
ABSTRACT

Distributed systems have long relied on shared secrets
to ensure the authenticity of principals. Public key sys-
tems and zero knowledge proofs of identity have
reduced this reliance. We offer a method of remote
authentication that can be used with no advance shared
knowledge by parties, and that allows parties to increase
their confidence in the authenticity of a suspicious party
to an arbitrary level.

INTRODUCTION

Distributed systems have long relied on shared secrets
to ensure the authenticity of principals. Public key sys-
tems and zero knowledge proofs of identity have
reduced this reliance. We offer a method of remote
authentication that can be used with no advance shared
knowledge by parties, and that allows parties to increase
their confidence in the authenticity of a suspicious party
to an arbitrary level.

A central problem in establishing a logically secure
channel for communication between distributed users
lies in “guaranteeing” the identity of the two partici-
pants, known in the literature as authentication [1], [2].
Traditionally, authentication between two principals has
relied upon each knowing some information that only
the two participants know and that cannot be easily
guessed, i.e., a password. In cryptographic systems, this
password has been transformed into a “secret key” and
is now used both as the foundation for the authentication
of principals and for the privacy of messages. Requiring
principals to share a password or other piece of secret
information as the basis for authentication poses many
potential problems such as vulnerabilities to guessing
attacks and replay attacks [3], [4].

Another problem with shared knowledge, or secret keys,
is that with a large number of principals connected in a
distributed system, it may be impractical for each princi-
pal to have a unique secret key relationship with every
other principal they desire to communicate with. A rea-
sonable upper bound on the total number of keys

required is N2 where N is the number of principals on
the network. Managing (creating, distributing and stor-
ing) these secret keys constitutes a significant security
risk. One common method for resolving this issue has
been to introduce a centralized “trusted agent” or
Authentication Server (AS) [1], [2], [4], [5]. Unfortu-
nately, a centralized AS also introduces a single point of
failure and potential bottleneck into the system.

With or without a centralized AS, key management is
very complex. For example, when adding a node to the
distributed system, normally, no secure channel exists
initially between the new participant and any other par-
ticipant. Nonetheless, we would like to be able to
authenticate new remote users over the net. Public key
cryptography, first described in [6], circumvents the first
time authentication problem by allowing a participant to
broadcast their public key and later use the inverse key,
which cannot be easily compromised, to authenticate
themselves [7], [8], [9]. Unfortunately, an integrity
problem exists with the initial distribution of the public
key. That is, anyone can publish a public key and claim
any identity they desire without some other authentica-
tion method in place. What public key authentication
ensures is that the participant that published the public
key is the participant that later authenticated with the
public key’s inverse. Though not a perfect solution, this
is a step in the right direction. The mechanism we offer
in the next section attacks the problem of the initial key
distribution similarly to public key methods, but has
strengths not shared by public key systems.

It is generally recognized that passwords and keys
should be changed regularly. If a secure channel exists,
it would be convenient to utilize that channel to pass
new keys. Unfortunately, basing the security of future
channels upon the security of a current key conflicts
with the time problem just mentioned by making the
compromise of a key perpetual. Even if an intruder takes
a long time to compromise a key, once it is broken, they
can merely “run up the chain” of keys to the current one,
quite possibly gaining some important information
along the way. This problem is the subject of much
research and many mechanisms have been proposed to
resolve it [1], [4], [5]. One way to address both the prob-
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lems of chaining and replay, is to devise a mechanism
for authentication that is independent of all previous
keys and of all previously shared secrets. A mechanism
that allows the verifier to ask a question to which the
answer can be verified without knowing what computa-
tions lead to the answer would have this property.

This paper introduces such a mechanism. The following
sections offer the foundation for our method, identify
important issues in selecting functions that allow the
method to perform as we desire, propose a specific algo-
rithm for accomplishing authentication in a distributed
environment, and conclude with a summary and discus-
sion of future work.

AUTHENTICATION WITHOUT SHARED

KNOWLEDGE

While classic authentication depends upon participants
sharing some secret, our approach to authentication is to
formulate a mechanism that does not require passing
any shared secrets across the channel. Suppose a client
A requests a set of services from another principal B. In
order to authenticate user A, B would like to ask a ques-
tion that only A (not even B) knows the answer to. How-
ever, B must be able to verify the answer received.

Consider two functions f and g, with the following two
properties:

f & g are hard to invert, and
g(f(x),f(y)) = f(g(x,y)).

When user A signs on, she selects an appropriate f that
only A knows. This function f will be used to identify
user A to B. A then announces herself by providing B
with an arbitrary value x0 along with f(x0) in the clear.

Step 1. A -> B: A, x0, f(x0).

B will use this x0, f(x0) pair along with a function g
selected by B to authenticate future requests for service
from A. Only B will know g. In order to authenticate
this user, B would generate a random number, call it y,
and send it to the user along with g(x0,y). The user
would return f(y) and f(g(x0,y)).

Step 2. A -> B: A
Step 3. B -> A: y, g(x0,y)
Step 4. A -> B: f(y), f(g(x0,y)).

B would then calculate g(f(x0),f(y)) and compare that

value against f(g(x0,y)) supplied by A in step 3. If the
values are the same, B can conclude, with probability 1/
m, where m is the size of the range of f, that the user is
who she claims to be. If a greater confidence level is
desired, B can repeat the process with a different y and
corresponding g(x0,y) value to increase the probability
to 1/m2, repeat again for 1/m3, etc.

There are two critical elements to this mechanism. First,
an intruder must not be able to predict g(f(x0),f(y)), so g
must be known only to B. If g should become public, an
intruder that has been monitoring the system can know
the values of g(x,y) = c1, f(x) = c2, and y = c3. In order
to masquerade as A, the intruder needs only compute:

f(g(x,y)) = g(f(x),f(y)) or f(c1) = g(c2, f(c3)).

Given these values, the intruder can select an arbitrary
value for f(c3), call it c4, and apply g using the constants
c2 and c4 to it and produce a result, call it c5. By defini-
tion, c4 and c5 will have the property defined by the
authentication functions f and g, and can be used by an
intruder to fool an authenticator.

The second requirement is the inability of an intruder to
compute f(y) and f(g(x,y)). Only the user can know f.
Should one decide to make f public, or if f is compro-
mised, an intruder could easily masquerade herself as
that user. By knowing f, the intruder can easily compute
f(y) and f(g(x,y)) correctly and pass herself off as
another user.

Neither f nor g may be known by anyone other than the
two involved parties, and neither is shared. Even though
we cannot make the functions f and g public, it is feasi-
ble to make the forms of f and g public. This way each
user can choose an appropriate function for f in private,
not requiring passage of f over any channel or verifica-
tion by any centralized Authentication Server. To attack
the protocol messages, a potential intruder must attempt
to invert the functions f and g. For this reason, we
believe this method is as strong as any public key
method yet known.

Relationship to Public Key Cryptography

It is noted that this method shares the integrity problem
of public key systems, in that it does not provide abso-
lute authentication without prior shared secrets. It does
provide compelling evidence that a user announced as
user [A, x, f(x)] is the same user requesting the current
service, without shared secrets. If the announced values
we describe are verified between parties a priori, as pub-



lic keys must be, this mechanism can be used similarly
to a public key authentication system.

While this method shares other similarities with public
key authentication mechanisms, it differs significantly
in its purpose. Public key methods are related to secret
key methods in that both perform the dual functions of
providing data privacy and allowing authentication of
principals. Though these roles could be independent,
they are “coupled” by public and secret key mechanisms
in that both are accomplished by encryption of data. A
result of this is that encryption based mechanisms base
authentication on the subtle rule: “If two principals A
and B share a secret key k [or k and k-1], and A sees a
message M encrypted under k [or k-1], then A is justified
in believing that B sent M” [paraphrased from [2], p21].
On the other hand, our method does not depend on
encryption. No keys are generated and all values are
passed in the clear since there is no concern for privacy.
The purpose of our method is strictly for authentication,
so there is no need for such subtle assumptions.

Another strength of our method is its inherent distrib-
uted nature. Many encryption based authentication sys-
tems rely on centralized authentication or name server
support, introducing the classic problems of single point
of failure and system bottleneck into the cryptographic
system. Our method requires no centralized support and
is, thus, well suited to a fully distributed environment.

A third distinction between our method and public key
methods relates to ability of the authenticator to vary the
nature of the authentication sequence. Public key sys-
tems give authenticators no flexibility in varying the
identifying information of the parties desiring authenti-
cation. The requestor publishes a public key and the
authenticator must use it as the identifier. Only the
requestor can change this identifier, and changing a pub-
lic key is a sensitive operation. Our method allows the
authenticator to change the “identifier”, i.e. the x0,f(x0)
pair, of a remote principal. The authenticator must use
the original x0,f(x0) pair in the first authentication run,
but in subsequent runs, the authenticator may replace
the x0 and f(x0) by the y and f(y) pair collected in the
first session, as follows:

Step 5.  A -> B: A
Step 6.  B -> A: y’, g(y,y’)
Step 7.  A -> B: f(y’), f(g(y,y’)).

The g(x0,y) and f(g(x0,y)) pair may also be used to
replace a previous identifier pair. Since the authenticator
selects the value of y, the new identification pairs are
unpredictable (to the degree of strength of the uninvert-

able function) by potential intruders. This flexibility
gives the authenticator the ability to vary subsequent
authentication sequences, which ensures their indepen-
dence. This inherently defends against replay attacks,
which public key schemes must address with mecha-
nisms in the protocol.

The authenticator can force further variations in the
interaction by changing the function g they use for
authentication. This function is under the total control of
the authenticator. As long as the new function g meets
the prescribed form, the authenticator can change g at
any time with no coordination required and authentica-
tion can continue as described. The flexibility the
authenticator has in varying the interactions clearly dis-
tinguish this method from public key systems.

Also note that unlike public key schemes, our method
has no key. The length of the key serves as an upper
bound on the key space, so given enough time and com-
puting power, an intruder could theoretically compro-
mise a key by brute force. There is no corresponding
upper bound for the identifiers or functions used for
authentication in our method. The number of pairs of
identifiers (x, f(x)) and number of functions available as
f and g are unbounded when carefully selected.

Relationship to Zero Knowledge Proofs

This mechanism is also similar to Zero Knowledge
Proofs (ZKP) first published by Goldwasser et al. in [10]
and other works. ZKP’s have the remarkable property of
being both convincing and yielding nothing except that
the assertion is indeed valid [11]. The protocol described
in this paper is Zero Knowledge since an intruder who
uses a recorded message can only play back the
recorded message if the questions asked happen to be
the same. An intruder who records many authentication
processes cannot increase his chance of masquerading
herself as another user since the questions asked are
completely random. In ZKP’s, a prover A wants to
prove that they know the answer to a question posed by
an identifier without revealing the answer. In our mecha-
nism, the prover or party being authenticated passes the
answer to the questions asked across the net in the clear.
The trick is that the verifier can ensure that the correct
answer is passed because they know the form of the
question (i.e. the equations).

In 1986, Fiat and Shamir presented a zero-knowledge
identification scheme which enables any user to prove
his identity without shared or public keys [12]. Their
scheme requires users to carry a “smart card” as proof of



identity. A trusted center is required to issue these smart
cards, however no further contact with the center is
required. Each smart card contains the user's unique
identifier and k other values used in establishing iden-
tity. When a user wished to identify herself, the verifier
must prove that it knows these k values without giving
away any information about their values. For specific
implementation details of the protocol, the reader is
referred to [12].

Fiat and Shamir's protocol is similar to the one
described in this paper in that the verifier has gained no
useful information that can later be used to masquerade
as that user. Fiat and Shamir choose to make their func-
tions public while keeping the user's identity values pri-
vate and stored on a smart card. The smart card required
by Fiat and Shamir, only obtainable from the trusted
center, can easily be lost or stolen and therefore compro-
mised. The protocol described here, on the other hand,
keeps functions private, while allowing the user's iden-
tity values to remain public. Our method allows the user
to choose his identifying function in complete secrecy
and only requires a calculator to compute the values
requested by the protocol. If a user at a workstation
wishes to authenticate herself when requesting a service,
our method can be easily automated and stored on the
workstation.

SELECTING SUITABLE FUNCTIONS

When selecting the actual functions for f and g, there are
two properties we must keep in mind. The first require-
ment is that f must distribute across g so that the relation
f(g(x,y)) = g(f(x),f(y)) holds. For example, if we choose
the simple functions f(x) = x2, and g(x,y)= x*y, we see
that:

f(g(x,y))    = x2y2

g(f(x),f(y)) = x2y2.

This is a nice example that demonstrates the relation,
and it would be convenient to use these particular func-
tions for f and g, since each user could simply pick dif-
ferent exponents and the relation with g would still hold.
Unfortunately these functions are easy to invert. It is
clear that we must select more sophisticated functions
for f and g. It is easy to find complicated, hard to invert
functions, however many of the operations that make
functions one-way also fail to exhibit the distributive
property that enables the described scheme to work.

So our challenge has become to find functions that dis-
tribute over each other (or one that distributes over

itself) and both are one-way with any function that dis-
tributes over g also one-way. There are many well-
known functions that have been designed to be one-way.
DES is one such function that was specifically designed
to be hard to invert [13]. However, whether DES distrib-
utes across some operation in a way that satisfies our
algorithm is an open question.

The Discrete Exponentiation Function

Discrete exponentiation is a well-known one-way func-
tion. That is, given a value f(x) for a discrete exponenti-
ation function f, there is no known method to easily (in
polynomial time) derive the value of x. When combined
with multiplication we have an example of operations
that distribute nicely over one another and, create a one-
way function. If we select

f(x) = xa mod n,
g(x,y) = (xy)b mod n

then we can show that f and g have the commutative
property we desire as follows:

g(f(x),f(y)) = ((xa mod n) * (ya mod n))b mod n
                     = ((xa - k1n) * (ya - k2n))b mod n
                     = ((xy)a -k1nya - k2nxa + k1k2n2)b mod n
                     = (xy)ab mod n
and
f(g(x,y)) = ((x * y)b mod n)a mod n
                 = ((x * y)b - k3n)a mod n
                 = (xy)ab mod n.

AUTHENTICATION USING F AND G

For the purpose of illustration, we construct a protocol
to implement the described technique with a one-way
discrete exponentiation function. Choose n, a, and b
large primes, and f and g are as defined above. n, the
form of g, and the form of f will be public knowledge;
the specific functions f and g, and values a and b are
kept secret. The server will also select a random y for
use in the second step of the authentication sequence.
Upon login, the requestor A will select a sufficiently
large x and will announce herself to B with the message:

A -> B: A, x, xa mod n

When the requestor desires service, she will so indicate
to B and the authentication sequence will progress as
follows:



A -> B: A
B -> A: y, (xy)b mod n
A -> B: ya mod n, ((xy)b mod n)a mod n)

B would then verify the authenticity by computing:

((xa mod n)(ya mod n))b mod n = ((xy)b mod n)a mod n)

If the equivalency holds, then B can be confident,
though not certain, of the identity of the requestor. Addi-
tional iterations of the authentication sequence increase
the probability of actual authentication exponentially. In
this way, the proposed method is similar to the Zero
Knowledge proofs proposed by Goldwasser et al [14].
From B’s viewpoint, the ability to achieve an arbitrary
degree of confidence in the identity of a user could be
highly useful. In order to ensure security of the method,
g could be changed with virtually every iteration of the
authentication sequence.

Security of this method lies in guaranteeing the privacy
and unpredictability of f and g. Several characteristics of
this protocol support the proposition that predicting
either of these functions will be very hard. First, the low
number of computations passed across the network for
each specific f and g give the cryptanalyst little data to
work with. Each activation of the authentication
sequence passes only three known plain text pairs across
the wire. What is more, the cryptanalysis or detection of
a correct f or g is very hard to verify. The g function may
be changed with virtually every iteration of the authenti-
cation sequence, and the f function will change with
each login. By the time the cryptanalyst has proposed a
function, the function may have changed. Even if not, an
authenticator could easily keep track of erroneous
authentication sequences to limit the number of guesses
an intruder could make to find an accurate f as described
in [3].

CONCLUSIONS AND FUTURE WORK

We have presented a method for one-way authentication
of users in a distributed system which requires partici-
pants to share only the forms of the functions f and g
and the prime number n used in our example. A user can
select a specific function f in complete secrecy. Simi-
larly, a server can select it’s function g and keep it a
complete secret from the rest of the world. The only
requirement is that the functions must match the speci-
fied published forms. This allows the desired relation-
ship between f and g to hold.

This method also does not require any messages sent

between parties be encrypted, rather everything is sent
in the clear. We are able to send these messages in the
clear for two reasons. First, the participant being authen-
ticated is being asked a question that only that partici-
pant knows the answer to. An intruder monitoring the
network can see the question go by, and even see the
answer to that question.   Since we are using one-way
functions as the basis for our questions, the next time a
question is posed, still no one but the user can produce
the correct answer to the question. Secondly, in the
sense that the functional values of the challenges are
similar to encrypted data, those values are “non-verifi-
able plaintext” as described in [3]. Since there is no intu-
itive meaning associated with the values selected, the
only way an intruder can verify them is by utilizing the
function.

This method can verify the authenticity of a user to an
arbitrary degree of confidence. If the probability of an
intruder guessing appropriate values for the authentica-
tion sequence is 1/m, where m is the size of the range of
f, then repeating the authentication sequence will give
the authenticator the confidence that the probability that
the intruder can guess the correct values is 1/m2. In this
way, our method is similar to the “Zero Knowledge”
paradigm. However, this method does not require any
prior shared secrets and still allows a user to arbitrarily
announce herself. Based on the announcement, the
authenticator can be guaranteed that the user requesting
authentication, is the same user who announced them-
selves at login.

Future work focuses on finding additional one-way
functions that distribute across each other. We have
looked at the properties of several known one-way func-
tions and found that most cannot be applied to our algo-
rithm. We would like to know if the DES algorithm has
any properties that we could apply to our f and g func-
tions. We speculate that we will have to find some func-
tion that distributes across one of the known “hard to
invert” functions from number theory to use in the f and
g functions.

Since this is a new protocol, fundamentally different
from more classical protocols, we are interested in find-
ing methods that can be used to verify whether the pro-
tocol meets its goals. We would like to know if and how
existing verification methods such as BAN Logic and
Interrogator can be applied to this protocol that does not
depend on shared secrets [2], [15].
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