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Abstract

This paper presents methods of applying local search to global optimization

problems.  The most common approach, multistart, selects the best solution from restarts

of local search from random starting points.  Partitional methods augment local search with

general principles concerning the location of global optima in real space, significantly

improving the effectiveness of local search in function optimization problems.  Standard

partitional methods, however, are not directly applicable to combinatorial optimization

problems.  We describe a genetic algorithm, GALO, that is similar to the partitional

methods, but can be applied to combinatorial problems.  Empirical results are presented for

a parallel implementation of GALO that show it to be effective for the quadratic assignment

problem.
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We seek a general method for the efficient application of local search algorithms to

global optimization.  In its most general sense, a local search algorithm is a method for

finding a point, called a local optimizer, that is optimal with respect to its “nearest

neighbors” within a well-defined feasible region.  Since any global optimization method

employing local search will likely explore a large number of search paths, we desire that the

method be implementable on a parallel computer.  In addition, we would like the method to

be robust, making few assumptions about the problem beyond those made by the local

search algorithm.

A common method for finding a global optimum is the multistart approach.

Multistart algorithms apply local search to each of a large number of random initial feasible

points and then select the best of the local optimizers.  Part of the reason for multistart’s

popularity is its easy implementation. Multistart requires only a method for generating

random starting points and a local search algorithm that iteratively improves on a feasible

point.  This “brute-force” method of optimization can be quite successful, particularly when

the local search heuristic is good, but does not take advantage of information learned

through local search.

This paper presents a genetic algorithm[1], called the Genetic Algorithm with Local

Optimizers (GALO), that employs various kinds of “intelligence” to generate and select

starting points for local search.  Since the kinds of intelligence needed for different

instances of a problem may vary, GALO has several options that can be configured for a

given instance.  In the last two sections, we show how GALO can be applied to the

Quadratic Assignment Problem (QAP) and compare the results with multistart for several

GALO configurations.
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1. Local Optimizers and the Multistart Approach

Using the notation of Papadimitriou and Steiglitz[2], a minimization problem is

defined as follows:

Given 

F,  a set of feasible points,

c:F → ℜ,  a real - valued cost function,

Minimize c( f ),

Subject to 

f ∈F.

The pair (F, c) is an instance of the optimization problem.  If the domain set F is

continuous, then the problem is a function optimization problem.  If F is discrete, then the

problem is a combinatorial optimization problem.

Local optimizers are points that are optimal within a neighborhood N⊆F.  If N(f) is

a neighborhood about a point f∈F and c(f) ≤c(y) for all y ∈N(f), then f is a local minimizer

of the function c.  Typically, neighborhoods are defined with respect to a distance function.

In function optimization problems, N(f) is usually defined to be all points within a fixed

Euclidean distance from f (i.e., N(f) is an open ball in Euclidean space).  In combinatorial

optimization problems, the structure of N is likely to be quite a bit more complicated

because the variables may be categorical.  Consider, for example, permutation problems,

where F is defined to be

F = {p ∈ℑn:∀i, j ∈{1,...,n}, pi ∈{1, � ,n} and pi ≠ p j}.

For such problems, the actual numeric value of each variable pi  is irrelevant; what matters

is the permutation the described by p.  A natural way to measure distance is the number of

pairwise interchanges (i.e., swaps of a pi  with a pj) needed to make one permutation equal

another.  In this case, a neighborhood about a point in F might be the points that are less

than 2 pairwise interchanges distant.  A pairwise interchange optimal permutation, then, is

a permutation for which no swap exists that improves the value of c.
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Local search algorithms are procedures that find a local optimizer given a starting

point f0∈F.  Usually, they proceed as shown in figure 1.  Starting from the point f0, they

iteratively improve the value of f.  The selection of g is a perturbation of f in the

neighborhood N.  If g is selected to maximize the improvement in each iteration, then the

search is steepest descent.  When g is selected at random from among the improving points

in N(f), the algorithm is randomized descent.  If the selection of g is relaxed to allow cost

increases with a probability Pr(g)<1, then the algorithm is a variant of probabilistic descent.

Other names for probabilistic descent include probabilistic hillclimbing[3],  stochastic

relaxation[4] and statistical cooling[5].

f ←  f 0

while ( f is not a local optimizer) do

f ← g ∈ N( f ) such that c(g) < c( f )

endwhile

Figure 1.  A General Local Search Algorithm

For some problems, the variance between the local optima can be large.  In such

cases, finding just any local optimizer is not good enough.  Rather, one often desires a

near-global optimizer.  Using a common analogy[6], imagine that the search space is a

rocky beach.  The goal is to find an object (the global optimizer) that lies under one of the

rocks (local optimizers).  A systematic way to ensure finding the object is to “leave no

stone unturned, but turn over no stone more than once.”  Branch and bound and other

enumerative methods employ this strategy.  If the problem is very difficult, then

enumerative algorithms may not be practical.  A logical alternative is multistart, local search

with random restarts.  The multistart approach approximates the “leave no stone unturned”

objective by selecting from a set of local optimizers.  Stopping rules and other issues for

multistart algorithms are discussed by Boender and Rinnooy Kan[7] and by Betro and

Shoen[8].
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There are at least two deficiencies in the multistart approach.  First, if the starting

points are sufficiently similar, the algorithm may find the same local optimizer many times,

violating the second half of the adage.  Second, multistart has no way of capitalizing on

finding near-global optimizers, points that are very similar to the global optimizer.  In a

recent study[9], it was found that optimizers for the travelling salesman problem share

approximately two-thirds of their arcs, emphasizing the importance of learning from near-

global optimizers.

For function optimization problems, there exist methods that account for both of

multistart’s deficiencies.  These techniques, called the partitional methods, attempt to divide

the search space into regions of attraction, with one region for each local minimizer.  A

region of attraction about a local minimizer is the largest set of points such that steepest

descent within the set will converge on the local minimizer.  The motivation for finding

these regions of attraction is that such knowledge can reduce the number of reexplored local

minimizers.  Since most partitional techniques identify regions of attraction by clustering

points about local minimizers, they are sometimes called clustering methods of

optimization[10][11].

Application of partitional methods to combinatorial problems is complicated by the

discrete search space.  Often, partitional algorithms rely heavily on the properties of

euclidean space.  Since all function optimization problems have real-valued domains, the

assumptions implicit in euclidean distance are not overly strong.  For combinatorial

problems, however, the appropriate distance function is bound to vary from problem to

problem, so the assumptions have to somewhat weaker than those made by partitional

methods.  Additionally, many partitional methods assume implicitly that all previously-seen

local minimizers can be stored as the search progresses.  For the smooth euclidean spaces

searched in function optimization, this is not a bad assumption.  For many combinatorial

problems, however, the memory required to store all local minimizers can easily exceed

physical limits.
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We seek a method that resembles the partitional algorithms without making

assumptions about the neighborhood structure.  In particular, we do not want to presume

continuity or ordering in the search space.  We also want to limit the memory requirements

to fit in available memory.  Hence, we require selectivity in the information retained about

the local optimizers.  The next section describes how GALO meets these requirements.

2. GALO: An Approach for Combinatorial Optimization

2.1 Genetic Algorithms for Combinatorial Optimization

Genetic algorithms (GAs) were chosen because they have been successful for a

variety of other complex learning and optimization problems[12][13][14].  Like multistart,

part of the reason for their popularity is their easy implementation over a wide range of

problems.  Given a representation that defines feasible points, all that is needed is a

crossover operator and a fitness function.  A crossover operator is any function that can

randomly combine any two feasible points, f1 and f2, to form another (randomized)

feasible point, f3, that is similar to both of its parents.  A fitness function is any positive,

real score to be maximized.  (Minimization problems must be translated to appropriate

maximization problems.  An example of such a translation is in section 2.2, which

describes GALO applied to the quadratic assignment problem.)

Like the partitional algorithms, genetic algorithms are based on a set-to-set mapping

rather than a point-to-point mapping.  This allows both the partitional and genetic

algorithms to learn from patterns in the search space that might not be evident to a point-to-

point improvement algorithm.  For a GA, the sample set is a population P of structures,

where each structure represents a feasible point f∈F.  Although a structure may include

information not explicitly in the problem definition, we ignore this subtle distinction

between a structure and a feasible point in the discussion that follows.
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A simple genetic algorithm is described in figure 2.  The algorithm starts with an

initial population set P={Pk, k=1,...,S}⊆F, usually sampled at random from F.  Then the

population passes through an evolutionary loop, where each iteration is called a generation.

First, each point is assigned a fitness based on its objective function score.  Next, the

breeding step selects pairs of parents (f1, f2) in proportion to their fitness:

∀Pi ≠ Pj ∈P, Pr[ f1 = Pi, f 2 = Pj] = 1 (S − 1)( ) ⋅ Fitness(Pi) Fitness(Pk)k∑( ).
The algorithm “crosses over” each pair, which produces an ordered set of offspring,

O={Ok, k=1,...,K}⊆F.  Occasionally, the crossover operator makes a “mistake,” causing a

mutation.  These randomly occurring mutations help the population maintain diversity.  In

order to keep the population size constant, the algorithm then selects the members of the

next population (with size S) at random from the structures in P and O.  The GA stops

when a criterion, usually a limit on the number of generations, is met.

Initialize(P)

while (stopping condition not met) do

for all Pj ∈P do CalculateFitness(Pj)

for i ← 1 to K do

( f1, f 2) ← SelectParents(P)

Oi ← CrossOver( f1, f 2)

endfor

P ← SelectSurvivors(P ∪ O)

endwhile

Figure 2. A Simple Genetic Algorithm.

A genetic algorithm has a number of parameters.  They include, but are not limited

to, the population size (S), the number of offspring generated each generation (K), the

mutation rate, and the stopping criterion used.  Determining the optimal settings for such
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parameters is still an open research question.  However, there do exist some general rules

of thumb based on theoretical arguments.  For example, it is desired that the population is

large enough for each of the possible species to be represented in the population in

proportion their average fitness.   Goldberg[15] uses such an argument to develop a method

for estimating an “adequate” population size for a given problem instance.  Grefenstette[16]

presents an empirical study of GA parameters, including population size.

2.2 GALO

Without modification, there is nothing explicit in the genetic algorithm to encourage

exploring new regions.  Holland’s “schema theorem”[1] suggests that each species (or,

more formally, each schema) contributes to an infinitely-large population in proportion to

its fitness.  Hence, with a large population size, a GA will likely explore each of the good

search regions.  However, the property also implies that each bad search region will also be

explored, though with lesser probability.

Figure 3 shows GALO, the modified genetic algorithm.  GALO attempts to make

the search for good regions more explicit by incorporating three special features.  The first

feature, prioritized local search, is the basis for the algorithm’s name.  The last two

features, crowding[17] and sharing[18], are optional and control the development of species

in the population.  Each of these features is described in the following paragraphs.

Prioritized local search refers to the selection of a a subset, L, of the offspring for

local optimization.  There are several options for the selection priorities.  They include

Best-First (BF), Worst-First (WF), and Random-First (RF) selection, but there may be

many more.  If BF is used, then the K´ children with highest fitness are selected for

improvement.  Likewise, WF selects the K´ children with lowest fitness.  When RF is

used, the algorithm selects the offspring in birth-order.  After GALO selects the K´

offspring, local search replaces each offspring with a local optimizer.
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Initialize(P)

while (stopping condition not met) do

for all Pj ∈P,  CalculateFitness(Pj)

if (sharing) then

for all Pj ∈P,  CalculateSharedFitness(Pj)

for i ← 1 to K do

( f1, f 2) ← SelectParents(P)

Oi ← CrossOver( f1, f 2)

endfor

L ← SelectStartPoints(O)

for all O j ∈L,  O j ← LocalSearch(O j)

if (crowding) then 

P ← SelectWithCrowding(P,O)

else 

P ← SelectSurvivors(P ∪ O)

endwhile

Figure 3. GALO, the Modified Genetic Algorithm

Crowding simulates the establishment of niches in the environment.  In nature, each

species (i.e., collection of similar organisms) fills a niche, or role, in the environment.

Disturbing such niches can be catastrophic, even when the species is not very well-suited to

survival in its current habitat.  Elimination of certain species of plankton, for example, by a

natural disaster could cause extinction for many higher life forms, including humans.  The

disturbance that killed the plankton might be temporary, but the result would be the same

none-the-less.  Crowding encourages the establishment and maintenance of niches by

biasing the survival selection to structures that fill an established but vacated niche.  With

crowding, if a member of the population “dies,” then it is replaced by the offspring to

which it is most similar.  More specifically, once it is determined that a member of the
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population will not survive into the next generation, its replacement is the least distant of

the offspring that have not yet been selected.  In this way, crowding maintains promising

species by finding likely candidates to fill any vacated niches.  This is particularly useful if

a species has low fitness, but is similar to a very good species, and thus can still make a

positive contribution to the search for better species.

Sharing is provided because a single good species can drive out other good species.

Consider, for example, a small population of similarly-fit structures consisting of a pair of

identical twins and a set of other, very distinct offspring.  Recall that in a genetic algorithm

each member of the population is selected for breeding in proportion to its fitness.  Since an

average structure is present twice in the population, it has an unfair breeding advantage that

is totally unrelated to its fitness, which violates Holland’s schema theorem.  If the

population were infinite, then the effects of such redundancies would be negligible, but the

population is finite.  Sharing prevents a species from dominating the gene pool by “sharing

the wealth” among the members of each species.  If there are two copies of a structure in

the population, then sharing divides each of the two fitnesses in half.  Goldberg and

Richardson[18] quantified this idea by introducing a shared fitness function.  First, a

similarity measure, sh, is calculated for each pair of members in the population:

sh(dij) =
1 − dij / σshare( )α

, dij < σshare

0, otherwise







where dij is the distance between individuals Pi and Pj in P.  Then, a total measure of

similarity is calculated for each structure:

mi = sh(dij)
j∈P
∑ , ∀i ∈P.

Finally, each structure’s fitness is divided by its total similarity, producing a shared fitness

used to calculate reproduction probabilities:

SharedFitness(Pi) = Fitness(Pi) / mi.



10 Parallel Genetic Algorithms with Local Search

This formula rewards unique members of the population by increasing their reproduction

probability.  The constants α and σshare control how much unique structures are rewarded.

For the remainder of this paper, it is assumed that  α=1 and that σshare is calculated using

the formula described by Deb and Golberg[19].

2.3 Parallel Implementations

Since genetic algorithms are based on population biology models, they are

inherently parallel.  For example, consider the crossover and fitness evaluation steps.

These steps perform a majority of the work if the points have high dimension or the fitness

function is complex.  Since the offspring are produced independently each generation,

these steps are easily made parallel.  If the parallel implementation branches to perform

these steps in lockstep, then the algorithm is called a synchronous master-slave GA.  There

are many other parallel versions of the algorithm.  An early study by Grefenstette[20]

proposed four commonly-used models: synchronous master-slave, asynchronous master-

slave, asynchronous concurrent, and network.  A later paper reported on working

implementations for three of the four models on a hypercube multicomputer[21].  (The

asynchronous concurrent model requires shared memory, and was not implemented.)  The

three parallel versions described here closely resemble those in the latter paper.

The first parallel version of GALO is a variant of Grefenstette’s synchronous

master-slave model.  It is the simplest of the parallel implementations, for it merely

performs the local search step from figure 3 in parallel.  Figure 4a shows a simplified

schematic of the master-slave arrangement.  A master GA provides starting points for a set

of slaves, each running a local optimization algorithm on its own processor.  After

breeding, the master GA sends each selected offspring to a slave for improvement.  It then

waits for each processor to finish before continuing.  The method is synchronous because

the master must wait for each of the slaves to finish their work.  If one considers the local
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improvement a part of the breeding process then this is clearly similar to Grefenstette’s

model.  There is a subtle difference, however, because not every offspring is improved.

The asynchronous master-slave model is similar to the first, with the same basic

architecture (figure 4a).  As before, there is a master GA and a set of K´ local search

slaves, but in the asynchronous model the master GA does not wait for the slaves to finish.

Rather, it improves a variable number of offspring each generation, depending on how

many processors are idle.  After a slave finishes a local search, it sends a message to the

master that it is ready to exchange its improved structure for a new one and waits for a

reply.  Once the master has generated a set of new offspring, it reads the messages sent to it

by the slaves.  Since execution times for the local searches may vary, it is possible that less

than K´ messages are received.  The master then exchanges an offspring for each of the

structures held by the slaves that sent a message.  The new local optimizers returned by the

slaves replace the exchanged offspring. Once all of the exchanges are complete, the master

continues as usual.  Hence, the asynchronous master GA behaves like a simple, sequential

GA, except every so often it “trades-in” some of its offspring for new local optimizers, as

they become available.

GA

LO LO LO. . . 

Figure 4a. The Master-Slave Model

GALOGALO GALO

GALOGALO GALO

GALOGALO GALO

Figure 4b. The Network Model
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The network model consists of a set of cooperating sequential GAs distributed over

a multicomputer network.  Figure 4b shows an architectural schematic for GALO on a grid-

connected network.  Each processor executes its own copy of sequential GALO on its own

subpopulation.  Occasionally, each processor exchanges information (i.e., a few of its

structures) with its neighbors.  If the time between exchanges is large enough, then it is

likely that the subpopulations will converge on different species.  The exchange step might

be seen as species migration caused by a catastrophic environmental shift.  Such an

interpretation of Grefenstette’s network model, called punctuated equilibria, is described by

Cohoon et al.[22].  A fine-grained variant of GALO’s network implementation is

Muhlenbein’s PGA[23], which maintains a single structure on each processor and uses

breeding for information exchange.

Each of the models has its advantages, depending on the circumstances.  If the

execution times for the local searches are large and nearly-uniform, then the synchronous

model is adequately efficient on relatively small (i.e., 128 nodes or smaller) hypercube

multicomputers.  The asynchronous master-slave model is applicable when the times are

large but non-uniform.  Although the network model’s behavior is harder to predict, it may

be the most appropriate when the number of processors is large because there is no master

to act as a bottleneck.

3. GALO Applied to the Quadratic Assignment Problem

In order to demonstrate the application of GALO to a complex combinatorial

optimization problem, we present an implementation for the quadratic assignment problem

(QAP).  First, we formally define the quadratic assignment problem, a computationally

complex permutation problem.  Then, we present details about a GALO implementation

appropriate for the QAP.
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3.1 The Quadratic Assignment Problem

The quadratic assignment problem is a classic combinatorial optimization problem.

It is very simple to define an instance of the QAP — any two square, real matrices of

identical dimension will do.  Yet the QAP is very difficult to solve to a global optimum.  In

fact, the infamous travelling salesman problem (TSP) is a relatively easy special case of the

QAP.

The QAP is defined as follows:
Given 

C:ℑ2 → ℜ,  an nxn  real matrix,

D:ℑ2 → ℜ,  an nxn  real matrix,

Minimize  Cpi p j
j =1

n

∑
i=1

n

∑ Dij

Subject To

pi ∈{1,...,n}, ∀i ∈{1,...,n},

p j ≠ pi, ∀i ≠ j ∈{1,...,n}.

The pair of matrices (C, D) define an instance of a QAP.  The objective is to minimize the

point-serial correlation between C and D by permuting the indices into C.  The two

constraints guarantee that p={pi} is a valid permutation of the indices {1,...,n}.

Many problems can be cast as QAPs.  For example, the plant layout problem is

often formulated as a QAP, where C is a matrix of machine-to-machine material flows and

D is a matrix of location-to-location distances within the plant[24].  The optimal permutation

p is an assignment of machines to locations that minimizes materials handling cost.  In data

analysis, C describes a desired structure with a set of proximities and D is the observed

distances between a set of data points[25].  The goal is to find an optimal mapping of

“structure” (C) onto “data” (D).  Using this last interpretation of the QAP, the travelling

salesman problem is a QAP where the desired structure is a cyclic permutation:
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C =

0 1 0 � 0

0 0 1 � 0

0 0 0
� �

����� �
1

1 0 � 0 0























 .

Hence, the QAP is at least as hard as the TSP.  Since the TSP is NP-hard, the QAP is also

NP-hard, requiring exponential solution times in the worst case.

A popular local search for the QAP is steepest-descent-pairwise-interchange[24]

(SDPI), which returns a pairwise interchange optimal solution.  SDPI is a direct

implementation of the local search algorithm in figure 1, where f is a permutation of the

integers {1,...,n}, the neighborhood N(f) is all n(n-1)/2 interchanges of a label pi with a

label pj, and g is the maximally improving interchange.  Although SDPI is one of the

simplest of the many QAP approximation algorithms, it is also one of the most

effective[26].  All of the experiments described in the remaining sections use SDPI for local

search.

3.2 GALO Applied to the QAP

This section describes GALO for the QAP by filling in four problem dependent

details: the structures used to encode feasible points, the fitness function, the crossover and

mutation operators used for breeding, and the distance measure needed for crowding and

sharing.

GALO represents a permutation with an array of integers labels (e.g., “3 1 2”).

Such a simple representation is possible because all the variables in a permutation problem

are of the same type.  Otherwise, additional information would be needed.  If, for example,

the problem were a mixed-integer linear program then the coding might not be as direct.

For such problems, one might need to encode which variables are integral in the problem

instance.
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The fitness of an individual Pi in the population is its difference from the worst cost

encountered so far (inclusive):

fitness(Pi) = cworst − c(Pi).

where cworst  is the worst of the observed costs and c(P i) is the cost of structure Pi.

Alternately, one could determine cworst with multistart using steepest ascent, but this leaves

open the possibility that an individual would have negative fitness (i.e., cworst is not a global

maximum), which violates the definition of fitness.

The crossover operator is a version of the partially-matched crossover (PMX)

operator by Goldberg and Lingle[27].  Given two parents structures, the operator copies a

substring of the labels from the first parent directly into corresponding positions in the

offspring and fills in the remaining positions with the unused labels in the order they appear

in the second parent.  Figure 5 shows an application of the operator.  First, a pair of

crossover positions (shown as the two lines, “|”) are selected at random.  Next, the labels

in the positions between the two lines are copied from the the first parent, (P1).  Then the

placement of the remaining labels is determined by their order in the second parent (P2),

producing a feasible structure (Off).  Finally, each label in the new string is subject to

interchange with another label with probability m<<1.  The last step of figure 5 shows such

a mutated string with the two interchanged labels in boldface.

P1: 1 2 3 4 5 6 7 8                    P2: 6 8 4 8 3 7 2 1 5

Step i. Off: _ _ | _ _ _ | _ _ _
Step ii. Off: _ _ | 3 4 5 | _ _ _
Step iii. Off: 6 8 | 3 4 5 | 7 2 1
Step iv. Off: 6 7 3 4 5 8 2 1

Figure 5. An Application of the PMX Crossover Operator
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The function used by GALO to measure distance between strings is Hamming

distance.  A more natural distance function might be the number of pairwise interchanges

needed to make one string identical to another, for such a measure is a direct consequence

of the neighborhood structure in SDPI.  But such a function would be impractical because

of the need to find the sequence of interchanges.  Hamming distance is a compromise

between computational simplicity and accuracy.  If two structures have “small” Hamming

distance, they have even smaller interchange distance.  Hence, Hamming distance is an

upper bound on the interchange distance that is easy to calculate, requiring only O(n)

comparisons and additions.

4.0 Empirical Results

GALO and multistart were applied to three QAP instances from the literature.  Table

2 describes the test problems.  For each problem, the table shows the source, the size, the

best feasible solution in the literature, and a statistical lower bound from Derigs[28, pg. 1037].

Derig’s bound, based on the method by Golden[29], is lower than the true global minimum

with nearly 100% confidence.  More specifically, Pr[c<clower] = exp(-50).

Problem # Source Size (n) cupper clower

1 Elshafei[30] 19 17212548 12143024

2 Nugent et al.[26] 30 6124 6057

3 Steinberg[31] 36 9526 8920

Table 2. The Test Problems.

In an effort to improve the cupper bounds, we applied the simulated annealing

algorithm from previous work[32] to each problem 10 times.  Simulated annealing matched

the bounds in each case, but failed to improve on them.
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All of the results presented in the next two subsections were obtained on the 128-

node Intel iPSC/860 hypercube multicomputer at Oak Ridge National Laboratories.  The

computer code was written in C with message passing primitives.  All random numbers

were generated using ran2(), the machine independent random number generator detailed

by Press et al.[33, pg. 210].

4.1  Multistart Experiments

The intent of the multistart experiments was to explore the test problems and to

provide a comparison point for GALO.  SDPI was applied to each of 100,000 random

starting points for each problem.  Table 3 shows a sampling of the local optima, where

each c(i) is the i-th best of the local optima found (i.e., c(25,000) and c(75,000) are the quartiles

and c(50,000) approximates the median).  Note that multistart matched cupper for problem 1.  It

did so 214 times, or about once in every 467 trials.  Multistart failed to match cupper for

either problem 2 or problem 3.

Problem c(1) c(25,000) c(50,000) c(75,000) c(100,000)

1 17212548 19788612 22198042 24197342 62087210
2 6140 6416 6508 6622 8436
3 9676 10856 11234 11710 22440

Table 3. Multistart Results.

 4.2  GALO Experiments

After exploring the problems with multistart and simulated annealing, we

implemented the synchronous master-slave version of GALO.  The reasons for selecting

the synchronous model were two-fold.  First, the available hypercube was not large

enough for the master GA to be a bottleneck.  Second, SDPI exhibited nearly uniform run

time in the multistart experiments, lessening the need for an asynchronous implementation.
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We standardized all GALO test runs with a common set of parameters.  Of

particular concern were the sizes of P and O, the population and offspring sets.  As

suggested by the schema theorem, we desired a large population size, yet not so large as to

allow the superlinear time complexity of crowding and sharing to dominate computation.

In informal testing, the algorithm performed adequately with 300 members in the

population and 150 offspring per generation.  We determined the mutation rate (5% of all

interchanges each generation) and the maximum number of generations (1000) similarly.

In addition to the usual parameters, we added a stopping condition: the algorithm stopped if

it ever matched or improved on cupper in table 2.  This condition was added because in these

tests we were primarily concerned with establishing GALO’s place among QAP

algorithms.  If GALO could consistently match the best answer ever found for a problem,

then it must be considered competitive.

In the tests that follow, we use each of the problems in a different way.  The first

experiment measures GALO’s improvement over multistart on the first problem, for which

multi-start seems well-suited.  Problem 1 is also used to observe the impact of the various

GALO options on performance.  The second experiment uses problem 2 to assess the

impact of the number of local search slaves on performance with each of the various feature

options.  The last experiment measures GALO’s performance on problem 3. The problem

is well-known in the literature, yet largely unexplored because of its large size.  (Recall that

solution times for the QAP increase exponentially with problem size, so the size 36

problem is much harder than either the size 19 or the size 30 problem.)

Experiment 1:

The first test compared GALO to multistart on problem 1.  Table 5 summarizes

GALO’s performance for 20 trials with each combination of configuration options.  The

table describes the GALO options used, the average CPU time per generation, and the

distribution of the number of generations (G) needed to match cupper  from table 2.  In the
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same notation as before, G(i) is the i-th best in the sample, so G(10) approximates the median

of the distribution of G.  From the table, it appears that it is best to use worst-first (WF)

local search priority without sharing on problem 1;  the corresponding lines in table 4 are

shown in boldface.  Using WF, GALO reduced the average number of local searches

needed to match cupper from 467 for multistart to (K´)(G(10))=(15)(1)=15.  Also note that

even the poorest performing GALO configuration, (BF, On, On), was better on average

than multistart (75 versus 467).

LO
Priority

Crowding Sharing K´ Time/
Gen (sec)

G(1) G(5) G(10) G(15) G(20)

BF Off Off 15 0.6 1 2 3 7 19
BF Off On 15 1.2 1 2 5 9 20
BF On Off 15 0.8 1 3 5 12 28
BF On On 15 1.3 1 2 5 9 12
WF Off Off 1 5 0 . 6 1 1 1 2 3
WF Off On 15 1.2 1 1 3 4 8
WF On Off 1 5 0 . 8 1 1 1 2 3
WF On On 15 1.3 1 1 3 5 10
RF Off Off 15 0.6 1 1 3 5 19
RF Off On 15 1.2 1 1 2 8 12
RF On Off 15 0.8 1 1 3 4 8
RF On On 15 1.3 1 1 2 2 12

Table 4. GALO Results for Problem 1.

Experiment 2:

The second experiment investigated the interaction of the proportion of offspring

improved each generation with the local search priority and speciation options.  GALO was

applied to the second problem 20 times for each configuration of options.  The results are

in tables 6a and 6b.  Note that when G(i)=1000, the algorithm “timed out” without ever

matching the cupper bound.
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LO
Priority

Crowding Sharing K´ Time/
Gen (sec)

G(1) G(5) G(10) G(15) G(20)

BF Off Off 15 1.9 33 205 804 1000 1000
BF Off On 15 2.3 30 227 422 702 1000
B F On Off 1 5 2 . 6 7 9 1 3 5 2 6 9 5 2 5 1000
B F On On 1 5 2 . 9 4 4 8 3 2 3 9 5 7 9 1000
WF Off Off 15 2.2 88 578 1000 1000 1000
WF Off On 15 2.5 51 211 1000 1000 1000
WF On Off 15 2.9 19 182 389 1000 1000
WF On On 15 3.2 84 329 703 1000 1000
RF Off Off 1 5 2 . 1 2 4 1 3 7 2 3 0 6 2 6 1000
RF Off On 15 2.4 92 490 696 1000 1000
RF On Off 1 5 2 . 9 1 8 1 6 8 3 0 4 6 3 0 1000
RF On On 15 3.8 4 197 591 1000 1000

Table 5a. GALO Results on a 16-node Hypercube for Problem 2.

LO
Priority

Crowding Sharing K´ Time/
Gen (sec)

G(1) G(5) G(10) G(15) G(20)

B F Off Off 6 3 2 . 1 4 4 2 6 4 1 0 6 1 6 9
BF Off On 63 2.4 14 112 189 340 522
B F On Off 6 3 2 . 4 1 0 4 5 7 8 1 4 2 6 5 9
BF On On 63 3.1 20 73 121 204 447
WF Off Off 63 2.3 13 87 146 467 819
WF Off On 63 2.7 4 39 193 368 798
WF On Off 63 2.4 7 108 216 435 1000
WF On On 63 3.2 6 78 347 675 968
RF Off Off 63 2.2 40 104 155 302 431
RF Off On 63 2.9 56 125 166 325 454
RF On Off 63 2.5 8 66 151 277 349
RF On On 63 3.2 12 53 122 251 606

Table 5b. GALO Results on a 64-node Hypercube for Problem 2.

From table 5a, it appears that with a 16-node hypercube the best configuration for

problem 2 is either BF with crowding or RF without sharing.  As before, the

corresponding lines are shown in boldface.  These configurations have relatively small

G(10) and at least average spread (G(15) - G(5)).  For the 64-node hypercube (table 5b), the

best configuration is BF without sharing.  The two corresponding lines show small G(10)

and small spread.  When the two tables are considered together, the most consistently good
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configuration is BF with crowding enabled and sharing disabled.  The 64-node version of

this configuration allocated its local searches almost as efficiently as the 16-node version,

increasing the total number of searches by only 12%.

Experiment 3:

In the third experiment, we applied the 64-node implementation (using BF with crowding)

to problem 3.  As before, the stopping criterion was improvement on cupper.  Table 6 shows

the results for 20 runs.  The algorithm matched the best known cost in 75% of its trials.

Multistart, by comparison, never matched cupper in its 100,000 searches.

Trial Generations Time (sec) Cost
1 696 2538 9526
2 578 2122 9526
3 105 402 9536
4 600 2217 9526
5 209 773 9536
6 866 3184 9536
7 101 382 9526
8 661 2451 9526
9 178 663 9526

10 322 1191 9536
11 529 1937 9526
12 124 473 9526
13 125 468 9526
14 113 436 9526
15 781 2871 9526
16 56 227 9526
17 468 1749 9536
18 696 2568 9526
19 249 958 9526
20 270 1008 9526

Table 6. GALO Results for Problem 3 on a 64-node Hypercube.

5. Conclusions

Methods that incorporate local optimization are an important class of global

optimization techniques.  A simple approach to the use of local optimization is the multistart

strategy.  Partitional algorithms use local optimization in a more sophisticated way for
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function optimization.  Unfortunately, partitional approaches are not directly applicable to a

number of hard combinatorial optimization problems.  To address these problems, we

developed GALO, a parallel search using a genetic algorithm to sample local optimizers.

GALO represents a particularly effective approach that incorporates ideas from partitional

methods for function optimization.  Application to three quadratic assignment problems

from the literature leads to two conclusions:

1) The most robust of the GALO settings is Best-First local optimization priority

with crowding, though for small problems Worst-First with crowding may be

better.

2) GALO performs well on some of the most difficult quadratic assignment

problems in the literature, finding the best solutions ever obtained.

To summarize, we found that an intelligent implementation of local search can solve global

optimization problems, but the nature of the intelligence may be problem dependent.  So

any method that employs local search should, like GALO, allow the user some flexibility in

its application.

The research described in this report can be extended in several ways.  The first is

investigating more powerful local optimization procedures.  A second, related extension is

to implement the asynchronous parallel model of GALO.  Toward both of these ends, we

are developing an asynchronous implementation of GALO that uses simulated annealing for

the local search procedure.  Provided that we can devise a method for simulated annealing

to take advantage of “good” starting points, the method may significantly improve on the

SDPI results.  An early version of the GALO/simulated annealing implementation is

reported in a previous paper[32].  The third extension is to examine other problems.  We are

currently working on the application of GALO to the routing and scheduling of trains, a

real problem that promises to be even more complex than the QAP.
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