
The Mentat Computation Model Data-Driven Support for
Object-Oriented Parallel Processing

Andrew S. Grimshaw

Technical Report No. CS-93-30
May 28, 1993

This work was partially supported by NASA grant NAG-1-1-1181 and
NSF grant ASC-9201822.

The Mentat Computation Model - Data-Driven Support for
Dynamic Object-Oriented Parallel Processing1

Andrew S. Grimshaw
Department of Computer Science

University of Virginia, Charlottesville, VA, 22903
grimshaw@virginia.edu, 804-982-2204

Abstract

Mentat is an object-oriented parallel processing system developed at the University of Vir-

ginia which has been ported to a variety of MIMD architectures. The computation model

employed by Mentat is macro data-flow (MDF), a medium grain, scalable, data-driven computa-

tion model that supports both high degrees of parallelism and the object-oriented paradigm. A key

aspect of the model is that it can be efficiently implemented. Inspired by data-flow, MDF retains

the graph-based, data-driven, self-synchronizing aspects of data-flow. MDF address the short-

comings that data-flow exhibits when applied to distributed memory MIMD architectures by

extending data-flow in three ways: (1) it is medium grain - actors are of sufficient computational

complexity to amortize overhead costs, (2) program graphs are dynamically constructed at run-

time - this permits dynamic function binding as required by the object-oriented paradigm and

increases the average computation granularity, and (3) actors may maintain state between execu-

tions - this provides an effective way to model the state properties of imperative, object-oriented

programs. In this paper we present the macro data-flow model, key features of the Mentat Pro-

gramming Language (MPL), key features of the Mentat run-time system that implements a virtual

macro data-flow machine, and translations from MPL constructs to the virtual machine. The result

of the translation process is programs in which program graphs are constructed at run-time by

observing data dependencies that develop as execution unfolds. These program graphs are then

executed in parallel by the run-time system, resulting in improved performance over sequential

execution.

1. This work was partially supported by NASA grant NAG-1-1181 and by NSF grant ASC-9201822.

1

1. Introduction

Writing application software for parallel and distributed systems has proven to be far more

difficult than building the hardware. Research in the computer science community has focused on

the right languages and elegant abstractions for writing concurrent programs, but the fact remains

that today most applications are written by hand using C or Fortran extended with library calls

that clearly reflect the underlying hardware. Applications scientists, in our experience, have not

embraced the elegant abstractions. These programmers are familiar with the imperative style of

programming, Fortran and C in particular, and are not eager to change unless there is a significant

benefit. Since high performance is the goal they will not sacrifice, they avoid abstractions, however

elegant, for fear they will fail to satisfy their performance needs.

Writing parallel programs by hand is difficult. The programmer must manage communica-

tion, synchronization, and scheduling of tens to thousands of independent processes. The burden

of correctly managing the environment often overwhelms programmers, and requires a consider-

able investment of time and intellectual energy. Also, once implemented on a particular MIMD

architecture, the resulting codes are usually not usable on other MIMD architectures; the tools,

techniques, and library facilities used to parallelize the application are specific to a particular plat-

form. Thus, considerable effort must be re-invested to port the application to a new architecture.

Given the plethora of new architectures and the rapid obsolescence of existing architectures, this

represents a continuing time investment, and discourages users from parallelizing their code in the

first place.

Solutions to the problem of generating parallel software have ranged from fully automatic,

compiler-based approaches[2][24][28], to hand-coded, explicit approaches [5][10][11][31][23][26].

The problem with fully automatic compiler-based approaches is that they are good at finding fine-

grain parallelism but do not work well for distributed memory machines. Further, they can often be

defeated by spurious dependencies that require programmer intervention to resolve, making them

less automatic and increasing the cognitive burden on the programmer. The problem with explicit

approaches is that they place too large a burden on the programmer. The programmer is responsible

for problem decomposition (code and data), scheduling, communication, and synchronization. This

task is too complex for all but the most regular of applications. Explicit approaches also suffer from

2

timing dependent errors and Heisenbugs.1

If the parallel software problem is not solved, parallel computers will not come into wide-

spread use, rather they will be used only by those organizations that must have the highest perfor-

mance and are willing to pay for it with programmer time. This would be an unfortunate outcome as

there are many other users that could gain from the use of parallel processing, particularly on net-

works of workstations.

Our solution to the parallel software problem lies in a compromise between compiler-

based approaches and manual approaches. Mentat, an object-oriented, medium grain, parallel pro-

cessing system developed at the University of Virginia, strives for such a compromise. Mentat

addresses the parallel software problem by leveraging the object-oriented paradigm and exploit-

ing the comparative advantages of both humans and compilers: people know the application

domain and can better decompose the problem, compilers can better manage data dependence and

synchronization. Using the Mentat programming language (MPL), an extension to C++, the pro-

grammer uses application knowledge to specify the classes whose member functions are suffi-

ciently computationally complex to warrant parallel execution. These computationally “heavy”

classes are known asMentat classes. We have extended the object-oriented concept of encapsula-

tion to include parallelism encapsulation both within Mentat class instance member function

invocations and between instance member function invocations. Once the Mentat classes have

been specified by the programmer, the compiler and run-time system take over and manage sched-

uling, communication, and synchronization between Mentat objects, and dynamically construct

program graphs by observing the data dependencies that actually occur as program execution

unfolds.

Mentat also addresses the problem of applications portability by providing source code porta-

bility between supported platforms as long as no architecture or operating system-specific features

are used.2 Mentat achieves portability by using a portable virtual machine as a target for the compila-

tion process. The virtual machine is itself relatively easy to port. All architecture-specific features

1. A Heisenbug is a timing dependent bug that goes away when debugging or tracing is turned on. They are frus-
trating and difficult to track down.
2. Application code maybenefit from changes, but does notrequire them, e.g., on the Sun 3/60 loop unrolling
provides no benefit; on the SparcStation it does.

3

have been isolated into two modules. Mentat has been ported to six platforms, including networks of

Sun 3’s, Sun 4’s, Silicon Graphics Irises, the Intel iPSC/2, the Intel iPSC/860, and the TMC CM-5.

The high-level and applications performance aspects of Mentat have been presented else-

where [14][15][16]. In [14] we present an overview, the Mentat philosophy, the Mentat approach to

parallel computing, and performance results. In [16] the performance of a range of applications with

a range of speedups are explored; the results are promising, speedups are not only good -- they are

competitive with hand-coded versions of the same applications.

The purpose of this paper is to present two of the conceptual underpinnings upon which

Mentat rests, the Mentat computation model, macro data-flow (MDF), and the mapping from the

MPL to macro data-flow. MDF is a medium grain, data-driven computation model that supports

the object-oriented paradigm. It is scalable and can be efficiently implemented on a variety of par-

allel architectures that includes distributed memory MIMD machines as diverse as networks of work-

stations and mesh and hypercube-based multicomputers. The mapping from MPL to MDF consists of

a set of translations from the key constructs of MPL to run-time system calls that implement the

MDF. These calls result in the run-time construction and elaboration of program graphs.

We begin our discussion with some background on computation granularity and compiler

techniques for parallelism detection. The MDF model is then presented in detail, followed by a

brief overview of the salient aspects of the language, their translation, and the program graph con-

struction techniques used. We do not include a description of run-time issues in this paper. Inter-

ested readers should see [17][18] for a description of the run-time system.

2. Background

In order to achieve high performance on a distributed memory MIMD architecture four

key issues must be addressed.

1) What size is appropriate for the pieces into which to decompose the problem, i.e., what
is the appropriate granularity? This varies from architecture to architecture.

2) How is the application decomposed? This includes not just the computational aspects, but
the data decomposition and resulting locality as well.

3) How are the computational and data components scheduled or placed on the proces-
sors? This often involves a complex trade-off between load balance and communication
overhead. In general, finding an optimal solution is NP-hard.

4

4) How is the required communication and synchronization between the application com-
ponents established and managed? This can be difficult and subtle if done by hand.

For an in-depth discussion of these issues, see [3][11][25][29].

It is often claimed that the difficulty in parallel computing is in finding the parallelism in

the application. A tool is then presented that in simulation exposes and exploits fantastic levels of

parallelism, where hundreds or thousands of concurrent activities are plotted. In our experience

though, finding parallelism is not the problem. Most of the applications we have examined have

many opportunities for parallel execution. Rather the problem is constraining parallelism and

finding the right amount of parallelism for the target architecture given its associated overhead.

Overhead is the friction of parallel processing. It can take many forms not present in

sequential programs. Data communication and synchronization between computational units,

scheduling, migration, and context switching are among the most costly. All consume the most

precious commodity, time. The degree of parallelism and overhead come together in the granular-

ity of computation. The granularity of computation is often defined as the number of instructions

between overhead events. This leads to the concept of the computation ratio. The computation

ratio is the ratio of computation time to total time spent in overhead. If the computation ratio

becomes small, i.e., less than one, then more time is being spent on overhead than on useful work.

In fact it may take longer to solve the problem in parallel than sequentially if the computation

ratio is too low. Increasing parallelism can mean poorer performance.

Thus the appropriate granularity depends on overhead. Software overhead can run from a few

instructions to tens of thousands. On many multitasking systems, context switch times are on the

order of one millisecond. Communication software overhead using IP datagrams is on the order of

a few milliseconds. In one millisecond, tens of thousands of instructions can be executed. Thus,

millisecond range software overhead argues for the use of medium granularity; using small gran-

ularity computation is expensive.

The problem, then, in writing parallel software is decomposing the application into appro-

priate size granules of computation, scheduling those granules, and managing the communication

and synchronization between those granules. Historically, this has been done either using fully

automatic parallelizing compilers [2][24][28], or by hand using primitives such as load, send, and

5

receive[8][13][23][31].

There are several advantages of automatic techniques. Ideally, by using these techniques,

dusty-deck programs can be parallelized with a minimum of effort. We say “ideally” because it

does not always work, and often results in low levels of parallelism due to dependencies and/or a

small granularity of computation. Second, problem decomposition, scheduling, communication,

and synchronization are all handled by the compiler, an entity we trust, rather than by more error-

prone human programmers. Third, semantic equivalence to the original program can be maintained.

There are, however, disadvantages with automatic techniques. They are static, looking at the textual

representation of the program without any knowledge of the dynamic behavior of the program, e.g.,

which branches are taken, how many times a loop must be unrolled, what the array index values are

(particularly via indirect arrays), etc. This lack of knowledge is a serious impediment. Frequent run-

time synchronization is often required to determine which path through the program is actually cho-

sen, thus reducing granularity. Further, automatic techniques must be conservative and often cannot

exploit all available parallelism because of spurious dependencies that require programmer interven-

tion to resolve. They cannot take a global view of programs and partition them appropriately because

they lack domain knowledge of the application. Automatic techniques are best at finding fine-grain

and loop-level parallelism. For this reason they have primarily been used for architectures with very

low hardware overhead, e.g., shared memory multiprocessors.

Fully explicit (manual) approaches are often characterized by some sequential language,

such as C or Fortran, extended with library calls to support problem partitioning (e.g., light weight

threads), communication (e.g., shared memory or messages), and synchronization (e.g., sema-

phores and barriers).

The advantages of explicit approaches are that they are easy to engineer, they can reflect the

underlying hardware, and the programmer has total control over the computation and can partition

and schedule the problem based on his domain knowledge. The disadvantages are that the program-

mer is responsible for all aspects of parallelization, scheduling, communication, and synchronization,

and can easily make errors that are timing dependent and difficult to track down. Application port-

ability also suffers because fairly low-level, system-specific features are used.

In summary, the use of medium-grain parallelism permits us to maintain sufficient compu-

6

tation granularity to exploit a wide range of architectural platforms, especially platforms with lower

cost (slower) interconnection networks. To easily write medium-grain software calls for the safety,

correctness, and ease-of-use of compiler based approaches, combined with the granularity control of

explicit approaches. Such a system would permit the exploitation of MIMD architectures by a wide

range of users and require a reduced level of programmer effort, effectively moving parallel pro-

cessing out of the lab and into the marketplace.

3. The Macro Data-Flow Model

Macro data-flow was inspired by the data-flow model of computation [1][12][32]. Recall that

in the data-flow model there are two types of objects:tokens andactors. Tokens carry data or control

information. Each actor performs a function based on the information contained in the tokens it con-

sumes. Actors are computation primitives, corresponding to granules of computation. Actors do not

preserve their internal state from one computation to the next. In traditional data-flow actors are

small grain, for example, add, subtract, multiply, and compare.

A computation can be described by a data-flow graph in which nodes are actors. Actors are

connected by directed arcs along which tokens flow. Arcs model data dependencies between granules

of computation. Specifically, the execution of any granule cannot begin until all granules of computa-

tion on which it depends have completed. Correspondingly, in the model, an actor is enabled and may

“fire” (execute) only when there are tokens on all of its incoming arcs. Thus, synchronization is auto-

matically provided by the token transport mechanism. Parallelism is gained in data-flow architectures

by allowing any actor to execute on any processor and by allowing as many enabled actors to fire as

there are processors to execute them. When there is a sufficiently large number of processors, only

actors that depend on uncompleted granules of computation are not enabled. A key feature of the

model is that the order of actor execution does not effect the result. Thus, the data-flow model natu-

rally achieves high degrees of parallelism.

3.1 Problems with Data-flow

There are two problems with traditional data-flow with respect to our requirements. First, the

granularity of traditional data-flow is too small for many MIMD architectures, particularly distrib-

uted memory systems where latencies are measured in hundreds to thousands of microseconds. The

7

overhead of token transport and actor scheduling and instantiation requires that the granularity of

computation be at least hundreds, and perhaps thousands, of instructions. Second, traditional data-

flow systems have program graphs with a topology that is fixed at compile-time. Even in so-called

dynamic graph systems, “dynamic” refers to the dynamic creation of a subgraph instance (for exam-

ple, a new loop iteration or procedure call). The subgraph structure is still fixed.

We require dynamic topology program graphs for two reasons. Static topologies are inade-

quate in an object-oriented system because a static topology implies that the types of objects can be

determined at compile-time, and hence the subgraphs that implement their function can be included

in the program graph. However, in object-oriented languages, it is often not possible to know even the

type of object in use. In Smalltalk, we know only that the object supports some method. Exactly how

the method is implemented, i.e., its subgraph, cannot be determined until run-time. Thus, we must be

able to delay the binding of subgraphs for method implementation until run-time. Providing dynamic

graph elaboration of actors into subgraphs would satisfy this need. As an example consider the C++

code fragment in Figure 2. We cannot know at compile time whether to use the program subgraph for

the classcircle, the classsquare, or some other class derived fromshape. We could, of

course, generate a subgraph that contained all possible graphs, and dynamically select the appropri-

ate subgraph using control actors. This approach is undesirable since program graphs can become

class shape {
public:

virtual void draw();
}
class circle: public shape {
public:

virtual void draw();
}

class square:public shape {
public:

virtual void draw();
};

void draw_screen() {
shape *shape_ptr;
for each shape in shape_list

shape_ptr->draw();
}

Figure 2. A static graph for function draw_screen() is inadequate because we do
not know the types of the shapes.

8

quite large, and, as we will see shortly, the use of control actors will significantly reduce the granular-

ity of computation.

A second reason we require dynamic topology program graphs is that performance suffers

when the topology of the graph is static due to the reduction of the granularity of computation. To see

why the granularity is reduced consider how control is performed in static graphs. Certain actors in

the program graph, called control actors, determine at run-time the actual execution pattern for the

graph, such as which subgraphs are executed and how many loop iterations or recursive calls are

invoked. Examples of control actors include greater than, less than, equal to, switches, and merges. If

static graphs are used, we must use control actors to determine the actual execution pattern. Control

actors have very small granularity, often a single instruction. There can be many control actors even

for simple operations such as unrolling a loop or performing conditional and case statements.

Studies have shown that there is a control flow statement (if, for, while) every 3-7 statements in

typical programs. Further, we must pay the communication and scheduling overhead for each

control actor executed just as we do for larger grain actors. To illustrate the problem with control

actors consider the code fragment and program graph shown in Figure 3. In Figure 3 the function

f() performs dim iterations of a loop. In each iteration the function F1(dim,i), based solely

on local state information, determines whether SG1 or SG2 is executed. SG1 and SG2 correspond

to statements that themselves form a subgraph and may contain additional control constructs. Sup-

pose thatF1 is a simple function, then the effective granularity of this graph, ignoring the subgraphs

SG1 andSG2, is a few instructions at best. For distributed memory machines a far larger granularity

ffloat f(int dim, float initial){
int i;float last=input;
for (i=0;i<dim;i++)

if (F1(dim,i,input))
last = SG1(last);

else
last = SG2(last);

return(last);
}

Counter actor F1 conditional
T F(merge)

T F(switch)

values of i dim input

input

SG1 SG2

loop done T

Figure 3. Use of static graphs and control actors.

9

is required.

Much of the control overhead can be eliminated by moving the control of subgraph selection

and unrolling into actors and having the actors construct subgraphs at run-time that reflect the effects

of performing the control function internally. By dynamically creating program subgraphs as the loop

is unrolled we can substitute the overhead of firing small actors with the overhead of dynamically

creating subgraphs.

The shortcomings of traditional data-flow led to the development of the macro data-flow

model. The macro data-flow model is an extended data-flow model that addresses the problems with

traditional data-flow. There are three principal differences with data-flow. First, as in other large-

grain data-flow systems[4][6][9] the granularity of the actors is considerably larger; we call these

macro actors. This provides the flexibility to choose an appropriate degree of parallelism. Second,

some actors can maintain state information between firings, providing an effective way to model

side-effects and non-determinism; we call these persistent actors. Third, unlink other large grain data

flow systems the structure of macro data-flow program graphs is not fixed. Graphs grow by the run-

time elaboration of graph nodes into arbitrary subgraphs.

Macro actors are large-grain actors that perform high-level functions such as matrix multipli-

cation, Gaussian elimination or image convolution instead of individual machine instructions. The

important characteristic of macro actors is that they are sufficiently computationally intensive to

amortize the overhead costs. How the computation grains are specified is not a part of the model; that

is a language issue. There are two types of macro actors, regular actors and persistent actors.

 Regular actors are similar to actors in the data-flow model. Specifically, all regular actors of

a given type are functionally equivalent. A regular actor is enabled and may execute when all of its

input tokens are available. It performs some computation, generating output tokens that depend only

on its input tokens. It may maintain internal state information during the course of a single execution,

but no state information is preserved from one execution to another; they are pure functions.

 Persistent actors maintain state information that is preserved from one execution to the next.

Output tokens generated by a persistent actor during different executions are not necessarily the same

for the same input tokens. The state corresponds to member variables (instance variables) in the

10

object-oriented paradigm. This correspondence to member variables implies that several different

actors may share the same state, as with the enqueue and dequeue operations on a queue. The model

guarantees that the actors that share state will be executed in mutual exclusion, that is, no two actors

that share the same state will ever be executing simultaneously. (This can be modeled in stateless

data-flow using a single “state” token and a non-deterministic merge operator[1]. Only one actor can

“possess” the state token at a time, guaranteeing mutual exclusion.) Thus, the set of actors that share

state combined with the state they share can be thought of as a monitor.

The introduction of state means that the arcs of the program graph no longer model all depen-

dencies in the program; there are implicit dependencies via the shared state. For example, consider

the program graph fragment in Figure 4. Suppose that actorsA andB share state. If the execution of

A occurs first, there is a hidden dependency, based on the state, betweenA andB. Because of this hid-

den dependency the results of theA andB operations depend not only on their arguments and the

object history, but also on the order of execution.

The introduction of state has one very important consequence: in macro data-flow some pro-

grams will be determinate, and others not. We have found that for many scientific codes, the pro-

grams are determinate because of the way the actors are used. In general though, this is not the case.

Non-determinism is not necessarily bad. There are in fact many “correct” non-deterministic

applications. Concurrent database applications in particular are non-determinate. They do have a

notion of correctness called consistency [7] based on the idea of transaction serializability. However,

the enforcement of monitor properties alone on objects, as is done in MDF, is not sufficient to guar-

antee serializability. Thus, in macro data-flow, as in monitor systems in general, it is the responsibil-

ity of the programmer to guarantee higher-level notions of correctness.

3.2 Dynamic Graph Representation Using Futures

A B

hidden dependency

Figure 4. Hidden dependencies develop when A & B share state and A is executed before B.

11

Some mechanism is required to represent program graphs in any graph-based model of

computation. The realization of a mechanism often involves a trade-off between different design

objectives, including performance. The design of the graph representation mechanism used in the

MDF model is driven by the theoretical requirements of the model and by implementation and

performance considerations. The model requires that the mechanism must support dynamic pro-

gram graphs, and both persistent and regular actors. Implementation and performance consider-

ations require 1) that the mechanism use a distributed, as opposed to centralized, control, 2) that

graph updates be a non-global, local operation, 3) that no shared memory be assumed, and hence

messages must carry flattened graph segments, and 4) that actors are context independent (they do

not name their input/output communication partners).

Program graphs are represented in MDF using futures.3 A future represents the future of the

computation with respect to a particular actor at a particular instant in time. For example, consider

the program graph fragment of Figure 5. A’s future is shown by the shaded area enclosing the actors

(B, C, D, G). The future of A at this point in time includes all computations that are data-dependent

on the result of the computation that A performs. Although actors E and F are in the same program

graph as A, they are not in A’s future, nor is A in their future.

In many respects a future is like a parallel form of a continuation[1]. Both represent the

remainder of the computation at a particular instant. The difference between a future and a continua-

tion is that a future does not encapsulate an environment, and can only be used once, while a contin-

3. MDF futures should not be confused with Multilisp futures[20]. Multilisp futures represent a promise to de-
liver a value in the future. MDF futures represent the future of a computation, and have more in common with
continuations[1].

E’s future

A

B C

D

E

F

G

Figure 5. A macro data flow subgraph. The future of the actor A is shown.

A’s future

12

uation can be used again. In addition, continuations are sequential, while futures may be parallel.

When an actor such as A receives its tokens, it receives with them a future. When the actor

completes, one of two things happens: the actor returns a value that is transmitted to each direct

descendent in its future, or the actor elaborates itself into a subgraph. In either case, modifications

need to be made to the program graph, either to reflect the completion of the actor or to include the

new subgraph. Because the modifications require changing A’s future only, the modifications can be

made locally. Other processors, such as those executing E or F, need not be notified.

Suppose that A returns the value 5. A’s future is broken into two futures. These futures, along

with the value 5, are forwarded to B and C. The new state is shown in Figure 6. B and C are now

enabled and may execute since they have a token (value) on each input arc.

Alternatively, A may elaborate itself into an arbitrary subgraph. Suppose that A elaborates

into the subgraph shown in Figure 7(a). The new state is shown in Figure 7(b). In this case the graph

has grown, rather than contracted as in Figure 6. The key point is that in both cases only A’s future

needs modification. Neither E, nor any other actor or system component need be notified of the

change.

Example 1 - Fibonacci Numbers

Consider the naive implementation of finding a fibonacci number given in Figure 8. Assume

two types of actors, an integer adder and a fibonacci function int F(int). Suppose an F actor is

invoked with a token value of 4 (the mapping of code fragments to MDF will be discussed later). The

initial graph marking is shown in Figure 8 (b). Because the input value is greater than 1, the actor F

elaborates itself into the graph shown in 8 (c). The successive elaborations are shown in 8 (d) though

B C

D

E

F

G B’s future

5 5

C’s future

Figure 6. New futures after actor A from Figure 5 returns a value.

E’s future

13

8 (i). Note that the order shown is just one possible ordering.

An important consequence of the use of futures as a graph description mechanism is that

graph control is completely decentralized. Each actor receives enough of the program graph to

continue the computation. There is no need to coordinate the execution of separate subgraphs, and

their execution may proceed independently. Furthermore, it is not necessary for the entire pro-

gram graph to be generated at compile time. Indeed, the structure of the graph is only implied, and

changes as actors modify their futures. As an example of decentralized control, recall the subgraph

shown in Figure 6. Suppose that E is executing on processorP1 and that A is executing on processor

B C

D

E

F

G

H’s future

I’s future

E’s future

K

J

IH
K

J

IH

(a) A’s elaborated subgraph (b) New graph
Figure 7. Actor elaboration. The actor A from Figure 5 elaborates into the subgraph of (a).
The resulting graph is shown in (b).

int add(int a,int b) {return (a+b);}
int F(int n){

if (n<=1) return 1;
else return(add(F(n-1),F(n-2));

} F FF

+ +

4 3 2 FF

+

FF

+

2 1 1 0

+

+ +

1 1 1
FF

+

1 0

+

+

1+

11

2
+

+

1

2

2

+

23

5

(a) (b)
(c) (d)

(e) (f)
(g) (h) (i)

Figure 8. Successive elaborations of the fibonacci function for F(4).

14

P2. Now suppose that A elaborates itself into a subgraph as in Figure 7. No communication between

P2 and P1, or any other processor, is necessary. The future of A can be elaborated locally without

any external notification. Decentralized control is important in order to satisfy the bounded resources

principle: “The service demanded from any component (of the system) should be bounded by a

constant. The constant should be independent of the number of nodes.”[28] If the service

demanded is not bound by such a constant, then that component will become a bottleneck and

limit the scalability of the system.

Another consequence of the use of futures is that actors are context-independent. Actors need

not be aware of the source of their arguments or the destination of their results. For example, in Fig-

ures 6 and 7 the actors B and C cannot distinguish between the two graphs, or between graphs that

have different numbers of outgoing edges. The use of context-independent actors contrasts sharply

with CSP-based systems[21][22], where each computational unit knows the names of its communi-

cation partners. Context-independence is important for software reuse. Without it, modules must be

tailored by hand for each context in which they may be used.

4. The Mentat Programming Language (MPL)

Rather than invent a new language for writing parallel software, MPL is an extension of the

object-oriented language C++. The extensions are designed to facilitate communication about granu-

larity and data decomposition between the programmer and the compiler and run-time system. The

extensions are how we encode programmer knowledge so that the compiler and run-time system

(RTS) can make better decisions. The extensions are applicable to a range of imperative languages.

In MPL we have extended the object-oriented concepts of data and method encapsulation to

include parallelism encapsulation. Parallelism encapsulation takes two forms that we call intra-

object encapsulation and inter-object encapsulation. Intra-object encapsulation of parallelism means

that callers of a Mentat object member function are unaware of whether the implementation of the

member function is sequential or is parallel, i.e., whether its program graph is a single node, or

whether it is a parallel graph. Inter-object encapsulation of parallelism means that programmers of

code fragments (e.g., a Mentat object member function) need not concern themselves with the paral-

lel execution opportunities between the different Mentat object member functions they invoke.

15

Instead this is managed by the compiler working in conjunction with the run-time system.

The basic approach in MPL is to allow the programmer to specify those C++ classes that are

of sufficient computational complexity to warrant parallel execution. This is accomplished using the

keyword mentat in the class definition. Instances of Mentat classes are called Mentat objects. The

programmer uses instances of Mentat classes like any other C++ class instance. The compiler gener-

ates code to dynamically construct and execute macro data-flow graphs at run-time in which the

actors are Mentat object member function invocations, and the arcs are the data dependencies found

in the program. We call this inter-object parallelism because parallelism opportunities between

objects are being exploited. All communication, argument marshalling, and synchronization is man-

aged by the compiler acting in concert with the run-time system. The actors in a generated program

graph may themselves be transparently implemented in a similar manner by a macro data-flow sub-

graph. That is called intra-object parallelism encapsulation; the caller only sees the member function

invocation.

There are four MPL extensions to C++: Mentat classes (both persistent and regular), the

Mentat class member functions create() and destroy(), the mselect/maccept guarded

statements, and the rtf() (return to future) function[19]. We will limit our discussion here to the

most important of these with respect to parallelism, Mentat classes and rtf().

4.1 Mentat Classes

The most important extension to C++ is the keyword mentat as a prefix to class definitions, as

shown on line 1 of Figure 9. The keyword mentat indicates to the compiler that the member functions

of the class are computationally expensive enough to be worth doing in parallel. Member functions of

Mentat classes correspond to actors in MDF. Mentat classes are further defined to be either regu-

lar or persistent. The distinction reflects the two different types of actors in MDF. Regular Mentat

1 mentat class bar {
2 // private member functions and variables
3 public:
4 int function1(int);
5 int function2(int, int);
6 };

Figure 9. A Mentat class definition. Without the keyword “mentat” it is a legitimate C++ class definition.

16

classes are stateless, and their member functions can be thought of as pure functions in the sense

that they maintain no state information between invocations. As a consequence, the run-time sys-

tem may instantiate a new instance of a regular Mentat object to service each invocation of a

member function from that class.

Persistent Mentat classes, on the other hand, do maintain state information between mem-

ber function invocation. Since state must be maintained, each member function invocation on a per-

sistent Mentat object is served by the same instance of the object.

Instances of Mentat classes are Mentat objects. Each Mentat object possesses a unique name,

an address space, and a single thread of control. Because Mentat objects are address space-disjoint,

all communication is via member function invocation. Parameter passing is by value. Because Men-

tat objects have a single thread of control, they have monitor-like properties. In particular, only one

member function may be executing at a time on a particular object. Thus, there are no races on con-

tained variables.

Variables whose classes are Mentat classes are analogous to variables that are pointers. They

are not an instance of the class, rather they name or point to an instance. We call these variables Men-

tat variables. As with pointers, Mentat variables are initially unbound (they do not name an instance)

and must be explicitly bound. A bound Mentat variable names a specific Mentat object. Unlike point-

ers, when an unbound Mentat variable is used and a member function is invoked, it is not an error.

Instead, if the class is a regular Mentat class, the underlying system instantiates a new Mentat object

to service the member function invocation. The Mentat variable is not bound to the created

instance.

4.2 Member Function Invocation

Member function invocation on Mentat objects is syntactically the same as for C++

objects. Semantically there are three important differences. First, Mentat member function invo-

cations are non-blocking, providing for the parallel execution of member functions when data depen-

dencies permit. Second, each invocation of a regular mentat object member function causes the

instantiation of a new object to service the request. This, combined with non-blocking invocation,

means that many instances of a regular class member function can be executing concurrently. Finally,

17

Mentat member functions are always call-by-value because the model does not assume shared mem-

ory. All parameters are physically copied to the destination object. Similarly, return values are by-

value. Pointers and references may be used as formal parameters and as results. The effect is that the

memory object to which the pointer points is copied. Variable size arguments are supported as well,

as they facilitate the writing of library classes such as matrix algebra classes.

4.3 The Return-to-Future Mechanism

Mentat member functions use the rtf() as the mechanism for returning values. The value

returned is forwarded to all Mentat object member function invocations that are data-dependent on

the result, and to the caller if necessary. If the caller does not use the value, a copy is not returned.

While there are many similarities between the Creturn andrtf(), they differ in three sig-

nificant ways. First, areturn returns data to the caller. Anrtf() may or may not return data to the

caller depending on the data dependencies of the program. If the caller does not use the result locally,

then the caller does not receive a copy. This saves on communication overhead. Second, a C

return signifies the end of the computation in a function, while anrtf() does not. Anrtf() indi-

cates only that the result is available. Since each Mentat object has its own thread of control, addi-

tional computation may be performed after the rtf(), e.g., to update state information or to

communicate with other objects. By making the result available as soon as possible, we permit data

dependent computations to proceed concurrently with the local computation that follows thertf().

This is analogous to send-ahead in message passing systems. Third, in C, before a function can

return a value, the value must be available. This is not the case with an rtf(). Recall that when a

Mentat object member function is invoked, the caller does not block; rather, we ensure that the results

are forwarded wherever they are needed. Thus, a member function may rtf() a “value” that is the

result of another Mentat object member function that has not yet been completed, or perhaps even

begun execution. Indeed, the result may be computed by a parallel subgraph obtained by detecting

inter-object parallelism.

5. The MPL Compiler

Given that the user has specified the computation boundaries and granularity via Mentat class

specification, the remaining problem is to manage communication and synchronization by mapping

18

the application to macro data-flow graphs. The MPL compiler and the run-time system perform this

task.

As shown in Figure 10, the MPL compiler (mplc) takes MPL programs as input and gener-

ates C++ code as output. The C++ code includes library function calls that interact with the run-time

system to perform run-time graph construction, communication, and synchronization. As in any

compiler there are many interesting issues. We will restrict ourselves to those aspects of code transla-

tion relevant to data-flow detection.

5.1 The Compiler’s View of the Run-Time System

The basic compilation problem is to map MPL constructs onto the MDF model and its real-

ization in the run-time system (RTS). The RTS supports an object model in which each Mentat object

instance corresponds to a process. Mentat class member functions correspond to MDF actors. Each

formal parameter corresponds to an incoming arc for that actor. Tokens correspond to the actual

parameters of the member function invocation. When all of the tokens have arrived and an actor is

enabled, all of the actual arguments are available and the member function may execute.

The data dependencies between Mentat object function invocations correspond to arcs in

the MDF program graph. Actor elaboration corresponds to intra-object parallelism encapsulation.

This occurs when a Mentat object member function uses other Mentat object member functions such

that a subgraph is generated, and the member function performs an rtf(variable) where

variable is a value that will be generated by the subgraph. A form of intra-object parallelism also

occurs when an actor elaborates but does not return the subgraph.

The RTS provides functions that instantiate new object instances, and perform token match-

ing, run-time data-flow detection, run-time program graph construction, and actor elaboration. A

RTS Libraries

Executable objectmplc C++ compiler

MPL
Source

Figure 10. MPL compiler steps.

C++

19

complete discussion of the RTS is given in [17]. We consider here three sets of services that the RTS

provides, Mentat object back-end processes,mentat_object front-end classes, and the data-flow

detection library.

The RTS implementation of Mentat objects consists of two components, (1) a front-end class,

mentat_object, that contains the name of a Mentat object (process) and is the handle by which

the back-end object is manipulated, and (2) a back-end server object process that contains the Mentat

object’s state and performs the member functions. Member function invocation involves using the

front-end as a surrogate for the back-end server object. The front-endmentat_objects are essen-

tially object names and a set of member functions used to communicate with the back-end server.

The compiler generates code to manipulatementat_objects and the server loops that implement

the back-ends. The three member functions of interest are shown in Figure 11.

The data-flow detection library consists of routines that monitor the use of certain variables

(called result variables) at run-time to produce data dependence graphs. The basic idea is to monitor

the use of Mentat objects, and the use of the results of mentat object member function invocations.

Informally, if at run-time we observe a variable w (Figure 12) being used on the left-hand side of a

Mentat object member function invocation, we mark w as delayed and monitor all uses of w. When-

ever w is delayed and w is used as an argument to a Mentat object member function invocation, we

construct an arc from the invocation that generatedw to the consumer ofw. Ifw is not delayed, we use

its value directly. Whenever w is used in a strict expression, we start the computation that computes

7 class mentat_object {
8 object_name i_name;
9 public:
10 CIP invoke_fn(int,int,...); // used to communicate with back-ends
11 void create(); // instantiate new back-end
12 void destroy();// destroy the back-end
13 };

Figure 11. Partial interface of the front-end mentat_object class.

20

w, and block waiting for the answer.

More formally, let A be a Mentat object with a member function

int operation1(int,int)
A Mentat expression is one in which the outermost function invocation is an invocation of a Men-

tat member function, e.g., the right-hand side of

x = A.operation1(4,5);

A Mentat expression may be nested inside of another Mentat expression, e.g.,

x = A.operation1(5,A.operation1(4,4));.

The right-hand side of every Mentat assignment statement is a Mentat expression, e.g.,

x = A.operation(4,5);.

We keep track of Mentat object member function invocations at run-time using computation

instances. A computation instance corresponds to a node in a MDF program graph. It contains the

name of the Mentat object invoked, the number of the invoked function, the computation tag that

uniquely identifies the computation, a list of the arguments (either values or pointers to other compu-

tation instances that will provide the values), and a successor list. A computation instance contains

sufficient information to acquire the value that is the result of the operation.

The mentat_object member function invoke_fn() is called when a Mentat

object member function is used. It creates a new computation instance for the computation, (i.e., a

program graph node is created), and marshals both actual arguments (e.g., integers) and argu-

ments that are computation instances. If an argument is a computation instance, invoke_fn()

adds an arc from the argument to the new computation instance it is constructing.

A result variable (RV) is a variable that occurs on the left-hand side of a Mentat assignment

statement, e.g., w in Figure 12. It has a delayed value if the most recent assignment statement to it

bar A,B,C;
int w,x,y;
w = A.op1(4,5);
x = B.op1(6,7);
y = C.op1(w,x);

bar A;
int w,x,y;
w = A.op1(4,5);
y = w +1;

(a) Draw an arc from A.op1() and
B.op1() to C.op1().

(b) w is used in a strict expression,
block at wait for value.

Figure 12. Two uses of result variables. In this example, bar is a regular Mentat class.

21

was a computation instance and the actual value for the computation instance has not been resolved.

An RV has an actual value if it has a value that may be used. To detect data-flow at run-time we mon-

itor all uses of result variables, both on the left- and right-hand sides.

 Each RV has a state that is either delayed or actual. We define the result variable set (RVS)

to be the set of all result variables that have a delayed value. Membership in RVS varies during the

course of object execution. We define the potential result variable set (PRV) to be the set of all result

variables. A variable may be a member of the PRV set and never be a member of RVS. Membership

in the PRV set is determined at compile time.

The run-time system performs run-time data-flow detection by maintaining a table of the

addresses of the members of the RVS called the RV_TABLE. Each RV_TABLE entry contains the

address of the RV, and a pointer to a computation instance. If the address of an RV is not in the

RV_TABLE, then the RV is not in the RVS.

There are four functions of interest that operate on the RV_TABLE:

1) SET_ME((char*) rv_address, CIP node);

2) RV_DELETE((char*) rv_address);

3) force();

4) RESOLVE((char*) rv_address,int size);

The function SET_ME() creates an entry in the RV_TABLE with a CIP value of node for

the result variable pointed to by rv_address. If an entry already existed for rv_address, it is

overwritten. SET_ME() is the mechanism for adding a PRV to RVS.

The function RV_DELETE() deletes the RV_TABLE entry associated with rv_ad-

dress if one exists. Before the entry is deleted, its associated computation instance is decoupled.

This is the mechanism for removing a PRV from RVS.

The function force() is used to begin the execution of any program graphs that have been

constructed so far. It constructs the future lists from the program graphs and sends messages with the

appropriate future lists to the appropriate objects.

 The functionRESOLVE() is called when the user program requires a value for a result vari-

able. This is the case when a strict expression is encountered. If an entry in theRV_TABLE exists for

22

rv_address,RESOLVE() callsforce(), and blocks until the result is available. Once the result

is available, RESOLVE() places the result into the memory to which the rv_address points.

5.2 Translation

The compiler is a four pass compiler. In the first pass, the MPL source is parsed and the parse

tree and symbol tables are constructed. Mentat classes are identified and marked in the symbol table.

Front-end classes are constructed by derivation from the class mentat_object. Function num-

bers are assigned to all Mentat class member functions. The function numbers are used later as argu-

ments to invoke_fn().

The second pass marks all variables that are PRVs. We do this by descending the parse tree

and checking if the right-hand side of an assignment is a member function invocation on an object

whose class is a Mentat class. If so, the left-hand side is marked as a PRV. In the simple case, the left-

hand side is a simple variablew as in Figure 12. In the case where the left-hand side is more complex,

such as Z[i] or Y.X, the outermost enclosing variable, e.g., Z and Y, are marked as PRVs.

The third pass traverses the parse tree again, transforming the tree. The transformations result

in the generation of code to call the RTS library routines that perform the desired action at run-time.

There are five transformations:

1) When a PRV occurs on the left-hand side of a Mentat expression, add it to RVS using
SET_ME(), and construct a computation instance (add it to the graph) using
invoke_fn() on the front-end.

2) When a PRV occurs on the right-hand side in a strict expression, RESOLVE() it.

3) When a PRV occurs on the left-hand side of a non-Mentat expression, or goes out of
scope, remove it from RVS using RV_DELETE().

4) When a PRV occurs as an argument to a Mentat expression, add an arc from the com-
putation instance corresponding to the PRV to the computation instance corresponding to
the Mentat expression. The compiler has detected a potential data dependency. This is
done using invoke_fn() and passing in the address of the PRV.

5) Marshall all non-RVS arguments to Mentat invocations directly, i.e., package them into
messages to send to the object using invoke_fn().

The fourth and final pass traverses the transformed parse tree and prints it out. If the source

being compiled is the code for a Mentat class back-end (as opposed to a main program) the compiler

also generates a server loop member function and amain() function. The server loop is equivalent to

23

a large select/accept in which every member function of the class is included. The output from the

fourth pass can be used directly as input to a C++ compiler.

5.3 Translation Examples

The following two examples illustrate the code translation process, and the parallelism that

results from run-time elaboration of the program into MDF graphs. For each example we present the

MPL code, the translated code, and the resulting program subgraph. The original code is retained in

comments. Only statements involving PRV’s and Mentat objects are transformed.

Example 2: Simple Mentat object invocation. In Figure 12 two program fragments were

presented to illustrate blocking versus non-blocking member function invocation. The MPL trans-

lations are shown in Figure 13 (a) and 13 (b) respectively. The code fragment of Figure 12 (a) has

bar A;
int w,x,y;
//w = A.op1(4,5);
(*SET_ME((&w)))=A.invoke_fn(101,2,ICON_TO_ARG(4),ICON_TO_ARG(5));
//y = w +1;
y = (RESOLVE(&w),w) + 1;

bar A;
int w,x,y;
//w = A.op1(4,5);
// Add w to RVS, create a node in the subgraph, marshall arguments.
(*SET_ME((&w)))=A.invoke_fn(101,2,ICON_TO_ARG(4),ICON_TO_ARG(5));
//x = B.op1(6,7);
// Add xto RVS, create a node in the subgraph, marshall arguments.
(*SET_ME((&x)))=A.invoke_fn(101,2,ICON_TO_ARG(6),ICON_TO_ARG(7));
//y = C.op1(w,x);
// Add y to RVS, create a node in the subgraph, add arcs to subgraph
(*SET_ME((&y)))=C.invoke_fn(101,2,PRV_TO_ARG(&w,4,0),PRV_TO_ARG(&x,4,0));
// rtf(y);
// elaborate the current actor into the constructed subgraph
rtf(PRV_TO_ARG(&y,4));

(b) Code transformation for 12 (b). Control flow blocks waiting for the result of the

(c) Initial graph and elaboration for

(a) Code transformation for 12 (a)

(d) Graph for (b).

BA

C

4 765

A

4

5
caller

the future

the future

fragment (a)

member function invocation, resulting in an RPC-like behavior.

Figure 13. Code transformations and generated graphs for code fragments of Figure 12.

24

been extended to include an rtf(y). The result is that the actor containing the code fragment is

elaborated into the subgraph shown.

Example 3: Pipelined Functional Parallelism. Or final example is the most complete trans-

lation. It illustrates the dynamic construction of program graphs and the use of regular Mentat

classes. We define four classes, two variable-sized C++ classes, string and dblock, and two

Mentat classes, regular mentat class data_filter, and persistent mentat

class mfile. The mfile class provides operations to open a file, read blocks, and write

blocks of data. The data_filter class provides two different filter operations, filter1()

and filter2(). What the filters do is unimportant. It is important that they are pure functions

that depend only on their inputs. The main loop reads data blocks from the input file, passes them

through two filters, and writes the results to the output file (Figure 14). The effect of executing the

code fragment is to generate MAX_BLOCKS copies of the program graph of Figure 15. Taken

together, these graphs form an execution pipe.

Several observations can be made from this example. First, since the variable dp is a reg-

ular Mentat class, the system is free to instantiate new instances at will. If the filter operations are

computationally heavy relative to the reads, there will be many concurrent instances. Second, the

main loop may have executed to completion (all MAX_BLOCKS iterations) before the first write

has completed. Third, suppose our “caller” (the main loop) was itself a server servicing requests

for clients. Once the main loop is complete the caller may begin servicing other requests while the

first request is still being completed. Fourth, the order of execution of the different stages of the

different iterations can vary from a straight sequential ordering. This can happen, for example, if

the different iterations require different amounts of filter processing. This additional asynchrony is

possible because the run-time system guarantees that all parameters for all invocations are cor-

rectly matched, and that member functions receive the correct arguments. The additional asyn-

chrony permits additional concurrency in those cases where execution in strict order would

prevent later iterations from executing even when all of their synchronization and data criteria

have been met. Finally, in addition to the automatic detection of inter-object parallelism opportu-

nities, we may also have intra-object parallelism encapsulation, where each of the invoked mem-

25

persistent mentat class mf ile {
// ... locals

public:
int open(string*);
void write(int offset;int bytes;dblock *data);
dblock *read(int blk_num);

};
regular mentat class data_f ilter {
public:

dblock* f ilter1(dblock*);
dblock* f ilter2(dblock*);

};

// Now a code fragment that uses the above def initions
1: mfile in_f ile,out_f ile;
2: data_f ilter dp;
3: dblock *res;
4: in_f ile.create(); // Create a persistent mf ile.
5: out_f ile.create(); // Create a persistent mf ile.
6: x= in_f ile.open(”inf ile”); // non-blocking call
7: y= out_f ile.open(”outf ile”);// non-blocking call
8: if ((x < 0)|| (y<0)) {/*handle the error*/} // Note strict on x & y
9: for (i=0,i<MAX_BLOCKS;i++){
10: res=in_f ile.read_block(i); // non-blocking
11: res = dp.operation1(res); // arc constructed, new instance
12: res = dp.operation2(res); // arc constructed, new instance
13: out_f ile.write_block(i,res); // non-blocking, arc constructed

}
-------------------- translation ---------------------
// Note front-end derivation off of mentat_object
class mf ile : public mentat_object {

public:
mfile(){set_object_name(&i_name, “mf ile”, _M_PERSISTENT);}

}
class data_f ilter : public mentat_object {

public:
data_f ilter(){set_object_name(&i_name, “data_f ilter”, _M_REGULAR);}

}
: mfile in_f ile,out_f ile;
2: data_f ilter dp;
3: dblock *res;
4: in_f ile.create(); // Create a persistent mf ile.
5: out_f ile.create(); // Create a persistent mf ile.
// x= in_f ile.open(”inf ile”); // non-blocking call
6:(*SET_ME((&x)))=in_f ile.invoke_fn(101,1,STRING_TO_ARG(“inf ile”));
// y= out_f ile.open((string*)”outf ile”);// non-blocking call
7:(*SET_ME((&x)))=in_f ile.invoke_fn(101,1,STRING_TO_ARG(“inf ile”));
8: if (((RESOLVE(&x),x) < 0)|| ((RESOLVE(&y),y)<0)) {}
// if ((x < 0)|| (y<0)) {/*handle the error*/} // Note strict on x & y
9: for (i=0,i<MAX_BLOCKS;i++){
// res=in_f ile.read_block(i);
10: (*SET_ME((&res)))=in_f ile.invoke_fn(102,1,VAR_TO_ARG(&i,4,0));
// res = dp.operation1(res); // arc constructed, new instance

(*SET_ME((&res)))=dp.invoke_fn(101,1,PRV_TO_ARG(&res,4,0));
// res = dp.operation2(res); // arc constructed, new instance
12: (*SET_ME((&res)))=dp.invoke_fn(102,1,PRV_TO_ARG(&res,4,0));
// out_f ile.write_block(i,res); // non-blocking, arc constructed
13: (*SET_ME((&res)))=out_f ile.invoke_fn(103,2,VAR_TO_ARG(&i,4,0),

PRV_TO_ARG(&res,4,0));
}
// Note: PRV_TO_ARG and VAR_TO_ARG are argument marshaling functions that are
// called on PRV’s and non-PRV’s respectively.

Figure 14. Program and translation illustrating pipeline parallelism.

26

ber functions, e.g., the filter operations, may be internally parallel.

6. Summary

The difficulties associated with explicitly managing medium-grain parallelism combined

with the inability of compilers to automatically extract medium-grain parallelism have plagued appli-

cations writers for years. In this paper we presented the macro data-flow model and a technique for

automatically extracting medium-grain parallelism from programs once the programmer has identi-

fied the computation grains using object class definitions. The macro data-flow model is a parallel,

data driven computation model that is scalable, medium grain, supports the object-oriented paradigm,

and can be efficiently implemented on distributed memory MIMD machines. Our hybrid approach to

finding and exploiting parallelism synergistically combines the advantages of both explicit and com-

piler-based techniques. We capitalize on both the programmer’s domain knowledge and the compil-

er’s ability to safely manage communication and synchronization.

The bottom line for any parallel computation system is application performance, in partic-

ular, speedup relative to a sequential implementation of the application. We have extensive expe-

rience with Mentat performance on applications from areas as diverse as electrical engineering,

physics, biochemistry, and computer science, on platforms as diverse as networks of workstations

and the Intel iPSC/860 (gamma). The results are detailed elsewhere [15][16]. In several cases hand-

coded parallel implementations of the application exist. These provide us with a metric to measure

the penalty of using Mentat and MDF. The results are very encouraging. Performance is good, and

competitive with the hand-coded implementations. Further, the use of the object-oriented paradigm

combined with the compilation techniques used has reduced development time, and more impor-

tantly, made modifications to the applications easier.

out_filefilter2filter1in_file

requests
values of i

Figure 15. Subgraph of loop body of Figure 14. Multiple invocations result in
pipelined execution.

27

7. References

[1] H. Abelson, G. J. Sussman, and J. Sussman, Structure and Interpretation of Computer
Programs, The MIT Press, Cambridge Massachusetts, 1985.

[2] T. Agerwala and Arvind, “Data Flow Systems,” IEEE Computer, vol. 15, no. 2, pp. 10-13,
February, 1982.

[3] J. R. Allen, and K Kennedy, “PFC: A Program to Convert FORTRAN to Parallel Form,”
Proceedings of the IBM Conference on Parallel Computers and Scientific Computations,
Rome, 1982.

[4] G.S. Almasi and A. Gottlieb, Highly Parallel Computing, Benjamin/Cummings Publish-
ing Co., Redwood City, CA., 1989.

[5] Arvind and J. D. Brock, “Resource Managers in Functional Programming,” Journal of
Parallel and Distributed Computing, vol.1, pp. 5-21, 1984.

[6] R. F. Babb, “Parallel Processing with Large-Grain Data Flow Techniques,” IEEE Com-
puter, pp. 55-61, July, 1984.

[7] B. Beck, “Shared Memory Parallel Programming in C++,” IEEE Software, 7(4) pp. 38-48,
July, 1990.

[8] A. Beguelin et al., “HeNCE: Graphical Development Tools for Network-Based Concur-
rent Computing,” Proceedings SHPCC-92, pp. 129-136, Williamsburg, VA, May, 1992.

[9] P. A. Bernstein, and N. Goodman, “Concurrency Control in Distributed Database Sys-
tems,” ACM Computer Surveys, pp. 185-221, vol. 13:2, June, 1981.J.

[10] Boyle et al., Portable Programs for Parallel Processors, Holt, Rinehart and Winston, New
York, 1987.

[11] J. C. Browne, T. Lee, and J. Werth, “Experimental Evaluation of a Reusability-Oriented
Parallel Programming Environment,” IEEE Transactions on Software Engineering, pp.
111-120, vol. 16, no. 2, Feb., 1990.

[12] N. Carriero and D. Gelernter, “Linda in Context,” Comm. of the ACM, pp. 444-458, April,
1989.

[13] N. Carriero, and D. Gelernter, “How to Write Parallel Programs: A Guide to the Per-
plexed,” ACM Computing Surveys, pp. 91-125, vol. 23, num. 1, March. 1991.

[14] J. Dennis, “First Version of a Data Flow Procedure Language,” MIT TR-673, May, 1975.

[15] G. Fox et al.,Solving Problems on Concurrent Processors Volume I, Prentice Hall, Engle-
wood Cliffs, NJ, 1988.

[16] A. S. Grimshaw, “Easy to Use Object-Oriented Parallel Programming with Mentat,” IEEE
Computer, pp. 39-51, May, 1993.

[17] A. S. Grimshaw, E. A. West, and W.R. Pearson, “No Pain and Gain! - Experiences with
Mentat on Biological Application,” to appear in Concurrency: Practice & Experience,
Vol. 5, issue 4, July, 1993.

[18] A. S. Grimshaw, W. T. Strayer, and P. Narayan, “Dynamic Object-Oriented Parallel Pro-
cessing,” to appear, IEEE Parallel & Distributed Technology: Systems & Applications,
May, 1993.

[19] A. S. Grimshaw. The Mentat Run-Time System: Support for Medium Grain Parallel Com-

28

putation. Proceedings of the Fifth Distributed Memory Computing Conference, pp. 1064-
1073. Charleston, SC., April, 1990.

[20] A. S. Grimshaw, and V. E. Vivas, “FALCON: A Distributed Scheduler for MIMD Archi-
tectures”, Proceedings of the Symposium on Experiences with Distributed and Multipro-
cessor Systems, pp. 149-163, Atlanta, GA, March, 1991.

[21] A. S. Grimshaw, E. Loyot Jr., and J. Weissman, “Mentat Programming Language (MPL)
Reference Manual,” University of Virginia, Computer Science TR 91-32, 1991.

[22] R. H. Halstead Jr., “Multilisp: A Language for Concurrent Symbolic Computation,” ACM
Transactions on Programming Languages and Systems, pp. 501-538, vol. 7, no. 4, Octo-
ber, 1985.

[23] C.A.R. Hoare, “Communicating Sequential Processes,” Communications of the ACM, pp.
666-677, vol. 21, no. 8, August, 1978.

[24] Inmos Ltd., Occam Programming Manual, Prentice-Hall, New York, 1984.

[25] Intel Corporation, “iPSC/2 USER’S GUIDE”, Intel Scientific Computers, Beaverton, OR,
March 1988.

[26] D. Kuck, R. Kuhn, B. Leasure, D. Padua, and M. Wolfe, “Dependence Graphs and Com-
piler Optimizations,” ACM Proceedings of the 8th Annual ACM Symposium on Principles
of Programming Languages, pp. 207-218, January, 1981.

[27] T. G. Lewis and H. El-Rewini, Introduction to Parallel Computing, Prentice Hall, Engle-
wood Cliffs, NJ, 1992.

[28] S. Mullender ed., Distributed Systems, ACM Press, 1989.

[29] A. Osterhaug “GUIDE TO PARALLEL PROGRAMMING On Sequent Computer Sys-
tems,” Sequent Technical Publications, Sequent Computer Systems, Beaverton, OR, 1989.

[30] C. M. Pancake and D. Bergmark, “Do Parallel Languages Respond to the Needs of Scien-
tific Programmers?”, IEEE Computer, pp. 13-23, December, 1990.

[31] C. Polychronopoulos, Parallel Programming and Compilers, Kluwer Academic Publish-
ers, 1988.

[32] M. J. Quinn, Designing Efficient Algorithms For Parallel Computers, McGraw-Hill Book
Company, New York, 1987.

[33] V.S. Sunderam, “PVM: A framework for parallel distributed computing,” Concurrency:
Practice and Experience, vol. 2(4), pp. 315-339, December, 1990.

[34] A. H. Veen, “Dataflow Machine Architecture,” ACM Computing Surveys, pp. 365-396,
vol. 18, no. 4, December, 1986.

