The Mentat Computation Model Data-Driven Support for
Object-Oriented Parallel Processing

Andrew S. Grimshaw

Technical Report No. CS-93-30
May 28, 1993

Thiswork was partialy supported by NASA grant NAG-1-1-1181 and
NSF grant ASC-9201822.

The Mentat Computation Model - Data-Driven Support for
Dynamic Object-Oriented Parallel Processing?

Andrew S. Grimshaw
Department of Computer Science
University of Mrginia, Charlottesville, X, 22903
grimshaw@viginia.edu, 804-982-2204

Abstract

Mentat is an object-oriented parallel processing system developed at the University of V
ginia which has been ported to a variety of MIMD architectures. The computation model
employed by Mentat is macro data-flow (MDF), a medium grain, scalable, data-driven computa-
tion model that supports both high degrees of parallelism and the object-oriented paradigm. A key
aspect of the model is that it can bicedntly implemented. Inspired by data-floMDF retains
the graph-based, data-driven, self-synchronizing aspects of datavflolw address the short-
comings that data-flow exhibits when applied to distributed memory MIMD architectures by
extending data-flow in three ways: (1) it is medium grain - actors arefiiesuf computational
complexity to amortize overhead costs, (2) program graphs are dynamically constructed at run-
time - this permits dynamic function binding as required by the object-oriented paradigm and
increases the average computation granujaitg (3) actors may maintain state between execu-
tions - this provides anfetctive way to model the state properties of imperative, object-oriented
programs. In this paper we present the macro data-flow model, key features of the Mentat Pro-
gramming Language (MPL), key features of the Mentat run-time system that implements a virtual
macro data-flow machine, and translations from MPL constructs to the virtual machine. The result
of the translation process is programs in which program graphs are constructed at run-time by
observing data dependencies that develop as execution unfolds. These program graphs are ther
executed in parallel by the run-time system, resulting in improved performance over sequential

execution.

1. This work was partially supported by NASA grant NAG-1-1181 and by NSF grant ASC-9201822.

1. Introduction

Writing application software for parallel and distributed systems has proven to be far more
difficult than building the hardware. Research in the computer science community has focused on
the right languages and elegant abstractions for writing concurrent programs, but the fact remains
that today most applications are written by hand using C or Fortran extended with library calls
that clearly reflect the underlying hardware. Applications scientists, in our experience, have not
embraced the elegant abstractions. These programmers are familiar with the imperative style of
programming, Fortran and C in particular, and are not eager to change unless there is a significant
benefit. Since high performance isthe goal they will not sacrifice, they avoid abstractions, however

elegant, for fear they will fail to satisfy their performance needs.

Writing parallel programs by hand is difficult. The programmer must manage communica-
tion, synchronization, and scheduling of tens to thousands of independent processes. The burden
of correctly managing the environment often overwhelms programmers, and requires a consider-
able investment of time and intellectual energy. Also, once implemented on a particular MIMD
architecture, the resulting codes are usualy not usable on other MIMD architectures; the tools,
techniques, and library facilities used to parallelize the application are specific to a particular plat-
form. Thus, considerable effort must be re-invested to port the application to a new architecture.
Given the plethora of new architectures and the rapid obsolescence of existing architectures, this
represents a continuing time investment, and discourages users from parallelizing their code in the

first place.

Solutions to the problem of generating parallel software have ranged from fully automatic,
compiler-based approaches] 2][24][28], to hand-coded, explicit approaches[5][10][11][31][23] [26].
The problem with fully automatic compiler-based approachesis that they are good at finding fine-
grain parallelism but do not work well for distributed memory machines. Further, they can often be
defeated by spurious dependencies that require programmer intervention to resolve, making them
less automatic and increasing the cognitive burden on the programmer. The problem with explicit
approachesisthat they place too large aburden on the programmer. The programmer isresponsible
for problem decomposition (code and data), scheduling, communication, and synchronization. This

task istoo complex for all but the most regular of applications. Explicit approaches also suffer from

timing dependent errors and Heisenbﬁgs.

If the parallel software problem is not solved, parallel computers will not come into wide-
spread use, rather they will be used only by thogarzations that must have the highest perfor-
mance and are willing to pay for it with programmer time. This would be an unfortunate outcome as
there are many other users that could gain from the use of parallel processing, particularly on net-

works of workstations.

Our solution to the parallel software problem lies in a compromise between cempiler
based approaches and manual approaches. Mentat, an object-oriented, medium grain, parallel pro-
cessing system developed at the University iofjiia, strives for such a compromise. Mentat
addresses the parallel software problem by leveraging the object-oriented paradigm and exploit-
ing the comparative advantages of both humans and compilers: people know the application
domain and can better decompose the problem, compilers can better manage data dependence an
synchronization. Using the Mentat programming language (MPL), an extension to C++, the pro-
grammer uses application knowledge to specify the classes whose member functionfs are suf
ciently computationally complex to warrant parallel execution. These computationally “heavy”
classes are known 8entat classes. We have extended the object-oriented concept of encapsula-
tion to include parallelism encapsulation both within Mentat class instance member function
invocations and between instance member function invocations. Once the Mentat classes have
been specified by the programitéie compiler and run-time system take over and manage sched-
uling, communication, and synchronization between Mentat objects, and dynamically construct
program graphs by observing the data dependencies that actually occur as program execution

unfolds.

Mentat also addresses the problem of applications portability by providing source code porta-
bility between supported platforms as long as no architecture or operating system-specific features
are usedMentat achieves portability by using a portable virtual machine ageti tarthe compila-

tion process. The virtual machine is itself relatively easy to port. All architecture-specific features

1. AHeisenbugis a timing dependent bug that goes away when debugging or tracing is turned on. They are frus-
trating and difficult to track down.

2. Application code magenefitfrom changes, but does netjuire them, e.g., on the Sun 3/60 loop unrolling
provides no benefit; on the SparcStation it does.

have been isolated into two modules. Mentat has been ported to six platforms, including networks of

Sun 35, Sun 48, Silicon Graphics Irises, the Intel iPSC/2, the Intel iPSC/860, and the TMC CM-5.

The high-level and applications performance aspects of Mentat have been presented else-
where [14][15][16]. In [14] we present an overvjghe Mentat philosophyhe Mentat approach to
parallel computing, and performance results. In [16] the performance of a range of applications with
a range of speedups are explored; the results are promising, speedups are not only good -- they are

competitive with hand-coded versions of the same applications.

The purpose of this paper is to present two of the conceptual underpinnings upon which
Mentat rests, the Mentat computation model, macro data-flow (MDF), and the mapping from the
MPL to macro data-flowMDF is a medium grain, data-driven computation model that supports
the object-oriented paradigm. It is scalable and canfioeeetly implemented on a variety of par-
allel architectures that includes distributed memory MIMD machines as diverse as networks of work-
stations and mesh and hypercube-based multicomputers. The mapping from MPL to MDF consists of
a set of translations from the key constructs of MPL to run-time system calls that implement the

MDF. These calls result in the run-time construction and elaboration of program graphs.

We begin our discussion with some background on computation granularity and compiler
techniques for parallelism detection. The MDF model is then presented in detail, followed by a
brief overview of the salient aspects of the language, their translation, and the program graph con-
struction techniques used.eWo not include a description of run-time issues in this pager-

ested readers should see [17][18] for a description of the run-time system.

2. Background

In order to achieve high performance on a distributed memory MIMD architecture four

key issues must be addressed.

1) What size is appropriate for the pieces into which to decompose the problem, i.e., what
is the appropriate granularity? This varies from architecture to architecture.

2) How is the application decomposed? This includes not just the computational aspects, but
the data decomposition and resulting locality as well.

3) How are the computational and data components scheduled or placed on the proces-
sors? This often involves a complex tradehstween load balance and communication
overhead. In general, finding an optimal solution is NP-hard.

4) How isthe required communication and synchronization between the application com-
ponents established and managed? This can be difficult and subtle if done by hand.

For an in-depth discussion of these issues, see [3][11][25][29].

It is often claimed that the difficulty in parallel computing is in finding the parallelism in
the application. A tool is then presented that in simulation exposes and exploits fantastic levels of
parallelism, where hundreds or thousands of concurrent activities are plotted. In our experience
though, finding parallelism is not the problem. Most of the applications we have examined have
many opportunities for parallel execution. Rather the problem is constraining parallelism and

finding the right amount of parallelism for the target architecture given its associated overhead.

Overhead is the friction of parallel processing. It can take many forms not present in
sequential programs. Data communication and synchronization between computational units,
scheduling, migration, and context switching are among the most costly. All consume the most
precious commaodity, time. The degree of parallelism and overhead come together in the granular-
ity of computation. The granularity of computation is often defined as the number of instructions
between overhead events. This leads to the concept of the computation ratio. The computation
ratio is the ratio of computation time to total time spent in overhead. If the computation ratio
becomes small, i.e., less than one, then more time is being spent on overhead than on useful work.
In fact it may take longer to solve the problem in paralel than sequentialy if the computation

ratio istoo low. Increasing parallelism can mean poorer performance.

Thustheappropriategranul arity dependson overhead. Softwareoverhead canrunfromafew
instructions to tens of thousands. On many multitasking systems, context switch times are on the
order of one millisecond. Communication software overhead using | P datagrams is on the order of
a few milliseconds. In one millisecond, tens of thousands of instructions can be executed. Thus,
millisecond range software overhead argues for the use of medium granularity; using small gran-

ularity computation is expensive.

The problem, then, in writing parallel software is decomposing the application into appro-
priate size granules of computation, scheduling those granules, and managing the communication
and synchronization between those granules. Historically, this has been done either using fully

automatic parallelizing compilers[2][24][28], or by hand using primitives such asload, send, and

receive[8][13][23][31].

There are several advantages of automatic techniques. Jdgallging these techniques,
dusty-deck programs can be parallelized with a minimumfofteiMe say “ideally” because it
does not always work, and often results in low levels of parallelism due to dependencies and/or a
small granularity of computation. Second, problem decomposition, scheduling, communication,
and synchronization are all handled by the compalerentity we trust, rather than by more error
prone human programmers. Third, semantic equivalence to the original program can be maintained.
There are, howevgdisadvantages with automatic techniques. They are static, looking at the textual
representation of the program without any knowledge of the dynamic behavior of the program, e.g.,
which branches are taken, how many times a loop must be unrolled, what the array index values are
(particularly via indirect arrays), etc. This lack of knowledge is a serious impediment. Frequent run-
time synchronization is often required to determine which path through the program is actually cho-
sen, thus reducing granularifurther automatic techniques must be conservative and often cannot
exploit all available parallelism because of spurious dependencies that require programmer interven-
tion to resolve. They cannot take a global view of programs and partition them appropriately because
they lack domain knowledge of the application. Automatic techniques are best at finding fine-grain
and loop-level parallelism. For this reason they have primarily been used for architectures with very

low hardware overhead, e.g., shared memory multiprocessors.

Fully explicit (manual) approaches are often characterized by some sequential language,
such as C or Fortran, extended with library calls to support problem partitioning (e.g., light weight
threads), communication (e.g., shared memory or messages), and synchronization (e.g., sema-

phores and barriers).

The advantages of explicit approaches are that they are easy to eigayeean reflect the
underlying hardware, and the programmer has total control over the computation and can partition
and schedule the problem based on his domain knowledge. The disadvantages are that the program
merisresponsible for all aspects of parallelization, scheduling, communication, and synchronization,
and can easily make errors that are timing dependent dicdldib track down. Application port-

ability also suffers because fairly low-level, system-specific features are used.

In summarythe use of medium-grain parallelism permits us to maintaficiemt compu-

tation granularity to exploit a wide range of architectural platforms, especially platforms with lower
cost (slower) interconnection networks. 8asily write medium-grain software calls for the safety
correctness, and ease-of-use of compiler based approaches, combined with the granularity control of
explicit approaches. Such a system would permit the exploitation of MIMD architectures by a wide
range of users and require a reduced level of programioet, effectively moving parallel pro-

cessing out of the lab and into the marketplace.

3. The Macro Data-Flow Model

Macro data-flow was inspired by the data-flow model of computation [1][12][32]. Recall that
in the data-flow model there are two types of objéckens andactors. Tokens carry data or control
information. Each actor performs a function based on the information contained in the tokens it con-
sumes. Actors are computation primitives, corresponding to granules of computation. Actors do not
preserve their internal state from one computation to the next. In traditional data-flow actors are

small grain, for example, add, subtract, multipigd compare.

A computation can be described by a data-flow graph in which nodes are actors. Actors are
connected by directed arcs along which tokens #aas model data dependencies between granules
of computation. Specificallthe execution of any granule cannot begin until all granules of computa-
tion on which it depends have completed. Correspondimglye model, an actor is enabled and may
“fire” (execute) only when there are tokens on all of its incoming arcs. Thus, synchronization is auto-
matically provided by the token transport mechanism. Parallelismis gained in data-flow architectures
by allowing any actor to execute on any processor and by allowing as many enabled actors to fire as
there are processors to execute them. When there isczesitify large number of processors, only
actors that depend on uncompleted granules of computation are not enabled. A key feature of the
model is that the order of actor execution does fietethe result. Thus, the data-flow model natu-

rally achieves high degrees of parallelism.

3.1 Problems with Data-flow
There are two problems with traditional data-flow with respect to our requirements. First, the
granularity of traditional data-flow is too small for many MIMD architectures, particularly distrib-

uted memory systems where latencies are measured in hundreds to thousands of microseconds. Th

overhead of token transport and actor scheduling and instantiation requires that the granularity of
computation be at least hundreds, and perhaps thousands, of instructions. Second, traditional data-
flow systems have program graphs with a topology that is fixed at compile-time. Even in so-called
dynamic graph systems, “dynamic” refers to the dynamic creation of a subgraph instance (for exam-

ple, a new loop iteration or procedure call). The subgraph structure is still fixed.

We require dynamic topology program graphs for two reasons. Static topologies are inade-
guate in an object-oriented system because a static topology implies that the types of objects can be
determined at compile-time, and hence the subgraphs that implement their function can be included
inthe program graph. However object-oriented languages, itis often not possible to know even the
type of objectin use. In Smalltalk, we know only that the object supports some method. Exactly how
the method is implemented, i.e., its subgraph, cannot be determined until run-time. Thus, we must be
able to delay the binding of subgraphs for method implementation until run-time. Providing dynamic
graph elaboration of actors into subgraphs would satisfy this need. As an example consider the C++

code fragmentin Figure 2.&¢annot know at compile time whether to use the program subgraph for

cl ass shape {
publi c:
virtual void draw();

class circle: public shape {
publi c:

virtual void draw();
}

cl ass square: public shape {
publi c:
virtual void draw();

void draw screen() {

shape *shape_ptr;

for each shape in shape_|ist
shape_ptr->draw();

Figure 2. A static graph for functiodr aw_scr een() is inadequate because we do
not know the types of the shapes.

the classci r cl e, the classsquar e, or some other class derived frahape. We could, of
course, generate a subgraph that contained all possible graphs, and dynamically select the appropri-

ate subgraph using control actors. This approach is undesirable since program graphs can become

quitelarge, and, aswewill see shortly, the use of control actorswill significantly reducethegranular-

ity of computation.

A second reason we require dynamic topology program graphs is that performance suffers
whenthetopol ogy of the graphisstatic dueto thereduction of thegranularity of computation. To see
why the granularity isreduced consider how control is performed in static graphs. Certain actorsin
the program graph, called control actors, determine at run-time the actual execution pattern for the
graph, such as which subgraphs are executed and how many loop iterations or recursive calls are
invoked. Examplesof control actorsincludegreater than, lessthan, equal to, switches, and merges. If
static graphs are used, we must use control actorsto determine the actual execution pattern. Control
actorshave very small granularity, often asingleinstruction. There can be many control actorseven
for smple operations such as unrolling a loop or performing conditional and case statements.
Studies have shown that there is a control flow statement (if, for, while) every 3-7 statementsin
typical programs. Further, we must pay the communication and scheduling overhead for each
control actor executed just as we do for larger grain actors. To illustrate the problem with control

actors consider the code fragment and program graph shown in Figure 3. In Figure 3 the function

float f(int dim float initial){ i nput *
int i;float |ast=input;
for (i=0;i<dinji++) —® T(switch) g

if (F1(dimi,input))
last = SGI(I ast);
el se

| ast = S@&(I ast); S&
return(last);]
val ues of i dim' nput
Counter actor F1 conditi onal T
| I Y
| oop done
p > T
Figure 3. Use of static graphs and control actors. ‘

f () performsdi miterations of aloop. In each iteration the function F1(di m i) , based solely
on local state information, determines whether SGL or S& is executed. SGL and SG2 correspond
to statements that themselves form a subgraph and may contain additional control constructs. Sup-
posethat F1 isasimplefunction, then the effective granularity of thisgraph, ignoring the subgraphs

SG1 and S&, isafew instructions at best. For distributed memory machinesafar larger granularity

isrequired.

Much of the control overhead can be eliminated by moving the control of subgraph selection
and unrolling into actorsand having the actors construct subgraphsat run-timethat reflect the effects
of performingthecontrol functioninternally. By dynamically creating program subgraphsastheloop
isunrolled we can substitute the overhead of firing small actors with the overhead of dynamically

creating subgraphs.

The shortcomings of traditional data-flow led to the development of the macro data-flow
model. The macro data-flow model isan extended data-flow model that addressesthe problemswith
traditional data-flow. There are three principal differences with data-flow. First, asin other large-
grain data-flow systems[4][6][9] the granularity of the actorsis considerably larger; we call these
macro actors. This provides the flexibility to choose an appropriate degree of parallelism. Second,
some actors can maintain state information between firings, providing an effective way to model
side-effectsand non-determinism; wecall these per sistent actors. Third, unlink other largegrain data
flow systemsthe structure of macro data-flow program graphsis not fixed. Graphs grow by therun-

time elaboration of graph nodes into arbitrary subgraphs.

Macro actorsarelarge-grain actorsthat perform high-level functionssuch asmatrix multipli-
cation, Gaussian elimination or image convolution instead of individual machine instructions. The
important characteristic of macro actors is that they are sufficiently computationally intensive to
amortizethe overhead costs. How the computation grainsare specified isnot apart of themodel ; that

isalanguage issue. There are two types of macro actors, regular actors and persistent actors.

Regular actorsare similar to actorsin the data-flow model. Specifically, all regular actors of
agiventypearefunctionally equivalent. A regular actor isenabled and may execute when all of its
input tokensare available. It performs some computation, generating output tokensthat depend only
onitsinput tokens. It may maintaininternal stateinformation during the course of asingleexecution,

but no state information is preserved from one execution to another; they are pure functions.

Persistent actors maintain stateinformation that is preserved from one execution to the next.
Output tokensgenerated by apersi stent actor during different executionsarenot necessarily thesame

for the same input tokens. The state corresponds to member variables (instance variables) in the

object-oriented paradigm. This correspondence to member variables implies that sdeezat dif

actors may share the same state, as with the enqueue and dequeue operations on a queue. The moc
guarantees that the actors that share state will be executed in mutual exclusion, that is, no two actors
that share the same state will ever be executing simultanefllsly can be modeled in stateless
data-flow using a single “state” token and a non-deterministigentgrerator[1]. Only one actor can
“possess” the state token at a time, guaranteeing mutual exclusion.) Thus, the set of actors that share

state combined with the state they share can be thought of as a monitor

The introduction of state means that the arcs of the program graph no longer model all depen-
dencies in the program; there are implicit dependencies via the shared state. For example, consider
the program graph fragment in Figure 4. Suppose that #ctmdB share state. If the execution of
Aoccursfirst, there is a hidden dependebaged on the state, betwdesmdB. Because of this hid-
den dependency the results of fhandB operations depend not only on theguments and the

object historybut also on the order of execution.

The introduction of state has one very important consequence: in macro data-flow some pro-
grams will be determinate, and others not Ngve found that for many scientific codes, the pro-

grams are determinate because of the way the actors are used. In general though, this is not the case

Non-determinism is not necessarily bad. There are in fact many “correct” non-deterministic
applications. Concurrent database applications in particular are non-determinate. They do have a
notion of correctness called consistency [7] based on the idea of transaction serializakbiktyer
the enforcement of monitor properties alone on objects, as is done indidEsuficient to guar-
antee serializabilityThus, in macro data-flgws in monitor systems in general, it is the responsibil-

ity of the programmer to guarantee highearel notions of correctness.

3.2 Dynamic Graph Representation Using Futures

* hidden dependency
(®)

Figure 4. Hidden dependencies develop when A & B share state and A is executed b

10

Figure 5. A macro data flow subgraph. The future of the actor A is shown.

Some mechanism is required to represent program graphs in any graph-based model of
computation. The redlization of a mechanism often involves a trade-off between different design
objectives, including performance. The design of the graph representation mechanism used in the
MDF model is driven by the theoretical requirements of the model and by implementation and
performance considerations. The model requires that the mechanism must support dynamic pro-
gram graphs, and both persistent and regular actors. Implementation and performance consider-
ations require 1) that the mechanism use a distributed, as opposed to centralized, control, 2) that
graph updates be a non-global, local operation, 3) that no shared memory be assumed, and hence
messages must carry flattened graph segments, and 4) that actors are context independent (they do

not name their input/output communication partners).

Program graphs are represented in MDF using futures.3 A future representsthe future of the
computation with respect to a particular actor at a particular instant in time. For example, consider
the program graph fragment of Figure 5. Asfuture is shown by the shaded area enclosing the actors
(B, C, D, G). Thefuture of A at thispoint intimeincludesall computationsthat are data-dependent
on the result of the computation that A performs. Although actors E and F are in the same program

graph as A, they are not in Asfuture, nor isAin their future.

In many respects a future is like a parallel form of a continuation[1]. Both represent the
remainder of thecomputation at aparticular instant. The difference between afuture and acontinua-

tionisthat afuture does not encapsul ate an environment, and can only be used once, while acontin-

3. MDF futures should not be confused with Multilisp futures[20]. Multilisp futures represent apromiseto de-
liver avaluein the future. MDF futures represent the future of acomputation, and have more in common with
continuations[1].

11

uation can be used again. In addition, continuations are sequential, while futures may be parallel.

When an actor such as A recelvesits tokens, it receives with them a future. When the actor
completes, one of two things happens: the actor returns a value that is transmitted to each direct
descendent in itsfuture, or the actor elaborates itself into a subgraph. In either case, modifications
need to be made to the program graph, either to reflect the compl etion of the actor or to include the
new subgraph. Because the modifications require changing A sfuture only, the modifications can be

made locally. Other processors, such as those executing E or F, need not be notified.

Supposethat Areturnsthevalue5. Asfutureisbrokeninto two futures. Thesefutures, aong
with the value 5, are forwarded to B and C. The new state is shown in Figure 6. B and C are now

enabled and may execute since they have atoken (value) on each input arc.

‘5
e.

C'sfuture []
B’s future |:|

|:| E'sfut

Figure 6. New futures after actor A from Figure 5 returns a value.

Alternatively, A may elaborate itself into an arbitrary subgraph. Suppose that A elaborates
into the subgraph shown in Figure 7(a). The new stateisshownin Figure 7(b). In this case the graph
has grown, rather than contracted asin Figure 6. The key point isthat in both cases only A's future
needs modification. Neither E, nor any other actor or system component need be notified of the

change.
Example 1 - Fibonacci Numbers

Consider the naiveimplementation of finding afibonacci number givenin Figure 8. Assume
two types of actors, an integer adder and afibonacci functioni nt F(i nt) . Suppose an F actor is
invoked with atoken value of 4 (the mapping of codefragmentsto MDF will bediscussed later). The
initial graph marking isshownin Figure 8 (b). Because the input valueis greater than 1, the actor F
elaboratesitself into the graph shownin 8 (c). The successive elaborationsare shownin 8 (d) though

12

I’'sfuture D

(a) A's elaborated subgraph (b) New grh
Figure 7. Actor elaboration. The actor A from Figure 5 elaborates into the subgraph of (a).
The resulting graph is shown in (b).

TNt _add(int _a, Nt b) {return (a+b), s
int F(int n){

if (n<=1) return 1, éF;r
el se return(add(F(n-1), F(n-2));

0 (9) (h) (i)

Figure 8. Successive elaborations of the fibonacci function for F(4).

8 (i). Note that the order shown isjust one possible ordering.

An important consequence of the use of futures as a graph description mechanism is that
graph control is completely decentralized. Each actor receives enough of the program graph to
continue the computation. Thereis no need to coordinate the execution of separate subgraphs, and
their execution may proceed independently. Furthermore, it is not necessary for the entire pro-
gram graph to be generated at compile time. Indeed, the structure of the graph isonly implied, and
changes as actors modify their futures. As an example of decentralized control, recall the subgraph

shownin Figure 6. Supposethat E isexecuting on processor P1 and that A isexecuting on processor

13

P2. Now supposethat A elaboratesitself into asubgraph asin Figure 7. No communication between
P2 and P1, or any other processor, is necessary. The future of A can be elaborated locally without
any external notification. Decentralized control isimportant in order to satisfy thebounded resources
principle: “The service demanded from any component (of the system) should be bounded by a
constant. The constant should be independent of the number of nodes.”[28] If the service
demanded is not bound by such a constant, then that component will become a bottleneck and

limit the scalability of the system.

Another consequence of theuse of futuresisthat actorsare context-independent. Actorsneed
not be aware of the source of their arguments or the destination of their results. For example, in Fig-
ures 6 and 7 the actors B and C cannot distinguish between the two graphs, or between graphs that
have different numbers of outgoing edges. The use of context-independent actors contrasts sharply
with CSP-based systemg] 21][22], where each computational unit knowsthe names of its communi-
cation partners. Context-independenceisimportant for software reuse. Without it, modules must be

tailored by hand for each context in which they may be used.

4. The Mentat Programming Language (MPL)

Rather than invent anew language for writing parallel software, MPL isan extension of the
object-orientedlanguage C++. Theextensionsaredesigned tofacilitate communi cation about granu-
larity and data decomposition between the programmer and the compiler and run-time system. The
extensions are how we encode programmer knowledge so that the compiler and run-time system

(RTS) can make better decisions. The extensions are applicableto arange of imperative languages.

In MPL we have extended the object-oriented concepts of data and method encapsul ation to
include parallelism encapsulation. Parallelism encapsulation takes two forms that we call intra-
object encapsul ation and i nter-object encapsul ation. | ntra-obj ect encapsul ation of parallelismmeans
that callers of aMentat object member function are unaware of whether the implementation of the
member function is sequential or is paralel, i.e., whether its program graph is a single node, or
whether itisaparallel graph. Inter-object encapsulation of parallelism means that programmers of
codefragments(e.g., aMentat object member function) need not concern themselveswith the paral -

lel execution opportunities between the different Mentat object member functions they invoke.

14

ment at cl ass bar {
/1 private nmenber functions and vari abl es
public:

int functionl(int);

int function2(int, int);

O WNE

b
Figure 9. A Mentat class definition. Without the keyword “mentat” it is alegitimate C++ class definition

Instead this is managed by the compiler working in conjunction with the run-time system.

Thebasic approachin MPL isto alow the programmer to specify those C++ classesthat are
of sufficient computational complexity towarrant parallel execution. Thisisaccomplished using the
keywordment at inthe classdefinition. Instances of Mentat classes are called Mentat objects. The
programmer usesinstancesof Mentat classeslikeany other C++ classinstance. The compiler gener-
ates code to dynamically construct and execute macro data-flow graphs at run-time in which the
actorsare Mentat object member function invocations, and the arcs are the data dependenciesfound
in the program. We call this inter-object parallelism because parallelism opportunities between
objectsarebeing exploited. All communication, argument marshalling, and synchronizationisman-
aged by the compiler acting in concert with the run-time system. The actorsin agenerated program
graph may themselves be transparently implemented in asimilar manner by amacro data-flow sub-
graph. That iscalledintra-object parallelism encapsul ation; the caller only seesthe member function

invocation.

There are four MPL extensions to C++: Mentat classes (both persistent and regular), the
Mentat class member functions cr eat e() and dest r oy(), the msel ect /maccept guarded
statements, and ther t f () (return to future) function[19]. We will limit our discussion here to the

most important of these with respect to parallelism, Mentat classesandrt f () .

4.1 Mentat Classes

Themost important extension to C++ isthekeyword mentat asaprefix to classdefinitions, as
shownonlinelof Figure9. Thekeyword mentat indicatesto the compiler that the member functions
of theclassare computationally expensiveenough to beworthdoinginparallel. Member functionsof
Mentat classes correspond to actorsin MDF. Mentat classes are further defined to be either regu-

lar or persistent. The distinction reflects the two different types of actorsin MDF. Regular Mentat

15

classes are stateless, and their member functions can be thought of as pure functions in the sense
that they maintain no state information between invocations. As a consegquence, the run-time sys-
tem may instantiate a new instance of a regular Mentat object to service each invocation of a

member function from that class.

Persistent Mentat classes, on the other hand, do maintain state information between mem-
ber function invocation. Since state must be maintained, each member function invocation on aper-

sistent Mentat object is served by the same instance of the object.

Instances of Mentat classesare M entat objects. Each M entat object possessesauniquename,
an address space, and asingle thread of control. Because Mentat objects are address space-digoint,
all communicationisviamember functioninvocation. Parameter passingisby value. BecauseMen-
tat objects have asinglethread of control, they have monitor-like properties. In particular, only one
member function may be executing at atime on aparticular object. Thus, there are no races on con-

tained variables.

Variableswhose classes are Mentat classesare anal ogousto variablesthat are pointers. They
arenot aninstance of theclass, rather they nameor point to an instance. We call these variablesMen-
tat variables. Aswith pointers, Mentat variablesareinitially unbound (they do not nameaninstance)
and must beexplicitly bound. A bound M entat variable namesaspecific Mentat object. Unlikepoint-
ers, when an unbound Mentat variable is used and amember function isinvoked, it is not an error.
Instead, if the classisaregular Mentat class, the underlying system instantiates anew Mentat object
to service the member function invocation. The Mentat variable is not bound to the created

instance.

4.2 Member Function Invocation

Member function invocation on Mentat objects is syntactically the same as for C++
objects. Semantically there are three important differences. First, Mentat member function invo-
cationsarenon-blocking, providing for theparallel execution of member functionswhen datadepen-
dencies permit. Second, each invocation of a regular mentat object member function causes the
instantiation of a new object to service the request. This, combined with non-blocking invocation,

meansthat many instancesof aregular classmember function can beexecuting concurrently. Finaly,

16

Mentat member functionsare alwayscall-by-val ue becausethe model does not assume shared mem-
ory. All parameters are physically copied to the destination object. Similarly, return values are by-
value. Pointersand references may be used asformal parametersand asresults. The effect isthat the
memory object to which the pointer pointsis copied. Variable size arguments are supported aswell,

asthey facilitate the writing of library classes such as matrix algebra classes.

4.3 The Return-to-Future M echanism

Mentat member functionsusether t f () asthe mechanism for returning values. Thevalue
returned isforwarded to all Mentat object member function invocations that are data-dependent on

the result, and to the caller if necessary. If the caller does not use the value, a copy is not returned.

Whiletherearemany similaritiesbetweentheCr et ur nandr t f (), they differinthreesig-
nificant ways. First, ar et ur n returnsdatatothecaller. Anr t f () may or may not return datato the
caller depending on the datadependenciesof the program. If the caller doesnot usetheresult locally,
then the caller does not receive a copy. This saves on communication overhead. Second, a C
r et ur n signifiestheend of the computationinafunction, whileanr t f () doesnot. Anr t f () indi-
cates only that the result is available. Since each Mentat object hasits own thread of control, addi-
tional computation may be performed after the rt f (), e.g., to update state information or to
communicate with other objects. By making the result available as soon as possible, we permit data
dependent computationsto proceed concurrently with thelocal computation that followsther t f ().
This is analogous to send-ahead in message passing systems. Third, in C, before a function can
r et ur n avalue, thevalue must beavailable. Thisisnot thecasewithanr t f (). Recall that whena
Mentat object member functionisinvoked, thecaller doesnot block; rather, weensurethat theresults
are forwarded wherever they are needed. Thus, amember functionmay rt f () a“value’ that isthe
result of another Mentat object member function that has not yet been completed, or perhaps even
begun execution. Indeed, the result may be computed by a parallel subgraph obtained by detecting

inter-object parallelism.

5. The MPL Compiler

Giventhat theuser has specified the computation boundariesand granul arity viaM entat class

specification, the remaining problem isto manage communi cation and synchroni zation by mapping

17

the application to macro data-flow graphs. The MPL compiler and the run-time system perform this
task.

Asshown in Figure 10, the MPL compiler (mplc) takes MPL programs asinput and gener-

ates C++ codeasoutput. The C++ codeincludeslibrary function callsthat interact with the run-time

C++ . :
mplc C++ compiler Executable object
P Crty piler |- jech)

MPL /A
Source e

RTS Libraries

-
~— N @@

Figure 10. MPL compiler steps.

system to perform run-time graph construction, communication, and synchronization. As in any
compiler therearemany interesting issues. Wewill restrict oursel vesto those aspectsof codetransa-

tion relevant to data-flow detection.

5.1 The Compilers View of the Run-Time System

The basic compilation problem isto map MPL constructs onto the MDF model and itsreal-
izationintherun-timesystem (RTS). The RT Ssupportsan object model inwhich each Mentat object
instance correspondsto aprocess. Mentat class member functions correspond to MDF actors. Each
formal parameter corresponds to an incoming arc for that actor. Tokens correspond to the actual
parameters of the member function invocation. When al of the tokens have arrived and an actor is

enabled, al of the actual arguments are available and the member function may execute.

The data dependencies between Mentat object function invocations correspond to arcsin
the MDF program graph. Actor elaboration corresponds to intra-object parallelism encapsulation.
Thisoccurswhen aMentat object member function usesother Mentat object member functionssuch
that a subgraph is generated, and the member function performsan rtf (vari abl e) where
var i abl e isavauethat will be generated by the subgraph. A form of intra-object parallelismaso

occurs when an actor elaborates but does not return the subgraph.

The RTS providesfunctionsthat instantiate new object instances, and perform token match-

ing, run-time data-flow detection, run-time program graph construction, and actor elaboration. A

18

completediscussion of the RTSisgivenin[17]. We consider herethree setsof servicesthat the RTS
provides, M entat object back-end processes, ment at _obj ect front-end classes, andthedata-flow

detection library.

TheRT Simplementation of M entat obj ectsconsi stsof two components, (1) afront-end class,
ment at _obj ect , that containsthe name of aMentat object (process) and isthe handle by which
the back-end object ismanipulated, and (2) aback-end server object processthat containsthe Mentat
object’s state and performs the member functions. Member function invocation involves using the
front-end asasurrogatefor the back-end server object. Thefront-endnent at _obj ect sareessen-
tially object names and a set of member functions used to communicate with the back-end server.
Thecompiler generatescodeto manipulatenment at _obj ect sandtheserver loopsthat implement

the back-ends. The three member functions of interest are shown in Figure 11.

7 class nentat_object {

8 obj ect _nane i _nane;

9 npublic:

10 CIP invoke fn(int,int,...); // used to conmunicate wi th back-ends
11 void create(); // instantiate new back-end

12 void destroy();// destroy the back-end

13 };

Figure 11. Partial interface of the front-end ment at _obj ect class.

The data-flow detection library consists of routines that monitor the use of certain variables
(called result variables) at run-timeto produce data dependence graphs. The basicideaisto monitor
the use of Mentat objects, and the use of the results of mentat object member function invocations.
Informally, if at run-time we observe avariable w (Figure 12) being used on the left-hand side of a
Mentat object member function invocation, we mark was delayed and monitor all uses of w. When-
ever wisdelayed and wis used as an argument to a Mentat object member function invocation, we
construct an arc fromtheinvocation that generated wto the consumer of w. If wisnot delayed, weuse

itsvalue directly. Whenever wisused in astrict expression, we start the computation that computes

19

w, and block waiting for the answer.

bar A B, C bar A
int wXx,Yy; int wXx,Yy;
w = A opl(4,5); w = A opl(4,5);
X = B.opl(6,7); y = w +1;
y = C opl(w, x);
b) wisused in astrict expression,
PopiusnaciiomAci0and (A S NE forvate

Figure 12. Two uses of result variables. In this example, bar isaregular Mentat class.

More formally, let A be a Mentat object with amember function

int operationl(int,int) o o _)
A Mentat expression is one in which the outermost function invocation is an invocation of aMen-

tat member function, e.g., the right-hand side of

X = A operationl(4,5);

A Mentat expression may be nested inside of another Mentat expression, e.g.,
X = A operationl(5, A operationl(4,4));.

The right-hand side of every Mentat assignment statement is a Mentat expression, e.g.,
x = A operation(4,5);.

We keep track of Mentat object member function invocations at run-time using computation
instances. A computation instance corresponds to a node in a MDF program graph. It contains the
name of the Mentat object invoked, the number of the invoked function, the computation tag that
uniquely identifiesthe computation, alist of thearguments (either valuesor pointersto other compu-
tation instances that will provide the values), and a successor list. A computation instance contains

sufficient information to acquire the value that is the result of the operation.

The nmentat _obj ect member function i nvoke fn() is caled when a Mentat
object member function is used. It creates a new computation instance for the computation, (i.e., a
program graph node is created), and marshals both actual arguments (e.g., integers) and argu-
ments that are computation instances. If an argument is a computation instance, i nvoke_f n()

adds an arc from the argument to the new computation instance it is constructing.

A result variable (RV) isavariable that occurs on the left-hand side of aMentat assignment

statement, e.g., win Figure 12. It has adelayed value if the most recent assignment statement to it

20

was acomputation instance and the actual valuefor the computation instance has not been resol ved.
AnRV hasan actua valueif it hasavaluethat may be used. To detect data-flow at run-timewe mon-

itor all uses of result variables, both on the left- and right-hand sides.

Each RV hasastatethat iseither delayed or actual. We define theresult variable set (RVS)
to bethe set of all result variables that have a delayed value. Membership in RV Svaries during the
course of object execution. We definethe potential result variable set (PRV) to bethe set of all result
variables. A variable may be amember of the PRV set and never be amember of RVS. Membership
in the PRV set is determined at compile time.

The run-time system performs run-time data-flow detection by maintaining a table of the
addresses of the members of the RV S called the RV_TABLE. Each RV_TABLE entry contains the
address of the RV, and a pointer to a computation instance. If the address of an RV is not in the
RV_TABLE, thenthe RV isnot inthe RVS.

There are four functions of interest that operate on the RV_TABLE:

1) SET _Mg((char*) rv_address, ClP node);

2) RV_DELETE((char*) rv_address);

3) force();

4) RESCLVE((char*) rv_address,int size);

The function SET_ME() creates an entry in the RV_TABLE with a CIP value of node for

theresult variable pointed to by r v_addr ess. If anentry already existed forr v_addr ess, itis

overwritten. SET_ME() is the mechanism for adding a PRV to RVS.

The function RV_DELETE() deletes the RV_TABLE entry associated with r v_ad-
dr ess if one exists. Before the entry is deleted, its associated computation instance is decoupled.

Thisisthe mechanism for removing a PRV from RVS.

Thefunctionf or ce() isused to begin the execution of any program graphs that have been
constructed sofar. It constructsthefuturelistsfrom the program graphs and sends messageswith the

appropriate future lists to the appropriate objects.

Thefunction RESOLVE() iscalled whentheuser programrequiresavaluefor aresult vari-

able. Thisisthe casewhen astrict expressionisencountered. If anentry intheRV_TABLE existsfor

21

rv_addr ess,RESCOLVE() callsf or ce() , and blocksuntil theresultisavailable. Oncetheresult

isavailable, RESOLVE() places the result into the memory to which ther v_addr ess points.

5.2 Trandation

The compiler isafour passcompiler. Inthefirst pass, the MPL sourceisparsed and the parse
tree and symbol tablesare constructed. Mentat classes areidentified and marked inthe symbol table.
Front-end classes are constructed by derivation from the classnment at _obj ect . Function num-
bersareassigned to all Mentat classmember functions. Thefunction numbersare used later asargu-

mentstoi nvoke_fn().

The second pass marks all variablesthat are PRV's. We do this by descending the parse tree
and checking if the right-hand side of an assignment is a member function invocation on an object
whoseclassisaMentat class. If so, theleft-hand sideismarked asaPRV. Inthe simple case, the | eft-
hand sideisasimplevariablewasin Figure 12. Inthe case wheretheleft-hand sideismore complex,

suchasZ[i] orY. X the outermost enclosing variable, e.g., Z and Y, are marked as PRVs.

Thethird passtraversesthe parsetreeagain, transforming thetree. Thetransformationsresult
in the generation of codeto call the RTSlibrary routinesthat perform the desired action at run-time.

There are five transformations:

1) When aPRV occurson theleft-hand side of aMentat expression, add it to RVSusing
SET_ME(), and construct a computation instance (add it to the graph) using
i nvoke_fn() onthefront-end.

2) When aPRV occurs on the right-hand side in a strict expression, RESOLVE() it.

3) When aPRV occurs on the left-hand side of a non-Mentat expression, or goes out of
scope, removeit from RVSusing RV_DELETE() .

4) When aPRV occurs as an argument to a Mentat expression, add an arc from the com-
putation instance corresponding to the PRV to the computation instance corresponding to
the Mentat expression. The compiler has detected a potential data dependency. Thisis
doneusingi nvoke_f n() and passing in the address of the PRV.

5) Marshall all non-RV Sargumentsto Mentat invocationsdirectly, i.e., packagetheminto
messages to send to the object using i nvoke_fn() .

The fourth and final pass traverses the transformed parse tree and printsit out. If the source
being compiled isthe codefor aMentat class back-end (as opposed to amain program) the compiler

also generatesaserver loop member functionandarnai n() function. Theserver loopisequivalent to

22

alarge select/accept in which every member function of the classisincluded. The output from the

fourth pass can be used directly asinput to a C++ compiler.

5.3 Trandation Examples

The following two examplesillustrate the code translation process, and the parallelism that
resultsfrom run-time el aboration of the programinto M DF graphs. For each examplewe present the
MPL code, thetranslated code, and the resulting program subgraph. Theoriginal codeisretainedin

comments. Only statements involving PRV’s and Mentat objects are transformed.

Example 2: Simple Mentat object invocation. In Figure 12 two program fragments were
presented to illustrate blocking versus non-blocking member function invocation. The MPL trans-

lations are shown in Figure 13 (a) and 13 (b) respectively. The code fragment of Figure 12 (a) has

bar A

int wX,V;

[Iw = A opl(4,5);

/1l Add wto RVS, create a node in the subgraph, marshall argunents.
(*SET_ME((&W)))=A.invoke_fn(101, 2,1 CON._TO ARG 4), 1 CON_TO ARH5));
[1x = B.opl(6,7);

/1 Add xto RVS, create a node in the subgraph, marshall arguments.
(*SEI' ME((&x))) A i nvoke_fn(101, 2,1 CON_TO ARG 6), | CON_TO ARE 7)) ;

/1 Add y to RVS create a node in the subgraph, add arcs to subgraph
(*SET_ME((&y)))=C.invoke_fn(101, 2, PRV_TO ARE &w, 4, 0), PRV_TO ARG &x, 4, 0));
[rtf(y);

/'l elaborate the current actor into the constructed subgraph

rtf (PRV_TO ARG &y, 4));
(a) Code transformation for 12 (a)

Y

4,5
T (()(&\(/\/))))Alnvoke fn(101, 2,1 CON_TO ARG(4), | CON_TO ARG 5));
(_RES(]_VE(&n), W + 1;

(b) Code transformation for 12 (b). Control flow blocks waiting for the result of the
member function invocation, resulting in an RPC-like behavior.

4 Z 6¥7
5
cdler
the future
@efuture

—
]grcggl rrr]:(taln atl (ga[)aph and elaboration for (d) Graph for (b).

Figure 13. Code transformations and generated graphs for code fragments of Figure 12.

23

been extended to includeanr t f (y) . Theresult is that the actor containing the code fragment is

elaborated into the subgraph shown.

Example 3: Pipelined Functional Parallelism. Or final example is the most complete trans-
lation. It illustrates the dynamic construction of program graphs and the use of regular Mentat
classes. We define four classes, two variable-sized C++ classes, st ri ng and dbl ock, and two
Mentat classes, regul ar nentat class data filter,and persistent nentat
class nfile. Thenfil e class provides operations to open a file, read blocks, and write
blocks of data. The data_fi |t er class provides two different filter operations, fi | t er 1()
andfilter2(). What the filters do is unimportant. It is important that they are pure functions
that depend only on their inputs. The main loop reads data blocks from the input file, passes them
through two filters, and writes the results to the output file (Figure 14). The effect of executing the
code fragment is to generate MAX_BLOCKS copies of the program graph of Figure 15. Taken

together, these graphs form an execution pipe.

Several observations can be made from this example. First, since the variable dp isareg-
ular Mentat class, the system is free to instantiate new instances at will. If the filter operations are
computationally heavy relative to the reads, there will be many concurrent instances. Second, the
main loop may have executed to completion (all MAX BLOCKS iterations) before the first write
has completed. Third, suppose our “caller” (the main loop) was itself a server servicing requests
for clients. Once the main loop is complete the caller may begin servicing other requests while the
first request is still being completed. Fourth, the order of execution of the different stages of the
different iterations can vary from a straight sequential ordering. This can happen, for example, if
the different iterations require different amounts of filter processing. This additional asynchrony is
possible because the run-time system guarantees that al parameters for al invocations are cor-
rectly matched, and that member functions receive the correct arguments. The additional asyn-
chrony permits additional concurrency in those cases where execution in strict order would
prevent later iterations from executing even when al of their synchronization and data criteria
have been met. Finally, in addition to the automatic detection of inter-object parallelism opportu-

nities, we may also have intra-object parallelism encapsulation, where each of the invoked mem-

24

persistent mentat class mf ile {
Il ... locals
public:
int open(string*);
void write(int offset;int bytes;dblock *data);
dblock *read(int blk_num);
h
regular mentat class data_f ilter {
public:
dblock* f ilterl(dblock*);
dblock* f ilter2(dblock*);

3

// Now a code fragment that uses the above def initions
mfile in_f ile,out_f ile;
data_f ilter dp;
dblock *res;
in_f ile. create(); /I Create a persistent mf ile.
out_f ile.create(); / Create a persistent mf ile.

=in_f ile.open(inf ile”); // non-blocking call
y=out_f ile.open("outf ile”);// non-blocking call
if (x < 0)|| (y<0)) {/*handle the error*/} // Note strict on x & y
for (i=0,i<kMAX_BLOCKS;i++){

res:in_f Jle.read_block(i); // non-blocking

11: res = dp.operationl(res); // arc constructed, new instance
res = dp.operation2(res); // arc constructed, new instance
13: out_f ile.write_block(i,res); // non-blocking, arc constructed

CINDTARWNE

e
NEO

-------------------- translation ---------------------
I/l Note front-end derivation off of mentat_object
class mf ile : public mentat_object {

public:
mfile(){set_object_name(&i_name, “mf ile”, _M_PERSISTENT);}
class data_f ilter : public mentat_object {
public:
data_f ilter(){set_object name(&i_name, “data_f ilter”, M_REGULAR);}
}
;. mfilein_f ile,out_f ile;
2. data_f ilter dp;
3: dblock *res;
4: in_f ile.create(); // Create a persistent mf ile.
5: out_f ile.create(); // Create a persistent mf ile.
// =in_f ile.open("inf ile”); // non-blocking call
(*SET ME((&x)))=in_f ile.invoke_fn(101,1,STRING_TO_ARG(“inf ile”);
// =out f ile.open((string*)"outf ile™);// non-blocking call
(*SET “ME((&x)))=in_f ile.invoke_fn(101,1,STRING_TO_ARG("inf ile”);

8: if ((RESOLVE(&x),x) < 0)|| (RESOLVE(&y), y)<0)) {
I1if ((x < 0)]] (y<0)) {/*handle the error*/} // Note stricton x & y
9: for (i=0,ikMAX_BLOCKS;i++){

1 res=in_f ile.read_block(i);

10: (*SET_ME((&res)))=in_f ile.invoke_fn(102,1,VAR_TO_ARG(&i,4,0));

I res = dp.operationl1(res); // arc constructed, new instance
(*SET_ME((&res)))=dp.invoke_fn(101,1,PRV_TO_ARG(&res,4,0));

I res = dp.operation2(res); // arc constructed, new instance

12: (*SET_ME((&res)))=dp.invoke_fn(102,1,PRV_TO_ARG(&res,4,0));

1 out_f ile.write_block(i,res); // non- blocklng arc constructed

13: (*SET_ME((&res)))=out_f ile.invoke_fn(103,2,VAR_TO_ARG(&i,4,0),

PRV_TO_ARG(&res,4,0));
}
/ Note: PRV_TO_ARG and VAR_TO_ARG are argument marshaling functions that are

/I called on PRV’s and non-PRV's respectively. . o .
Figure 14. Program and trandation illustrating pipeline parallelism.

25

ber functions, e.g., the filter operations, may be internally parallel.

valuesof i

requests \o\.\.\

Figure 15. Subgraph of loop body of Figure 14. Multiple invocations result in
pipelined execution.

6. Summary

The difficulties associated with explicitly managing medium-grain parallelism combined
withtheinability of compilerstoautomatically extract medium-grain parallelism have plagued appli-
cationswritersfor years. In this paper we presented the macro data-flow model and atechnique for
automatically extracting medium-grain parallelism from programs once the programmer hasidenti-
fied the computation grains using object class definitions. The macro data-flow model isaparallel,
datadrivencomputationmodel that isscal able, mediumgrain, supportstheobj ect-oriented paradigm,
and can beefficiently implemented on distributed memory MM D machines. Our hybrid approachto
finding and exploiting parallelism synergistically combinesthe advantages of both explicit and com-
piler-based techniques. We capitalize on both the programmer’s domain knowledge and the compil -
er’'s ability to safely manage communication and synchronization.

The bottom line for any parallel computation system is application performance, in partic-
ular, speedup relative to a sequential implementation of the application. We have extensive expe-
rience with Mentat performance on applications from areas as diverse as electrical engineering,
physics, biochemistry, and computer science, on platforms as diverse as networks of workstations
and theIntel iPSC/860 (gamma). Theresultsare detailed elsewhere[15][16]. In several cases hand-
coded parallel implementations of the application exist. These provide us with ametric to measure
the penalty of using Mentat and MDF. The results are very encouraging. Performance is good, and
competitive with the hand-coded implementations. Further, the use of the object-oriented paradigm
combined with the compilation techniques used has reduced development time, and more impor-

tantly, made modifications to the applications easier.

26

7. References

[1]
[2]
[3]

[4]
[S]
[6]
[7]
[8]
[9]
[10]

[11]

[12]
[13]

[14]
[15]

[16]

[17]

[18]

[19]

H. Abelson, G. J. Sussman, and J. Sussman, Structue and Interpetation of Computer
Programs The MIT Press, Cambridge Massachusetts, 1985.

T. Agerwalaand Arvind, “Data Flow Systems,” IEEE Computerval. 15, no. 2, pp. 10-13,
February, 1982.

J. R. Allen, and K Kennedy, “PFC: A Program to Convert FORTRAN to Parallel Form,”
Proceedings of the IBM Contarce on Parallel Computers and Scientific Computations
Rome, 1982.

G.S. Almasi and A. Gattlieb, Highly Parallel ComputingBenjamin/Cummings Publish-
ing Co., Redwood City, CA., 1989.

Arvind and J. D. Brock, “Resource Managers in Functional Programming,” Journal of
Parallel and Distributed Computingol.1, pp. 5-21, 1984.

R. F. Babb, “Parallel Processing with Large-Grain Data Flow Techniques,” IEEE Com-
puter, pp. 55-61, July, 1984.

B. Beck, “Shared Memory Parallel Programming in C++,” IEEE Softwae, 7(4) pp. 38-48,
July, 1990.

A. Beguelin et al., “HeNCE: Graphical Development Tools for Network-Based Concur-
rent Computing,” Proceedings SHPCC-9@p. 129-136, Williamsburg, VA, May, 1992.

P. A. Bernstein, and N. Goodman, “Concurrency Control in Distributed Database Sys-
tems,” ACM Computer Surveypp. 185-221, vol. 13:2, June, 1981.J.

Boyleet a., Portable Pograms for Parallel PocessorsHolt, Rinehart and Winston, New
York, 1987.

J. C. Browne, T. Lee, and J. Werth, “Experimental Evaluation of a Reusability-Oriented
Parallel Programming Environment,” IEEE Transactions on Software Engineering, pp.
111-120, val. 16, no. 2, Feb., 1990.

N. Carriero and D. Gelernter, “Lindain Context,” Comm. of the ACMp. 444-458, April,
1989.

N. Carriero, and D. Gelernter, “How to Write Parallel Programs. A Guide to the Per-
plexed,” ACM Computing Surveygp. 91-125, vol. 23, num. 1, March. 1991.

J. Dennis, “First Version of a Data Flow Procedure Language,” MIT TR-673, May, 1975.
G. Fox et a.,Solving Poblems on Concuent Pocessors Mume | Prentice Hall, Engle-
wood Cliffs, NJ, 1988.

A. S. Grimshaw, “Easy to Use Object-Oriented Parallel Programming with Mentat,” IEEE
Computeypp. 39-51, May, 1993.

A. S. Grimshaw, E. A. West, and W.R. Pearson, “No Pain and Gain! - Experiences with
Mentat on Biologica Application,” to appear in Concurency: Practice & Experienge
Vol. 5, issue 4, July, 1993.

A. S. Grimshaw, W. T. Strayer, and P. Narayan, “ Dynamic Object-Oriented Parallel Pro-
cessing,” to appear, IEEE Parallel & Distributed &chnology: Systems & Applications
May, 1993.

A. S. Grimshaw. The Mentat Run-Time System: Support for Medium Grain Parallel Com-

27

[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]

[28]
[29]

[30]
[31]
[32]
[33]

[34]

putation. Proceedings of the Fifth Distributed Memory Computing Cemieg pp. 1064-
1073. Charleston, SC., April, 1990.

A. S. Grimshaw, and V. E. Vivas, “FALCON: A Distributed Scheduler for MIMD Archi-
tectures’, Proceedings of the Symposium on Experiences with Distributed and Btultipr
cessor Systemgp. 149-163, Atlanta, GA, March, 1991.

A. S. Grimshaw, E. Loyot Jr., and J. Weissman, “Mentat Programming Language (MPL)
Reference Manual,” University of Virginia, Computer Science TR 91-32, 1991.

R. H. Halstead Jr., “Multilisp: A Language for Concurrent Symbolic Computation,” ACM
Transactions on Rigramming Languages and Systepps 501-538, vol. 7, no. 4, Octo-
ber, 1985.

C.A.R. Hoare, “Communicating Sequential Processes,” Communications of the AGMp.
666-677, vol. 21, no. 8, August, 1978.

Inmos Ltd., Occam Programming Manual, Prentice-Hall New York, 1984.

Intel Corporation, “iPSC/2 USER'S GUIDE", Intel Scientific Computers, Beaverton, OR,
March 1988.

D. Kuck, R. Kuhn, B. Leasure, D. Padua, and M. Wolfe, “Dependence Graphs and Com-
piler Optimizations,” ACM Proceedings of the 8th Annual ACM Symposium on Principles
of Programming Languagepp. 207-218, January, 1981.

T. G. Lewis and H. El-Rewini, Introduction to Parallel Computing, Prentice Hall, Engle-
wood Cliffs, NJ, 1992,

S. Mullender ed., Distributed System#&CM Press, 1989.

A. Osterhaug “GUIDE TO PARALLEL PROGRAMMING On Sequent Computer Sys-
tems,” Sequentdchnical PublicationsSequent Computer Systems, Beaverton, OR, 1989.
C. M. Pancake and D. Bergmark, “Do Paralel Languages Respond to the Needs of Scien-
tific Programmers?’, IEEE Computerpp. 13-23, December, 1990.

C. Polychronopoulos, Parallel Pongramming and Compiler&luwer Academic Publish-
ers, 1988.

M. J. Quinn, Designing Efficient Algorithms For Parallel ComputevicGraw-Hill Book
Company, New York, 1987.

V.S. Sunderam, “PVM: A framework for parallel distributed computing,” Concurency:
Practice and Experienc¢&ol. 2(4), pp. 315-339, December, 1990.

A. H. Veen, “Dataflow Machine Architecture,” ACM Computing Surveypp. 365-396,
vol. 18, no. 4, December, 1986.

28

