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Abstract

We describe a new class of directory coherence protocols called delta coherence protocols that use net-
work guarantees to support a new and highly concurrent approach to maintain a consistent shared memory. 
Delta coherence protocols are more concurrent than other coherence protocols in that they allow processes 
to pipeline memory accesses without violating sequential consistency; support multiple concurrent readers 
and writers to the same cache block; and allow processes to access multiple shared variables atomicall y 
without invalidating the copies held by other processes or otherwise obtaining exclusive access to the refer-
enced variables. Delta protocols include both update and invalidate protocols. In this paper we describe the 
simplest, most basic delta protocol, an update protocol called the home update protocol.

Delta protocols are based on isotach network guarantees. An isotach network maintains a logical time 
system that allows each process to predict and control the logical time at which its messages are received. 
Processes use isotach guarantees to control the logical time at which their requests on shared memory 
appear to be executed. We prove the home update protocol is correct using logical time to reason about the 
order in which requests are executed.
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1. Introduction
Caching data can reduce access latency and improve data availability, but in the case of writeable data, 

caching raises the problem of how to maintain consistency among copies. The problem appears in different 
guises in several different contexts: as the cache coherence problem in multiprocessors; as the problem of 
maintaining a distributed shared memory (DSM) in distributed computations; and as the repli ca control 
problem in distributed databases. This paper describes the home update protocol, a member of the class of 
coherence protocols called delta coherence protocols that uses isotach message ordering guarantees1 to 
solve the coherence problem in a new and highly concurrent way. Our goal is to show how isotach guaran-
tees are useful in solving the coherence problem and in reasoning about coherence protocols. 

Solving the coherence problem is hard because it requires coordinating the execution order of accesses 
at different nodes. The traditional approach to the problem is to reduce the coordination required by limit-
ing concurrency or weakening the correctness criteria. Existing protocols that enforce sequential consis-
tency (SC) require that nodes execute requests one-at-a-time and invalidate or lock copies while executing 
write requests. Delta protocols use isotach guarantees to coordinate accesses, an approach that allows delta 
protocols to enforce SC without limiting concurrency. Whether delta coherence protocols outperform 
existing coherence protocols depends on the cost of implementing isotach guarantees and on the extent to 
which appli cations can take advantage of the high level of concurrency offered by delta protocols.

2. Isotach systems
An isotach [Greek: iso = same; tach = speed] system1 implements a logical time system in which all 

messages appear to travel at the same speed — one unit of logical distance per unit of logical time. Given 
this property, called the isotach invariant, a processor can control the logical time at which each of its mes-
sages is received by controll ing its logical send time. 

Isotach systems use the exchange of signals called tokens between neighboring nodes (switches and 
processors) to implement a distributed logical clock. The pulse at a processor is the number of token waves 
the processor has received. An isotach system assigns a logical time to each event of sending or receiving a 
message. An isotach logical time is a lexicographically ordered 3-tuple in which the first and most signifi-
cant component is the pulse at the processor at which the send or receive event occurs. The remaining two 
components, the pId and rank, are tie-breakers used to order events that occur in the same pulse. Events 
with the same pulse component are ordered by the pId of the sender. Events with the same pulse and pId 
components are ordered by the rank, i.e., issue order, of the message.

The isotach logical time system extends Lamport’s logical time system2 by guaranteeing that send and 
receive times are consistent with the isotach invariant: each message travels one unit of logical distance per 
pulse of logical time. Isotach systems can implement a variety of distance metrics3. Here, dist(p,p' ), the 
logical distance from node p to node p' , is the routing distance from p to p' , i.e., the number of switches tra-
versed by a message sent by p to p' . For any message m sent by p to p' , d(m), the logical distance message 
m travels, is dist(p,p' ). For simplicity, we assume distances are static. Distances may be asymmetric, i.e. 
dist(p,p' ) does not necessarily equal dist(p' ,p). By the isotach invariant, for any message m, m’s logical 
receive time is exactly d(m) pulses after m’s logical send time, i.e., tr(m) = ts(m) + d(m). (The scalar quan-
tity d(m) is added to the tuple ts(m) by adding d(m) to the pulse component of the tuple.) Assuming each 
processor executes messages in receive order, a message’s logical receive time can be used as its logical 
execution time. Thus, for any message m, tx(m), the logical execution time of m, equals tr(m). This assump-
tion is for simpli city and is stronger than necessary. Execution times can be shifted in relation to receive 
times in any way that preserves receive order. Furthermore, in an execution in which messages are opera-
tions on shared variables, operations can be executed in any order that preserves the receive order among 
conflicting operations. Two operations conflict if they access the same variable and are not both reads.
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Most delta protocols require an isotach system that supports predictable responses. A predictable 
response is a message m' sent in response to another message m such that the send time of m' can be pre-
dicted from the receive time of m, i.e., ts(m' ) = tr(m) + c. For simpli city, we assume c is 0. (In any practical 
system, c is a small tunable system constant, greater than zero.) Given the isotach invariant and knowledge 
of the logical distances involved, the receive time of m' can be predicted from the send time of m: tr(m' ) = 
ts(m) + d(m) + d(m' ). A predictable response inherits the pId and rank components of the original message.

Each processor has a switch interface unit (SIU) that tracks logical time and acts as the interface 
between applications and the isotach system. An appli cation can simply assume that its messages will 
appear to be executed in the order issued. Given the isotach invariant and the assumption that messages are 
executed in receive order, an SIU can control the relative order in which locall y issued messages appear to 
be executed. In particular, an SIU can ensure that a batch of messages appear to be executed at the same 
time by sending the messages so that they are received in the same logical pulse and can ensure that mes-
sages issued in a sequence appear to be executed in sequence by sending the messages so that they are 
received in non-decreasing pulses. 

Isotach systems can be implemented using the isonet algorithm1, in which network switches route mes-
sages in logical time order. Alternatively, the work of ordering messages can be shifted to the SIUs to per-
mit the use of commodity switches. A prototype system based on this approach has been implemented on a 
cluster of commodity PCs connected with Myrinet4. Both algorithms are scalable, requiring the exchange 
of tokens only among nearest neighbors. In the prototype, which implements isotach functionality in soft-
ware, the round-trip user-to-user level latency of isotach messages is on the order of 50 usec, about twice 
that of non-isotach messages on the same hardware5. To further reduce the cost of maintaining isotach 
guarantees, we are re-designing the messaging layer software and building a second generation prototype 
with custom SIUs.

3. Model
The coherence problem occurs in several contexts, each with its own terminology. The terms used here 

are from the li terature on the cache coherence problem in multiprocessors. We rely on the reader interested 
in DSM or replica control to make the appropriate translations.

We consider a system consisting of multiple processors connected to a memory system. Processors 
issue read and write requests to the memory system. A write request (WRITE) on variable v instructs the 
memory system to assign a specified value to v; a read request (READ) on v instructs the memory system 
to return the value of v. A variable is shared if more than one processor can issue requests on it. We con-
sider only shared variables.

The memory system encapsulates the representation of (shared) memory and the procedures for access-
ing it. The processor/memory system interface is as follows:

• processors issue READs and WRITEs to the memory system. (To enable the processors to specify the 
variable to be accessed, the processors and memory system share a naming scheme for variables.)

• the memory system returns a value in response to each READ.

The internal details of the memory system are not visible to the processors. 

A memory system consists of interconnected memories and controllers programmed to execute the sys-
tem’s coherence protocol. The memory space is partitioned across the memory modules (MM). Each pro-
cessor has a cache memory and cache/coherence controller (CC), which handles locally issued memory 
requests and manages the cache. In a delta protocol, the CC also performs the functions of the SIU, i.e., it 
tracks logical time and controls the logical time at which local operations are sent.

For each variable v, the primary copy, called the home copy, is located in an MM. The MM containing 
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v’s home copy is v’s home. Secondary copies, called cache copies, may be stored in the cache memories. 
The number of cache copies of v can vary dynamicall y from zero to the number of processors in the sys-
tem. A request for v is a hit if a copy of v is in the issuing processor’s cache; otherwise it is a miss.

The memory system translates requests into operations, executes the operations, and returns a value for 
each READ. An operation reads, writes, creates, or destroys a copy of a variable. For each locally issued 
WRITE, the CC generates one or more write operations (writes) and for each locall y issued READ, the CC 
generates a single read operation (read). The phrase “the execution of request R on copy c” means the exe-
cution of the operation resulting from R that is executed on copy c.

In a delta protocol, each operation is sent as an isotach message. The logical distance, send, receive, and 
execution times of an operation are the logical distance, send, receive, and execution times of the message 
carrying the operation. An operation on the local cache copy is sent as a self-message. A self-message is an 
isotach message sent by a processor to itself. Since self-messages do not enter the network, for any self-
message m, d(m) = 0 and tr(m) = ts(m). Fig. 1 summarizes terms relevant to operations in a delta protocol.

Fig. 1. Delta coherence protocol terms and notation.

Each copy in a delta protocol is assigned a delta. In the home update protocol, the delta of copy c, 
denoted δ(c), is dist(home,c). (Thus, the delta of a home copy is zero.) A copy’s delta represents the num-
ber of logical time pulses by which the copy lags behind the home copy. For any operation op on copy c, 
the effective execution time of op, denoted teffx(op), is tx(op) - δ(c). Informall y, teffx(op) is the logical time at 
which op appears to execute, i.e., op’s logical execution time adjusted to compensate for c’s delta. For any 
operation op, xdist(op), the execution distance of op is defined as teffx(op) - ts(op). Thus, xdist(op) = d(op) - 
δ(c), where c is the copy on which op is executed. 

4. Correctness criteria
The most basic task of a coherence protocol is to make replication transparent to the processors. The 

result of any execution should be as if the requests of the processors were executed on a single-copy mem-
ory, i.e., a memory containing a single copy of each variable. Coherence protocols may enforce the follow-
ing ordering properties:

• SC. A memory system enforces SC if “ [t]he result 
of any execution is as if the [requests] of all the 
processors were executed in some sequential order, 
and the [requests] of each individual processor 
appear in this sequence in the order specified by 
the program”6. The execution shown in Fig. 2 vio-
lates SC since no sequential ordering of the 
requests can produce the results shown.

• Atomicity. The memory system should execute requests issued as part of the same transaction or atomic 

for copy c
δ(c) The delta of c. In home update protocol, dist(home,c)

for operation op executed on copy c
ts(op) send time of op
tr(op) receive time of op

teffx(op) effective execution time of op

d(op) logical distance traveled by op tr(op)=ts(op)+d(op)

tx(op) execution time of op tx(op)=tr(op), by assumption

related by isotach invariant:}
xdist(op) execution distance of op 

teffx(op)=tr(op)-δ(c)
xdist(op)=teffx(op)-ts(op)=d(op)-δ(c)

P1::
WRITE(v)1;
WRITE(w)1

P2::
READ(w)1;
READ(v) 0

Fig. 2. Violating SC.

v w
P1::
WRITE(v)
WRITE(w)

P2::

READ(w)
READ(v)

Initially v=w=0
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action atomicall y, i.e., so that the requests appear to be executed as an indivisible unit. Thus, the result 
of any execution should be as if the requests of all the processors were executed in some sequential 
order and the requests in each transaction appear in this sequence as a contiguous subsequence, not 
interleaved with requests from other transactions. 

Here, we use the term atomicity to mean consistency atomicity, not failure atomicity, i.e. the guarantee 
is about the relative order in which requests appear to be executed, not about the results of a failure. Coher-
ence protocols may also be required to enforce failure atomicity: the operations resulting from each request 
(and the operations resulting from all requests in the same transaction) should be executed on an all -or-
nothing basis. Failure atomicity is an important concern in distributed databases, but a fault-free system is 
normally assumed in a the context of multiprocessor cache coherence and is often left to separate mecha-
nisms in the DSM context. The isotach prototype uses a sender-based protocol and a reliable network 
(Myrinet) to achieve reliable communication. An unreliable network would require use of a commit proto-
col. 

The relative importance of SC and atomicity depends on the context. With a few exceptions, cache 
coherence protocols for multiprocessors and DSM protocols focus on SC (or a weaker variant) and leave 
the task of enforcing atomicity to separate mechanisms. On the other hand, databases focus on enforcing 
atomicity. The high cost of enforcing SC and atomicity has led to extensive exploration of weaker memory 
consistency models. Whether the resulting improvement in performance justifies the more complex mem-
ory interface is an undecided issue7. Delta protocols enforce atomicity and SC using isotach ordering guar-
antees without the locks and restrictions on pipelining required in conventional systems. Thus, delta 
protocols represent an alternative to weakening the guarantees offered by the memory system.

5. Home update delta coherence protocol
The home update protocol is the simplest of the delta protocols and serves as the basis for the other 

delta protocols 3, which include invalidate as well as update protocols. As indicated by the name, the home 
update protocol is an update protocol in which the home is responsible for distributing updates. 

State Information
The protocol is a directory protocol. The home for each variable v stores a directory recording the set of 

processors with cache copies of v. For simpli city, we assume a bit vector representation for the directory: 
bit i in the bit vector for v is set iff processor i has a cache copy of v. (Any of several proposals for improv-
ing the scalabili ty of directories, e.g., the method used in the Alewife8 machine, could be used instead.)

Each CC stores a bit with each line in the local cache that indicates whether the line is currently allo-
cated. When a CC schedules a miss request on v, it creates a a local copy of v by marking a currently unal-
located cache line allocated. The CC destroys a copy by sending a release and marking the cache line 
unallocated (see Executing Requests, below). For each allocated cache line, the CC stores the name of the 
variable to the which cache line is allocated and an outstanding request count. A CC releases a cache copy 
of v only if the outstanding request count for v is zero. An outstanding request is a locall y issued request 
that has been scheduled but not completed. A READ hit completes when the read is executed; a READ 
miss when the read response is executed; and a WRITE when the own-update is executed (see Executing 
Requests, below). The outstanding request count can be represented using two bits per variable if each pro-
cessor is limited to one outstanding read and one outstanding write per variable9. Alternatively, since we 
expect a processor to have only a few outstanding requests at any given time, the counts can be maintained 
at a high granularity, e.g. on a page basis. 

Except for requiring that the CC not destroy any cache copy to which it has outstanding requests, we do 
not specify the replacement policy. Specific replacement policies may require additional state information. 
The state information required to support a competitive poli cy, a strategy that destroys copies that are infre-
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quently referenced but often updated10, may subsume the outstanding request count.

Executing requests
When processor p issues a request, its CC translates the request into one or more operations, called ini-

tiating operations. In the home update protocol, each request results in exactly one initiating operation. A 
READ or WRITE miss issued by p results in the creation of a new cache copy at p. When a CC schedules 
a miss, the CC creates a new cache copy by allocating a cache line. (The scheduling algorithm ensures that 
any subsequent access to the cache line can occur only after the copy has been initialized.) If all li nes are 
allocated, the CC first destroys a local cache copy. A CC destroys its copy of v by sending a release mes-
sage to v’s home. The home executes a release on v by removing p from v’s directory. When the CC sends 
the release, it marks the cache line unallocated.

Other actions taken by the memory system in executing a request depend on the request type.

READ miss

The CC generates a read on the accessed variable v’s home copy and schedules the sending of the read 
(described below). On receiving the read, v’s home adds p to the directory for v and sends a read 
response message to p. The CC executes a read response by assigning the value returned to the (new) 
cache copy of v and returning the value to p.

READ hit

The CC generates a read on the cache copy of v and schedules the sending of the read. (Recall that an 
operation on the local copy is sent as a self-message and has a logical send and receive time even 
though it does not enter the network.) At the logical receive time, the CC executes the read on its cache 
copy, returning the value to p.

WRITE (hit or miss)

The CC generates a write on v’s home copy and schedules the sending of the write. The write is sent to 
v’s home even if p has a cache copy of v. On receiving the write, v’s home assigns the value to the home 
copy, adds p to the directory for v, if p is not already in the directory, and sends a write to every proces-
sor in v’s directory (including p). Writes sent by the home are usually called updates. An own-update is 
an update received by a CC in response to its own write. A CC executes an update on v by assigning the 
value transmitted by the update to its cache copy of v. If the CC has no cache copy of v, it discards the 
update. This case can occur if the CC recently released v.

Using isotach guarantees
The home update protocol, as described so far, is similar to other update protocols. The home update 

protocol differs from other update protocols in its use of isotach guarantees:

• The isotach invariant allows the sender of each operation to control its logical receive time. 

• Sending updates and read responses as predictable responses allows the definition of copy deltas, estab-
lishing the relationship between the cache and home copies of each variable. 

Given the abilit y to control logical receive times and to relate cache copies to home copies, CCs can con-
trol the effective execution time of requests by controlli ng the send times of the initiating operations. 

To enforce sequential consistency, each CC applies the following rule in scheduling each request: send 
the initiating operation so that its effective execution pulse is no less than that of the previous request. The 
effective execution pulse is the pulse component of the effective execution time. A request with the same 
effective execution pulse as the previous request will have a later effective execution time due to its rank 
component.
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As shown in Fig. 3, the CC remembers lastR, the effec-
tive execution pulse of the last request it scheduled, and 
sends the initiating operation for each new request so 
that its effective execution time is no less than lastR. If 
the current logical time (now) plus the execution dis-
tance of the initiating operation is less than lastR, the 
CC sends the operation at the earliest time at which it 
can be sent and have an effective execution pulse no less 
than lastR. Otherwise, the CC sends the operation 
immediately.

When v’s home executes a write on v, it sends updates to the processors in v’s directory as predictable 
responses to the write. Sending updates as predicatable responses allows the assignment of deltas to cache 
copies. Each cache copy c is updated exactly δ(c) after the home copy. As wil l be shown below, sending 
updates as predictable responses also ensures that all writes (the initiating write and any updates) resulting 
from the same WRITE have the same effective execution time, with the result that each WRITE appears to 
execute atomicall y. Although the execution times of the operations may differ, the effective execution times 
are the same because the delta of each copy exactly compensates for the time required to propagate the 
value from the home.

Similarly, when v’s home executes a read from p, it sends the read response to p as a predictable 
response. Sending the read response as a predictable response means that the new copy created at p will be 
initi alized with a “timely” value, i.e., the value of the home copy δ(c) pulses before. We will show that 
sending the read response as a predictable response also means that the intiali zation of the new local copy 
has the same effective execution time as the initiating operation resulting from the READ miss. Since any 
subsequent access to the local copy will have a later effective execution time, the new copy will not be 
accessed until after it is initialized.

Timing Diagram

Fig. 4 shows the relationship between the logical send, receive, and effective execution times for each 
operation generated by a READ hit, a READ miss, and a WRITE issued at processor p. The effective exe-
cution time for each operation shown is the same, time t. Processors p' and p” represent other processors in 
the directory for v.

lastR = 0
for each request R issued by p

if R is a READ hit 
xdist = dist(home,p)

else
xdist = dist(p,home)

sendp = max(lastR-xdist,now) 
lastR = sendp;

Fig. 3. Scheduling algorithm.
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As shown in the figure, to achieve an effective execution time of t, the read operation resulting from a 
READ hit at processor p should be executed at time t +dist(home,p). Since the read resulting from a READ 
hit is sent as a self-message, the read is sent and received at this same time, t+dist(home,p). The initiating 
operation resulting from a READ miss or a WRITE should be sent at t-dist(p,home) to achieve an effective 
execution time of t. Since an initiating operation resulting from a READ miss or a WRITE is executed on 
the home copy, its execution time and effective execution times are the same. Any update or read response 
sent by the home will have the same effective execution time as the initiating operation since the delta of 
the copy on which the update is executed compensates for the propagation delay.

Under the home update protocol, a node can execute any number of requests concurrently, i.e., if the 
processor p submits r requests, the local CC can schedule all r requests so that they have the same effective 
execution pulse and complete within d(p,home) + d(home,p) logical pulses. By contrast, under a typical 
directory protocol11, the r requests must be handled seriall y, i.e., request i cannot be sent until after request 
i-1 completes.

6. Proof of Correctness
We prove the correctness of the protocol. We show that memory system M is correct by showing that 

the result of any execution on M is the same as if it were executed on a memory system M' known to be cor-
rect. Showing that a correct memory system can be substituted for M without changing the result of any 
execution implies that M is correct. In particular, we show that for any execution E of any program P on a 
memory system that uses the home update protocol, there is an equivalent sequential execution S of P on 
M' , where S is SC. Memory system M' executes requests serially in some sequential order on a single-copy 
memory, translating each request into a single operation. From the viewpoint of the memory system, a pro-
gram is a sequence of requests, in the order in which they are submitted, and an execution of a program P 
is the sequence of operations resulting from P in the order in which they are executed. Executions S and E 
of P are equivalent if every READ in S returns the same value as the corresponding READ in E.

DEFINITION. For any request R, the effective execution time of R is the effective execution time of the initia-
ting operation resulting from R.

LEMMA 1. The effective execution times of requests derived from execution E of program P define a total or-
der over the requests in P.

Proof. Since each logical time is a 3-tuple in which the second and third components serve as tie-breakers, 
each initiating operation for a request in E has a unique effective execution time.

DEFINITION. For any program P, Let P' be the permutation of P in which the requests in P appear in increas-
ing order by their effective execution times.

DEFINITION. Let S be the execution of P in which the requests in P are executed on M' in the order in which 
the requests appear in P' .

LEMMA 2. All operations resulting from the same request have the same effective execution time. 

PROOF. Since a READ hit results in only one operation, the claim is triviall y true for READ hits. A READ 
miss at processor p results in an initiating read operation r executed on the home copy and a read re-
sponse r ' sent by the home to p. Since the delta of a home copy is 0, teffx(r) = tr(r). Since the home sends 
r ' as a predictable response to r, teffx(r' ) = tr(r) + dist(home,p) - δ(c), where c is the copy created at p as a 
result of the miss. Since δ(c) = dist(home,p), teffx(r' ) = tr(r) = teffx(r).

The WRITE case is similar to the READ miss. A WRITE results in an initiating write operation w exe-
cuted on the home copy and updates sent as predictable responses to each processor with a cache copy. 
Since the delta of a home copy is 0, teffx(w) = tr(w). For any update u sent by the home to processor p' 
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with copy c' of v in response to w, since the home sends u as a predictable response to w, teffx(u) = tr(w) 
+ dist(home,p' ) - δ(c' ). Since δ(c' ) = dist(home,p' ), teffx(u) = tr(w) = teffx(w).

DEFINITION. For any READ R on any variable v (or for any read operation r resulting from R), the logically 
preceding WRITE is the WRITE on v with the greatest effective execution time that is less than the ef-
fective execution time of request R (or operation r).

We assume each variable is written before it is read. Thus every READ has a logicall y preceding 
WRITE. To model programs that read uninitiali zed variables, a sequence of WRITEs, one for each vari-
able, can be prepended to each program, where each WRITE assigns an arbitrary value.

DEFINITION. Copy c of variable v is valid at logical time t if a read r executed on c at t returns the value as-
signed by the logicall y preceding WRITE for r.

Since requests are executed serially in S in order of their effective execution times, every READ in S 
returns the value of the logically preceding WRITE. We show the equivalence of E and S by showing that 
every READ in E is executed on a valid copy and therefore every READ returns the same value in E and S, 
the value of the logicall y preceding WRITE.

LEMMA 3. Every read to a home copy in E is to a valid copy.

PROOF. Let r be a read executed on home copy c at time t. Since teffx(r) = t, the logically preceding WRITE 
for r is the WRITE with the greatest effective execution time that is less than t. Since c is the home copy 
of v, all WRITEs on v in P are executed on c. Since δ(c) is zero, each WRITE is executed on c at its ef-
fective execution time. Thus, the value of c at t is the value assigned by the logically preceding write.

The reader may wish to refer to Fig. 5 while reading Lemma 4. The diagram in part a) shows the first 
case discussed in the proof of Lemma 4 and the diagram in part b) shows the second case. In each diagram, 
the top line represents events at the home copy of variable v and the bottom line, events at copy c at proces-
sor p. In each diagram, the thick gray line shows the transmission of the value of the logically preceding 
WRITE to c.

Fig. 5. Validity of cache copy c at time t.

LEMMA 4. Every read to a cache copy in E is to a valid copy.

PROOF. Let r be a read executed on cache copy c at processor p at time t. The logicall y preceding WRITE 
for r is the WRITE with the greatest effective execution time that is less than teffx(r) = t - δ(c). Let W be 
the logicall y preceding WRITE for r, V be the value written by W, and tassign be the time V is assigned to 
the home copy of v. Since the effective execution time and execution time are the same for an operation 
executed on a home copy, tassign is also the effective execution time of W, and is, thus, less than teffx(r). 
We show that V is the value of c at time t by showing that p receives V before t and does not discard or 
overwrite the value before t.

Since r is executed on cache copy c, c was already allocated when r was scheduled. Let s be the initia-
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ting operation for the READ or WRITE that causes c to be allocated. The home for v executes s at tr(s) 
= teffx(s). Since the request that results in s is issued before the request that results in r, by the scheduling 
algorithm (Fig. 3), teffx(s) < teffx(r). There are two cases to consider:

1) If tassign <= teffx(s), then W is the last WRITE executed on the home copy of v through teffx(s). By def-
initi on of W, there is no WRITE with an effective execution time in the interval from tassign to teffx(r). 
Since teffx(s) < teffx(r), there is no WRITE with an effective execution time in the subinterval tassign to 
teffx(s). Thus, c = V at teffx(s) and p receives V as a response to s at teffx(s) + δ(c). Since teffx(r) = t - δ(c), 
teffx(s) + δ(c) < t. Thus, p receives V before t. 

2) If teffx(s) < tassign, the home for v sends V to p as an update operation at time tassign. The home adds p to 
the directory for v at teffx(s). Since c is allocated when r is scheduled, p does not send a release between 
ts(s) and the time it schedules r. After p schedules r, p cannot send a release on v until after r completes 
at time t. Thus, p remains in the directory through time t + dist(p,home). Since tassign < t, p is in the 
directory for v at tassign. Thus, p receives V as an update operation at tassign + δ(c). Since tassign < teffx(r) = 
t - δ(c), tassign + δ(c) < t. Thus, p receives V before t.

Since c is allocated at time ts(s), before p receives V, and is not destroyed until after r completes at time 
t, p assigns V to c and does not destroy c before time t.

We show by contradiction that W is the last WRITE executed on c through t. Let W' be a WRITE execu-
ted on c after W and no later than t. Both W and W' have an effective execution time δ(c) pulses before 
they are executed on c. Thus the effective execution time of W' intervenes between the effective execu-
tion times of W and r, contradicting the assumption that W is the logically preceding WRITE for r.

LEMMA 5. Every READ in P returns the same value in S and E.

PROOF. Consider read r resulting from READ R, where r is executed on copy c in E. Since every copy is ei-
ther a home copy or a cache copy, by Lemmas 3 and 4, c is valid when r is executed. By Lemma 2, r and 
R have the same effective execution time and the same logicall y preceding WRITE. Thus R returns the 
value of the its logically preceding WRITE in E. Since requests are executed in S serially, on a single-
copy memory, in order by their effective execution times in E, R returns the same value in S and E.

LEMMA 6. Execution S is SC.

PROOF. Consider any two requests R and R' issued by the same processor p, where R is issued before R' . Let 
op be the initiating operation for R and op' be the initiating operation for R' . By the scheduling algo-
rithm (Fig 3), the CC chooses ts(op' ) such that teffx(op' ) > teffx(op). Thus, R' appears after R in P' and is 
executed after R in S.

THEOREM. The protocol is correct.

PROOF. By Lemma 5, E and S are equivalent. By Lemma 6, S is SC. Thus, the result of any execution on a 
memory system using the home update protocol is the same as if it were executed on a single-copy 
memory in some sequential order consistent with the program order.

7. Atomicity
An isochron is a group of requests issued as a batch and executed atomically. The home update protocol 

can be adapted to execute isochrons atomically by substituting the scheduling algorithm in Fig. 6 for the 
algorithm in Fig. 3. In the revised algorithm, the CC schedules requests at the isochron granularity, i.e., it 
schedules requests so that all requests in the same isochron have the same effective execution pulse. The 
CC continues to enforce SC by scheduling each isochron so that it has an effective execution pulse no less 
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than the previously scheduled isochron.

We show that the requests in each isochron are executed atomically by showing that the requests occur 
in the equivalent serial execution S as a contiguous subsequence. Since all requests in the same isochron 
have the same effective execution pulse and are issued by the same processor as a batch, no other request 
can have an intervening effective execution time. Thus all requests in the same isochron are executed in S 
atomically. Since E and S are equivalent, isochrons are also executed atomicall y in E.

Since the requests in an isochron must be issued as a batch, isochrons cannot contain internal data 
dependences. However, atomic actions with internal data dependences can be implemented using isochrons 
together with a class of operations called split operations9.

Fig. 6. Scheduling algorithm extended to enforce atomicity.

8. Conclusions
In delta protocols, each copy c has a delta, δ(c), equal to the number of logical pulses by which the copy 

lags behind the home copy. The deltas allow nodes to control the order in which requests appear to execute 
and facilitate proving delta protocols correct.

Delta coherence protocols use isotach guarantees to enforce SC with fewer restrictions on concurrency 
than existing protocols:

• Requests can be pipelined. Existing protocols that enforce SC require that the execution of a request not 
start until the execution of the previous request issued by the same processor completes12. (Adve and 
Hil l have proposed an SC protocol that allows nodes to overlap the execution of a WRITE with another 
request, with a restriction that the effect of the second request cannot be visible to any node until after 
the WRITE is globall y performed13.) Delta protocols can overlap the execution of requests, requiring 
only that a request not appear to complete before the previous request completes, i.e., that its effective 
execution time not precede that of the previous request.

• No acknowledgements are required. Existing protocols use acknowledgements to inform a node when 
its WRITE completes. Reliance on acknowledgements adds message traff ic and, more importantly, 
increases latency — a node delays executing a request not just until the completion of the previous 
request, but until it receives acknowledgement of the completion. In delta protocols, a node determines 
from local information the completion time of each request before it sends the initiating operation. 

• Multiple processors can write the same variable concurrently. Invalidate protocols do not permit con-
current writes, though traditional update protocols do, subject to the restriction that writes are not 

lastiso = 0 lastiso tracks the effective execution pulse of the last isochron
for each isochron issued by the processor p

isodist = 0; at end of next loop, isodist = max xdist over all requests in isochron
for each request R in current isochron

if R is a READ hit  compute xdist for initiating op
xdist = dist(home,p)

else
xdist = dist(p,home);

remember the xdist computed for each request in the isochron; the value is used below to determine send time 
isodist = max(isodist,xdist);isodist is max execution distance over requests in isochron

lastiso = max(now + isodist, lastiso);choose effective execution time for isochron >= lastiso
for each request R in isochronschedule the initiating op for each request in the current 

sendpulse = lastiso - xdist of R;isochron so that teffx(op) = isoeffx
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immediately readable. 

• Writes are immediately readable. In the absence of strong message ordering guarantees, existing proto-
cols that ensure SC cannot return the value of a read to a cache copy until the WRITE that supplied that 
value is globall y performed (i.e., until all cache copies are updated or invalidated)12. This requirement is 
easy to satisfy in invalidation protocols, but hard in update protocols.

• Processors can execute multiple requests atomicall y without locks. Most existing protocols that enforce 
atomicity use two phase locking. Alternatively, transactions can be timestamped and restarted if they 
cannot be executed in timestamp order. Delta protocols allow a processor to access multiple variables 
atomically without locks or restarts. Processors can execute isochrons without synchronizing or obtain-
ing exclusive access to the variables accessed.

Delta protocols offer a significantly higher level of concurrency than existing coherence protocols, while a 
prototype isotach network implementation demonstrates that the cost of providing this additional concur-
rency is low.
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