
An Analytic Model of SMC Performance

Sally A. McKee

Computer Science Report No. CS-93-54
November 15, 1993

Abstract

Memory bandwidth is becoming the limiting performance factor for many applica-
tions, particularly scientific computations.Access ordering is one technique that can
help bridge the processor-memory performance gap. We are part of a team develop-
ing a combined hardware/software scheme for implementing access ordering dynam-
ically at run-time. The hardware part of this solution is the Stream Memory
Controller, or SMC. In order to validate the SMC concept, we have conducted
numerous simulation experiments, the results of which are presented elsewhere.
Here we develop an analytical model to bound SMC performance, and demonstrate
that the simulation behavior of our dynamic access-ordering heuristics approaches
that bound.

An Analytic Model of SMC Performance

Sally A. McKee
Department of Computer Science

University of Virginia
Charlottesville, VA 22903

mckee@cs.virginia.edu

An Analytic Model of SMC Performance

1

An Analytic Model of SMC Performance

1. Introduction

The growing disparity between processor speeds and memory speeds is well known

[Kat89, Hen90]. Memory bandwidth is becoming the limiting performance factor for many

applications — particularly scientific computations — and alleviating this disparity is the

subject of much current research.

Access ordering is one technique that can help bridge the processor-memory performance

gap. [Moy93] develops and analyzes algorithms to perform access ordering statically at

compile time. [McK93a] proposes a combined hardware/software scheme for

implementing access ordering dynamically at run-time, and presents numerous simulation

results demonstrating its effectiveness. The hardware part of this solution is theStream

Memory Controller (SMC) [McK93b]. Here we develop an analytical model to bound SMC

performance.

2. Access Ordering

Memory components are usually assumed to require about the same amount of time to

access any random location, but this assumption no longer applies to modern memory

devices: most components manufactured in the last decade provide special capabilities that

make it possible to perform some access sequences faster than others. For instance, nearly

all current DRAMs implement a form of page-mode operation [Qui91]. These devices

behave as if implemented with a single on-chip cache line, orpage (this should not be

confused with a virtual memory page). A memory access falling outside the address range

of the current DRAM page forces a new page to be accessed. The overhead time required

to set up the new page makes servicing such an access significantly slower than one that

hits the current page. Other modern devices offer similar features (e.g. nibble mode, static-

column mode, or on-chip SRAM cache) or exhibit novel organizations (e.g. Rambus,

An Analytic Model of SMC Performance

2

Ramlink, or synchronous DRAM). The order of requests strongly affects the performance

of all these components.

For multiple-module memory systems, the order of requests is important on yet another

level: successive accesses to the same memory bank cannot be performed as quickly as

accesses to different banks. To get the best performance out of such a system, we must take

advantage of the architecture’s available concurrency.

A comprehensive, successful solution to the memory bandwidth problem must exploit the

richness of thefull memory hierarchy, both its architecture and its component

characteristics. One way to do this is viaaccess ordering, which we define as any technique

for changing the order of memory requests to increase bandwidth. Here we are especially

concerned with ordering a set of vector-like “stream” accesses.

3. The SMC

[Moy93] develops algorithms and analyzes the performance benefits and limitations of

doing compile-time access ordering. The beneficial impact of access ordering on effective

memory bandwidth together with the limitations inherent in implementing the technique

statically motivate us to consider an implementation that reorders accesses dynamically at

run time. What follows is an overview of the architecture proposed in [McK93b, McK93c]:

see those documents for more details.

Our discussion is based on the simplified architecture of Figure1. In this system, memory

is interfaced to the processors through a controller labeled “MSU” for Memory Scheduling

Unit. The MSU includes logic to issue memory requests as well as logic to determine the

order of requests during streaming computations. For non-stream accesses, the MSU

provides the same functionality and performance as a traditional memory controller.

An Analytic Model of SMC Performance

3

The MSU has full knowledge of all streams currently needed by the processor: given the

base address, vector stride, and vector length, it can generate the addresses of all elements

in a stream. The scheduling unit also knows the details of the memory architecture,

including interleaving, device characteristics, and current state. The access-ordering

circuitry uses this information to issue requests for individual stream elements in an order

that attempts to optimize memory system performance.

A separate Stream Buffer Unit (SBU) contains high-speed buffers for stream operands and

provides control registers that the processor uses to specify stream parameters (base

address, stride, length, and data size). Together, the MSU and SBU comprise a Stream

Memory Controller (SMC) system.

The stream buffers are implemented logically as a set of FIFOs within the SBU, as

illustrated in Figure 1. Each stream is assigned to one FIFO, which is asynchronously filled

CPU

mem

mem

mem

mem

M
SU

Figure 1 Stream Memory Controller for Uniprocessor System

state

FIFO

FIFO

scalar accesses

FIFO

CACHE

state

state

SBU

An Analytic Model of SMC Performance

4

from (or drained to) memory by the access/issue logic of the MSU. The “head” of the FIFO

is another memory-mapped register, and load instructions from (or store instructions to) a

particular stream reference the FIFO head via this register, dequeueing or enqueueing data

as is appropriate.

4. The Analytic Model

Given an SMC system such as described in Section 3, what is the peak memory

performance we can expect to achieve? The complex interactions between the many

parameters affecting SMC/memory system performance make it difficult to formulate a

provably optimal dynamic ordering algorithm. Moreover, implementing such an algorithm

might be expensive, both in the amount of hardware necessary and in the time required for

it to run. We have instead developed a number of heuristic algorithms for dynamic access

ordering; simulation results for these are presented in [McK93a].

Although we do not know precisely what the optimal ordering algorithm is, we can bound

its performance. Taking advantage of the full bandwidth afforded by the memory system

requires exploiting the page-mode capabilities of the memory components. Since

bandwidth is limited by the number of page-misses incurred by a computation, we can

derive a bound on SMC performance by calculating the minimum number of page-misses

for that computation. We can then use this bound to evaluate the performance of our

heuristics.

As a practical consideration, we assume that the system is matched so that bandwith

between the processor and SMC does not exceed bandwidth between the SMC and

memory. External effects (e.g. bus turnaround delays) are ignored. Since we are concerned

with exploiting memory component capabilities, and since page-mode is a common

feature, we assume that the memory system is composed of interleaved banks of page-mode

DRAMS.

An Analytic Model of SMC Performance

5

In order that the bound we derive be conservative, we model the processor as a generator

of non-cached loads and stores of vector elements; all other computation is assumed to be

infinitely fast, putting as much stress as possible on the memory system. We assume that

DRAM pages are infinitely large, thus we may ignore misses resulting from crossing page

boundaries. In essence, we are assuming that these compulsory misses are subsumed by the

other misses calculated in our model. Finally, we assume read FIFOs are completely empty

and write FIFOs are completely full whenever the SMC begins servicing them, thus

allowing the SMC to amortize page miss costs over as many accesses as possible.

We also make a few assumptions to facilitate modeling: the vectors we consider are of equal

length, share no DRAM pages in common, and are long enough to make SMC startup costs

a negligible portion of the memory time for the computation.

We will refer to a read-only or write-only vector as a single-access vector. Likewise, a read-

modify-write vector will be referred to as a double-access vector. The terms stream and

FIFO will be used interchangeably, since we have assumed an SMC model in which each

stream is assigned to exactly one FIFO.

4.1 A Simplistic Performance Model

For the moment, assume a mode of operation in which the MSU and the CPU take turns

completely servicing the FIFOs: the MSU fills the read FIFOs and drains the write FIFOs,

then waits while the CPU drains the reads and fills the writes. Let us also assume that

whenever the CPU takes its turn to access the FIFOs, it does its work instantaneously,

placing maximum stress on the memory system. Later we will relax these assumptions to

consider what happens when both the processor and the MSU access the FIFOs

simultaneously.

In the following, let us assume without loss of generality that we are dealing with read

FIFOs, unless otherwise stated; the analysis for write FIFOs is analogous. Let b be the

An Analytic Model of SMC Performance

6

number of interleaved memory banks, and let f be the depth of the FIFOs. If none of the

memory banks is on the correct page, then the percentage of accesses that cause DRAM

page misses for a single-access vector is . To see this, note that every time the memory

system fills the FIFO, it incurs a page miss in each memory bank. The number of page

misses for a double-access vector is the same as for a single-access vector, for they occupy

the same number of pages. The read-modify-write vector is accessed twice as many times

and requires two FIFOs, one for the read stream and one for the write stream. For these

vectors, the percentage of accesses that cause page misses is .

On the other hand, if the correct DRAM pages for a particular stream are already current in

each memory bank when the SMC begins filling a particular FIFO, then none of the

accesses to that stream (during this turn) must result in a page miss.

Let v be the number of distinct vectors in the computation, and let s be the number of

streams (recall that a single-access vector constitutes one stream, whereas a double-access

vector is comprised of two). To calculate the average DRAM page-miss rate for a single

FIFO, we amortize the per-vector miss rates over all streams in the computation, i.e. we

sum the miss rates for each vector and divide by the number of streams. If none of the

memory banks is already on the appropriate page when the SMC begins accessing each

vectors, then this average is . But if the first FIFO to be serviced

during the current turn was the last to be serviced during the previous turn, then the SMC

would not have to pay the DRAM page-miss overhead again. Thus the SMC need not pay

the page-miss per bank for one vector at each turn. When we exploit this phenomenon, our

average page-miss rate becomes:

b f⁄

b 2f⁄

pmiss v s⁄() b f⁄()×=

pmiss
v 1−() b

sf
=

An Analytic Model of SMC Performance

7

Let h be the cost of servicing an access that hits the current DRAM page, and let m be the

cost of servicing an access that misses the current DRAM page. We can now calculate the

percentage of peak bandwidth as:

Note that for a computation involving a single vector, only the first access to each bank

generates a DRAM page miss. All remaining accesses will be page hits, since we have

assumed that pages are infinitely large. In this case, our model produces a page-miss rate of

0, and the predicted percentage of peak bandwidth is 100. If, in actuality, our page sizes

happen to be small, we could more accurately predict performance using ,

where p is the DRAM page size. The effect is that of filling a FIFO of depth p.

4.2 Refining the Model for Multiple-Vector Computations

The model presented in Section 4.1 provides an estimate of expected SMC performance,

but it is too simple for computations involving more than one vector. A more realistic model

must allow the MSU and the CPU to access the SBU concurrently. Recall that the processor

is modeled as a generator of loads and stores only. Assume that in its execution of an inner

loop, it accesses each active stream (i.e. FIFO) of the computation in round-robin order,

dequeueing a single data element each time. If each FIFO access takes a single cycle, and

there are s streams (FIFOs) involved in the computation, then the CPU will consume a data

value of the ith FIFO every s cycles. This increases the number of accesses that the memory

system can perform before a FIFO becomes full.

If the memory system accesses the FIFOs at the same rate as the processor, then while the

MSU is filling a FIFO of depth f, the processor will consume more data elements for

that stream. While the MSU is supplying those elements, the processor can remove

 more, and so on. Our equation for calculating the per-vector miss rate becomes:

h
pmiss m×() 1 pmiss−() h×()+ 100×

pmiss b p⁄=

f s⁄

f s⁄

f s2⁄

An Analytic Model of SMC Performance

8

In the limit, the series in the denominator converges to , and our equation reduces

to . The per-stream average page-miss rate is now:

and the percentage of peak bandwidth is calculated as before.

5. Simulation Environment

In order to validate the SMC concept, we have simulated a wide range of SMC

configurations and benchmarks, varying FIFO depth, dynamic order/issue policy, number

of memory banks, DRAM speed, benchmark algorithm, and vector length, stride, and

alignment with respect to memory banks. Complete uniprocessor results, including a

detailed description of each access-ordering heuristic, can be found in [McK93a];

highlights of these results are presented in [McK93b, McK93c]. Since our concern here is

to correlate the performance predictions of our analytic model with our functional

simulation results, we present only the maximum percentage of peak bandwidth attained by

any order/issue policy simulated for a given memory system and benchmark.

6. Benchmark Suite

Scientific computations are perhaps the most obvious examples of severely bandwidth-

limited applications. Caching may provide adequate bandwidth for some, but not all,

portions of such programs. The bottlenecks in these computations usually take the form of

memory-intensive inner loops, which tend to derive little benefit from caching. Thus we

b

f 1 1 s⁄ 1 s2⁄ 1 s3⁄ …+ + + +()

s s 1−()⁄

b s 1−() fs⁄

pmiss
b s 1−() v 1−()

fs2
=

An Analytic Model of SMC Performance

9

have chosen a suite of benchmark kernels representing access patterns found in real

scientific codes. Scalar and instruction references are assumed to hit in the cache, and all

stream references use non-caching loads and stores.

Our benchmark suite is depicted in Figure 2. Daxpy, copy, scale, and swap are from the

BLAS (Basic Linear Algebra Subroutines) [Law79, Don79]. These vector and matrix

computations occur frequently in scientific applications, thus they have been collected into

a set of library routines that are highly optimized for various host architectures. Hydro and

tridiag are the first and fifth Livermore Loops [McM86], a set of kernels culled from

important scientific computations. The former is a fragment of a hydrodynamics

computation, and the latter is a tridiagonal elimination computation. Although the

computations differ, their access patterns are identical, thus results for these benchmarks

are presented together. Vaxpy is a vector axpy computation that occurs in matrix-vector

multiplication by diagonals; this algorithm is useful for the diagonally sparse matrices that

arise frequently in the solution of parabolic or elliptic partial differential equations by finite

element or finite difference methods [Gol93].

Here “axpy” refers to a computation involving some entity a times a vector x plus a vector

y. For daxpy, a is a double-precision scalar, so the computation is effectively a scalar times

Figure 2 Benchmark Algorithms

Table 1:

copy:

daxpy:

hydro:

scale:

swap:

tridiag:

vaxpy:

i∀ yi xi←

i∀ yi axi yi+←

i∀ xi q yi r zxi 10+× t zxi 11+×+()×+←

i∀ xi axi←

i∀ tmp yi← yi xi← xi tmp←

i∀ xi zi yi xi 1−−()×←

i∀ yi aixi yi+←

An Analytic Model of SMC Performance

10

a vector plus another vector. In the case ofvaxpy, a is a vector, making the computation a

vector times a second vector, plus a third vector.

Note that although these computations do not reuse vector elements, they are often found

in the inner loops of algorithms that do, as withvaxpy for vector-matrix multiply, and

blocked algorithms such as those in the Level 3 BLAS [Don90].

7. Results

Figure3 through Figure8 depict performance for stride-one vectors as a function of FIFO

depth and available concurrency, i.e. the number of memory banks.. All results are given

as a percentage of the system’s peak bandwidth (the bandwidth necessary to allow the

processor to perform a memory operation each cycle). The vectors used in these

simulations are 10,000 doublewords in length. Table 1 through Table 6 summarize the SMC

results for each benchmark and give the differences between maximum achievable

bandwidth and that delivered in our simulation experiments.

Figure3 illustrates SMC performance for thecopy benchmark run on memory systems

consisting of one, two, four, and eight banks. The solid lines indicate the achievable

performance for a given benchmark, and the dashed lines illustrate the maximum

performance attained in our simulations. The dotted lines denote the bandwidth attained by

a non-SMC system when accesses are executed in their natural order using non-caching

loads and stores.

Performance curves for the analytic and simulated results are strikingly similar: significant

differences are apparent only for very shallow FIFOs or a large interleaving factor.

Decreasing the FIFO size or increasing the number of memory banks reduces the number

of FIFO elements that each bank must service, thus there are fewer accesses over which the

SMC may amortize page-miss costs. Under these circumstances unnecessary page misses

have a much larger impact on performance, thus we tend to see larger differences between

An Analytic Model of SMC Performance

11

the analytic model and our simulations. As FIFOs grow in depth, performance in all cases

approaches 100% of the attainable bandwidth afforded by the system, and there is little or

no difference between the analytical and simulation results.

Note that increasing the number of memory banks reduces relative performance, a

somewhat deceptive effect. This is primarily an artifact of our keeping both the peak

memory system bandwidth and the DRAM page-miss/hit delay ratio constant. As pictured

in Figure 3, the eight-bank system has four times the DRAM page-miss latency of the two-

bank system. The percentage of peak bandwidth delivered for the architectures with greater

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

optimal SMC
simulated SMC
non-SMC

(b) 2 banks(a) 1 bank

(c) 4 banks (d) 8 banks

Figure 3 Analytic versus Simulated Performance for copy

An Analytic Model of SMC Performance

12

interleaving is smaller, due to the decrease in the number of FIFO positions serviced by

each bank, but the system’s total bandwidth is really much larger. If we make the opposite

assumption and hold the page-miss cycle time of the memory components constant,

decrease the page-hit cycle time, and assume a faster bus, the peak bandwidth of the system

increases proportionally to the number of banks.

Table 1 recapitulates the data from Figure3. Note that the maximum achievable SMC

performance for a single-bank memory and an SBU with 8-deep FIFOs is the same as for

a two-bank memory with 16-deep FIFOs or a four-bank system with 32-deep FIFOs. In

other words, maximal performance is constant across a given ratio of FIFO depth to number

of memory banks. Similarly, the percentage of peak bandwidth achieved in simulation (and

thus the deviation from maximal performance) remains roughly constant for a given depth-

to-banks ratio. Thus the SMC results in Figure3(a) through (d) essentially show different

sections of the same curve.

For instance, when each bank is responsible for servicing two FIFO positions, maximal

SMC performance exceeds that achieved in simulation by 7.16% for a four-bank memory

system and 7.17% for an eight-bank system. When the depth-to-banks ratio is four,

Table 1: Performance Details for copy

F
IF

O
 d

ep
th

Percentage of Peak Bandwidth

1 Bank 2 Banks 4 Banks 8 Banks

M
ax

im
um

S
im

ul
at

ed

D
iff

er
en

ce

M
ax

im
um

S
im

ul
at

ed

D
iff

er
en

ce

M
ax

im
um

S
im

ul
at

ed

D
iff

er
en

ce

M
ax

im
um

S
im

ul
at

ed

D
iff

er
en

ce

8 84.21 83.28 0.93 72.73 69.94 2.79 57.14 49.98 7.16 40.00 39.49 0.51

16 91.43 91.06 0.37 84.21 83.26 0.95 72.73 69.94 2.79 57.14 49.97 7.17

32 95.52 95.39 0.13 91.43 91.05 0.38 84.21 83.21 1.00 72.73 69.93 2.80

64 97.71 97.57 0.14 95.52 95.36 0.16 91.43 91.03 0.40 84.21 83.19 1.02

128 98.84 98.70 0.14 97.71 97.53 0.18 95.52 95.29 0.23 91.43 91.01 0.42

256 99.42 99.28 0.14 98.84 98.69 0.15 97.71 97.52 0.19 95.52 95.38 0.14

An Analytic Model of SMC Performance

13

simulation results fall short of maximal by 2.79% for both the two- and four-bank systems,

and 2.80% in the case of an eight-bank memory. This pattern emphasizes what we have

already observed: the SMC’s ability to amortize DRAM page-miss costs over a number of

accesses that hit the current page decreases as the depth-to-banks ratio diminishes. In other

words,sufficiently deep FIFOs are essential to good performance

Figure4 and Table 2 give performance on thedaxpy benchmark. Performance curves look

much the same as forcopy, exhibiting the same correlation between FIFO depth, number

of memory banks, and performance. Non-SMC performance is uniformly low, as it is for

all the benchmarks involving multiple vectors, because executing the accesses in their

natural order doesn’t take advantage of the DRAM’s page mode. For each iteration ofdaxpy

on a single-bank system, the first access to each of thex andy vectors incurs a DRAM page

miss, but the write toy hits the current page. Since the cost of a page miss is four times that

of a page hit, the computation takes cycles per iteration. This is the

peak bandwidth, as illustrated by the dashed line in Figure4(a).

.

Table 2: Performance Details for daxpy

F
IF

O
 d

ep
th

Percentage of Peak Bandwidth

1 Bank 2 Banks 4 Banks 8 Banks

M
ax

im
um

S
im

ul
at

ed

D
iff

er
en

ce

M
ax

im
um

S
im

ul
at

ed

D
iff

er
en

ce

M
ax

im
um

S
im

ul
at

ed

D
iff

er
en

ce

M
ax

im
um

S
im

ul
at

ed

D
iff

er
en

ce

8 88.89 85.61 3.28 80.00 74.92 5.08 66.67 59.94 6.73 50.00 49.09 0.91

16 94.12 92.17 1.95 88.89 85.58 3.31 80.00 74.87 5.13 66.67 59.90 6.77

32 96.97 95.82 1.15 94.12 92.07 2.05 88.89 85.48 3.41 80.00 74.90 5.10

64 98.46 97.70 0.76 96.97 95.69 1.28 94.12 91.92 2.20 88.89 85.48 3.41

128 99.22 98.59 0.63 98.46 97.55 0.91 96.97 95.50 1.47 94.12 91.91 2.21

256 99.61 98.86 0.75 99.22 98.32 0.91 98.46 97.29 1.17 96.97 95.41 1.56

4 4 1+ + 9= 1 3⁄

An Analytic Model of SMC Performance

14

Table 3 through Table 6 give the performance details hydro/tridiag, scale, swap, and vaxpy.

As illustrated in Figure 5 through Figure 8, performance curves for these benchmarks are

remarkably similar. The sole exception is the scale benchmark, which accesses only one

vector. Performance for this kernel is nearly 100% of the peak system bandwidth in all

cases, as depicted in Figure 6. In all but one instance (see Table 5 for swap using a depth-

to-banks ratio of 2), simulation performance differs from the maximum attainable SMC

performance by less than 5% of the peak system bandwidth.

(b) 2 banks(a) 1 bank

(c) 4 banks (d) 8 banks

Figure 4 Analytic versus Simulated Performance for daxpy

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

optimal SMC
simulated SMC
non-SMC

An Analytic Model of SMC Performance

15

.

Table 3: Performance Details for hydro and tridiag

F
IF

O
 d

ep
th

Percentage of Peak Bandwidth

1 Bank 2 Banks 4 Banks 8 Banks

M
ax

im
um

S
im

ul
at

ed

D
iff

er
en

ce

M
ax

im
um

S
im

ul
at

ed

D
iff

er
en

ce

M
ax

im
um

S
im

ul
at

ed

D
iff

er
en

ce

M
ax

im
um

S
im

ul
at

ed

D
iff

er
en

ce

8 80.00 79.94 0.06 66.67 64.90 1.77 50.00 49.95 0.05 33.33 28.57 4.76

16 88.89 88.78 0.11 80.00 79.21 0.79 66.67 64.14 2.53 50.00 49.92 0.08

32 94.12 93.97 0.15 88.89 88.53 0.36 80.00 79.18 0.82 66.67 64.22 2.45

64 96.97 96.75 0.22 94.12 93.85 0.27 88.89 88.50 0.39 80.00 78.98 1.02

128 98.46 98.11 0.35 96.97 96.62 0.35 94.12 93.68 0.44 88.89 88.47 0.42

256 99.22 98.62 0.60 98.46 97.86 0.60 96.97 96.38 0.59 94.12 93.64 0.48

(b) 2 banks(a) 1 bank

(c) 4 banks (d) 8 banks

Figure 5 Analytic versus Simulated Performance for hydro and tridiag

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

optimal SMC
simulated SMC
non-SMC

An Analytic Model of SMC Performance

16

.

Table 4: Performance Details for scale

F
IF

O
 d

ep
th

Percentage of Peak Bandwidth

1 Bank 2 Banks 4 Banks 8 Banks

M
ax

im
um

S
im

ul
at

ed

D
iff

er
en

ce

M
ax

im
um

S
im

ul
at

ed

D
iff

er
en

ce

M
ax

im
um

S
im

ul
at

ed

D
iff

er
en

ce

M
ax

im
um

S
im

ul
at

ed

D
iff

er
en

ce

8 99.98 99.79 0.19 99.96 99.78 0.18 99.93 99.75 0.18 99.85 93.94 5.91

16 99.98 99.79 0.19 99.96 99.78 0.18 99.93 99.75 0.18 99.85 99.81 0.04

32 99.98 99.79 0.19 99.96 99.78 0.18 99.93 99.75 0.18 99.85 99.81 0.04

64 99.98 99.79 0.19 99.96 99.78 0.18 99.93 99.75 0.18 99.85 99.81 0.04

128 99.98 99.79 0.19 99.96 99.78 0.18 99.93 99.75 0.18 99.85 99.81 0.04

256 99.98 99.79 0.19 99.96 99.78 0.18 99.93 99.75 0.18 99.85 99.81 0.04

(b) 2 banks(a) 1 bank

(c) 4 banks (d) 8 banks

Figure 6 Analytic versus Simulated Performance for scale

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

optimal SMC
simulated SMC
non-SMC

An Analytic Model of SMC Performance

17

Table 5: Performance Details for swap

F
IF

O
 d

ep
th

Percentage of Peak Bandwidth

1 Bank 2 Banks 4 Banks 8 Banks

M
ax

im
um

S
im

ul
at

ed

D
iff

er
en

ce

M
ax

im
um

S
im

ul
at

ed

D
iff

er
en

ce

M
ax

im
um

S
im

ul
at

ed

D
iff

er
en

ce

M
ax

im
um

S
im

ul
at

ed

D
iff

er
en

ce

8 91.43 88.79 2.64 84.21 79.89 4.32 72.73 66.58 6.15 57.14 57.06 0.08

16 95.52 93.99 1.53 91.43 88.72 2.71 84.21 79.84 4.37 72.73 66.56 6.17

32 97.71 96.80 0.91 95.52 93.89 1.63 91.43 89.30 2.13 84.21 79.88 4.33

64 98.84 98.23 0.61 97.71 96.74 0.97 95.52 94.04 1.48 91.43 88.73 2.70

128 99.42 98.90 0.52 98.84 98.08 0.76 97.71 96.94 0.77 95.52 93.95 1.57

256 99.71 99.22 0.49 99.42 98.75 0.67 98.84 98.02 0.82 97.71 96.51 1.20

(b) 2 banks(a) 1 bank

(c) 4 banks (d) 8 banks

Figure 7 Analytic versus Simulated Performance for swap

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

optimal SMC
simulated SMC
non-SMC

An Analytic Model of SMC Performance

18

Table 6: Performance Details for vaxpy

F
IF

O
 d

ep
th

Percentage of Peak Bandwidth

1 Bank 2 Banks 4 Banks 8 Banks

M
ax

im
um

S
im

ul
at

ed

D
iff

er
en

ce

M
ax

im
um

S
im

ul
at

ed

D
iff

er
en

ce

M
ax

im
um

S
im

ul
at

ed

D
iff

er
en

ce

M
ax

im
um

S
im

ul
at

ed

D
iff

er
en

ce

8 84.21 82.92 1.29 72.73 68.89 3.84 57.14 57.05 0.09 40.00 35.23 4.77

16 91.43 90.19 1.24 84.21 82.88 1.33 72.73 68.86 3.87 57.14 57.03 0.11

32 95.52 94.81 0.71 91.43 90.11 1.32 84.21 82.81 1.40 72.73 68.85 3.88

64 97.71 97.08 0.63 95.52 94.65 0.87 91.43 90.01 1.42 84.21 82.76 1.45

128 98.84 98.13 0.71 97.71 96.88 0.83 95.52 94.44 1.08 91.43 89.93 1.50

256 99.42 98.41 1.01 98.84 97.75 1.09 97.71 96.47 1.24 95.52 94.18 1.34

(b) 2 banks(a) 1 bank

(c) 4 banks (d) 8 banks

Figure 8 Analytic versus Simulated Performance for vaxpy

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f
pe

ak
 b

an
dw

id
th

optimal SMC
simulated SMC
non-SMC

An Analytic Model of SMC Performance

19

8. Conclusions

Here we have presented a bound on maximal SMC performance, and have demonstrated

that the simulation behavior of our dynamic access-ordering heuristics approaches that

bound. In the worst case, our simulations are delivering 7% or 8% less of the peak system

bandwidth than the maximum achievable, and even these small degradations are only for

very short FIFOs. For deeper FIFOs, our simulations deliver a percentage of peak

bandwidth that is within 1 or 2 of the theoretical maximum attainable for an SMC.

References

[Don79] Dongarra, J.J., et. al., “Linpack User’s Guide“, SIAM, Philadelphia, 1979.

[Don90] Dongarra, J.J., DuCroz, J., Duff, I., and Hammerling, S., “A set of Level 3
Basic Linear Algebra Subprograms”, ACM Trans. Math. Softw., 16:1-17,
1990.

[Gol93] Golub, G., and Ortega, J.M., Scientific Computation: An Introduction with
Parallel Computing, Academic Press, Inc., 1993.

[Hen90] Hennessy, J., and Patterson, D., “Computer Architecture: A Quantitative
Approach”, Morgan Kaufmann, San Mateo, CA, 1990.

[IEEE92] “High-speed DRAMs”, Special Report, IEEE Spectrum, vol. 29, no. 10,
October 1992.

[Kat89] Katz, R., and Hennessy, J., “High Performance Microprocessor
Architectures”, University of California, Berkeley, Report No. UCB/CSD
89/529, August, 1989.

[Law79] Lawson, et. al., “Basic Linear Algebra Subprograms for Fortran Usage”,
ACM Trans. Math. Soft., 5, 3, 1979.

[McK93a] McKee, S.A, “Hardware Support for Access Ordering: Performance of
Some Design Options”, University of Virginia, Department of Computer
Science, Technical Report CS-93-08, August 1993.

[McK93b] McKee, S.A., Klenke, R.H., Schwab, A.J., Wulf, Wm.A., Moyer, S.A.,
Hitchcock, C., Aylor, J.H., “Experimental Implementation of Dynamic
Access Ordering”, University of Virginia, TR CS-93-42, August 1993. To
appear in Proc. HICSS-27, Maui, HI, January 1994.

[McK93c] McKee, S.A., Moyer, S.A., Wulf, Wm.A., Hitchcock, C., “Increasing

An Analytic Model of SMC Performance

20

Memory Bandwidth for Vector Computations”, University of Virginia, TR
CS-93-34, August 1993. To appear in Proc. Conf. on Prog. Lang. and Sys.
Arch., Zurich, Switzerland, March 1994.

[McM86] McMahon, F.H., “The Livermore Fortran Kernels: A Computer Test of the
Numerical Performance Range”, Lawrence Livermore National Laboratory,
UCRL-53745, December 1986.

[Moy93] Moyer, S.A., “Access Ordering and Effective Memory Bandwidth”, Ph.D.
Dissertation, Department of Computer Science, University of Virginia,
Technical Report CS-93-18, April 1993.

[Qui91] Quinnell, R., “High-speed DRAMs”, EDN, May 23, 1991.

[Ram92] “Architectural Overview”, Rambus Inc., Mountain View, CA, 1992.

