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Abstract

We describe anew classof diredory coherence protocols called delta coherence protocols that use net-
work guaranteesto support anew and highly concurrent approach to maintain a consistent shared memory.
Delta mherence protocols are more mncurrent than ather coherence protocolsin that they allow processes
to pipeline memory accesses without violating sequential consistency; suppat multiple concurrent readers
and writers to the same cahe block; and all ow processes to accessmultiple shared variables atomicdly
withou invalidating the copies held by other processes or otherwise obtaining exclusive acessto the refer-
enced variables. Delta protocolsinclude both updite andinvalidate protocols. In this paper we describe the
simplest, most basic delta protocol, an update protocol called the home updae protocol.

Delta protocols are based onisotach network guarantees. An isotach network maintains alogical time
system that allows each processto predict and control the logical time & which its messages are received.
Processes use isotach guarantees to control the logicd time at which their requests on shared memory
appear to be executed. We prove the home update protocol is correct using logical time to reason about the
order in which requests are exeauted.

*This work was supported by NSFgrant CCR-9503#43, with additional fundng provided uncer DARPA grant
DABT63-95-C-0081. Portions of the work were performed under the auspices of the U.S. Department of Energy by
University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48; UCRL-ID-
139737



1. Introduction

Caching datacan reduce acesslatency and improve data avail ability, but in the cae of writeable data,
cachingraises the problem of how to maintain consistency amongcopies. The problem appeasin different
guisesin several different contexts. as the cache coherence problem in multiprocessors; as the problem of
maintaining a distributed shared memory (DSM) in distributed computations; and as the replica ontrol
problem in distributed databases. This paper describes the home update protocol, a member of the class of
coherence protocols cdl ed delta coherence protocols that uses isotach message ordering guarantees! to
solve the coherence problem in anew and highly concurrent way. Our goal isto show how isotach guaran-
tees are useful in solving the mherence problem and in reasoning abou coherence protocols.

Solving the coherence problem is hard because it requires coordinating the execution ader of accesses
at different nodes. The traditional approach to the problem is to reduce the aordination required by limit-
ing concurrency or weakening the mrrednesscriteria. Existing protocols that enforce sequential consis-
tency (SC) require that nodes execute requests one-at-a-time and invali date or lock copies while exeauting
writerequests. Delta protocols use isotach guaranteesto coordinate accesses, an approad that al ows delta
protocols to enforce SC without limiting concurrency. Whether delta coherence protocols outperform
existing coherence protocols depends on the cost of implementing isotach guarantees and onthe extent to
which appli caions can take advantage of the high level of concurrency offered by delta protocols.

2. |sotach systems

An isotach [Greek iso = same; tach = speed] system! implements alogicd time system in which all
messages appear to travel at the same speed — one unit of logica distance per unit of logical time. Given
this property, called theisotach invariant, a processor can control the logical time & which each of its mes-
sagesisrecaived by controlling itslogicd sendtime.

I sotach systems use the exchange of signals call ed tokens between neighbaing nades (switches and
procesors) to implement adistributed logica clock. The pulse at aprocessor isthe number of token waves
the processor has received. An isotach system asdgns alogicd time to each event of sending a receivinga
message. An isotach logical timeisalexicographically ordered 3-tuple in which the first and most signifi-
cant comporent isthe pulse at the procesor at which the send or receve event occurs. The remaining two
components, the pld and rank, are tie-breakers used to order events that occur in the same pulse. Events
with the same pulse cmmponrent are ordered by the pld of the sender. Events with the same pulse and pld
components are ordered by the rank, i.e., issue order, of the message.

Theisotach logicd time system extends Lamport’s logical time system? by guaranteeing that send and
receive times are consistent with the isotach invariant: ead message travels one unit of logical distance per
pulse of logicd time. Isotach systems can implement a variety of distance metrics3. Here, dist(p,p' ), the
logical distance from node p to nocep' , isthe routing distance fronpto p' , i.e., the number of switchestra-
versed by amessage sent by p to p' . For any messagen sent by pto p' ¢d(m), the logicd distance message
mtravels, isdist(p,p' ). For smplicity, we assume distances are static. Distances may be ssymmetric, i.e.
dist(p,p' ) does not necessarily equal dist(p' ,p). By theisotach invariant, for any message m's logicd
receivetimeis exadly d(m) pulses after m'slogicd send time, i.e., t.(m) =t(m) + d(m). (The scdar quan-
tity d(m) is added to the tuple t(m) by adding dm) to the pulse comporent of the tuple.) Assuming each
procesor executes messages in receive order, amessage’s logical recave time can be used asitslogical
executiontime. Thus, for any message m, t(m), the logical executiontime of m, equalst,(m). Thisassump-
tionisfor simplicity andis gronger than necessary. Exeaution times can be shifted in relation to receive
timesin any way that preserves receive order. Furthermore, in an execution in which messages are opera-
tions on shared variables, operations can be exeauted in any order that preserves the receive order anong
conflicting operations. Two operations conflict if they accessthe same variable and are not both reals.



Most delta protocols require an isotach system that suppats predictable responses. A predictable
resporse is amessage m' sent in response to another message m such that the send time of m'  can be pre-
dicted from therecdvetime of m, i.e., t(m' ) =(m) + c. For simplicity, we asumec isO. (In any practical
system, c isasmall tunable system constant, greater than zero.) Given the isotach invariant and krowledge
of the logical distances involved, the receive time of m' can be predicted from the send time om: t(m' ) =
ty(m) + d(m) + d(m' ). A predictable resporse inherits the pld and rank comporents of the original message.

Ead processor has a switch interface unit (SIU) that tracks logical time and ads as the interface
between applications and the isotach system. An applicaion can simply assume that its messages will
appear to be executed in the order issued. Given the isotach invariant and the assumption that messages are
executed in receive order, an SIU can control the relative order in which locdly issued messages appear to
be executed. In particular, an SIU can ensure that a batch of messages appea to be executed at the same
time by sending the messages so that they are received in the same logical pulse and can ensure that mes-
sagesissued in a sequence appear to be executed in sequence by sending the messages < that they are
received in nondecreasing puses.

Isotach systems can be implemented using the isonet algorithm?, in which network switches route mes-
sagesin logicd time order. Alternatively, the work of ordering messages can be shifted to the SIUs to per-
mit the use of commodity switches. A prototype system based onthis approach has been implemented ona
cluster of commodity PCs connected with Myrinet4. Both algorithms are scalable, requiring the exchange
of tokens only among rearest neighbors. In the prototype, which implements isotach functionality in soft-
ware, the round-trip user-to-user level latency of isotach messagesis onthe order of 50 wsec, abou twice
that of non-isotach messages on the same hardware®. To further reduce the st of maintaining isotach
guarantees, we ae re-designing the messaging layer software and building a second generation prototype
with custom SlUs.

3. Model

The coherence problem occurs in several contexts, each with its own terminology. The terms used here
are from the literature on the cache coherence problem in multiprocessors. We rely onthe realer interested
in DSM or replica control to make the gpropriate translations.

We ansider a system consisting of multiple processors connected to a memory system. Processors
isaue read and write requests to the memory system. A write request (WRITE) onvariable v instructs the
memory system to assign a spedfied value to v; aread request (READ) onv instructs the memory system
to return the value of v. A variable is shared if more than ore processor can isdale requestsonit. We @on-
sider only shared variables.

The memory system encapsul ates the representation of (shared) memory and the procedures for access
ingit. The procesor/memory system interface is as foll ows:

e procesorsisaue READs and WRITES to the memory system. (To enable the processorsto spedfy the
variable to be accessed, the processors and memory system share anaming scheme for variables.)

¢ the memory system returns avalue in resporse to each READ.

Theinternal details of the memory system are not visible to the processors.

A memory system consists of interconnected memories and controllers programmed to execute the sys-
tem’s coherence protocol. The memory spaceis partitioned acrossthe memory modues (MM). Each pro-
cesr hasa cahe memory and cache/coherence controller (CC), which handles locally issued memory
reguests and manages the cahe. In a delta protocol, the CC aso performs the functions of the SIU, i.e,, it
tradks logicd time and controlsthe logicd time & which locd operations are sent.

For each variable v, the primary copy, cdl ed the home copy, islocated in an MM. The MM containing



Vv'shome copy isV'shome. Seaondary copies, cdled cache apies, may be stored in the cache memories.
The number of cache mpiesof v can vary dynamically from zero to the number of processors in the sys-
tem. A request for visahit if a opy of visintheisaing pocessor's cache; otherwise it isamiss

The memory system translates requests into operations, executes the operations, and returns a value for
each READ. An operationreals, writes, creates, or destroys a copy of a variable. For each locally issued
WRITE, the CC generates one or more write operations (writes) and for each locdly issued READ, the CC
generates a single read operation (read). The phrase “the execution of request R on copy ¢’ means the exe-
cution d the operation resulting from R that is executed oncopy c.

In adeltaprotocol, each operationis sent as an isotach message. Thelogical distance, send, recave, and
execution times of an operation are the logicd distance, send, receive, and execution times of the message
carying the operation. An operation onthe local cache copy is €nt as a self-message. A self-messageisan
isotach message sent by a processor to itself. Since self-messages do nd enter the network, for any self-
message m, d(m) = 0 and t(m) =t(m). Fig. 1 summarizes terms relevant to operationsin a delta protocol .

for copyc
5(c) The delta of ¢. In hane update protocol, dist(home,c)
for operation opexeauted on copy ¢
ts(op) send time of op related by isotach invariant:
t.(op) receive time of op i (ogyzt (op)+d(op)
d(op) logicd distance traveled by op " s
t.(op) executiontime of op t.(op)=t,(op), by assumption
ter,(OP) effective execution time of op tr(OP)=t,(0p)-d(C)
xdist(op) exeadtion dstance of op xdist(op)=tg, (0p)-t{op)=d(op)-&(c)

Fig. 1. Delta coherence protocol terms and notation.

Eacdh copy in adelta protocol is assgned a delta. In the home update protocol, the delta of copy c,
denoted 9(c), isdist(home,c). (Thus, the delta of ahome copy is zero.) A copy’s deltarepresents the num-
ber of logical time pulses by which the apy lags behind the home apy. For any operation op on copy c,
the effective execution time of op, denoted t4,(0p), ist,(op) - 8(c). Informally, ty,(op) isthelogicd time &
which op appears to execute, i.e., op’slogical exeaution time aljusted to compensate for ¢’'s delta. For any
operation op, xdist(op), the execution dstance of opisdefined asty,(0p) - t{(0p). Thus, xdist(op) = d(op) -
8(c), where cisthe copy onwhich opis exeauted.

4. Correctnesscriteria

The most basic task of a aherence protocol isto make replication transparent to the processors. The
result of any execution shoud be asif the requests of the processors were executed ona single-copy mem-
ory, i.e., amemory containinga single opy of each variable. Coherence protocols may enforcethe foll ow-
ing adering properties.

e SC. A memory system enforces SC if “[t]he result

of any executionis asif the [requests] of all the WRITE(v)l; Initially v=w=0
processorswere executed in some sequential order,  WRITEw)L ~ PL: 1 i P2

and the [requests] of eadh individual processor P2:: WRITE(V) READ(W)
appear in this squencein the order spedfied by READw)1;  WRITEW) READ(v)
the program”é. The execution shownin Fig. 2 vio- READ(v) 0

lates SC since no sequentia ordering o the Fig. 2. Violating SC.

requests can produce the results shown.
e Atomicity. The memory system shoud execute requestsissued as part of the sametransaction a atomic



action atomicdly, i.e., so that the requests appear to be executed as an indivisible unit. Thus, the result
of any execution shoud be asif the requests of all the processors were executed in some sequential
order and the requestsin each transacdion appear in this ssquence as a awntiguols subsequence, not
interleaved with requests from other transactions.

Here, we use the term atomicity to mean consistency atomicity, not failure aomicity, i.e. the guarantee
is about the relative order in which requests appea to be executed, not about the results of afailure. Coher-
ence protocols may also be required to enforce failure atomicity: the operations resulting from each request
(and the operations resulting from all requests in the same transadion) shoud be executed onan all -or-
nothing besis. Failure aomicity isan important concern in distributed databases, but a fault-free system is
normally assumed in athe cntext of multi processor cache coherence and is often |eft to separate medha-
nismsinthe DSM context. The isotach prototype uses a sender-based protocol and areli able network
(Myrinet) to achieve reliable communication. An urreliable network would require use of a commit proto-
col.

The relative importance of SC and atomicity depends on the context. With a few exceptions, cache
coherence protocols for multiprocessors and DSM protocols focus on SC (or awedker variant) and leave
the task of enforcing atomicity to separate mechanisms. On the other hand, databases focus on enforcing
atomicity. The high cost of enforcing SC and atomicity hasled to extensive exploration d weaker memory
consistency models. Whether the resultingimprovement in performance justifies the more complex mem-
ory interfaceis an unckecided isaue’. Delta protocols enforce atomicity and SC using isotach ordering guer-
antees withou the locks and restrictions on fpelining required in conventional systems. Thus, delta
protocols represent an alternative to weakening the guarantees offered by the memory system.

5. Home update delta coherence protocol

The home update protocol isthe simplest of the delta protocols and serves as the basis for the other
deltaprotocols 3, which include invalidate & well as update protocols. Asindicated by the name, the home
update protocol is an update protocol in which the homeis responsible for distributing ypdates.

State I nformation

The protocol isadiredory protocol. The home for each variable v stores a directory recording the set of
procesors with cache mpies of v. For simplicity, we assume abit vector representation for the directory:
bit i in the bit vector for v is set iff proces9r i hasa cache wpy of v. (Any of several proposals for improv-
ing the scalabili ty of directories, e.g., the method used in the Alewife® machine, could be used instead.)

Eacdh CC stores a bit with each linein the local cache that indicates whether the lineis currently allo-
caed. When a CC schedules amissrequest on v, it creaes aalocal copy of v by marking a aurrently unal-
located cache line al ocated. The CC destroys a awpy by sending a release and marking the cache line
unallocated (see Executing Requests, below). For each allocaed cache line, the CC stores the name of the
variable to the which cadhe lineis allocated and an outstandng request court. A CC releases a cache copy
of vonly if the outstanding request count for vis zero. An outstandng request is alocdly issued request
that has been scheduled but not completed. A READ hit completes when the read is executed; a READ
misswhen the read response is exeauted; and a WRITE when the own-update is executed (see Executing
Requests, below). The outstanding request court can be represented using two hits per variable if each pro-
cesor is limited to ore outstanding read and ore outstanding write per variable®. Alternatively, since we
expect a procesr to have only afew outstanding requests at any given time, the courts can be maintained
at ahigh granularity, e.g. on a page basis.

Except for requiring that the CC nat destroy any cache cpy to which it has outstanding requests, we do
naot spedfy the replacement policy. Specific replacement palicies may require alditional state information.
The state information required to support a ampetitive pali cy, a strategy that destroys copiesthat are infre-



guently referenced but often updated?, may subsume the outstanding request court.

Executing requests

When processor p isaues arequest, its CC translates the request into one or more operations, called ini-
tiating operations. In the home update protocol, each request results in exactly oneinitiating operation. A
READ or WRITE mississued by p resultsin the aedion d anew cache mpy at p. When a CC schedules
amiss the CC creates anew cache mpy by allocating a cache line. (The scheduling algorithm ensures that
any subsequent access to the cache line can occur only after the mpy has beeninitialized.) If all li nes are
all ocated, the CC first destroys alocal cache copy. A CC destroys its copy of v by sending arelease mes-
sage to v's home. The home exeautes arelease onv by removing p from v's directory. When the CC sends
the release, it marks the cahe line unall ocated.

Other actions taken by the memory system in executing arequest depend onthe request type.

READ miss

The CC generates aread onthe acessed variable v'shome mpy and schedules the sending o the read
(described below). On recaving the read, v's home adds p to the diredory for v and sends a read
resporse message to p. The CC exeautes aread response by assigning the value returned to the (new)
cache copy of v and returning the value to p.

READ hit

The CC generates aread onthe cache copy of v and schedules the sending o the read. (Recdl that an
operation onthe local copyis ®nt asa self-message and hes alogica send and receive time even
thoughit does nat enter the network.) At the logical receive time, the CC executes the read onits cache
copy, returning the value to p.

WRITE (hit or misg

The CC generates awrite on v's home apy and schedules the sending o the write. The writeis $nt to
v'shome evenif p hasa cache wpy of v. On recaving the write, v's home asggns the val ue to the home
copy, adds p to the direcory for v, if pisnat already in the directory, and sends awrite to every proces-
sor inv'sdiredory (including p). Writes snt by the home are usually cdled updaes. An own-updaeis
an update received by a CC in resporse to its own write. A CC exeautes an updite onv by assgningthe
value transmitted by the updete to its cache wpy of v. If the CC has no cache wpy of v, it discards the
update. This case can occur if the CC recently released v.

Using isotach guarantees

The home update protocol, as described so far, is smilar to other update protocols. The home update
protocol differs from other update protocols in its use of isotach guarantees:

e Theisotad invariant allows the sender of each operation to control itslogicd receive time.

¢ Sending updates and read responses as predictabl e responses all ows the definition o copy deltas, estab-
lishing the relationship between the cache and home copies of each variable.

Given the ability to control logical receve times and to relate cache apiesto hane copies, CCs can con-
trol the dfedive executiontime of requests by controlling the send times of the initiating ogerations.

To enforce sequential consistency, each CC applies the following rule in scheduli ng each request: send
theinitiating operation so that its effedive execution puse is no lessthanthat of the previous request. The
effedive execution pulse is the pulse componrent of the effedive executiontime. A request with the same
effective exeaution pulse as the previous request will have alater effective exeaution time due to its rank
component.



[astR = 0 As own in Fig. 3, the CC remembers lastR, the dfec-
for each r equest R i ssued by p tive execution lese of the last ra:]uest it SChajulaj, and
if Ris a READ hit sends theinitiating operation for each new request so

xdi st = di st (hone, p) that its effective exeautiontime is no less than lastR. If
el se the aurrent logical time (now) plusthe execution ds-
xdi st = dist(p, hone) tance of the initi ating operation is lessthan lastR, the
sendp = max(lastR-xdist, now) CC sends the operation at the earliest time & which it
lastR = sendp; can be sent and have an effective execution pusenoless
Fig. 3. Scheduling algorithm. than lastR. Otherwise, the CC sends the operation
immediately.

When v's home executes awrite on v, it sends updates to the processorsin v's directory as predictable
responses to the write. Sending updites as predicatable responses all ows the assgnment of deltas to cache
copies. Each cache aopy c isupdated exadly d(c) after the home apy. Aswill be shown below, sending
updates as predictable responses al so ensures that all writes (the initiating write and any updates) resulting
from the same WRITE have the same dfective exeautiontime, with the result that each WRITE appearsto
execute atomicdly. Althoughthe exeaitiontimes of the operations may differ, the effedive executiontimes
are the same because the delta of each copy exactly compensates for the timerequired to propagate the
value from the home.

Similarly, when v's home executes aread from p, it sends the read response to p as a predictable
response. Sending the read response & a predi ctabl e resporse means that the new copy created at p will be
initialized with a “timely” value, i.e., the value of the home copy d(c) pulses before. We will show that
sending the read response & a predictable respornse dso means that the intiali zation of the new local copy
has the same effedive execution time as the initiating operation resulti ng from the READ miss Since ay
subsequent aacessto the local copy will have alater effedive executiontime, the new copy will nat be
aaccessd urtil after it isinitialized.

Timing Diagram

Fig. 4 shows the relationship between the logical send, receive, and effective execution times for each
operation generated by a READ hit, aREAD miss anda WRITE issued at processor p. The effedive exe-
cutiontime for each operation shown isthe same, timet. Procesorsp'  ang” represent other processorsin
the directory for v.
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Fig. 4. Timing diagram for operations



As own in the figure, to achieve an effedive executiontime of t, the read operationresulting from a
READ hit at processor p shoud be exeauted at timet +dist(home,p). Sincetheread resulting from aREAD
hit is sent as a self-message, the read is €nt and received at this same time, t+dist(home,p). Theinitiating
operation resulting from a READ missor aWRITE should be sent at t-dist(p,home) to achieve an effective
executiontime of t. Since an initiating operation resulting from a READ missor aWRITE is executed on
the home copy, its exeaution time and effective execution times are the same. Any update or read response
sent by the home will have the same dfective exeaution time & the initiating operation since the delta of
the copy onwhich the updete is executed compensates for the propagation celay.

Under the home update protocol, a node can execute any number of requests concurrently, i.e., if the
procesor p submitsr requests, theloca CC can scheduleall r requests  that they have the same dfective
execution pulse and complete within d(p,home) + d(home,p) logical pulses. By contrast, under atypicd
diredory protocolll, ther requests must be handled serialy, i.e., request i canna be sent until after request
i-1 completes.

6. Proof of Correctness

We prove the mrrectnessof the protocol. We show that memory system M is corred by showing that
the result of any execution onM isthe same asif it were executed onamemory systemM'  known to be cor-
rect. Showing that a corred memory system can be substituted for M without changing the result of any
executionimpliesthat M is correct. In particular, we show that for any execution E of any program P ona
memory system that uses the home update protocol, there is an equivalent sequential execution Sof P on
M' , wher&is SC. Memory system M' exeautes requests rially in some sequential order ona single-copy
memory, trand ating each request into a single operation. From the viewpoint of the memory system, a pro-
gramis a sequence of requests, in the order in which they are submitted, and an exeaution of a program P
is the sequence of operations resulting from P in the order in which they are executed. Exeautions Sand E
of P areequivalent if every READ in Sreturns the same value as the arresponding READ in E.

DeriniTiON. For any request R, the effective exeution time of Ris the effective execution time of the initia-
ting operation resulting from R.

Lemma 1. The dfedive exeaution times of requests derived from execution E of program P define a total or-
der ove therequestsin P,

Proof. Since each logical timeis a 3-tuple in which the second and third componrents serve & tie-breakers,
eah initiating operation for arequest in E has aunique dfedive executiontime. O

DeriniTION. For any program P, Let P'  be the permutation dP in which the requestsin P appear in increas-
ing ader by their effective execution times.

DeriniTION. Let Sbe the execution d P in which the requestsin P are exeauted onM' in the order in which
the requests appea inP' .

Lemma 2. All operations resulting from the same request have the same effedive exeaution time.

Proor. Since aREAD hit resultsin orly one operation, the daim istrivially true for READ hits. A READ
missat processor p resultsin an initiating real operation r exeauted onthe home wpy and aread re-
sponser’ sent by the home tg. Since the delta of a home copy is 0, t,(r) = t,(r). Since the home sends

r' asapredictable resporseto, ty,(r' ) =(r) + dist(home,p) - (c), where cisthe mpy creded at pasa

result of the miss Since §(c) = dist(home,p), tu (' ) =) = te ().

The WRITE caseis smilar to the READ miss A WRITE resultsin an initiating write operation w exe-

cuted onthe home copy and upaites sent as predictable responses to each procesor with a cache copy.

Sincethe delta of ahome apy is 0, ty, (W) = t(w). For any update u sent by the home to processor p'



with copy ¢’ off in resporse to w, since the home sends u as a predictable resporse to w, t, (u) = t(w)
+ dist(home,p' ) &(c' ). Sincé(c' ) = dist(home,p’ ¥ J(u) =t (W) =ty (w). O

DeriniTiON. For any READ Ronany variable v (or for any read operationr resulting from R), the logically
preceding WRITE is the WRITE on v with the greaest effective executiontime that is lessthan the -
fective execution time of request R (or operationr).

We asaume each variable is written beforeit isread. Thus every READ has alogically preceding
WRITE. To model programsthat read urinitiali zed variables, a sequence of WRITES, one for each vari-
able, can be prepended to each program, where each WRITE asdgns an arbitrary value.

DeriniTiON. Copy c of variable visvalid at logical timet if aread r executed onc at t returns the value as-
signed by the logicdly preceding WRITE for r.

Sincerequests are executed serially in Sin order of their effective exeautiontimes, every READ in S
returns the value of the logically preceding WRITE. We show the equivalence of E and S by showing that
every READ in E is executed onavalid copy and therefore every READ returnsthe ssmevalueinEand S,
the value of thelogicdly preceding WRITE.

Lemma 3. Every readto ahome copy in E isto avalid copy.

Proor. Let r be aread executed on hame copy c at timet. Since tg,(r) = t, the logically preceding WRITE
for r isthe WRITE with the greatest effective executiontimethat islessthant. Since ¢ isthe home copy
of v, all WRITEsonvin P are executed onc. Sinced(c) is zero, each WRITE is executed onc at its ef-
fective exeaution time. Thus, the value of c at t isthe value assigned by the logically preceding write. O

The reader may wish to refer to Fig. 5 while reading Lemma4. The diagram in part a) shows the first
case discussed in the proof of Lemma4 and the diagram in part b) shows the second case. In each diagram,
the top line represents events at the home copy of variable v andthe bottom line, events at copy c at proces-
sor p. In ead diagram, the thick gray line shows the transmisson of the value of the logically preceding
WRITE to c.

6gc]
a) tass'gn <= teffx(s) 6!C~ b) teffx(s) < taﬁ'gn 6(§h
29, 20,
home > home .
copy - response?o s copy  responseto's
> S //update
cache Y cache &
copy copy
ap ol ap teﬁx(ts)‘_
gl II%)cated t allocated assign

assgn teire(r) t=1t.(r) tar(r)  t=1.(r)
Fig. 5. Validity of cache copy c at time t.

LemmA 4. Every readto acache copy in Eisto avalid copy.

Proor. Let r be aread executed oncache mpy c at processor p at timet. The logically preceding WRITE
for r isthe WRITE with the greaest effedive exeautiontime that islessthan t(r) =t - &(c). Let Wbe
thelogically preceding WRITE for r, V be the value written by W, andt,,, be thetime V is assgned to
the home @wpy o v. Sincethe dfective executiontime and exeaution time are the same for an operation
executed onahome mpy, tassign is also the dfedive executiontime of W, and is, thus, lessthan t.,(r).
We show that V isthe value of c at timet by showing that p receives V before t and does not discard or
overwrite the value before t.

Sincer isexeated oncache mpy c, ¢c was already all ocated when r was <heduled. Let sbetheinitia-



ting operation for the READ or WRITE that causes ¢ to be dl ocaed. The home for v exeautes s at t,(S)
=t (S). Since therequest that resultsin sisissued before the request that resultsin r, by the scheduling
algorithm (Fig. 3), t,(S) < tgry(r). There ae two cases to consider:

1) If tasign <= ter(S), then Wis the last WRITE executed onthe home copy of v throught,(s). By def-
inition of W, there is no WRITE with an effective exeaution time in the interval from t,.g, t teg,(r).
Sincetg, () < tuik(r), thereisno WRITE with an effective execution time in the subinterval t g, to
teik(S). Thus, c =V at t (S) and p receives V asaresponseto s at ty, (S) + 8(c). Sincety (r) =t - &(c),
teix(S) + O(C) < t. Thus, p receivesV beforet.

2) If ter(S) < tassign the homefor v sends V to p as an update operation at timet,qq, The home adds p to
the diredory for v at t(s). Since cisalocaed whenr is sheduled, p does not send a release between
ty(s) and the timeit schedulesr. After p schedulesr, p cannat send arelease on v urtil after r completes
a timet. Thus, p remainsin the directory through timet + dist(p,home). Since t,o4,, < t, pisin the
diredory for v at t,q gy, Thus, p receivesV as an update operation at t +9(C). Sincetygign < terdl) =
t - 8(C), tasign+ O(C) <t. Thus, p receivesV beforet.

assign

Sincecisallocated at timety(s), before p recavesV, andis not destroyed urtil after r completes at time
t, passgns V to c and dces not destroy ¢ beforetimet.

We show by contradiction that Wisthe last WRITE executed onc throucht. Let W be aWRITE execu-
ted onc after Wand no later thant. Both WandW have an effective exeaution timé(c) pulses before
they are executed onc. Thus the effedive executiontime of W intervenes between the dfective execu-
tiontimes of W and r, contradicting the assumption that W is the logically preceding WRITE for r. O

LemmA 5. Every READ in P returns the same value in S ancE.

Proor. Consider read r resulting from READ R, wherer is executed oncopy cin E. Since every copyisei-
ther ahome mpy or a cache copy, by Lemmas 3 and 4, cisvalid whenr is executed. By Lemma 2, r and
R have the same effedive executiontime and the same logicdly preceding WRITE. Thus R returns the
value of theitslogically preceding WRITE in E. Sincerequests are executed in Sserially, onasingle-
copy memory, in order by their effective exeaution timesin E, R returnsthe samevaluein SandE. O

LEMMA 6. Execution Sis SC.

Proor. Consider any two requests Rand R’ issued by the same processop, where Risissued beforeR' . Let
op betheinitiating operationfor Rand op' betheinitiating operation foR' . By the scheduling algo-
rithm (Fig 3), the CC choasest(op' ) such thatf,(op' ) >4, (op). Thus, R appeasafter Rin P andis
executed after Rin S, O

THEOREM. The protocol is corred.

Proor. By Lemma5, E and Sare equivalent. By Lemma 6, Sis SC. Thus, the result of any execution ona
memory system using the home update protocol isthe same as if it were executed on a single-copy
memory in some sequential order consistent with the program order. O

7. Atomicity

Anisochronisagroup d requestsissued as abatch and executed atomically. The home update protocol
can he adapted to execute isochrons atomically by substituting the scheduling algorithm in Fig. 6 for the
agorithm in Fig. 3. In the revised algorithm, the CC schedules requests at the isochron ganularity, i.e., it
schedules requests so that all requests in the same isochron have the same dfective exeaution puse. The
CC continues to enforce SC by scheduling each isochron so that it has an effective execution pulse no less



than the previously scheduled isochron.

We show that the requests in each isochron are executed atomically by showingthat the requests occur
in the eguivalent serial execution Sas a contiguous subsequence. Since dl requests in the same isochron
have the same dfective exeaution pulse and are issued by the same processor as abatch, no other request
can have an intervening effective exeaution time. Thus all requestsin the same isochron are exeauted in S
atomically. Since E and Sare equivalent, isochrons are dso exeauted atomicdly in E.

Sincethe requests in an isochron must be issued as a batch, isochrons cannot contain internal data
dependences. However, atomic actions with internal data dependences can be implemented usingisochrons
together with a dassof operations called split operations®.

lastiso = 0 lastiso tracks the dfective execution pulse of the last isochron
for each isochron issued by the processor p
i sodist = 0; at end of next loop, isodist = max xdist over all requests in isochron

for each request Rin current isochron
if Ris a READ hit compute xdist for initiating op
xdi st = di st (hone, p)
el se
xdi st = di st (p, hone);
remember the xdist computed for each request in the isochron; the value is used below to determine send time
i sodi st = max(isodist, xdi st); isodistis max execution dstance over requestsin isochron
| astiso = max(now + isodist, |astiso); choose dfective execution time for isochron >= lastiso
for each request R in isochronscheduletheinitiating g for each request in the aurrent
sendpul se = lastiso - xdist of R isochronso thattg,(op) = isoeffx

Fig. 6. Scheduling algorithm extended to enforce atomicity.

8. Conclusions

In deltaprotocols, each copy ¢ hasadelta, d(c), equal to the number of logicd pulses by which the copy
lags behind the home copy. The deltas allow nodes to control the order in which requests appear to exeaute
and facilitate proving delta protocols correct.

Delta coherence protocols use isotach guarantees to enforce SC with fewer restrictions on concurrency
than existing protocols:

* Requests can be pipelined. Existing protocolsthat enforce SC require that the execution o arequest not
start until the exeaution o the previous request isued by the same processor completes!2, (Adve and
Hill have proposed an SC protocol that all ows nodes to overlap the execution d a WRITE with ancther
request, with arestriction that the effed of the secondrequest cannot be visible to any nocde until after
the WRITE is globally performed?3.) Delta protocols can overlap the exeaution o requests, requiring
only that arequest nat appear to complete before the previous request completes, i.e., that its effective
exeaution time not precede that of the previous request.

* No acknowledgements are required. Existing protocols use acknowledgements to inform a node when
its WRITE completes. Reli ance on acknowledgements adds message traffic and, more importantly,
increases latency — a node delays exeauting arequest not just until the cmpletion o the previous
request, but urtil it receives adknowledgement of the cmpletion. In delta protocols, a node determines
from local information the completion time of each request before it sends the initiating ogeration.

e Multiple processors can write the same variable mncurrently. Invalidate protocols do na permit con-
current writes, thoughtraditional update protocols do, subject to the restriction that writes are not
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immediately readable.

e Writes are immediately readable. In the @sence of strong message ordering guarantees, existing proto-
cols that ensure SC cannot return the value of areal to a cache copy until the WRITE that suppied that
valueisglobally performed (i.e., until all cache copies are updated or invalidated)12. Thisrequirementis
easy to satisfy ininvalidation protocols, but hard in update protocols.

¢ Processors can execute multiple requests atomicdly without locks. Most existing protocols that enforce
atomicity use two phase locking. Alternatively, transactions can be timestamped and restarted if they
cannot be exeauted in timestamp order. Delta protocols all ow a processor to aaccessmultiple variables
atomically withou locks or restarts. Processors can exeaute isochrons withou synchronizing or obtain-
ing exclusive access to the variables accessd.

Delta protocols offer asignificantly higher level of concurrency than existing coherence protocols, while a
prototype isotach network implementation demonstrates that the cost of providing this additional concur-
rency islow.
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