A DISTRIBUTED SYSTEM FOR ANALYZING
TIME VARYING MULTI-RESOLUTION IMAGERY

C. L. Tan
and
W. N. Martin

Computer Science Report No. TR-86-01
January 1986



A DISTRIBUTED SYSTEM FOR ANALYZING
TIME VARYING MULTI-RESOLUTION IMAGERY

C. L. TAN

Department of Information Systems and Computer Science
National University of Singapore
Kent Ridge
Republic of Singapore

W. N. MARTIN

Department of Computer Science
Thornton Hall
University of Virginia
Charlottesville, VA 22903

This report has been submitted for publication in a special
issue on Computer Vision of the journal, Computer Vision,
Graphics and Image Processing.

This research was supported in part by the National Science Foundation through
grant ECS-83-07248. Mr. Tan is supported by the National University of
Singapore through an overseas graduate scholarship.



ABSTRACT

A distributed system for analyzing time varying, multi~resolution imagery is
described in this paper. A pipelined pyramid structure is constructed in the sys-
tem by continually converging incoming images into successive levels of decreasing
resolutions. A set of processes work concurrently and asynchronously on subim-
ages at different levels of the pyramid. These processes initially watch for
interesting features in the coarsest resolution rendition of the scene. Processes
working on promising areas individually but cooperatively proceed to progressively
finer resolution levels. A blackboard structure also exists in the system that per-
mits coordination among these processes, resulting in a unified motion interpretation

of the imagery.
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1. INTRODUCTION

High computational cost has long been a problem in computer vision because
of the enormous amount of data associated with each image. Multi-resolution
image structures, such as pyramids, cones and quad trees [1], have in recent years
been introduced to alleviate this problem. Such structures permit hierarchical
search and heuristic planning [1] whereby rapid focus-of-attention on promising
data may be achieved. Furthermore, these structures because of there hierarchical
interconnection are amenable to parallel/serial implementation [2]. In concurrence
with these developments, another new area of computer vision emerged in the last
decade. Instead of working with static scenes, researchers began experimenting with
the capability to perceive time varying imagery. To achieve this capability, time
ordered sequences of images have to be processed with the objective of collecting
information from the sequence as a whole. Computational cost is thus even higher
than the traditional static image analysis, and is especially acute when real-time

performance is required.

We bave combined the above two areas of developments by allowing time
varying imagery to be represented in a dynamic multi-resolution structure. Further-
more, the analysis of these images is distributed among several processors which

periodically communicate among themselves through a coordinator.

The workings of our system are motivated by the following scenario. A man
walks out of a building and hears the noise of a jet plane. With ‘preconceived
features of an airplane, he looks skyward trying to locate a moving object bearing
those features. As he scans his field of view, many other objects will also be in
sight. These items need to be sorted through in order to locate the airplane. It
has been suggested that two phases of motion perception exist in human vision,
namely peripheral and attentive phases - EB]. In the -initial scan, a set of peripheral

processes working in parallel quickly eliminate uninteresting objects but direct



promising areas to attentive processes for more detailed analysis. Successive stages
of attentive processing gradually discard further items wuntil the airplane is
identified and can be tracked. Meanwhile, the original peripheral processes continue
to watch for any new interesting object, such as a second airplane, that may enter

the scene.

In our system, the sequence of incoming images are successively converged into
varying levels of degrees of resolution. The system is given a set of pre-
determined objects of interest that are expected to appear in the scene. Peripheral
and attentive processes are allowed to run concurrently w.ith the former processing
the lowest resolution rendition of the scene while the latter are being directed to
work at progressively higher resolution levels until their individual objects of

interest are located.

2. TIME VARYING MULTI-RESOLUTION IMAGERY

The multi-resolution representation that we use in our system is a pyramid
structure. Such a structure may be visualized as a sequence of two dimensional
images representing a visual scene in less and less detail from the base to the top
level of the pyramid [1, 4. Usually the dimension of the images is reduced by

half at each step in the sequence. For instance,

P=(s$12><512 SZSGXZSG S128X128 . Slxl)

is a pyramid of 10 image levels. FEach element of an image, S, represents a pixel

that contains some scene feature information, such as intensity.

Alternatively, a pyramid may be considered as a set P of cells together with a

function F that assigns a value v to each cell. Thus

P=({v ki.j) I OSESL; 0%i,j€2*—1; v=F(k i.j))



is a pyramid of L+1 levels, whose levels (v.,k,i.j) at kth level contains the value
v=F(k,.j). Furthermore, the function F is defined as follows (for 0k <L,

0Ki,j 2 —1)

P9l Fk+1,2i4p.2j+g)

p§0 q;—“:ﬁ 4 if 0Kk <L
Flkij)=
pixel value of original scene if k=L

| Suppose that a processor is attached to each array element in the pyramid
structure. Furthermore, the k-+1th level is partitioned into sets of 2X2 adjacent
elements with all four elements in each set connected to a single "parent” processor
at the kth level. The kth level is further connected in the same manner to the
(k~1)th level. 'f‘his is continued until the Oth level is reached. With this con-
struction, the mean intensity of a 2%X2%* image can be calculated in L steps. A
straight forward raster algorithm to calculate mean intensity needs 2%2 steps, while

a single level parallel array requires 2° steps.

However, the reduction of computation steps is not due to the parallelism of
the multiple levels of the pyramid. This is because the ancestor processor will be
idle while the descendant processors are active. Rather, the strength of the
pyramid lies in its non-local communication provided by the parent-child connec-
tions. To balance the wastage due to idling processors, a design incorporating
heterogeneous and homogeneous processes is necessary [5]. Here, the system con-
taing two components: a large set of simple processors connected in a pyramid
structure and a small set of complex processors which have arbitrary access to the
pyramid. This design provides the system with the proper resources to implement
simple homogeneous processes across the image and complex heterogeneous processes

within selected subimages at required resolutions.



The changing nature of the environment must also be considered. Since we
are dealing with time varying imagery, while a peripheral process attempts to guide
an attentive process into higher resolution levels, the image data will continue to
evolve. This leads to the notion of a pipelined pyraﬁid [6, 7], which is constructed
as follows: At each time interval the pipeline is supplied with a new image which
ig inserted into the full resolution leyel (the pyramid base). In parallel to that
insertion each parent element in the pyramid obtains its new image value by

averaging the values from its immediate descendants.

3. SYSTEM DEVELOPMENT

We have developed a system that contains the homogeneous and heterogeneous
components described above in a simulated parallel computing environment, known

as PISCES, developed at the University of Virginia [8].

PISCES stands for Parallel Implementation of Scientific Computing EnvironmentsS.
It is a virtual system based on the use of MIMD parallel computation to achieve
high computation rates for the solutions of large scale scientific and engineering
problems. However, a consideration at the inception of the PISCES project was the
use of such a system for asynchronous parallel image processing [9]. It was noted
that a large class of parallel asynchronous algorithms for image processing could
not be adequately handled by SIMD array languages and hence the need for a
language that would meet the following requirements: (1) division into similar
processes for different parts of a large image structure, (2) parallelism at the level
of procedures rather than individual operations, (3) dynamic creation and destruc-
tion of processes and their interconnections, (4) closely coupled processing, (5) mul-

tiple simultaneous reads of shared data, and (6) sequential writing of shared data.

The PISCES system is organized as a set of "tasks" and "task clusters”. The

tasks may communicate with each other by passing messages through “handlers",



which are subprograms within tasks. The PISCES design permits five "granulari-
ties" of parallelism: (1) parallel execution of clusters, (2) parallel execution of tasks
within a cluster, (3) parallel execution of handlers, (4) parallel execution of pro-
gram segments, and (5) parallel execution of arithmetic operations. Actual levels

of parallelism are implementation dependent.

The current implementation runs on a VAX 11/780 under UNIX 4.2, simulat-
ing task and cluster level parallelism, and on an Apolle network at the University
of Virginia. An implementation on a new FLEX/32 MIMD computer system at

NASA Langley is also under way.

4. SYSTEM IMPLEMENTATION

Three different types of tasks are defined for our system within the PIS.CES
environment. The first is a "pyramid" task that simulates the homogeneous com-
ponent described in Section 2. The "pyramid" task continuously accepts input
images and at the same time outputs a pipelined pyramid structure. In doiﬁg so,
the incoming image forms the base of the new pyramid and eac‘h' level in the pre-
vious pyramid is pushed upwards and converged. The top level of the old
pyramid is discarded. The pipelined pyramid structure used in our system contains
four levels. The image size and time unit associated with each level are shown in
Table 1. Except for the base which is the new incoming image, each level
receives and averages image data from the preceding time frame at the immediate

descendant level. Figure 1. is a schematic diagram of the four-level pipelined

level time unit image size
0 T3 64x64

1 Tion 128x128
2 y 4 256X256
3 T, (present time) 512512

Table 1. A four-level pipelined pyramid.



pyramid containing two moving objects.

A variable number of processes form the heterogeneous component of our sys-
tem and are simulated by tasks of a second type known as "agents".  Fach "agent"
is essentially an image processor that aims to find corresponding instances of its
target object in consecutive images. Moreover, it is intelligent enough to access at
each time interval an appropriate subimage at a particular level in the pyramid.
As its image analysis proceeds, ecach “agent” is able to traverse across the pyramid
levels in a goal-directed manner, thus simulating the peripheral and attentive phases
of motion perception. Each "agent” is also able to distribute its load by spawning
new "agents” if additional possible objects of interest are detected. An "agent" may
determine that its processing is redundant in relation ’;o other agents and terminate

itself. Thus the number of active "agents” varies as the system is running.

The redundancy of "agent" activities is detected by each "agent” through inter-
agent communication. This communication is made possible by the third type of
task in the system. known as the "scene description model”" ("sdm"). The "sdm"
constitutes the system’s current interpretation of the dynamic scene and performs
this function by serving as a repository through which "agents" can communicate
status and interpretation information. 'The "sdm" provides a mechanism for inter-
agent cooperation similar to the blackboard of HEARSAY-II [10]. In HEARSAY-II,
however, the blackboard contains hypothesized data arranged in abstraction levels
whereas the data in the "sdm" are actual results obtained from image operations
and as yet are not coalesced into abstractions. The data at each level in
HEARSAY-II pertain to a one dimensional ordering of various components in an
utterance. In the "sdm", on the other hand, the data are essentially two dimen-
sional representing spatial information from images with varying degrees of resolu-
tion. Timing information is also explicitly contained in the "sdm" while in
HEARSAY-II the temporal ordering is impliéitiy reflected in the seguencing of its

data.
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Figure 2. Various tasks in the system: the pyramid, agents,
and the scene description model.

Figure 2. shows the interconnection of the three task types in the system.
While the "pyramid” continues to updates pyramid images. currently active "agents"
concurrently and asynchronously access subimages at various levels of the pyramid.
The processing of each subimage by an "agent” is followed by a two-way commun-
ication with the "sdm” to update the current interpretation. The system is distri-
buted and yet cooperative with each "agent" being self-directed but sharing informa-
tion with other "agents’. This distributed and cooperative nature is akin to some

of the distributed problem solving models proposed by several researchers [11-14].

5. DISTRIBUTED DYNAMIC SCENE ANALYSIS

We will now examine how our system performs distributed analysis of a
dynamic scene, similar to the airplane scenmario cited earlier. The system first ini-
tiates a fixed number of "agents" to look at different pre-determined "home" win-
dows. These windows altogether cover the entire coarsest resolution imagery, i.e., at
the top of the pyramid, with marginal overlap between windows. This corresponds

1o the beginning of the peripheral phase.



Recall that in the airplane scenario, the person tries to locate the object with
a preconceived notion of an airplane’s features. Of course, there need not be just
one type of object of interest. In our system, each "agent' carries with it a set of
pattern descriptions, one for each type of object of interest. An "agent" that finds a
possible instance of any one of the types of objects of interest in the peripheral'
phase will proceed to the next higher resolution level, thus entering the attentive
phase. Subsequent positive identifications of an object will lead to progressively
higher resolution levels, emulating the increasing degrees of attention in the human
visual system. Any failure during the attentive phase will result in the "agent”

in question returning to its "home" window for peripheral processing.

As an "agent" begins its analysis at each pyramid level, it is capable of
estimating the position and size of the subimage to be accessed. Past motion data
accumulated at each “agent' enables it to perform this function. In processing the
subimage, the “agent’ attempts a correspondence matching between the pattern
descriptions of the objects of interest and any possible objects within the subwin-
dow. There are currently three degrees of match that determine the course of the
vertical traversal in the pyramid of an "agent". They are good, fair and poor. An
"agent" that finds a good match with an object will proceed to the next higher
resolution level for a higher degree of attemtion. A fair match indicates the neces-
sity for further confirmation of the object and the "agent” will remain at the same
level for the next time interval. When a poor match or three consecutive fair
matches are obtained. the "agent" aborts its attentive process and returns to the

peripheral mode.

The result of each match is first reported to the "sdm" before any new traver-
sal in the pyramid is executed. Reporting to the "sdm" enables checking of any
duplicated activities among other "agents” in the system. Thus if an “agent” finds a
good match of an object that has already been reported by another “agent", then

instead of pursuing that object further, the former will suspend its processing for
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a specified time interval and later return to the peripheral phase. Duplication of

peripheral activities in the same "home” window will also be detected by referring

n "

to the "sdm". In this case, the duplicated "agent" will kill itself rather than

resuming the peripheral mode. In case several instances of objects of interest are
identified within a window, the "agent" will also spawn an additional number of
“agents", each of which is to examine a single object. This is again provided that

each additional object is not already attended to by another "agent".

When an "agent" finally pursues an object to the base level, thereby establish-
ing a full identification of the object, it generates a new "agent” to frack tbe object.
The original "agent” returns to the peripheral mode if its "home" window is not
being "watched’ by another "agent’. The new "agent” will also move to the coar-

sest resolution level of the pyramid at which the object can be confidently tracked.

This resembles the ease with which the person follows the airplane’s movement

id: 203921 . ObjECt T,ype #2 unknown
status: identifyi position {12,29) (20,31
/ng resolutionj level © level O
‘o - match good poor
i3 ~
ts \
tqg ™
lagent O - object type #2
fagent 1 position (26,57)
lagent 2 resolution] level 1
match fair
\ id: 203928
statusitracking #1 short
7 term
6
7 . - memory
object type
;; position | (10.43) ]
resolution| level O
match good

Figure 3. Data brganization in the sdm’s blackboard.
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once the plane is located. The new "agent' thus attains a "tracking' status in con-
trast to the "identifying" status of its parent. The “tracking agent’ also estimates

its window size and position for each time unit and reports its tracking result to

L) i

the 'sdm’. The shared information in the blackboard again prevents any other
"agent" from identifying an object that is already being tracked by a “tracking
agent”.

Communication between each “agent” and the "sdm" is asynchronous with each
"agent" reporting its own data and picking up the most current information avail-
able in the blackboard. The blackboard, as shown in Figure 3., enables an “agent’
to "see" what others are doing and prevents multiple "agents" from simultaneously
processing the same object. A short-term-memory also resides in the "sdm" and
will be described in Section 7. Thus, we have a distributed system containing
multiple "agents", variously engaged in peripheral, attentive, or tracking activities.
The imagery analyzed may contain multiple moving objects, with each "agent"
essentially attending to a single object. Complicated scenes, however, could give

rise to ambiguous or occlusion situations that are handled in the manner described

below.

6. AMBIGUITY RESOLUTION

Ambiguity occurs when an object that is being tracked moves into close prox-
imity of other objects. The “agent" that has been tracking the object may sud-
denly find two or more objects in its window. Determining the correct correspon-
dences may not be possible if the current objects are of the same type, or appear
at low resolution to be similar and each of about the same distance from the last

observed locations of the objects.

Disambiguation of this multiple objects case can be facilitated through infor-

mation available from other "agents” which are also analyzing these objects. The
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Figure 4(a). Image pyramid with two objects identified at level 3.

asynchronous communication discussed above, however, does not guarantee that an
"agent” will get the best information for resolving the ambiguity because other use-
ful data may still be on the way. The solution calls for a partial synchronization
scheme in that "agents" which are involved in an ambiguous situation are tem-
porarily synchronized in order to cooperate to resolve their ambiguities. Other
"agents” access the "sdm" asynchronously as usual. A "resolver" in the "sdm" is
called to perform the disambiguation function when all "agents" have at least
reported once after the first report of an ambiguous state. The "resolver" first
makes use of unambiguous data in the blackboard to fully or partly resolve the
ambiguity through a process of elimination. The remaining ambiguity is resolved
among the synchronized "agents" based on the shortest errall distances between the

current positions and the last observed locations of the objects.
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Figure 4(b). Image pyramid involving tracking with ambiguity.

Figures 4(a). to 4(c). show three instances of pyramid images involving two
objects approaching each other and later moving apart. The boxes in these figures
represent the windows of different "agents" in the course of identification or track-
ing. Figure 4(a). shows two "agents" that have fully identified the two objects at
level 3 and two other peripheral "agents" at level 0. In Figure 4(b).. two tracking
"agents" are involved in an ambiguous situation as their individual windows encom-
pass images of both objects which appear identical to either "agent" at low resolu-
tion. The system is able to resolve this ambiguity based on the partial synchroni-
zation scheme described above. Figure 4(c). is a later instance in the time sequence
at which the ambiguity has been resolved. Normal tracking resumes in this
instance. In both Figures 4(b). and 4(c)., the tracking ';agents" have a smaller win-

dow than the "home" window of each peripheral "agent". Some peripheral "agents"
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are suspended at different times as result of redundancy and their windows thus

do not appear during suspension periods.

7. OCCLUSION ANALYSIS

Occlusion is often a difficult problem in motion analysis [15-19]. Due to the
simple nature of the pattern descriptions that we are currently assuming, even par-
tial occlusion will render the objects involved unrecognizable. Notice, however,
that for any data driven tracking system there is some level of occlusion for

which the objects must be considered lost and tracking processes terminated.

To attack this problem, a short-term memory is incorporated within the

blackboard of the "sdm". The short-term memory maintains the trajectories of

Figure 4(c). Image pyramid involving tracking with no ambiguity.
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objects previously analyzed and then lost. Any newly discovered object is corre-
lated to the information in this memory in an attempt to trace it to an object that
had been tracked earlier and lost, possibly due to occlusion. Statistical correlation
and curve fitting techniques are used in sorting through data in the short-term
memory. It is apparent that objects that were tracked but lost too long ago will
have little effect in correlating with newly found objects. Thus items in the
short-term memory are made to "age" with the passage of time and those older

than a certain age are expelled from the short-term memory.

Figure 5. shows an object moving so as to become occluded by a stationary
object. The trajectory of the former is retained in the short-term memory during

the process of tracking.

Figure 5. Image pyramid involving occlusion.
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8. CONTINUOUS IMAGE ARRIVALS

In our initial phase of implementation, image arrivals are partially synchron-
ized to "agent” activity to allow us to study the system’s behavior without the
concern of an "agent” missing image data. In this partially synchronized case, the
"pyramid" supplies new images only after all "agents" have completed a cycle on
the current images. This synchronization is provided by the "sdm" which signals
the "pyramid" to update new images at the end of each cycle. Such synchroniza-
tion appears rather unnatural when in biological visual systems images arrive con-
tinuously at the retinal cells regardless of whether the brain is able to process
them. The capability of tracking with continuous image arrivals is also vital if

real-time performance is required.

This constraint on image arrivals has been removed in our present design.
The "pyramid" now acts as a front end sensory system and has no knowledge of
the processing activities among the "agents" and the "sdm", apart from sending
subimages to individual "agents". The "pyramid” will update the pyramid structure
whenever a new image arrives. As an "agent” may be delayed by a lengthy com-
putation in the analysis of a requested subimage, two consecutive requests from
that "agent” may not necessarily receive two images that are immediately adjacent
in the temporal sequence. FEach "agent" will now have to be robust in continuing
its control on pyramid traversal and window selection despite .occasional missing
data in the "sdm". This is made possible by the fact that each image frame now
carries an explicit time stamp. Moreover, because "agents’ may miss image frames,
there may be substantial temporal gaps between instances of an object reported by
different "agents". An "ageni" may thus report an instance of an object appearing
at a much later time stamp than those reported earlier by other "agents” which
have yet to report again because of computational delays. In order to determine
whether the current "agent’ is redundant, i.e. analyzing an object already attended

to by another "agent”, the current "agent” will have to reconcile its reports with
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others in the blackboard. In doing so, each "agent' normalizes blackboard data
with respect to its own time frame. As shown in Figure 3., time units reported by
individual "agents" are not necessarily consecutive. In addition, overall motion

interpretation from the blackboard has to take into account these temporal gaps.

The continuous image arrival design has been tested with the same sets of
imagery as that in the original design including those involving ambiguity and
occlusion.  The "agents”" tolerate occasionally missing several frames. The tolerance
depends on the the assumed maximum displacement between consecutive image
accesses assumed 'by the window selection algorithm of an "agent'. If an "agent" is
extensively delayed then it may lose the object it was attempting to track. Alter-
natively, the object may partially extend beyond the selected window resulting in
only a fair match, thus slowing the identification process. The system fails to
detect objects that are moving faster than a certain limit, while it continues work-~
ing reasonably well with missed ‘frames involving slower objects. This performance
degradation also reflects the confusion or optical illusions in human vision with

complicated and fast changing scenes.

9. DISCUSSION

It has long been recognized thaf motion perceptlion plays a central role in bio-
logical visual systems [20]. | For example, lower animals, such as frogs, perceive
only prey that is moving [21]. Our experience in detecting with ease a
camouflaged object in its momentary movement is another example. Inspired by
biological and psychological research, computer analysis of time varying imagery has
found wide applications despite its relatively short history. Eﬁamples of areas of
applications include medicine, communication, manufacturing, military, etc. [22-24].
In the course of these developments, many ingenious methods have been devised to
provide motion detection and measurement [3, 20, 25]. Basically, these technigues

fall into two different schemes, namely, intensity-based schemes and token-matching



18

schemes.

In intensity-based schemes, motion measurements are based on the local
changes in light intensity values. In some early studies. changes were detected by
cross-correlation. Leese, et al. [26], and Smith and Phillips [27], for instance, meas-
ure cloud motion from satellite images based on gray-level cross-correlation.
Temporal-spatial gradient techniques are other methods for detecting change in
intensity at an image point over both time and space to estimate the rate of move-
ment of the underlying surface. Various methods using gradient techniques have

been proposed by several authors {28-30].

In token-matching schemes, identifiable features or tokens are located and then
matched over time. For instance, Chow and Aggarwal [16], in analyzing the
motion of planar figures, match figures on the basis of pattern descriptions, such as
area and principle axes. The use of tokens that only represent partial objects are
found in several studies. For example, feature points that correspond to distin-
guishing parts of objects, such as corners, are extracted for matching as used by
Barnard and Thompson [31], and Lawton [32]. In the work by Martin and
Aggarwal [17], Jacobus, er al. [33], and Tsuji, et al. [34], matching is established

between small fragments of the objects’ boundaries.

After motion has been detected and measured it may be used by higher level
processes to make interpretations of the observed scene. An example of this is in
the recovery of three-dimensional shape [20]. Another example is in achieving even
higher abstractions from the motion measurements to give semantic interpretation
for scenes. These semantic abstractions require a knowledge base and an inference
engine to achieve meaningful motion understanding [35-37]. An actual implementa-
tion of such semantic abstractions has been realized with a system calle(_i ALVEN
[35, 38]. This system measures the human left ventricle wall motion from x-ray

cineangiograms and then determines the heart muscle competence.



19

In our system, there is a motion detection and measurement mechanism in
each "agent". The method used in each "agent” is of a token-matching scheme
based on a set of pattern descriptions similar to that developed by Chow and
Aggarwal [16]. One reason for using a token-matching scheme is that token-
matching schemes generally achieve a higher degree of accuracy than intensity-based
schemes but at the price of more extensive processing [20]. However, the problem
of extensive processing required for token-matching schemes is not as acute in our
system due to the mulltiprocessor design and the capability of each "agent" to res-

trict its processing window.

As various motion measurements are channeled from different "agents" to the
“sdm", the system attempts a simple motion interpretation of the whole scene by
providing the motion parameters of all the objects that appear in the scepe. This

[

is made possible by the data aggregated in the blackboard in the "sdm". The
blackboard fits into the general definition of the blackboard architecture given by
Hayes-Roth [39]. It serves as a global data base for scene interpretation as well as
an intelligent control for the system’s functions. Currently, the system performs
only a direct abstraction from the blackboard for a simple scene interpretation
without semantic analysis. The system is thus basically a tracking system, with
"agents" tracking individual objects. It may not be suitable for imagery involving
general global variations such as in cineangiography and agricultural land aerial pic-
ture sequences. The tracking ability of the system, however, will find applications
in scenes containing localized movements. Traffic monitoring, missile tracking, and

biomedical studies of organism and animal motion are some examples of such appli-

cations.

The tracking performance of each "agent' depends on the motion detection and
measurement technigque it uses. The design of our system, however, is not depen-
dent on the motion analysis capability of each "agent”. The modular design of the

system permits, for instance, ‘“agents' to adopt different motion estimation
Vg P g §Y
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techniques. The "sdm" may also incorporate various knowledge representations and

an inferencing structure thereby allowing a high-level semantic interpretation of

tracking data.

[2]
[3]

4]

[5]

[6]
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