoked object and argument object

<subset_specifiers> serve the additional purpose of expressing the optimal distribution

of the two objects with respect to each other.

For an operation such as matrix multiplication, it is obvious that the proper

distribution should place the rows of the invoked object and the columns of the argument

object on the same processors. This distribution minimizes the communication needed to

complete the operation for the object and thus results in the best performance. Exactly this

type of information is conveyed by the method annotations and the arguments to the new()

operator.

In our example, grid_space1 is the invoked object, and grid_space2 is the

argument object. The arguments specified in the non-local communication category of the

arguments to new() are an object name and a method name. The method mat_mult(),

defined on the matrix class, will be invoked on the object grid_space1 more often than

any other method. Additionally, the object grid_space2 will serve as the actual argument

to the mat_mult() method for the greatest percentage of those invocations. The

identification of the method mat_mult() indicates the subsets of the invoked and argument

objects that will be used when the method is applied. In particular, these subsets will be

referenced in conjunction with one another. Therefore, the subsets indicated by the method

annotations are precisely the subsets which should be jointly distributed to the same

processes.

30

The compiler passes the information concerning the number and distribution of

elements to be allocated for the object being created to the run-time system. These hints

indicate the general form of the decomposition, alignment, and distribution of the data

among processors. Joint research is now being conducted within the Mentat group to allow

the run-time system to combine the compiler hints with information about the current

machine architecture. The run-time system will employ heuristic algorithms to

automatically handle the decomposition, distribution and alignment of the data parallel

object [21, 22]. Cooperating with the run-time system in this manner allows us to divorce

ourselves from the underlying machine architecture.

We believe that the decomposition, distribution and alignment as described in

Fortran-D and other data parallel languages (see Section 2.3) are equivalent to our

mechanisms of specifying the communication patterns. These languages require the

programmer to know the topology of the underlying processors and interconnection

network in advance. In contrast, our extensions allow the programmer to simply indicate

which method will dominate the computation. This serves to remove not only the job of

data placement from the programmer, but to also alleviate the need for the programmer to

explicitly reference off-host data.

3.3.2 Data Parallel Class Constructors

Constructors of data parallel mentat classes are analogous to constructors defined

on regular C++ classes. The actions specified within the constructor are carried out after the

object has been created and before any other methods are applied to the object. The

programmer is responsible for defining the constructor, but we impose certain limits on the

content of the constructor. The constructor can be thought of as a data parallel operation for

which the annotations have default values. The method type is aggregate (AGG), the

<subset_specifier> is ELEMENT and data parallel objects are not allowed as arguments.

Because the method being defined is a constructor, no results may be returned. Also, data

parallel methods defined on the class may not be invoked within the constructor. Therefore,

the programmer must develop the body of the constructor in the same manner as the

scale() example of Figure 3.1. This functionality allows the programmer to initialize the

elements of the data parallel object to any default values they feel are necessary.

31

3.4 Data Parallel Object Support

3.4.1 Border Management

Consider a data parallel object which has been created as a two-dimensional matrix

and which has an aggregate method using local communication defined on the class. The

local communication pattern of the method is 4PT with a radius of one. For the majority of

elements internal to the data parallel object, the neighbor elements of the current element

will themselves be elements of the data parallel object. However, Figure 3.8 illustrates the

situation when a current element (the darkly shaded element in the figure) on the edge of

the object must reference neighbor elements. The neighbor elements are not a part of the

data parallel object. To prevent the neighbor element references from returning undefined

values, we allow the programmer to define border regions for data parallel objects.

Currently, the extensions allow three types of border management to be used for a data

parallel object. These are wrap-around, cyclic, and buffer. The programmer specifies a

border management policy by using one of the predefined border methods provided for

every data parallel class. These methods may be invoked for a member variable of a data

parallel object at the same scope as the object name, but not within a method of the data

parallel class.

Figure 3.9 lists the form of the methods and gives a pictorial representation of the

resulting border management for each. The wrap-around policy returns the element from

the opposite border in the same row or column of the current element. Thus, if an element

on the north border of the object references it’s north neighbor the value returned is that of

the southern-most element of the same column. If a cyclic management is specified, the

programmer must specify a direction for the cycle. The element returned is then the element

Figure 3.8 Reference pattern for an edge element.

32

from the opposite border in the next row or column in the direction specified. For example,

a cyclic policy with an easterly direction defined for the north border would return the

southern-most element of the column immediately to the right of the current column.

Finally, if a buffer management is specified, then a padding of dummy elements are

initialized to the value specified in the border_buffer() invocation. References to a north

neighbor will simply return the value contained in the dummy element immediately above

the current element. The range argument allows the programmer to assign different values

to the elements within the same buffer.

The border management methods can be invoked for an object multiple times

during the application. This allows the programmer a great deal of control over the edge

conditions because a certain border policy is not tied to a particular data parallel method. If

the programmer chooses not to specify a border management policy, then wrap-around is

the default.

Border Method Prototypes
1: obj.member_variable->border_wrap(<edge>);
2: obj.member_variable->border_cyclic(<edge>, <direction>);
3: obj.member_variable->border_buffer(<edge>, range, value, width);

Examples
1: A.pixel->border_wrap(N);
2: A.pixel->border_cyclic(N, E);
3: A.pixel->border_buffer(N, [-2:5], 0, 2);
4: A.pixel->border_buffer(E, [-2:5], 0, 2);
5: A.pixel->border_buffer(W, [-2:5], 0, 2);
6: A.pixel->border_buffer(S, [-2:5], 0, 2);

Figure 3.9 Border management methods.

Buffer, width=2
for all Borders

Cyclic, Easterly direction
for North Border

Wrap-around, for
North Border

33

3.4.2 Predefined Methods

Because the programmer must have access to information such as the number of

rows or columns in an object, certain methods are predefined for all data parallel classes.

These include num_rows(), num_cols(), and num_elements(). These integer functions

will typically be invoked within data parallel operations as part of the programmer defined

iteration, and return exactly what one would expect from their names. Figure 3.10

illustrates the use of a predefined method on line 3.

3.4.3 Relative Addressing Mechanisms

Relative Addressing

Within an aggregate member function, neighboring subsets of the current subset of

the invoked object may be accessed in a read-only fashion. The relative addressing

mechanisms are used for this purpose. Access to the neighboring subsets of an argument

object using the relative addressing is not allowed. Subsets to the north, south, east, and

west of the current subset are referenced using N(), S(), E(), and W() respectively. These

functions are defined for all data parallel classes and return a pointer to an element. Thus,

S()->pixel refers to the subset below the current subset in a two dimensional array.

Relative addresses may be chained together to form more complex reference

patterns. Thus, S()->W() refers to the subset diagonally south and west from the current

subset. We restrict relative access to static patterns, e.g., N()->E(), rather than dynamic

patterns that are run-time dependent. By restricting ourselves to static patterns we can

analyze the communication requirements of a member function at compile time. In addition

to the NEWS methods, we also define PRED() and SUCC() for one-dimensional objects and

subsets. Not all combinations of relative addresses are legal. Some illegal combinations can

be detected at compile time, e.g., N() in a function that is annotated with a COL

<subset-specifier>.

1: void AGG image::sum_rows ROW ()
2: {
3: for (int i = 0; i < this.num_rows(); i++)
4: this[0].pixel += this[i].pixel;
5: }

Figure 3.10 Predefined method use.

34

Subset Element Addressing

Within the subset specified by the <subset_specifier> annotation of a data parallel

method, the programmer uses the standard array indexing notation to reference the

elements of both invoked and argument objects. See Figure 3.10, line 4 for an example.

3.5 Integration of Control and Data Parallelism

 For control parallel objects, the Mentat Run-Time System monitors the use of

results of mentat object member function invocations. Data parallel objects are monitored

in the same fashion. We demonstrate the combination of control and data parallelism in

Figure 3.11. In this example, the results of the mentat object member functions are x, y, and

z. The semantics allow the method calls on lines 16-18 to be executed in parallel. On line

19, the result of the data parallel method is used as an argument to a control parallel method.

Furthermore, the entire code fragment itself could be a mentat object member function

implementation executing concurrently with other mentat object member functions.

Although this is not an actual application, this example clearly demonstrates that the data

parallel extensions we have developed allow Mentat to support both types of parallelism.

In addition, the simplicity of this integration is a strong argument for the design of our data

parallel extensions.

1: dataparallel mentat class data_parallel_obj {
2: // private member variables
3: public:
4: // public member functions
5: int AGG row_sums ROW ();
6: ...
7: }
8:
9: ...
10: float x, z;
11: int y;
12:
13: control_parallel_obj A, B;
14: data_parallel_obj my_image;
15:
16: x = A.op1();
17: y = my_image.row_sums();
18: z = B.op1();
19: B.op2(y);
20: ...

Figure 3.11 Control and data parallel method invocations.

35

Chapter 4 Implementation Model and Translations

To be useful, programming languages require an implementation. The compiler

must translate a source language program onto a target language program. In procedural

languages such as C and Pascal, the target is an assembly language. Many details must be

handled, such as the stack. The assembly language provides a call-return mechanism,

however it is up to the compiler of the source language to implement a procedure stack

using the mechanisms provided by the assembly language.

The data parallel Mentat programming language is no different. In control parallel

Mentat, the translated source code handles recognizing which portions of the code can be

executed in parallel. For our data parallel extensions the target language is the run-time

library of the Mentat programming language. Among the details that need to be managed

for the extensions are data distribution, recognition of what data must be communicated

before an operation to ensure all of the data is local to the processor once the computation

begins, and inserting the proper iteration type for the operation to proceed on the invoked

object (or subset of an object). Therefore the target of a data parallel source is a control

parallel code which synchronizes cooperating objects at the proper points.

Quinn [19] has demonstrated that a data parallel program can be converted to run

efficiently on a MIMD machine by synchronizing at the proper points. Our extensions

differ in that the programmer is allowed to operate on distinct elements of data parallel

objects (versus all elements of a type), and may also operate on any subset of a data parallel

object.

We do not intend to show that ours is the best implementation possible. Rather, we

will demonstrate that an implementation exists. In almost every case the implementation is

naive, there are optimizations that could be done which would greatly improve the

performance and the elegance of the implementation.

The basic structure of the implementation is a master and a slave. The slave is a

separate mentat object, the master is a C++ object. Between the master and the slaves,

distribution, communication, and synchronization is handled for all data parallel objects

declared in the source program. In the following sections we explain the implementation

model and explain the code translations which are necessary to support the model.

36

4.1 Implementation Model

In many ways, the issues that we must resolve with respect to the implementation

of our data parallel extensions are very similar to the issues that the designer of a SIMD

architecture faces. We have chosen the master-slave paradigm as the basis of our

implementation model for the data parallel extensions to the Mentat Programming

Language. This same model is used in many SIMD architectures. Such architectures

employ a host node, or master, which executes the application program and sends

instructions to the processing elements, or slaves, each of which apply the instructions to a

particular portion of the data. Because the host node is a single point of control,

synchronization of the processing elements is straightforward. This model is well suited to

producing semantics that are easily understandable by the programmer. While the master-

slave paradigm of the SIMD architecture model is constructed in terms of host and node

processing elements, our implementation depends on master and slave components which

are designed as mentat objects (processes) assigned to particular processors which are

connected in a MIMD fashion. The master process acts as the source of a single instruction

stream, while the slaves manage the multiplicity of the data. Thus, data parallelism is

mapped onto control parallelism.

Once we chose the master-slave paradigm, the remaining model design decision

was to determine the delegation of data parallel objects to slave processes. Given that every

data parallel object would be distributed across multiple processors, we faced two

possibilities in designing the master-slave relationship. These are illustrated in Figure 4.1.

In the first alternative, one slave per data parallel object is created on each processor. The

second choice is to create one slave per processor which manages a portion of every data

parallel object within the same address space. We chose to implement a single slave process

per processor in order to minimize the amount of communication required between address

spaces on a single processor. This type of communication will occur with a method

exhibiting non-local communication patterns; i.e. references are made to the data parallel

argument of the method. This paradigm also simplifies the management task of the master

process because instructions only need to be sent to one process per processor instead of

multiple processes per processor. Therefore, we create one slave process per processor, and

each new data parallel object that is created is distributed among these slave processes. As

37

an example, consider four data parallel objects with twenty elements each and five

processors. In this case, one master process and five slave processes would be created. Each

slave would manage four elements of each data parallel object and the master process

would transmit instructions to the five slaves. We will now present specifics about the

implementation of both the master and the slave classes.

4.1.1 The Master

Figure 4.2 shows a pseudo-code definition of a master class. The master class is a

C++ class which is defined by the compiler in the main program of the application. The

master is responsible for creating and maintaining information about a slave process on

each processor in the system. The master is an “intelligent” object which controls the action

of the slaves. The slaves are essentially automatons that receive guidance from the master.

PE2

Data parallel object 1

Data parallel object 2 Data parallel object 4

Data parallel object 3

Legend
Slave process

PE1

Figure 4.1 Example of two scenarios a) One data parallel object per slave
process b) Multiple data parallel objects per slave process.

a) b)

PE3

PE1

PE4 PE4PE3

PE2

38

An instance of the master class is created by the compiler when the main function

of the data parallel application comes into scope1. Since all control of the data parallel

objects flows through the master, any creation or invocation on a data parallel object in the

programmers source code is converted to an invocation on the master by the compiler. The

master then performs the necessary tasks to ensure that the correct data is available at each

slave for the ensuing computation, and oversees the invocation of the requested operation

on every slave that is responsible for a portion of the data parallel object in question.

Specifically, the duties of the master include:

1. Distributing newly created objects among the slaves.
2. Distributing overlay data among the slaves.
3. Directing the communication of data among the slaves.
4. Directing the invocation of data parallel operations by the slaves.
5. Collecting and consolidating partial results from the slaves.

1. Or when a mentat object is created which “contains” the data parallel object.

1: struct olist {
2: // range of elements assigned to this slave process
3: // list of methods defined on the data parallel class
4: // including the communication type and a place
5: // holder for return values
6: // dimensions of the data parallel object
7: // border information for the data parallel object
8: };
9:
10: struct slist {
11: MOname slave_handle;
12: olist object_list;
13: };
14:
15: class master {
16: // member variables
17: slist *slave_list;
18: public:
19: // member functions
20: master() {// create a slave on each processor};
21:
22: // add a new object to object_list of each slave
23: // partition overlay data and pass it to the slaves
24: // determine communication pattern needed for a
25: // given operation and instruct slaves to
26: // exchange data
27: // pass invocation of data parallel operation to the
28: // slaves
29: // collect return results from slaves and return to
30: // the caller
31: }

Figure 4.2 Pseudo code for master class definition.

39

We will address each of these duties in turn.

Object Distribution. The master is responsible for distributing a newly created data

parallel object among the slaves. When a new object is created, the master conveys the

information concerning the dominant local and non-local communication patterns of the

object to the run-time system. As explained in Section 3.3.1 this information is distilled

from method annotations and arguments to the new() operator. Using this advice, the run-

time system determines the appropriate decomposition of the object given the current

system architecture, and returns it to the master. The master then distributes the object

among the slaves located on each processor according to the directions from the run-time

system. Note that this mechanism does not require a portion of the data parallel object be

assigned to every processor, nor does it require equal portions of the data to be allocated to

each participating slave. This mechanism enables the exploitation of a heterogeneous

system architecture as well as the ability to adapt to a unevenly loaded system. It is the

responsibility of the master to recognize when the data has been unevenly distributed and

ensure that communication of data is properly managed in this case. The research to

develop the run-time side of this mechanism is currently being conducted within the Mentat

research group [21, 22].

Overlay Distribution. Administering the invocation of overlay operations is the

second responsibility of the master. Upon invocation of an overlay operation on a data

parallel object, the master receives the data to be assigned to the elements of the data set.

The master possesses information about which data elements are located at which slave.

The master uses this information to split the incoming overlay data into the appropriate

pieces and forwards them to the corresponding slaves.

Communication between slaves. Directing the communication of data among the

slaves is the most complicated task of the master. When an invocation of an aggregate

operation requiring either local or non-local communication occurs, the master initiates the

communication of data between slaves (and thus processors) before the invocation of the

operation proceeds. This ensures that once the operation is underway, all necessary data is

local to each processor, and that race conditions on updated element values will not occur

during the execution of the operation. The actions of the master vary depending upon the

40

type of communication required: local or non-local. We discuss local communication first

followed by non-local communication.

Local communication requires that there be “guard regions” for the data held by a

particular slave. These guard regions are place holders for any data which is not maintained

at that slave that may be referenced during an operation. Figure 4.3 illustrates a data parallel

object that is distributed by rows among four slave processes, and the guard regions that

each slave maintains to ensure that there is space for all needed data. The shaded data rows

indicate actual data assigned to a slave. The unshaded guard rows are comprised of actual

elements and contain copies of data elements that are maintained by neighboring slave

processes.

At compile-time, every method of a data parallel class is analyzed to discover it’s

local communication pattern. Every data parallel method that employs local

communication must use the relative addressing mechanisms defined in Section 3.4.3. The

use of these mechanisms uncovers any local communication pattern to the compiler. The

aggregate method in Figure 4.4 exhibits a local communication pattern. The reader will

recall that possible communication patterns are NONE, PRED, SUCC, NS, EW, 4PT, and 8PT.

Each pattern must have an associated radius. The communication pattern of the example

4
5
6

3

Slave[0] Slave[1]

Slave[2] Slave[3]

0

7

0 7

2
3

0
1

Legend:

guard row

data row

a) b)

Figure 4.3 a) An undistributed data parallel object (abstract representation) b)
Distributed data parallel object with guard regions at each processor.

2 4

1

5
6
7

41

stencil_ave() operation is 4PT with a radius of two. The pattern type, 4PT, is determined

by the actual directions referenced. In this case, since all four are referenced, the pattern

type is 4PT. The radius is determined by the number of occurrences of the same direction

in a sequence of references. In our example N()->N()->2 indicates that the radius should

be two. The radius value indicates to the master how many guard rows (or columns) must

be exchanged before that operation may proceed, the pattern indicates on which border the

guard rows should be located. (More precisely, the pattern specifies the neighboring slave

from which the necessary data must be obtained.)

Each operation may have different space requirements for guard regions. This is

determined by the radius portion of the communication pattern of the method. In order to

avoid reallocating the guard and data regions before each operation, the compiler makes

note of the largest radius of all communication patterns used in the methods of a data

parallel class definition. When the object is created, enough guard rows are allocated to

handle the maximum requirement of the object, even though they may not be used on every

method invocation.

Recall that a data parallel operation that employs non-local communication must

have a data parallel argument. Also recall that data parallel objects are distributed in order

to minimize the data communication required for the method that is invoked most often

(See Section 3.3.1). Therefore, when a method requiring non-local communication is

invoked on a data parallel object, one of two situations must be in effect. Either the invoked

object and the argument object were distributed to facilitate their interaction, or they were

not.

2. E()->E()-> (or any of the other relative references in lines 4 and 5) also indicates a radius of two.
Note that a reference sequence such as E()->N()-> would have radius one, while E()->N()->N()-
> would have radius two.

1: void AGG image::stencil_ave ELEMENT ()
2: {
3: pixel = (N()->pixel + E()->pixel + W()->pixel + S()->pixel) +
4: N()->N()->pixel + E()->E()->pixel +
5: W()->W()->pixel + S()->S()->pixel)) / 4;
6: }

Figure 4.4 Aggregate with local communication. Communication pattern is detected by
the use of the relative addressing mechanisms.

42

In the first case, the data subsets of the invoked object and the argument object that

must interact during the operation are locally maintained at each processor. The master

does not need to arrange for any pre-communication of data between the slaves in order for

the operation to commence. In the second case, it is possible that the appropriate data are

not co-located at the processor. Therefore, the master arranges for copies of the needed data

from the argument object to be communicated among the slaves. In order to accommodate

such transfers of data, enough space to store the entire argument object must be allocated

at every slave. This space must be allocated for every object since every object has the

potential to be an argument to a data parallel method. This approach is problematic, since

it seriously limits the problem sizes of applications using our extensions. However, it is not

unique, and has previously been used by Hatcher and Quinn [11] to ensure proper access to

needed data.

A solution to this problem entails the support of dynamic redistribution of objects.

Such support would eliminate the need for allocating enough space for entire objects at

every processor. By allowing a redistribution of the objects prior to method invocations, the

correct data could be placed at the slaves without unnecessarily allocating enough space for

the entire object. We believe that our current design is amenable to inclusion of a dynamic

redistribution feature, however, it is beyond the scope of this thesis to implement such a

feature. Additionally, we believe this shortcoming of the implementation does not affect the

elegance of the language.

Directing Operation Invocation. The fourth task of the master, directing the

invocation of data parallel operations, is straightforward. The master simply invokes the

operation on each of the slaves. The slaves then proceed to asynchronously compute their

results.

Collecting Results. If a particular method generates a return result, the master is

responsible for collecting, organizing, and returning these results to the point of invocation.

Each slave forwards its individual result to the master upon completion of their portion of

the operation. The master then organizes the results in the proper order that is expected by

the caller and returns the aggregate result.

43

4.1.2 The Slave

We now describe the functionality of the slave class. Figure 4.5 illustrates the

pseudo code of a typical slave class. As with the master class, the slave class is generated

by the compiler. However, the slave class is defined as a sequential persistent mentat

class (line 9). The reader will recall from Section 2.2 that a sequential persistent

mentat class guarantees that all invocations by object A on object B are received at B in

the same order as their invocation at A. Instances of the slave class are distinct processes

which communicate with the master class via member function invocation. Data parallel

objects are decomposed and portions are distributed to the slaves by the master. Thus, each

slave may be responsible for managing a portion of a number of data parallel objects.

Each slave will maintain a list of the objects for which it is responsible (line 11).

For each of these objects, the members of the structure solist (lines 1-7) describe the state

of an object at a particular slave. The primary copy (line 2) of an object represents the

current values of the data elements before an operation. During a data parallel operation,

these values are modified as directed in the method. The second copy (line 4) of the data is

the mechanism used to prevent race conditions on the element values of the invoked object,

and is the implementation of the pre-copy approach discussed in Section 3.1.3. Again, the

values of the second copy reflect the state of the invoked object before the operation begins.

1: struct solist {
2: // primary copy of the data of the object maintained by
3: // this slave.
4: // second copy of the data - used to prevent race conditions
5: // on local communication.
6: // return value place holder for each method of the object.
7: }
8:
9: sequential persistent mentat class slave {
10: // member variables
11: solist slave_object_list;
12: public:
13: // member functions
14: // marshall and send the data of a data parallel object to
15: // a peer slave using instructions from the master.
16: // add received data to guard regions of a data parallel
17: // object
18: // invoke a data parallel method on locally maintained data
19: // return results to the master
20: // two-copy the values of a data parallel object
21: }

Figure 4.5 Pseudo-code for slave class definition.

44

Data parallel operations at the slaves are conducted by iterating over the local data

set of the invoked object; thus they are operated upon sequentially as opposed to

concurrently. We will refer to the element corresponding to the current index of the iteration

as the “current” element and all others as “neighbor” elements. Elements of argument

objects are referred to as “argument” elements. Updates of the current element value are

recorded in the primary copy of the data, and are visible as long as that element remains the

current element. Updates of neighbor and argument elements are not allowed by the

language. During an operation, a read request may reference the current element, a

neighbor element, or an argument element. Because element values of an argument object

cannot be updated during a data parallel operation, requests for these values are filled from

the primary copy of the argument object i.e. no pre-copy of the object is made, the primary

copy is simply restricted to read-only access. Requests for the current element are met using

the value recorded in the primary copy of the invoked object. This allows the programmer

to compute intermediate results for the current element that are visible as long as the current

element is in scope. However, as soon as an operation is complete for a current element, its

status reverts to that of a neighbor element. Values for neighbor elements are supplied using

the second copy of the invoked object. Thus, the values of neighbor elements are constant

for every current element while in the scope of the data parallel operation.

In addition to the primary and second copies of the element data of each object, the

slaves maintain a place holder (line 6) for the return values of every non-void data parallel

operation defined for each object. These place holders are used to collect the result of the

invoked operation on each element until every element possessed by the slave has been

processed. These results are then collectively returned to the master. The master then

collates the results and returns them to the caller of the data parallel method.

We proceed to the description of slave functionality. Each type of data parallel

method, OVR, RED, and AGG, requires a slightly different sequence of events to occur

between the master and the slaves.

Overlay Operations. First, upon invocation of an overlay operation, the slaves

receive the new data from the master as a list of values. Each data point sent from the master

represents the new value of a member variable of an element. The master has organized the

values in the proper order for each slave, so the slave can simply iterate over the elements

45

of the object assigning the new values to the member variable of the elements. Since there

can be no local or non-local communication in an overlay operation, the new values are

assigned directly to the primary copy of the object. After the overlay operation has

completed but before executing the next instructions from the master, the slave performs a

transfer of the primary data to the second copy. This operation can proceed concurrently

while the master is preparing the next operation. The reason for making the copy at this

time is performance. Subsequent operations which require local communication will not be

slowed by waiting for the second copy to be made.

Reduction Operations. Reduction operations are applied to the elements of the data

parallel object as described in Section 3.2.4. Each slave therefore produces a local result

that is the reduction over the elements that it maintains. Each slave returns their result to

the master who then performs the final reduction over all slave results. Recall, reduction

operations must be binary, associative, and commutative. Since updates are not allowed as

part of a reduction, element values are read directly from the primary copy of the object

during the operation.

Aggregate Operations. Aggregate operations are the most complex of the three

types. They require greater cooperation between the master and the slaves than overlay or

reduction operations. Figure 4.6 illustrates the interactions of the master and slaves each

time an aggregate operation is invoked. Upon receiving an invocation of an aggregate

operation, the master determines if local or non-local communication is required by the

operation. If local communication is required, then the master assembles instructions for

the slaves to exchange data from the invoked object. If non-local communication is

involved, the master assembles instructions for each slave regarding this exchange as well.

Finally, the object upon which the operation is to be invoked is indicated in the instructions.

These instructions are then passed to the slaves (message 1). The slaves marshall and send

the data indicated in the communication instructions and wait for the receipt of similar

messages from their counterparts (message 2). Once the data has been exchanged, the

slaves record the values in the appropriate variables. At this point each slave will accept an

invocation from the master (message 3). This invocation specifies which data parallel

operation should be applied to the elements of the particular data parallel object. After

computing their local results, the slaves return these values to the master (message 4). The

46

master collates and returns the results to the caller. Since aggregate methods will typically

modify the current element of the operation, the primary data of the invoked object will be

transferred to the second copy after the completion of the operation for all elements. Again,

this copy is done at the end of the operation to save time at the beginning of the next

operation invoked on the object.

4.2 Translations

The annotations and communication characteristics upon which our data parallel

extensions are based delineate four classes of data parallel methods. These classes may be

ordered in terms of their increasing translation complexity. We have isolated eight types of

transformation which are required to convert a programmer defined data parallel method

into a working data parallel operation. As the complexity class of the method increases, so

does the number of transformations which must be applied to generate the master/slave

model we described in the preceding section. Currently, applications developed using these

Master

Slave N

Slave 0

Slave 1

2

2

1

1

1

3

3

3

4

4

4

2

Figure 4.6 Master/slave interactions for
aggregate operations.

2

aggregate
invocation

collated
result

47

data parallel extensions are hand translated into the master and slave classes. Actual

compiler support is a topic for future consideration.

In the remainder of this section, we first define the complexity classes and identify

what translations are needed for each class. Then, to explain the translations, we present an

example from each complexity class and the translations associated with that class.

4.2.1 Method Complexity Classes

The method complexity classes, in order of increasing complexity, are:

1. Type 1: Overlay, Reduction, and Simple aggregate methods with an
ELEMENT <subset_specifier> annotation.

2. Type 2: Simple aggregate methods with a ROW or COLUMN
<subset_specifier> annotation.

3. Type 3: Local aggregate methods.
4. Type 4: Non-local aggregate methods.

The distinguishing characteristic of type 1 methods is the <subset_specifier>

assigned to the method. The subset for every method in this class is ELEMENT. These

types of methods represent the concept of data parallelism most closely because each

individual element of the object is operated upon “concurrently”3. For methods in this

class, values of other elements of the invoked object, or any other object within the

application, are not required to complete the computation for any one element.

A type 2 operation is any simple aggregate method for which the specified subset is

ROW or COL. Recall that an annotation indicates the subset of the data parallel object for

which the programmer is assuming responsibility. For example, a ROW annotation implies

that the programmer intends to access multiple elements of a row as opposed to a single

element4. Therefore, for performance reasons, the subsets must be organized so that no

subset is divided across processors. If the initial distribution of the invoked object is not

equivalent to the distribution mandated by the invoked operation, then a redistribution of

the data may be required before the computation can proceed. Therefore, type 2 operations

3. Again, because of physical limitations such as the number of processors in the system the
operations only appear to occur concurrently. Realistically, a number of the operations occur
sequentially.

4. However, there are no references to the elements of a neighboring subset.

48

require all of the transformations applied to type 1 operations in addition to transformations

designed to handle the redistribution of the invoked object.

All methods which make use of local communication as defined in Section 3.1.3 are

grouped into the type 3 class of data parallel methods and are referred to as local aggregate

methods. These methods may be annotated with all possible <subset_specifier>. As with

type 2 methods, any type 3 method with a ROW or COL annotation may require a

redistribution of the object before the operation proceeds. The additional complexity of this

class arises from the fact that subsets other than the “current” subset are referenced by the

programmer in the body of the function using the relative addressing mechanisms

described in Section 3.4.3. Thus, those subsets must be locally available, in read-only form,

at the same processor as the “current” subset. This requires a transformation which enables

the communication of these values in addition to the transformations required for type 1

and type 2 methods. Also, the relative addresses must be translated to actual addresses.

The final class of methods are those designated as type 4 methods and referred to as

non-local aggregate methods. These methods take a second data parallel object as an

argument. As described in Section 3.1.3, references to values within the argument object

are referred to as non-local communication. The transformations applied to type 2 and type

3 methods are aimed at the distribution of the data parallel object upon which an operation

has been invoked. These same transformations must be applied to the data parallel object

named as the argument to a type 3 method. Because there are two data parallel objects

involved in non-local computations, there are two groups of subsets dealt with in the body

of the method. The interaction among the subsets of the two objects is specified by the

<combination_rule> annotation. This interaction is the differentiating factor for all type 4

methods and requires a new transformation in addition to the transformations applied to all

other method types. The additional transformation handles the proper nesting and

placement of iteration control structures for the object and argument.

4.2.2 Required Translations

The classification of data parallel methods into the various complexity classes can

be done by evaluating the reference patterns within the methods, the method annotations,

and any data parallel arguments to the method. This task is handled by the compiler.

49

Therefore, the programmer does not need to be aware of the particular class of a method;

instead, the compiler detects the method class and applies the appropriate transformations

automatically. The eight transformations alluded to in the previous paragraphs are:

1. Iteration. Provision of iteration control over the subsets of the invoked object
as specified by the <subset_specifier>.

2. Indexing. Insertion of required array indices to all data parallel object
references.

3. Result Cardinality. Allocation of space for the result set of each slave and for
the operation as a whole.

4. Object Distribution. Coordination of the current distribution of the data
parallel object with the distribution expected for the method.

5. Guard Regions. Allocation and management of space for guard regions of a
data parallel object.

6. Relative Address Conversion. Conversion of relative addressing mechanisms
to actual addresses within a data parallel object.

7. Argument Distribution. Coordination of the current distribution of the data
parallel argument with the distribution expected for the method.

8. Loop nesting. Proper nesting of iteration control structures to handle
combination of object and argument subsets.

Figure 4.7 illustrates the correspondence between each class of methods and the

transformations. In order to explain each transformation in detail, we will provide an

example of each method type. We will treat the four method classes in order of increasing

complexity, and therefore at each level will only discuss the new transformations required

for that particular type. A number of the transformations are parameterized by information

Figure 4.7 Class types and translations required.

Type 1

Type 2

Type 3

Type 4

Iteration
Indexing
Result Cardinality

Object Distribution

Argument Distribution

Guard Regions

Loop Nesting

Relative Address Conversion

50

that can only be known at run-time. Additionally, certain transformations are conditionally

applied given certain run-time information.

Before proceeding with the actual examples, a discussion of the general form of the

methods resulting from the transformations is in order. Each method defined by the

programmer is converted into two new methods. One of these methods is defined within

the master class, and one is defined within the slave class. Figure 4.8 illustrates the general

structure of these two generated methods. Additional methods are defined on the slave class

to handle the various communication patterns needed to ensure that all data are local to the

appropriate slave (processor) before a computation begins5. These additional methods are

invoked by the master during the communication phase of the generated master class

method. We now turn to the method class translations.

Simple aggregate (ELEMENT), Overlay, and Reduction methods: Figure 4.9

illustrates a simple aggregate (ELEMENT) operation which returns an integer result. The

translations required for this method type are translations 1 through 3. The portions of the

master and slave class methods generated using transformations 1 through 3 appear in

boldface. The same translations apply to overlay and reduction operations.

5. These communication methods are defined in a base class as was done in [13].

1: void master::class_op1()
2: {
3: // communication - redistribution and guard regions.
4: // operation invocation.
5: // return results to caller.
6: // communication - redistribution.
7: }

Figure 4.8 a) Generated master class method. b)
Generated slave class method.

1: void slave::class_op1()
2: {
3: // allocate result space
4: // iterate over subsets (object and argument)
5: // programmer defined method body
6: // return results to master
7: // two_copy (see Section 3.1.3)
8: }

a)

b)

51

The first translation, iteration, makes use of the invocation and the

<subset_specifier> in order to provide the iteration bounds on lines 24 and 25 of the slave

method image_scale(), and to control the invocations by the master on lines 14 and 15.

Recall that a method may be invoked on a single element, a subset of elements, or all

elements of a data parallel object. Therefore, the invocation indicates to the master and the

slave which elements should be the subject of the operation. Our example invocation on

line 9 involves all elements of the object pic. Notice that line 4 and line 26 are similar

Original Data Parallel Method Definition and Invocation
Simple Aggregate (ELEMENT)

1: int AGG image::scale ELEMENT (int value)
2: {
3: int result;
4: result = pixel * value;
5: return(result);
6: }
7: image pic;
8: pic = new ()image();
9: values = pic.scale();

Master Class Method Definition

10: int *master::image_scale(handle dpob_id, int value)
11: {
12: // initial communication unnecessary.
13: // allocate an int pointer to hold the results of each slave.
14: for (int dp_i = 0; dp_i < num_slaves(); dp_i++)
15: result_set[dp_i] = slave[dp_i].image_scale(dpob_id, value);
16: // combine result sets into a single set.
17: // post communication unnecessary.
18: // return single result set to caller.
19: }

Slave Class Method Definition

20: int *slave::image_scale(handle dpob_id, int value)
21: {
22: int result;
23: // allocation of result space for each element.
24: for (int dp_i = 0; dp_i < dpob_id.num_rows_held(); dp_i++)
25: for (int dp_j = 0; dp_j < dpob_id.num_cols_held(); dp_j++) {
26: result = dpob_id[dp_i][dp_j].pixel * value;
27: result_set[dp_i][dp_j] = result;
28: // return results to master.
29: // pre-copy new values.
30: }

Figure 4.9Original, master and slave method definitions for scale().

52

except for the array indexing. We will refer to line 4 as the method body and line 26 as the

translated version of the method body. The <subset_specifier> is the mechanism by

which the compiler determines it’s responsibility for iteration over the subsets of the object.

In our example, the <subset_specifier> ELEMENT indicates that all elements managed

by every slave should be operated upon. Therefore, a doubly nested loop is inserted around

the translated version of the method body6.

The second transformation, indexing, makes use of information conveyed by the

<subset_specifier> as well. Because a doubly nested loop has been inserted by the

compiler, all data parallel object member variables referenced within the method body must

be indexed to provide iteration control. In our example (line 26), two index variables have

been added to all references to the member variable pixel. In the case of a ROW annotation,

only one index variable would be added since the programmer would presumably provide

the second one if needed. For example, pixel[k] in the method body would become

pixel[i][k] in the translated version. Likewise, a COL annotation and pixel[k]

reference would result in pixel[k][i].

Finally, the third translation, result cardinality, depends upon information from the

object <subset_specifier> and the invocation. Essentially, the number of subsets

specified by the <subset_specifier> for the portion of the object indicated by the

invocation is equal to the number of results that must be returned by the master. The slaves

figure the result cardinality for their portion of the object similarly. This information is used

to allocate space to hold the results in both the master and the slaves (lines 13 and 23

respectively). Code initiating the return of the results is inserted on lines 16 and 18 of the

master class method and line 28 of the slave class method. This third translation is slightly

more complicated for non-local aggregate methods. We will delay explanation of the

translation for non-local aggregate methods for now.

Simple aggregate (ROW or COL) methods: Figure 4.10 illustrates a simple

aggregate (ROW or COL) method which returns an integer result. In addition to translations

1 through 3, this type of method requires translation 4, object distribution. As before, the

6. All objects are assumed by the compiler to be two dimensional arrays at compile-time. If at run-
time this is not the case, then num_rows_held() and/or num_cols_held() will return a
value of one as appropriate. Thus the compiler allows for all possible configurations of the data
parallel object.

53

portions of the master class generated using this transformation appear in boldface. For this

type of method, the <subset_specifier> of the method and the dominant distribution of the

object must be compared. If they are not the same, then the data of the object must be

Original Data Parallel Method Definition and Invocation
Simple Aggregate (ROW or COL)

1: int AGG matrix::row_sums ROW()
2: {
3: int result;
4: for (int j = 0; j < this.num_cols(); j++)
5: result += this[j].value;
6: return(result);
7: }
8: matrix A;
9: A = new ()matrix();
10: sums = A.row_sums();

Master Class Method Definition

11: int * master::matrix_row_sums(handle dpob_id)
12: {
13: // if current distribution of object is not ROW
14: // then direct slaves to redistribute object by rows.
15: // allocate an int pointer to hold the results of each slave.
16: for (int dp_i = 0; dp_i < num_slaves(); dp_i++)
17: result_set[dp_i] = slave[dp_i].matrix_row_sums(dpob_id);
18: // if element values were modified and dominant distribution
19: // is not ROW
20: // then direct slaves to redistribute object according
21: // to dominant distribution.
22: // combine result sets into a single set.
23: // return single result set to caller.
24: }

Slave Class Method Definition

25: int * slave::matrix_row_sums(handle dpob_id)
26: {
27: int result;
28: // allocation of result space for each element.
29: for (int dp_i = 0; dp_i < dpob_id.num_rows_held(); dp_i++)
30: for (int j = 0; j < dpob_id.num_cols_held(); j++) {
31: result += dpob_id[dp_i][j].value;
32: result_set[dp_i][j] = result;
33: }
34: // return results to master.
35: // pre-copy new values.
36: }

Figure 4.10 Original, master and slave method definitions
for row_sums().

54

redistributed to avoid the cost of off-host communication during the application of the

operation. The master accomplishes this task by invoking inherited methods defined in the

slave class. These methods are a collection of operations which handle the marshalling and

sending of specific object subsets to a peer slave. Lines 13 and 14 of our example show that

this redistribution takes place prior to the invocation of the data parallel method on the

slaves. The semantics of the data parallel operations require that the processor managing

the elements must maintain their values locally. Therefore, if elements of the data parallel

object have been modified during the operation, it is necessary to undo the effects of the

object redistribution. The master again oversees this action in the same manner as the initial

redistribution as shown on Lines 18-21 of our example.

Local Aggregate methods: Local aggregate methods require the fifth and sixth

translations, guard regions and relative address conversion respectively, in addition to the

previous four translations. Both translations make use of information conveyed by the use

of relative addressing mechanisms in the body of the programmer defined method. Figure

4.11 illustrates a local aggregate method using these mechanisms and the master and slave

class methods which are generated by applying the transformations. For an operation of this

type, the master is responsible for directing the population of slave guard regions prior to

the method invocation. The compiler determines the amount of data needed on a per

method basis by analyzing the use of the relative addressing mechanisms. This analysis,

discussed in Section 3.1.3, returns a radius which indicates how many rows or columns in

a certain direction are needed. In our example, a single guard row or column in each

direction is sufficient. The master uses the compiler supplied methods mentioned earlier to

achieve the transfer of the proper data regions. The pseudo-code for the guard regions

translation is shown on lines 11 and 12. As with the object distribution translation, this

transfer takes place before the invocation of the method.

The relative addressing mechanisms also direct the compiler to generate references

to actual data elements in the body of the slave class method. The actual references

generated comprise the sixth translation, relative address conversion. Since the needed data

will be available within the same data structure as the elements which are the target of the

operation, the N()->, S()->, etc. relative addresses are converted into expressions. These

55

expressions are used to index the array data structure of the data parallel object as shown

on lines 25-28.

Non-local aggregate methods: An example of the final data parallel method

complexity class is shown in Figure 4.12. This method implements matrix multiplication

for two data parallel objects. As before, all previous translations described are applied to

Original Data Parallel Method Definition and Invocation
Local Aggregate

1: void AGG image::stencil_ave ELEMENT()
2: {
3: pixel = (N()->pixel + E()->pixel + W()->pixel + S()->pixel) / 4;
4: }
5: image pic;
6: pic = new ()image();
7: pic.stencil_ave();

Master Class Method Definition

8: void master::image_stencil_ave(handle dpob_id)
9: {
10: // redistribution unnecessary since annotation is ELEMENT
11: // if guard regions are needed for invoked object
12: // then transfer regions among slaves.
13: // result allocation unnecessary.
14: for (int dp_i = 0; dp_i < num_slaves(); dp_i++)
15: slave[dp_i].image_stencil_ave(dpob_id);
16: // result combination unnecessary for this example.
17: // return of results unnecessary for this example.
18: // redistribution unnecessary for this example.
19: }

Slave Class Method Definition

20: void slave::image_stencil_ave(handle dpob_id)
21: {
22: // result allocation unnecessary.
23: for (int dp_i = 0; dp_i < dpob_id.num_rows_held(); dp_i++)
24: for (int dp_j = 0; dp_j < dpob_id.num_cols_held(); dp_j++)
25: this[dp_i][dp_j].pixel = dpob_id[dp_i-1][dp_j].pixel +
26: dpob_id[dp_i][dp_j+1].pixel +
27: dpob_id[dp_i][dp_j-1].pixel +
28: dpob_id[dp_i+1][dp_j].pixel)
29: / 4;
30: // return of results unnecessary.
31: // two-copy new values.
32: }

Figure 4.11 Original, master and slave method
definitions for stencil_ave().

56

methods of this class, and the generated code affected by the translations is shown in

boldface.

Original Data Parallel Method Definition and Invocation
Non-Local Aggregate

1: int AGG matrix::mat_mul ROW(COL 1xN matrix B)
2: {
3: int result;
4: for (int j = 0; j < this.num_cols(); j++)
5: result += this[j].value * B[j].value;
6: return (result);
7: }
8: matrix A, B;
9: A = new () matrix();
10: B = new () matrix();
11: A.mat_mul(B);

Master Class Method Definition

12: int * master::matrix_mat_mul(handle dpob_id, matrix B)
13: {
14: // if current distribution of object is not ROW
15: // then direct slaves to redistribute object by rows.
16: // guard regions unnecessary.
17: // if current distribution of argument is not COL
18: // then direct slaves to redistribute argument by columns.
19: // allocate an int pointer to hold the results of each slave.
20: for (int dp_i = 0; dp_i < num_slaves(); dp_i++)
21: slave[dp_i].matrix_mat_mul(dpob_id, B);
22: // combine result sets into a single set.
23: // return single result set to caller.
24: // redistribution unnecessary.
25: }

Slave Class Method Definition

26: int * slave::matrix_mat_mul(handle dpob_id, matrix B)
27: {
28: int result;
29: // allocation of result space for each element.
30: for (int obj_i = 0; obj_i < dpob_id.num_rows_held(); obj_i++)
31: for (int arg_j = 0; arg_j < B.num_cols_held(); arg_j++)
32: for (int j= 0; j < dpob_id.num_cols_held(); j++) {
33: result += dpob_id[obj_i][j].value * B[j][arg_j].value;
34: result[obj_i][arg_j] = result;
35: }
36: // return results to master.
37: // two-copy new values.
38: }

Figure 4.12 Original, master and slave method definitions for mat_mul().

57

The third translation, result cardinality, is more complex for this method class than

the previous three method classes. In the simpler method classes, the result cardinality was

dependent upon the <subset_specifier> of the object and the invocation of the method.

In the case of local aggregate methods, the <combination_rule> annotation and the

<subset_specifier> of the argument contribute information as well. The

<combination_rule> annotation may have one of three values. If the

<combination_rule> for the argument is 1x1, then the compiler assumes that there are

an equal number of subsets in the object and in the argument. Since they will be combined

in a pairwise fashion,

number_of_results = subsets of object = subsets of argument.

However, if the combination rule is 1xN or Nx1, then:

number of results = subsets of object * subsets of argument.

The argument distribution translation is analogous to the object distribution

translation described for simple aggregate (ROW or COL) methods. However, it is applied

to the data parallel argument of the method as opposed to the object upon which the method

was invoked. Again, any communication generated by this translation occurs before the

operation is invoked at the slaves (lines 17 and 18). However, since the data of an argument

object is restricted to read-only access, the redistribution does not need to be undone as in

the case of the simple aggregate (ROW or COL) methods.

The final translation required for the method complexity classes is loop nesting.

This translation ensures that the iteration over both the invoked object and the argument

object proceeds correctly. The <combination_rule> indicates the type of loop nesting

required for the operation. For a 1x1 annotation, a single iteration control is required, and

the same index is used for both the object and the argument. For a 1xN annotation, two

loops are needed. The outermost loop governs iteration over the object, and the innermost

loop handles iteration over the argument. Consequently, the indexes used for the two

objects correspond to the control loop index variables respectively. The translated body of

the method should be at the innermost nesting level. This scenario is demonstrated in our

example on lines 30-33. For an Nx1 annotation, the nesting of the object and argument

control loops is reversed.

58

Chapter 5 Conclusions and Future Work

In this thesis, our objective was to design a language in which both data and control

parallelism are easily expressible and readily usable in conjunction with one another. The

approach we used was to augment an existing control parallel language, the Mentat

Programming Language, with data parallel extensions. Our extensions improve on

previous work with data parallel languages in several ways. We generalize a number of

known mechanisms and provide more flexibility in terms of data set manipulation. In

particular, we generalize reduction operations, allow subsets of data parallel objects to be

treated as data parallel objects themselves, allow flexible treatment of data set border

regions by the programmer, and provide automatic generation of iteration control

constructs. Our annotations allow elegant expression of data parallel method properties.

Finally, we describe the requisite translations needed to map data parallel constructs to a

control parallel paradigm.

Continuing work needs to be done in the areas of nested data parallelism, promotion

of data parallel objects to first-class citizens, support of dynamic redistribution controlled

by the programmer, and consideration of more complicated data set organizations. The

compiler needs to be built both to test our translations and to expose issues that have

escaped our notice. To truly prove the efficacy of a combined task and data parallel

language, we would like to implement an application which requires both forms of

parallelism.

59

Bibliography

[1] G.S. Almasi and A. Gottlieb,Highly Parallel Computing, Benjamin-Cummings Publishing Co.
Inc., Redwood City, CA,1994.

[2] F. Bodin et al., “Distributed pC++: Basic Ideas for an Object Parallel Language,”Proceedings
Object-Oriented Numerics Conference, April 25-27, 1993, Sunriver, Oregon, pp. 1-24.

[3] B. Chapman, P. Mehrotra, and H. Zima, “Programming in Vienna Fortran,”Scientific Program-
ming, Vol. 1, No. 1, Aug. 1992, pp. 31-50.

[4] A.A. Chien and W.J. Dally, “Concurrent Aggregates (CA),”Proceedings of the Second ACM Sig-
plan Symposium on Principles and Practice of Parallel Programming, March, 1990, Seattle, Wash-
ington, pp. 187-196, .

[5] G.C. Fox et al., “Fortran D Language Specifications,” Technical Report SCCS 42c, NPAC, Syra-
cuse University, Syracuse, NY.

[6] A.S. Grimshaw, “Easy to Use Object-Oriented Parallel Programming with Mentat,”IEEE Com-
puter, May, 1993, pp. 39-51.

[7] A.S. Grimshaw, “The Mentat Computation Model - Data-Driven Support for Dynamic Object-Ori-
ented Parallel Processing,” Technical Report CS-93-30, University of Virginia, Computer Science
Department, Charlottesville, VA, 1993.

[8] A.S. Grimshaw, J.B. Weissman, and W.T. Strayer, ‘‘Portable Run-Time Support for Dynamic
Object-Oriented Parallel Processing,’’ submitted toACM Transactions on Computer Systems, Jul.,
1993.

[9] A.S. Grimshaw, E.A. West, and W.R. Pearson, “No Pain and Gain! - Experiences with Mentat on
Biological Application,”Concurrency: Practice & Experience, Vol. 5, No. 4, Jun., 1993, pp. 309-
328 .

[10] P.J. Hatcher et al., “Compiling Data-Parallel Programs for MIMD Architectures,”European Work-
shop on Parallel Computing, March 1992, Barcelona, Spain.

[11] P.J. Hatcher et al, “Data-Parallel Programming on MIMD Computers,”IEEE Transactions on Par-
allel and Distributed Systems,Vol. 2, No. 3, pp. 377-383.

[12] W.D. Hillis, G.L. Steele, Jr., “Data Parallel Algorithms”,Communications of the ACM, Vol. 29, No.
12, 1986, pp. 1170-1183.

[13] J.F. Karpovichet al., “A Parallel Object-Oriented Framework for Stencil Algorithms,”Proceedings
of the Second Symposium on High-Performance Distributed Computing, July, 1993, Spokane, WA.

[14] J.R. Larus, B. Richards, and G. Viswanathan, “C**: A Large-Grain, Object-Oriented, Data-Parallel
Programming Language,” Technical Report 1126, University of Wisconsin, Computer Science
Department, Madison, Wisconsin, 1992.

[15] J.K. Lee and D. Gannon, “Object Oriented Parallel Programming Experiments and Results,”Pro-
ceedings of Supercomputing ‘91, 1991, Albuquerque, NM, pp. 273-282.

[16] D.B. Loveman, “High Performance Fortran,”IEEE Parallel & Distributed Technology: Systems &
Applications, Vol. 1, No. 1, Feb., 1993, pp. 25-42.

[17] Mentat Research Group, “Mentat 2.5 Programming Language Reference Manual,” Technical
Report CS-94-05, University of Virginia, Department of Computer Science, Charlottesville, VA,
1994.

[18] N. Nedeljkovic and M.J. Quinn, “Data-Parallel Programming on a Network of Heterogeneous
Workstations,”Proceedings of the First Symposium on High-Performance Distributed Computing,
Sept., 1992, Syracuse, NY, pp. 28-36.

[19] M.J. Quinn and P.J. Hatcher, “Data-Parallel Programming on Multicomputers,”IEEE Software,
Sept. 1990, pp. 69-76.

[20] B. Stroustrup, The C++ Programming Language, 2nd ed. Addison-Wesley, Reading, Mass., 1991.

60

[21] J.B. Weissman and A.S. Grimshaw, “Multigranular Scheduling of Data Parallel Programs,” Techni-
cal Report CS-93-38, University of Virginia, Department of Computer Science, Charlottesville,
VA, July, 1993.

[22] J.B. Weissman and A.S. Grimshaw, “Network Partitioning of Data Parallel Computations,” to
appear in Proceedings of the Symposium on High-Performance Distributed Computing (HPDC-3),
August, 1994, San Francisco, CA.

