
Dynamic Access Ordering: Bounds on Memory

Bandwidth

Sally A. McKee

Computer Science Report No. CS-94-38
November 1, 1994

This work was supported in part by a grant from Intel Supercomputer Division and by NSF grants MIP-9114110
and MIP-9307626.



Abstract
Memory bandwidth is becoming the limiting performance factor for many applications,
particularly scientific computations.Access ordering is one technique that can help bridge
the processor-memory performance gap. We are part of a team developing a combined
hardware/software scheme for implementing access ordering dynamically at run-time.
The hardware part of this solution is theStream Memory Controller, or SMC. In order to
validate the SMC concept, we have conducted numerous simulation experiments, the
results of which are presented elsewhere. We have developed analytical models to bound
asymptotic uniprocessor SMC performance, and have demonstrated that the simulation
behavior of our dynamic access-ordering heuristics approaches those bounds. Here we
introduce a model of of SMC startup costs, and we extend the uniprocessor SMC models
to describe performance for modest-sized symmetric multiprocessor (SMP) SMC systems.

Dynamic Access Ordering: Bounds on Memory
Bandwidth

Sally A. McKee
Department of Computer Science

University of Virginia
Charlottesville, VA 22903

mckee@cs.virginia.edu



Dynamic Access Ordering: Bounds on Memory Bandwidth

1

Dynamic Access Ordering: Bounds on Memory
Bandwidth

1. Introduction

Memory speeds are increasing much more slowly than processor speeds [Kat89, Hen90].

As a result, memory bandwidth is rapidly becoming the limiting performance factor for

many applications, particularly scientific computations. To illustrate the severity of the

problem, consider using the 300 MHz, superscalar DEC Alpha to perform consecutive

accesses to a DRAM with a 40ns cycle time: the processor can issue 24 or more instructions

in the time it takes to complete asingle memory access. A comprehensive, successful

solution to the memory bandwidth problem must exploit the richness of thefull memory

hierarchy. Not only must we find ways to improve cache performance, but we must provide

alternatives for computations for which caching is insufficient.

For instance, most memory devices manufactured in the last decade provide special

capabilities that make it possible to perform some access sequences faster than others

[IEEE92, Ram92, Qui91], and exploiting these component characteristics can dramatically

improve effective bandwidth. For applications that perform vector-like memory accesses,

bandwidth can be increased by reordering the requests to take advantage of device

properties such as fast-page mode. Page-mode devices behave as if implemented with a

single on-chip cache line, orpage. A memory access that falls outside the address range of

the current page forces a new page to be set up. The overhead time required to do this makes

suchfar accesses significantly slower thannear accesses that hit the current page.

Access ordering is any technique that changes the order of memory requests to increase

bandwidth, but here we are specifically concerned with ordering vector-like stream

accesses to exploit page-mode DRAMs. McKee, et. al., propose a combined hardware/

software scheme for implementing access ordering dynamically at run-time, and present



Dynamic Access Ordering: Bounds on Memory Bandwidth

2

numerous simulation results demonstrating its effectiveness [McK94a]. The hardware part

of this solution is theStream Memory Controller (SMC). An analytical model to bound

asymptotic SMC performance for unit-stride vectors has been developed and extended for

non-unit stride vectors in [McK93b, McK93c]. Here we develop a model to bound SMC

performance on short vectors, and we extend the asymptotic model to describe symmetric

multiprocessor (SMP) SMC performance.

Note that we shall use the termsvector andstream interchangeably when doing so causes

no confusion: a read-vector is equivalent to a read-stream, but a vector that is read,

modified, and written constitutes two streams, a read-stream and a write-stream. The rest

of this report is organized as follows. Section 2 presents the basic SMC architectures for

uniprocessor and shared-memory multiprocessor systems. Section 3 provides an overview

of the task-scheduling strategies we used to parallelize workloads for our SMP systems.

Section 4 discusses the assumptions underlying both the startup delay model presented in

Section 5 and the asymptotic performance models of Section 6. Section 7 and Section 8

discuss the environment and benchmark kernels used in the simulation studies of SMC

performance [McK93a, McK93c, McK94c], and Section 9 correlates the performance

curves generated by our analytic models with sample simulation results.

2. The SMC

Moyer develops algorithms and analyzes the performance benefits and limitations of doing

compile-time access ordering [Moy93]. His scheme involves unrolling loops and grouping

accesses to each stream, so that the cost of each DRAM page-miss can be amortized over

several accesses that hit the current page. The extent to which this technique can be applied

is limited by the size of the processor’s register file, and an optimal ordering cannot be

generated without the address alignment information usually available only at run time.

These limitations motivate us to consider an implementation that reorders accesses

dynamically. Benitez and Davidson’s algorithm can be used to detect streams at compile-



Dynamic Access Ordering: Bounds on Memory Bandwidth

3

time [Ben91], and the stream parameter can be transmitted to the reordering hardware at

run time. What follows is an overview of the dynamic access ordering architecture

proposed in the uniprocessor and SMP SMC reports [McK93a, McK93c, McK94c].

Our discussion is based on the simplified architectures of Figure1 and Figure2. In these

systems, memory is interfaced to the CPU orcomputational elements (CEs) through a

controller labeled “MSU” for Memory Scheduling Unit. The MSU includes logic to issue

memory requests as well as logic to determine the order of requests during streaming

computations. For non-stream accesses, the MSU provides the same functionality and

performance as a traditional memory controller.

The MSU has full knowledge of all streams currently needed by the CEs: given the base

address, vector stride, and vector length, it can generate the addresses of all elements in a

stream. The scheduling unit also knows the details of the memory architecture, including

interleaving and device characteristics. The access-ordering circuitry uses this information

to issue requests for individual stream elements in an order that attempts to optimize

memory system performance.

mem

mem

mem

mem

M
SU

Figure 1  Uniprocessor SMC Organization

SBU

CACHE

FIFO

FIFO

FIFO

CPU



Dynamic Access Ordering: Bounds on Memory Bandwidth

4

In the uniprocessor organization of Figure1, a separate Stream Buffer Unit (SBU) contains

high-speed buffers for stream operands and provides memory-mapped control registers that

the processor uses to specify stream parameters (base address, stride, length, and data size).

Together, the MSU and SBU comprise a Stream Memory Controller (SMC) system.

The stream buffers are implemented logically as a set of FIFOs within the SBU, as

illustrated in Figure1. Each stream is assigned to one FIFO, which is asynchronously filled

from or drained to memory by the access/issue logic of the MSU. The “head” of the FIFO

is another memory-mapped register, and load instructions from or store instructions to a

particular stream reference the FIFO head via this register, dequeueing or enqueueing data

as is appropriate.

When adapting this general framework to an SMP system, a number of options exist

regarding placement of SMC components, depending on where we draw chip boundaries.

Multiple-chip designs require inter-chip buses for communication. Such buses tend to be

expensive, and the cost of moving data off-chip may prove to be the limiting performance

factor with respect to the SMC’s operating speed. Since we seek to formulate bounds on

SMP SMC performance, and since the most efficient hardware organization is one in which

the entire SMC system and all computational elements reside on a single chip, that is the

organization we consider here.

M
SU

SBU

CACHE
CE

mem

mem

mem

mem

Figure 2  Symmetric Multiprocessor SMC Organization

SBU

CACHE
CE



Dynamic Access Ordering: Bounds on Memory Bandwidth

5

In the SMP SMC system in Figure 2, all computational elements are interfaced to memory

through a centralized MSU. The architecture is essentially that of the uniprocessor SMC,

but with more than one CE and a corresponding SBU for each. Note that since cache

placement does not affect the SMC, the system could consist of a single cache for all CEs

or separate caches for each. Figure 2 depicts separate caches to emphasize the fact that the

SBUs and cache reside at the same level of the memory hierarchy.

3. Task Scheduling

The way in which a problem is partitioned for a multiprocessor system can have a marked

effect on performance. In particular, SMC performance is dramatically affected by whether

the working sets of DRAM pages needed by different CEs overlap during the course of the

computation. If they do overlap, the set of FIFOs using data from a page will be larger. With

more buffer space devoted to operands from that page, more near accesses can be issued to

it in succession. Note that distinct vectors in the computation are assumed to have no

DRAM pages in common.

Note that the number of memory banks in the system affects when DRAM page misses

occur in a computation. To see this, consider a DRAM component in which each page holds

512 double-word vector elements. Then on an 8-way interleaved memory, for instance, we

incur an initial page miss on each bank, but the computation does not cross page boundaries

until  elements of a given vector have been accessed. On a 16-bank

system, the vectors cross DRAM page boundaries at element 8192; on a 32-bank system,

at element 16,384; and so on.

Three general scheduling techniques are commonly used to parallelize workloads:

prescheduling, static scheduling, and dynamic scheduling [Ost89]. Prescheduling requires

that the programmer divide the workload among the CEs before compiling the program.

There is no notion of dynamic load balancing with respect to data size or number of CEs.

512 8× 4096=



Dynamic Access Ordering: Bounds on Memory Bandwidth

6

This type of scheduling is particularly appropriate for applications exhibiting functional

parallelism, where each CE performs a different task. Since performance on a single CE is

relatively independent of access pattern [McK93a], we model prescheduled computations

by running the same benchmark on all CEs. Each vector is split into approximately equal-

size chunks, and each CE processes a chunk. Figure 3 depicts this data distribution for a

stride-one vector, along with the corresponding code for the inner loops on a 2-CE system.

On a 2-CE system with 8 banks, prescheduling divides a 10,000-element vector so that each

CE processes approximately 5000 elements, as pictured in Figure 4. The vector chunks for

each CE have been arranged vertically to emphasize the portions of data that are being

processed in parallel. CE1 crosses from DRAM page B to DRAM page C after 3192 loop

iterations, but CE0 doesn’t begin using DRAM page B until it has completed 4096

iterations. Unless CE1 proceeds much more slowly than CE0, it is unlikely that the two

computational elements will ever share pages during the computation

Figure 5 shows the distribution of the same 10,000-element vector on a 4-CE system with

8 banks. Now CE0 and CE1 use the same DRAM pages for almost two-thirds of the

computation, and CE3 and CE4 share for the initial one-third. At the end, CE2 and CE3 will

be on the same pages.

CE0 CE1

for (i = 0; i < L/2; i++) {
/* operations on x[i]*/

}

for (i = L/2; i < L; i++) {
/* operations on x[i]*/

}

vector x:

CE0’s code:

CE1’s code:

Figure 3  Prescheduling: Data Distribution for 2-CE System

address a address (a + L × 8 bytes)

CE0

CE1

Figure 4 Distribution of 10,000-Element Vector for 8 Banks and 2 CEs

address α address (α + 5000 × 8 bytes)
DRAM page A

DRAM page B

DRAM page C



Dynamic Access Ordering: Bounds on Memory Bandwidth

7

In static scheduling, tasks are divided among the CEs at run-time, but the partitioning is

performed in some predetermined way. A process on a CE determines which tasks it must

do, performs that work, then waits for other processes to finish their tasks. We model static

scheduling by distributing loop iterations among the CEs, as in a FORTRAN DOALL loop.

This parallelization scheme makes the effective stride at each of the  participating CEs

 times the original stride of the computation. If the number of memory banks is a multiple

of the number of CEs, this means that a different subset of banks will provide all the data

for each CE. Figure 6 illustrates the data distribution and code for this scheme. With this

model of static scheduling, each of  CEs performs every th iteration, thus all CEs use

the same DRAM pages throughout most of the computation (if the CEs proceed at different

rates, then some may cross page boundaries sooner than others).

Note that a static scheduling scheme could break the vector data into chunks instead of

interleaving iterations across the CEs; SMC performance for such a scheme is identical to

that for the prescheduling scheme described above.

CE0

CE3

CE2

CE1

Figure 5 Distribution of 10,000-Element Vector for 8 Banks and 4 CEs

address a address (a + 2500 × 8 bytes)

M

M

M M

CE0

CE1
CE0

CE1
CE0

CE1

…vector x:

Figure 6  Static Scheduling: Data Distribution for 2-CE System

address a address (a + L × 8 bytes) for (i = 0; i < L; i += 2) {
/* operations on x[i]*/

}

for (i = 1; i < L; i += 2) {
/* operations on x[i]*/

}

CE0’s code:

CE1’s code:



Dynamic Access Ordering: Bounds on Memory Bandwidth

8

In dynamic scheduling, a pool of tasks is maintained. Each CE schedules its own tasks by

repeatedly removing a task from the pool and performing it; if the pool is empty, the CEs

wait for tasks to appear. Since we are only concerned with inner loops, SMP SMC

performance for dynamic scheduling is similar to either prescheduling or static scheduling,

depending on how the work is apportioned into tasks. We therefore omit a separate

discussion of performance under dynamic scheduling.

4. Modeling Assumptions

Given an SMC system whose memory is composed of interleaved banks of page-mode

DRAMs, we want to determine the peak achievable memory performance. The complex

interactions between the many parameters of the SMC and memory system make it difficult

to formulate a provably optimal dynamic ordering algorithm. Moreover, implementing

such an algorithm might be expensive, both in the amount of hardware necessary and in the

time required for it to run. Instead, we have developed a number of heuristics for dynamic

access ordering; simulation results for these are presented elsewhere [McK93a, McK93c,

McK94c].

Although we do not know precisely what the optimal ordering algorithm is, we can bound

its performance. Taking advantage of the full bandwidth afforded by the memory system

requires exploiting the page-mode capabilities of the memory components. Since

bandwidth is limited by the number of page-misses incurred during a computation, we can

derive a bound on SMC performance by calculating the minimum number of page-misses

for that computation. We can then use this bound to evaluate the performance of our

heuristics. Similarly, we can calculate the minimum time for a CE to execute a loop by

adding the minimum time the CE must wait to receive all the operands for the first iteration

to the minimum time required to execute all remaining instructions.



Dynamic Access Ordering: Bounds on Memory Bandwidth

9

These two calculations provide us with two different bounds on SMC performance; the first

illustrates asymptotic performance limits for very long vectors, and the second describes

performance limits due to startup effects. In effect, the asymptotic model bounds bandwidth

utilization between the SMC and memory, whereas the startup-delay model bounds

bandwidth utilization between the CEs and the SMC.

As a practical consideration, we assume that the system is matched so that bandwith

between the CEs and SMC does not exceed bandwidth between the SMC and memory. The

vectors we consider are of equal length and share no DRAM pages in common, and we

assume a model of operation in which each CE accesses its FIFOs in round-robin order,

consuming one data item from each FIFO in each iteration.

In order that the bound we derive be conservative, we impose the following constraints. We

ignore bus turnaround delays and other external effects. We model the CE as a generator of

non-cached loads and stores of vector elements; all other computation is assumed to be

infinitely fast, putting as much stress as possible on the memory system. In calculating the

number of page misses incurred by a multiple-stream computation, we assume that DRAM

pages are infinitely large. In other words, we assume that misses resulting from crossing

page boundaries are subsumed by the other misses calculated in our model. Finally, we

derive our performance bounds by assuming that the SMC always amortizes page miss

costs over as many accesses as possible: read FIFOs are completely empty and write FIFOs

are completely full whenever the SMC begins servicing them.

We first look at how SMC startup costs impact overall performance, then we examine the

limits of the SMC’s ability to amortize page-miss costs as vector length increases

asymptotically. We develop each of these models for uniprocessor SMC systems, then

extend them to describe multiprocessor SMC performance.



Dynamic Access Ordering: Bounds on Memory Bandwidth

10

5. The Startup-Delay Model

Whereas the traditional performance concern has been to optimizeprocessor utilization,

here we focus on computations and systems that are primarily bandwidth-limited, thus we

strive to optimizebandwidth utilization. Nonetheless, good overall performance requires

that the computational element(s) not be left unnecessarily idle. For instance, the rate at

which a CE removes data from a read FIFO affects the amount of buffer space available,

which in turn limits the number of near accesses over which the MSU can amortize page-

miss costs.

Recall that the bandwith between the CE and SMC equals that between the SMC and

memory, thus optimal system performance allows each CE to complete one memory access

each bus cycle.

Since the Memory Scheduling Unit (MSU) attempts to issue as many accesses as possible

to the current DRAM pages, most of our dynamic access-ordering heuristics tend to fill the

currently selected FIFO(s) completely before moving on to service others. At the beginning

of a computation, this means that a CE stalls waiting for the first element of thenth vector

while the MSU fills the FIFOs for the first  vectors. By the time the MSU has provided

all the operands for the first loop iteration, it will also have prefetched enough data for many

future iterations, thus the computation can proceed without stalling the CE again soon.

Deeper FIFOs cause the CE to wait longer at startup, but if the vectors in the computation

are sufficiently long, the deep FIFOs allow these startup delays to be amortized over

enough accesses to make them insignificant. Unfortunately, for shorter vector computations

there are many fewer accesses over which to amortize startup costs. In such cases, the initial

delays represent a significant portion of the total time for the computation.

Consider an SMC with FIFOs of depthf. For a computation involving two read vectors of

length , the CE must waitf cycles (while the first FIFO is being filled) between

n 1–

l f=



Dynamic Access Ordering: Bounds on Memory Bandwidth

11

reading the first operand of the first vector and the first operand of the second vector.

According to our model (in which arithmetic and control are assumed to be infinitely fast),

the actual processing of the data requires cycles, one cycle to read each element in each

vector. Thus, without even considering DRAM page misses, the total time for a

computation is the time to fetch the first iteration’s operands plus the time to finish

processing all data. For this particular system and computation, the time is at best

 cycles. This is only 66% of the optimal performance of

cycles (i.e., the time to process vector elements). Figure7 presents a timeline of the

computation: the processor and memory both require the same number of cycles to do their

work, but the extent to which their activities overlap determines the time to completion.

Let  represent the number of streams in a computation, and let represent the number

of read streams. The bandwidth limits caused bystartup delays can then be described by:

(1)

Figure8 illustrates these limits as a function of the log of the ratio of fifo depth to vector

length for a uniprocessor reading two streams and writing one.

2f

f 2l+ f 2f+ 3f= = 2l 2f=

2l

0 f 2f 3f

time in cycles

memory busy

processor busy

Figure 7  Startup Delay for a Computation with 2 Read Streams of Length l = f

delay

s sread

% peak bandwidth
s l×

f sread 1–( ) s l×( )+
----------------------------------------------------- 100.0× s

f
l
- 

  sread 1–( ) s+
--------------------------------------------- 100.0×=

-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3

log(fifo depth/vector length)

0

20

40

60

80

100

m
ax

 %
 o

f 
pe

ak
 b

an
dw

id
th

s = 3
s      = 2read

Figure 8  Performance Limits Due to Startup Delays for 1 Write and 2 Read Streams



Dynamic Access Ordering: Bounds on Memory Bandwidth

12

In an SMP environment, we can bound the performance of the entire parallel computation

by first calculating the startup delay for the last computational element to begin its share of

the processing, and then adding the minimum time for that CE to execute its remaining

iterations. In developing these formulas, we assume that all CEs are performing the same

operation, but are acting on different data. The vector length reflects the portion of each

vector being processed by a single CE.

We can derive tighter bounds by tailoring our model to a particular SMC implementation.

The way in which the MSU fills the FIFOs affects how long the CEs must wait to receive

the operands for their first iteration. If the MSU’s ordering heuristic only services one FIFO

at a time, then the last CE must wait while the MSU fetches the read streams for all other

CEs and all but one of its own read streams. On the other hand, if the MSU can service more

than one FIFO at a time, more than one CE can start computing right away.

In the former case, the minimum number of cycles required to fill a FIFO is times the

minimum for a uniprocessor system (because the bandwidth of the system is balanced, and

there are now  CEs that can each execute a memory reference per cycle). Let represent

the number of CEs participating in the computation. Then the CEs are using times

the potential bandwidth, and the number of streams that must be fetched before the last CE

can start is . The startup-delay formula under these circumstances is:

(2)

For the latter case, let us assume that the MSU can perform accesses to FIFOs at a time

(one FIFO for each participating CE). When , the formula for startup delays is the

same as for the uniprocessor SMC system (Equation 1). To see this, note that each CE need

only wait for all but one of its own read streams to be fetched, and the average rate at which

those FIFOs are filled will be one element per processor cycle. When , the average

time to fill a FIFO will be  times that for a uniprocessor, and the formula becomes:

l

1 N⁄

N M

M N⁄

M sread×( ) 1–

s
1
N
---- 

  f
l
- 

  Msread 1–( ) s+
-------------------------------------------------------------- M

N
----- 100.0××

M

M N=

M N<

M N⁄



Dynamic Access Ordering: Bounds on Memory Bandwidth

13

(3)

Thus the startup delays for the two cases only differ by a factor of . Note that the

Equation 3 also represents a bound on bandwidth for the case where the MSU fills a single

FIFO at a time, thus we will use it as the basis for comparison with our simulation results.

6. Asymptotic Models

If a computation’s vectors are long enough to make SMC startup costs a negligible portion

of the memory time for the computation, then the limiting performance factor becomes the

number of near (fast) accesses we can make. The following models calculate the minimum

number of DRAM page misses that a computation must incur.

6.1  Uniprocessor Models

We will refer to a read-only or write-only vector as asingle-access vector. Likewise, a read-

modify-write vector will be referred to as adouble-access vector. The terms stream and

FIFO will be used interchangeably, since we have assumed an SMC model in which each

stream is assigned to exactly one FIFO. In the following, let “FIFO” refer to a read FIFO

unless otherwise stated; the analysis for write FIFOs is analogous. We first present a model

for small-stride, multiple-vector computations; we then extend this model to describe

single-vector computations and multiple-vector computations with large strides.

Multiple-Vector Computations

Let  be the number of interleaved memory banks, and let be the depth of the FIFOs.

Every time the MSU switches FIFOs, it incurs a page miss ineach memory bank, thus the

percentage of accesses that cause DRAM page misses for a stream whose stride is relatively

prime to the number of banks is at least . Strides not relatively prime to the number of

banks prevent us from exploiting the full system bandwidth, for such vectors don’t hit all

banks. In calculating performance for these vectors, we must adjust our formulas to reflect

s
M
N
----- 

  f
l
- 

  sread 1–( ) s+
--------------------------------------------------------- M

N
----- 100.0×× s

1
N
---- 

  f
l
- 

  Msread M–( ) s+
---------------------------------------------------------------- M

N
----- 100.0××=

M 1–

b f

b f⁄



Dynamic Access Ordering: Bounds on Memory Bandwidth

14

the percentage of banks actually used. The number of banks used is ,

thus the fraction of accesses that miss the page is at least .

Let  be the number of distinct vectors in the computation, and let  be the number of

streams. If the CE accesses the FIFOs (in round robin order) at the same rate as the memory

system, then while the MSU is filling a FIFO of depth , the CE will consume  more

data elements from that stream, freeing space in the FIFO. While the MSU supplies

more elements, the CE can remove , and so on. Our equation for calculating the miss

rate for single-access vectors becomes:

(4)

In the limit, the series in the denominator of the second term converges to , and

our equation reduces to .

The number of page misses for a double-access vector is the same as for a single-access

vector, but the read-modify-write vector is accessed twice as many times and requires two

FIFOs, one for the read stream and one for the write stream. Thus for these vectors, the

percentage of accesses that cause page misses is half that of a single-access vector.

To calculate the average DRAM page-miss rate for the entire computation, we amortize the

per-vector miss rate over all streams. If we assume that none of the banks is on the correct

page when the MSU changes FIFOs, then this average is . But if:

1) we assume a mode of SMC operation in which the MSU takes turns servicing each

FIFO, providing as much service as possible before moving on to service another

FIFO;

2) the MSU has filled all the FIFOs and must wait for the CE to drain them before

issuing more accesses; and

b gcd b stride,( )⁄
b

gcd b stride,( ) f×
----------------------------------------------

v s

f f s⁄

f s⁄

f s2⁄

r
b

gcd b stride,( )
-------------------------------------- 1

f 1 1 s⁄ 1 s2⁄ 1 s3⁄ …+ + + + 
 

----------------------------------------------------------------------------×=

s s 1–( )⁄

r
b s 1–( )

gcd b stride,( ) fs×
------------------------------------------------=

R
v
s
-- r×=



Dynamic Access Ordering: Bounds on Memory Bandwidth

15

3) the first FIFO to be serviced during the next “turn” was the last to be serviced

during the previous one,

then the MSU need not pay the DRAM page-miss overhead again at the beginning of the

next turn. Thus the MSU may avoid paying the per-bank page-miss overhead for one vector

at each turn. When we exploit this phenomenon, our average page-miss rate becomes:

(5)

Let h be the cost of servicing an access that hits the current DRAM page, and letm be the

cost of servicing an access that misses the current DRAM page. The maximum achievable

bandwidth for a computation is equal to the percentage of banks used, thus we must scale

our bandwidth formula accordingly, dividing by the greatest common denominator of the

total number of banks and the vector stride. The percentage of peak bandwidth for the

computation is thus:

(6)

Single-Vector and Large-Stride Computations

Note that for a computation involving a single vector, only the first access to each bank

generates a DRAM page miss. If we maintain our assumption that pages are infinitely large,

all remaining accesses will hit the current page. In this case, our model produces a page-

miss rate of 0, and the predicted percentage of peak bandwidth is 100. We can more

accurately bound performance by considering the actual number of data elements in a page

and calculating the precise number of page-misses that the computation will incur.

Likewise, for computations involving vectors with large strides, the predominant factor

affecting performance is no longer FIFO depth, but the number of vector elements per page.

The number of elements is the page size divided by the stride of the vector data within the

R
v 1–

s
----------- r× v 1–

s
----------- b s 1–( )

gcd b stride,( ) fs×
------------------------------------------------× b s 1–( ) v 1–( )

gcd b stride,( ) f× s
2

---------------------------------------------------= = =

% peak bandwidth =
h

R m×( ) 1 R–( ) h×( )+
--------------------------------------------------------------- 100.0

gcd b stride,( )
--------------------------------------×



Dynamic Access Ordering: Bounds on Memory Bandwidth

16

memory bank., and the distance between elements in a given bank is the vector stride

divided by the number of banks the vector hits. We shall refer to this value as the effective

intrabank stride, or EIS:

(7)

Thus for a system with two interleaved banks, elements of a stride-two vector have an EIS

of 1 and are contiguous within a single bank of memory.

Decreasing DRAM page size and increasing vector stride affect SMC performance in

similar ways. Let d be the number of data elements in a DRAM page. Then for

computations involving a single vector or multiple vectors with large EIS values, the

average page-miss rate per FIFO is:

(8)

For single-vector computations or computations in which  is less than the FIFO

depth, we use Equation 8 instead of Equation 5 to calculate . The percentage of peak

bandwidth is then calculated from Equation 6, as before. Note that neither FIFO depth nor

the CE’s access pattern affects performance for large-stride computations. Computations

involving vectors with  all have the same performance, since in these cases only

one vector element resides in a DRAM page.

6.2  Multiprocessor Extensions

Given the similarity of the memory subsystems for the SMC organizations described in

Section 2, we might expect an SMP SMC system to behave much like a uniprocessor SMC

with a large number of FIFOs. For SMP systems, though, some of the assumptions made

in the uniprocessor performance models no longer hold. For instance, we can no longer

assume that each single-access vector occupies only one FIFO (or, equivalently, that each

double-access vector occupies two). As we saw in Section 3, the distribution of vectors

EIS stride
gcd b stride,( )
--------------------------------------=

R EIS d⁄=

EIS d⁄

R

EIS d≥



Dynamic Access Ordering: Bounds on Memory Bandwidth

17

among the FIFOs depends upon how the workload is parallelized. The parallelization

scheme affects the CEs’ pattern of DRAM page-sharing, which in turn affects performance.

We can bound SMP SMC performance for both prescheduled and statically scheduled

workloads by calculating the minimum number of page misses for the extreme case when

all CEs share the same DRAM pages. We could also compute a very conservative estimate

of performance by calculating the maximum percentage of peak achievable when no CEs

share DRAM pages at any point in the computation.

Recall that the system is balanced so that if each of  CEs can consume a data item each

cycle, the memory system provides enough bandwidth to perform  near accesses in each

processor cycle. Each CE can only consume data from its set of FIFOs, while the MSU may

arrange for all accesses to be for a single FIFO at a time: this means that the memory system

can now fill a FIFO  times faster. Let  be the number of CEs participating in the

computation. When all CEs use the same DRAM pages, we have essentially distributed

each of our  streams over  FIFOs, a situation that is analagous to using a single FIFO

of depth  for each stream.

We assume a model of computation in which each CE accesses its FIFOs in round-robin

order, consuming one data item from a FIFO at each access. It takes the MSU  cycles

to supply  items for a stream. During this time, each CE will consume  more data

elements from this stream, for a total of  freed FIFO positions. While the MSU is filling

those FIFO positions (in  cycles), the CE can remove  more, and so on. Thus our

model for calculating the page-miss rate of a stream becomes:

(9)

Our equation for the average page-miss rate is now:

N

N

N M

s M

F M f×=

F N⁄

F
F

Ns
------

MF
Ns
---------

MF

N
2
s

--------- M
2
F

N
2
s

2
-----------

r
b

gcd b stride,( )
-------------------------------------- 1

F 1 M
Ns
------

M
Ns
------ 

  2 M
Ns
------ 

  3
…+ + + + 

 
 

------------------------------------------------------------------------------------×=



Dynamic Access Ordering: Bounds on Memory Bandwidth

18

(10)

And the percentage of peak bandwidth is computed as in Equation 6:

When the data being used by any particular CE occupies different DRAM pages from that

used by the other CEs, it is as if the CE were processing its own distinct set of vectors. This

situation arises frequently for prescheduled workloads. We can compute a better

performance estimate if we take into account the different page-sharing patterns

encountered during the course of the computation, adjusting the number of vectors and

streams accordingly. For instance, if we draw a vertical line at each of the page boundaries

in Figure5, we will have divided the computation into three distinct phases, each having a

different page-sharing pattern. If we then assume that all CEs proceed at approximately the

same rate — that is, if we assume that thespatial divisions of data correspond totemporal

phases of the computation — we can then apply the asymptotic model to each phase,

computing the overall percentage of peak bandwidth as a weighted average of the

maximum performance for each phase.

7. Simulation Environment

In order to validate the SMC concept, we have simulated a wide range of SMC

configurations and benchmarks, varying FIFO depth, dynamic order/issue policy, number

of CEs, number of memory banks, DRAM speed, benchmark kernel, and vector length,

stride, and alignment with respect to memory banks. Complete uniprocessor results,

including a detailed description of each access-ordering heuristic, can be found in

[McK93a]; highlights of these results are presented in [McK94a, McK94b]. Complete

shared-memory multiprocessor results can be found in [McK94c]. Since our concern here

is to correlate the performance bounds of our analytic model with our functional simulation

R
v 1–

s
----------- r× v 1–

s
----------- b Ns M–( )

gcd b stride,( ) F× Ns
-------------------------------------------------------× b Ns M–( ) v 1–( )

gcd b stride,( ) F× Ns
2

---------------------------------------------------------= = =

% peak bandwidth =
h

R m×( ) 1 R–( ) h×( )+
--------------------------------------------------------------- 100.0

gcd b stride,( )
--------------------------------------× 

 



Dynamic Access Ordering: Bounds on Memory Bandwidth

19

results, we present only the maximum percentage of peak bandwidth attained by any order/

issue policy simulated for a given memory system and benchmark. All simulation results

here were generated using DRAM pages of 4K bytes.

8. Benchmark Suite

Many types of applications are limited by memory bandwidth, including scientific

computations. Caching may provide adequate bandwidth for some, but not all, portions of

such programs. The bottlenecks in these computations usually take the form of memory-

intensive inner loops that make linear traversals of vector-like data. Each element is

typically visited only once during lengthy portions of the computation, and this lack of

temporal locality of reference makes caching less effective.

We have chosen a suite of benchmark kernels representing access patterns found in real

scientific codes. Listed in Figure 9, this suite constitutes a representative subset of all

possible access patterns for computations involving a small number of vectors. Recall that

in order to put as much stress as possible on the memory system, we model the processor

as a generator of non-cached loads and stores of vector elements. Scalar and instruction

references are assumed to hit in the cache, and all stream references use non-caching loads

and stores. The hydro and tridiag kernels share the same access pattern, thus their results

for our models and simulations are identical, and are presented together.

Figure 9 Benchmark Kernels

copy:

daxpy:

hydro:

scale:

swap:

tridiag:

vaxpy:

i∀ yi xi←

i∀ yi axi yi+←

i∀ xi q yi r zxi 10+× t zxi 11+×+( )×+←

i∀ xi axi←

i∀ tmp yi← yi xi← xi tmp←

i∀ xi zi yi xi 1––( )×←

i∀ yi aixi yi+←



Dynamic Access Ordering: Bounds on Memory Bandwidth

20

9. Results

Figure10 through Figure15 depict performance for stride-one vectors as a function of

FIFO depth and the number of memory banks (available concurrency). The results in

Figure10 and Figure11 depict uniprocessor performance; those in Figure12 and Figure14

reflect SMP performance when prescheduling is used to parallelize the computation; and

those in Figure13 and Figure15 illustrate SMP performance when static scheduling is

used. Figure16 illustrates how our performance limits change as vector stride increases,

and Figure17 depicts performance when not all CEs are used in a computation.

All results are given as a percentage of the system’s peak bandwidth, the bandwidth

necessary to allow the CEs to perform a memory operation each cycle. The vectors used

for these simulations are 100, 10,000, and 80,000 doublewords in length. Given the

overwhelming similarity of the performance trends for most benchmarks and system

configurations, we only discuss highlights of our results here. Other results can be found in

the Appendix, and a more detailed comparison of uniprocessor simulation and asymptotic

model results can be found in [McK93b, McK93c].

Figure10 depicts results for a uniprocessor SMC system with one bank. The vectors for

Figure10(a) and Figure10(b) are 100 elements long; those for Figure10(c) and

Figure10(d) are 10,000 elements. Figure10(a) and Figure10(c) illustrate the performance

curves forvaxpy, which involves three vectors: a vectora times a vectorx, plus a vectory.

Figure10(b) and Figure10(d) show results forscale, our single-vector kernel.

For multiple-vector computations on short vectors, the startup-delay bound is the limiting

performance factor, as evidenced by the curves in Figure10(a). Short vectors prevent the

SMC from effectively amortizing both the startup costs and DRAM page-miss overheads.

Note that performance is constant for FIFO depths greater than the vector length. For longer

vectors, as in Figure10(c), startup-delays cease to impose significant limits to achievable



Dynamic Access Ordering: Bounds on Memory Bandwidth

21

bandwidth, and simulation performance approaches the asymptotic bound. The

performance effects of different vector lengths can also be seen for the scale benchmark

depicted in Figure 10(b) and Figure 10(d) — in both cases, the theoretical performance

limits are barely below 100% of peak, yet SMC simulation performance on shorter vectors

is a few percent of peak lower than for vectors of length 10,000.

If we increase the number of memory banks, we decrease the number of vector elements in

each bank: doubling the number of memory banks has a similar effect on performance as

halving the vector length. Decreasing the number of elements per bank limits the SMC’s

ability to amortize page-miss and startup costs, thus performance for systems with many

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

(a) vaxpy, 100 elements

simulation performance
startup limit
asymptotic bound

(b) scale, 100 elements

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

(d) scale, 10,000 elements

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

(c) vaxpy, 10,000 elements

Figure 10  Performance for a Uniprocessor with 1 Memory Bank



Dynamic Access Ordering: Bounds on Memory Bandwidth

22

banks is farther from the asymptotic limits than for a system with fewer banks. Note that

systems with more banks deliver a smaller percentage of a much greater bandwidth.

Figure 11 demonstrates this phenomenon for uniprocessor systems with 2 and 8 banks.

Recall that prescheduling breaks a vector into chunks, giving a different chunk to each CE.

Using more CEs to execute a prescheduled workload results in shorter vectors at each CE,

and as we saw in our uniprocessor results, shorter vectors limit the number of accesses over

which startup and page-miss costs can be amortized. Figure 12 depicts results for the vaxpy

benchmark on systems with 2, 4, and 8 CEs. The asymptotic bounds depicted here are

calculated assuming the best-case DRAM page-sharing scenario among the CEs: all CEs

are assumed to use the same working set of DRAM pages throughout the computation. In

actuality, this is rarely the case for prescheduled workloads, but the assumption allows us

to calculate true performance bounds. The startup-delay bounds in all our SMP graphs were

calculated using Equation 3 from Section 5.

Although it is unlikely that system designers would build an SMP system with a FIFO

depth less than the number of memory banks, we include results for such systems for

completeness and for purposes of comparison.

(a) vaxpy, 2 banks

simulation performance
startup limit
asymptotic bound

(b) vaxpy, 8 banks

Figure 11  Uniprocessor Performance for Increasing Banks

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th



Dynamic Access Ordering: Bounds on Memory Bandwidth

23

(a) 2 CEs, 2 banks (b) 2 CEs, 16 banks

(c) 4 CEs, 4 banks (d) 4 CEs, 32 banks

(e) 8 CEs, 8 banks (f) 8 CEs, 64 banks

startup-delay bound
asymptotic bound
prescheduled estimate
simulation performance

Figure 12  Prescheduled vaxpy for 10,000-Element Vectors

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th



Dynamic Access Ordering: Bounds on Memory Bandwidth

24

In addition to the asymptotic and startup-delay bounds, the graphs in Figure 12 include a

grayed line indicating the performance estimate obtained by averaging the performance

estimates of each page-sharing phase of the computation. This estimate incorporates the

same assumption that is built into our functional simulations, namely that all CEs proceed

at the same pace. Even though this curve does not represent a true bound, we include it to

illustrate the distance between expected and maximal performance for shallow FIFOs. Note

that the two curves converge as FIFO depth increases: at a depth of 512, the bound exceeds

the estimate by only a few percent of peak.

Figure 13 depicts performance when static scheduling is used to parallelize a workload.

These graphs compare the theoretical bounds to simulation results for vaxpy using vectors

of length 10,000 on systems with 2 to 8 CEs. The startup-delay bound for this kind of

workload is computed using Equation 1, just as for a uniprocessor system. The asymptotic

limit for static scheduling is identical to that for the prescheduling, but because statically

scheduled computations tend to enjoy a higher degree of DRAM page-sharing, their

simulation performance more closely approaches the bounds. This phenomenon is

particularly evident in the performance curves for computations using 80,000-element

vectors on the 8-CE systems of Figure 14 and Figure 15. For instance, on a 64-bank system,

the prescheduled vaxpy computation of Figure 14(b) delivers 27% less of the peak system

bandwidth than the statically scheduled computation of Figure 15(b). The latter curve

comes within 3% of peak of the asymptotic limit for a FIFO depth of 256.

As the number of CEs in the system increases and the amount of data processed by each

CE decreases, performance is increasingly limited by the startup-delay bound. For instance,

this bound starts to dominate performance at FIFO depths between 128 and 256 for the 2-

CE systems of Figure 12 and Figure 13, but for the 8-CE system of Figure 12(e), the

crossover point for the startup-delay and asymptotic limits is between FIFO depths of 32

and 64.



Dynamic Access Ordering: Bounds on Memory Bandwidth

25

(a) 2 CEs, 2 banks (b) 2 CEs, 16 banks

(c) 4 CEs, 4 banks (d) 4 CEs, 32 banks

(e) 8 CEs, 8 banks (f) 8 CEs, 64 banks

startup-delay bound
asymptotic bound
static simulation

Figure 13  Statically Scheduled vaxpy for 10,000-Element Vectors

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th



Dynamic Access Ordering: Bounds on Memory Bandwidth

26

When prescheduling is used, the 10,000-element vectors of Figure 12 are too short for

simulation performance to approach the asymptotic bounds. The 80,000-element vectors of

Figure 14 allow the MSU to amortize page-miss costs over a greater number of fast

accesses, thus performance for the 8-bank system in Figure 14(a) begins to approach the

theoretical bounds for FIFO depths of at least 256. When we go to a system with 64 banks,

however, even 80,000-element vectors fail to allow the MSU to effectively compensate for

the page-miss overheads: performance in Figure 14(b) is uniformly lower than for the

10,000-element computation on the analogous system of Figure 12(f). The erratic shape of

the simulation performance curve in Figure 14(b) results from using FIFO depths that are

less than the number of memory banks; see the SMP SMC report for an explanation of the

phenomenon [McK94c].

Figure 15 presents performance for 8-CE systems when static scheduling is used on

computations with 80,000-element vectors. These performance curves are very similar to

those for the analogous uniprocessor SMC systems: the high degree of DRAM page-

sharing for this parallelization scheme yields roughly constant performance for a given

ratio of CEs to number of banks and a given amount of data to be processed by each CE.

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

startup-delay bound
asymptotic bound
prescheduled estimate
simulation performance

(a) 8 CEs, 8 banks (b) 8 CEs, 64 banks

Figure 14  Prescheduled vaxpy for 80,000-Element Vectors



Dynamic Access Ordering: Bounds on Memory Bandwidth

27

The graphs in Figure 10 through Figure 15 emphasize the importance of adjusting the FIFO

depth to the computation. Deeper FIFOs do not always result in a higher percentage of peak

bandwidth: for good performance, FIFO depth must be adjustable at runtime. Compilers

can use the models presented here to calculate the optimal depth. This requires determining

where the two limits intersect and selecting the next largest FIFO depth.

All examples thus far have been for vectors of stride 1, but the same performance limits

apply for any small stride that is relatively prime to the number of banks. Strides that are

not relatively prime prevent us from exploiting the full system bandwidth: whereas

attainable bandwidth for unit-stride vectors is 100% of the system’s total, the maximum for

stride-two vectors is only 50% of peak. Figure 16 illustrates simulation results and

performance limits for increasing strides. These results were generated using 10,000-

element vectors and a 2-CE SMC system with 2 banks, a FIFO depth of 256, and DRAM

pages of 4KB. We use the large-stride model (Equation 10 and Equation 6 from Section 6)

to compute the asymptotic limits, since for these system parameters and strides the number

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

startup-delay bound
asymptotic bound
static simulation

(a) 8 CEs, 8 banks (b) 8 CEs, 64 banks

Figure 15  Statically Scheduled vaxpy for 80,000-Element Vectors



Dynamic Access Ordering: Bounds on Memory Bandwidth

28

of elements residing in a DRAM page is never larger than the FIFO depth. Performance is

constant for strides of 1024 or greater, since only one element resides in a DRAM page.

Figure 17 illustrates what happens when not all CEs participate in a computation. On SMC

systems that only allow the MSU to service a single FIFO at a time, using fewer CEs may

be an effective strategy for optimizing performance when using all CEs would yield an

effective stride not relatively prime to the number of banks. For instance, by using one

fewer CEs with static scheduling (in which each of  CEs performs every th loop

iteration), the effective stride of the computation becomes relatively prime. The percentage

of peak system bandwidth delivered becomes limited by the percentage of CEs used, rather

than by the percentage of banks hit when all CEs are used. In such cases, the optimal FIFO

depth to use is governed solely by the startup-delay bound.

10. Conclusions

As processors become faster, memory bandwidth is rapidly becoming the performance

bottleneck in the application of high performance microprocessors to vector-like

algorithms. These computations lack the temporal and spatial locality required for caching

alone to bridge the performance gap.

2 4 8 16 32 64 12
8

25
6

51
2

1K 2K
vector stride

0

10

20

30

40

50
%

 b
an

dw
id

th

simulation performance
asymptotic limit

Figure 16  Asymptotic Limits for Increasing Strides

M M



Dynamic Access Ordering: Bounds on Memory Bandwidth

29

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

Figure 17 Static vaxpy Performance for (N-1) CEs, 10,000-Element Vectors

(a) using 1 of 2 CEs, 2 banks (b) using 1 of 2 CEs, 16 banks

(c) using 3 of 4 CEs, 4 banks (d) using 3 of 4 CEs, 32 banks

(e) using 7 of 8 CEs, 8 banks (f) using 7 of 8 CEs, 64 banks

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

simulation performance
startup limit
asymptotic bound



Dynamic Access Ordering: Bounds on Memory Bandwidth

30

Achieving greater bandwidth requires exploiting the characteristics of the entire memory

hierarchy: it cannot be treated as if it were uniform access-time RAM. This knowledge

should guide processor designs and operating system implementations, and mechanisms to

take advantage of memory component capabilities should be readily available to the user.

Dynamic access ordering can optimize accesses to exploit the underlying memory

architecture. By combining compile-time detection of streams with execution-time

selection of the access order and issue, we achieve near-optimal bandwidth for vector-like

accesses relatively inexpensively. This complements more traditional cache-based

schemes, so that overall effective memory performance need not be a bottleneck.

Moreover, dynamic access ordering requires no heroic compiler technology, and is

complementary to other common code optimizations.

Here we have described our approach to dynamic access ordering, the Stream Memory

Controller (SMC), and have presented analytic models to bound the performance of

uniprocessor and symmetric multiprocessor SMC systems with memories comprised of

page-mode DRAMs. Two different limits govern the percentage of peak bandwidth

delivered:

- startup-delay bounds, or the amount of time a processor must wait to receive data

for the first iteration of an inner loop; and

- asymptotic bounds, or the number of fast accesses over which the SMC can

amortize DRAM page-miss costs.

The first limit bounds bandwidth utilization between the processors and the SMC; the

second limit bounds the percentage of peak bandwidth exploited between the SMC and

memory.



Dynamic Access Ordering: Bounds on Memory Bandwidth

31

Our results emphasize one very important consideration in the design of any efficient SMC

system: FIFO depth must be run-time selectable so that the amount of stream buffer space

to use can be adapted to individual computations. Compilers can compute optimal depth

using the equations presented here. Our analysis and simulation indicate that for

sufficiently long vectors and appropriately deep FIFOs, SMC systems can deliver nearly

the full memory system bandwidth.

Acknowledgments

This work was supported in part by a grant from Intel Supercomputer Division and by NSF

grants MIP-9114110 and MIP-9307626.



Dynamic Access Ordering: Bounds on Memory Bandwidth

32

Appendix

Figure 18 through Figure 60 depict analytic bounds and simulation performance for SMC

systems with 1 to 8 computational elements. All results are given as a percentage of peak

system bandwidth. The simulation results presented here represent the maximum

bandwidth attained by any order/issue policy and vector alignment for stride-one vectors.

The memory systems simulated consist of interleaved banks of 4K-byte, page-mode

DRAMS.

Figure 18 through Figure 21 present uniprocessor SMC performance for our benchmark

suite using vectors of length 100. Figure 22 through Figure 25 present results for the same

systems and 10,000-element vectors. Figure 26 through Figure 29 illustrate performance

on 2-CE systems when prescheduling is used to distribute vectors of length 10,000.

Figure 30 through Figure 33 present prescheduled performance for 10,000-element vectors

and 4-CE systems, and Figure 34 through Figure 37 depict results for the same

computations on 8-CE systems. Figure 38 through Figure 41 present analogous

information for 8-CE systems using vectors of length 80,000.

Figure 42 through Figure 57 present analogous results for statically scheduled

computations on systems with 2, 4, and 8 CEs. Figure 58 through Figure 60 illustrate SMC

performance when  CEs (where  is the total number of CEs in the system) are used

with static scheduling.

N 1– N



Dynamic Access Ordering: Bounds on Memory Bandwidth

33

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

Figure 18  Presched Performance for 1 CE, 1 Bank, 100-Element Vectors

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

simulation performance
startup limit
asymptotic bound



Dynamic Access Ordering: Bounds on Memory Bandwidth

34

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

Figure 19  Presched Performance for 1 CE, 2 Banks, 100-Element Vectors

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

simulation performance
startup limit
asymptotic bound



Dynamic Access Ordering: Bounds on Memory Bandwidth

35

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

Figure 20  Presched Performance for 1 CE, 4 Banks, 100-Element Vectors

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

simulation performance
startup limit
asymptotic bound



Dynamic Access Ordering: Bounds on Memory Bandwidth

36

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

Figure 21  Presched Performance for 1 CE, 8 Banks, 100-Element Vectors

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

simulation performance
startup limit
asymptotic bound



Dynamic Access Ordering: Bounds on Memory Bandwidth

37

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

Figure 22  Presched Performance for 1 CE, 1 Bank, 10,000-Element Vectors

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

simulation performance
startup limit
asymptotic bound



Dynamic Access Ordering: Bounds on Memory Bandwidth

38

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

Figure 23  Presched Performance for 1 CE, 2 Banks, 10,000-Element Vectors

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

simulation performance
startup limit
asymptotic bound



Dynamic Access Ordering: Bounds on Memory Bandwidth

39

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

Figure 24  Presched Performance for 1 CE, 4 Banks, 10,000-Element Vectors

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

simulation performance
startup limit
asymptotic bound



Dynamic Access Ordering: Bounds on Memory Bandwidth

40

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

Figure 25  Presched Performance for 1 CE, 8 Banks, 10,000-Element Vectors

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

simulation performance
startup limit
asymptotic bound



Dynamic Access Ordering: Bounds on Memory Bandwidth

41

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

Figure 26  Presched Performance for 2 CEs, 2 Banks, 10,000-Element Vectors

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

startup-delay bound
asymptotic bound
prescheduled estimate
simulation performance



Dynamic Access Ordering: Bounds on Memory Bandwidth

42

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

Figure 27  Presched Performance for 2 CEs, 4 Banks, 10,000-Element Vectors

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

startup-delay bound
asymptotic bound
prescheduled estimate
simulation performance



Dynamic Access Ordering: Bounds on Memory Bandwidth

43

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

Figure 28  Presched Performance for 2 CEs, 8 Banks, 10,000-Element Vectors

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

startup-delay bound
asymptotic bound
prescheduled estimate
simulation performance



Dynamic Access Ordering: Bounds on Memory Bandwidth

44

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

Figure 29  Presched Performance for 2 CEs, 16 Banks, 10,000-Element Vectors

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

startup-delay bound
asymptotic bound
prescheduled estimate
simulation performance



Dynamic Access Ordering: Bounds on Memory Bandwidth

45

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

Figure 30  Presched Performance for 4 CEs, 4 Banks, 10,000-Element Vectors

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

startup-delay bound
asymptotic bound
prescheduled estimate
simulation performance



Dynamic Access Ordering: Bounds on Memory Bandwidth

46

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

Figure 31  Presched Performance for 4 CEs, 8 Banks, 10,000-Element Vectors

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

startup-delay bound
asymptotic bound
prescheduled estimate
simulation performance



Dynamic Access Ordering: Bounds on Memory Bandwidth

47

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

Figure 32  Presched Performance for 4 CEs, 16 Banks, 10,000-Element Vectors

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

startup-delay bound
asymptotic bound
prescheduled estimate
simulation performance



Dynamic Access Ordering: Bounds on Memory Bandwidth

48

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

Figure 33  Presched Performance for 4 CEs, 32 Banks, 10,000-Element Vectors

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

startup-delay bound
asymptotic bound
prescheduled estimate
simulation performance



Dynamic Access Ordering: Bounds on Memory Bandwidth

49

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

Figure 34  Presched Performance for 8 CEs, 8 Banks, 10,000-Element Vectors

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

startup-delay bound
asymptotic bound
prescheduled estimate
simulation performance



Dynamic Access Ordering: Bounds on Memory Bandwidth

50

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

Figure 35  Presched Performance for 8 CEs, 16 Banks, 10,000-Element Vectors

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

startup-delay bound
asymptotic bound
prescheduled estimate
simulation performance



Dynamic Access Ordering: Bounds on Memory Bandwidth

51

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

Figure 36  Presched Performance for 8 CEs, 32 Banks, 10,000-Element Vectors

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

startup-delay bound
asymptotic bound
prescheduled estimate
simulation performance



Dynamic Access Ordering: Bounds on Memory Bandwidth

52

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

Figure 37  Presched Performance for 8 CEs, 64 Banks, 10,000-Element Vectors

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

startup-delay bound
asymptotic bound
prescheduled estimate
simulation performance



Dynamic Access Ordering: Bounds on Memory Bandwidth

53

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

Figure 38  Presched Performance for 8 CEs, 8 Banks, 80,000-Element Vectors

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

startup-delay bound
asymptotic bound
prescheduled estimate
simulation performance



Dynamic Access Ordering: Bounds on Memory Bandwidth

54

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

Figure 39  Presched Performance for 8 CEs, 16 Banks, 80,000-Element Vectors

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

startup-delay bound
asymptotic bound
prescheduled estimate
simulation performance



Dynamic Access Ordering: Bounds on Memory Bandwidth

55

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

Figure 40  Presched Performance for 8 CEs, 32 Banks, 80,000-Element Vectors

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

startup-delay bound
asymptotic bound
prescheduled estimate
simulation performance



Dynamic Access Ordering: Bounds on Memory Bandwidth

56

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

Figure 41  Presched Performance for 8 CEs, 64 Banks, 80,000-Element Vectors

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

startup-delay bound
asymptotic bound
prescheduled estimate
simulation performance



Dynamic Access Ordering: Bounds on Memory Bandwidth

57

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

Figure 42  Static Performance for 2 CEs, 2 Banks, 10,000-Element Vectors

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

startup-delay bound
asymptotic bound
static simulation



Dynamic Access Ordering: Bounds on Memory Bandwidth

58

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

Figure 43  Static Performance for 2 CEs, 4 Banks, 10,000-Element Vectors

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

startup-delay bound
asymptotic bound
static simulation



Dynamic Access Ordering: Bounds on Memory Bandwidth

59

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

Figure 44  Static Performance for 2 CEs, 8 Banks, 10,000-Element Vectors

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

startup-delay bound
asymptotic bound
static simulation



Dynamic Access Ordering: Bounds on Memory Bandwidth

60

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

Figure 45  Static Performance for 2 CEs, 16 Banks, 10,000-Element Vectors

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

startup-delay bound
asymptotic bound
static simulation



Dynamic Access Ordering: Bounds on Memory Bandwidth

61

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

Figure 46  Static Performance for 4 CEs, 4 Banks, 10,000-Element Vectors

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

startup-delay bound
asymptotic bound
static simulation



Dynamic Access Ordering: Bounds on Memory Bandwidth

62

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

Figure 47  Static Performance for 4 CEs, 8 Banks, 10,000-Element Vectors

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

startup-delay bound
asymptotic bound
static simulation



Dynamic Access Ordering: Bounds on Memory Bandwidth

63

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

Figure 48  Static Performance for 4 CEs, 16 Banks, 10,000-Element Vectors

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

startup-delay bound
asymptotic bound
static simulation



Dynamic Access Ordering: Bounds on Memory Bandwidth

64

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

Figure 49  Static Performance for 4 CEs, 32 Banks, 10,000-Element Vectors

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

startup-delay bound
asymptotic bound
static simulation



Dynamic Access Ordering: Bounds on Memory Bandwidth

65

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

Figure 50  Static Performance for 8 CEs, 8 Banks, 10,000-Element Vectors

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

startup-delay bound
asymptotic bound
static simulation



Dynamic Access Ordering: Bounds on Memory Bandwidth

66

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

Figure 51  Static Performance for 8 CEs, 16 Banks, 10,000-Element Vectors

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

startup-delay bound
asymptotic bound
static simulation



Dynamic Access Ordering: Bounds on Memory Bandwidth

67

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

Figure 52  Static Performance for 8 CEs, 32 Banks, 10,000-Element Vectors

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

startup-delay bound
asymptotic bound
static simulation



Dynamic Access Ordering: Bounds on Memory Bandwidth

68

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

Figure 53  Static Performance for 8 CEs, 64 Banks, 10,000-Element Vectors

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

startup-delay bound
asymptotic bound
static simulation



Dynamic Access Ordering: Bounds on Memory Bandwidth

69

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

Figure 54  Static Performance for 8 CEs, 8 Banks, 80,000-Element Vectors

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

startup-delay bound
asymptotic bound
static simulation



Dynamic Access Ordering: Bounds on Memory Bandwidth

70

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

Figure 55  Static Performance for 8 CEs, 16 Banks, 80,000-Element Vectors

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

startup-delay bound
asymptotic bound
static simulation



Dynamic Access Ordering: Bounds on Memory Bandwidth

71

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

Figure 56  Static Performance for 8 CEs, 32 Banks, 80,000-Element Vectors

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

startup-delay bound
asymptotic bound
static simulation



Dynamic Access Ordering: Bounds on Memory Bandwidth

72

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f p
ea

k 
ba

nd
w

id
th

Figure 57  Static Performance for 8 CEs, 64 Banks, 80,000-Element Vectors

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

startup-delay bound
asymptotic bound
static simulation



Dynamic Access Ordering: Bounds on Memory Bandwidth

73

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

Figure 58  Static Performance for 1 of 2 CEs, 2 Banks, 10,000-Element Vectors

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

startup-delay bound
asymptotic bound
static simulation



Dynamic Access Ordering: Bounds on Memory Bandwidth

74

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

Figure 59  Static Performance for 3 of 4 CEs, 4 Banks, 10,000-Element Vectors

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

startup-delay bound
asymptotic bound
static simulation



Dynamic Access Ordering: Bounds on Memory Bandwidth

75

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

Figure 60  Static Performance for 7 of 8 CEs, 8 Banks, 10,000-Element Vectors

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256 512

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

startup-delay bound
asymptotic bound
static simulation



Dynamic Access Ordering: Bounds on Memory Bandwidth

76

References

[Ben91] Benitez, M.E., and Davidson, J.W., “Code Generation for Streaming: An
Access/Execute Mechanism”, Proc. Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems,
April, 1991.

[Far92] Farmwald, M., and Morring, D., “A Fast Path to One Memory”, in
[IEEE92], pp. 50-51, October, 1992.

[Har92] Hart, C., “Dynamic RAM as Secondary Cache”, in [IEEE92], p. 48,
October, 1992.

[Hen90] Hennessy, J., and Patterson, D., “Computer Architecture: A Quantitative
Approach”, Morgan Kaufmann, San Mateo, CA, 1990.

[IEEE92] “High-speed DRAMs”, Special Report, IEEE Spectrum, vol. 29, no. 10,
October, 1992.

[Jon92] Jones, F., “A New Era of Fast Dynamic RAMs”, in [IEEE92], pp. 43-49,
October, 1992.

[Kat89] Katz, R., and Hennessy, J., “High Performance Microprocessor
Architectures”, University of California, Berkeley, Report No. UCB/CSD
89/529, August, 1989.

[McK93a] McKee, S.A, “Hardware Support for Access Ordering: Performance of
Some Design Options”, University of Virginia, Department of Computer
Science, Technical Report CS-93-08, August, 1993.

[McK93b] McKee, S.A., “An Analytic Model of SMC Performance”, University of
Virginia, Technical Report CS-93-54, November, 1993.

[McK93c] McKee, S.A., “Uniprocessor SMC Performance on Vectors with Non-unit
Strides”, University of Virginia, Technical Report CS-93-67, December,
1993.

[McK94a] McKee, S.A., Klenke, R.H., Schwab, A.J., Wulf, Wm.A., Moyer, S.A.,
Hitchcock, C., Aylor, J.H., “Experimental Implementation of Dynamic
Access Ordering”, Proc. HICSS-27, Maui, HI, January 1994; also
University of Virginia, Technical Report CS-93-42, August, 1993.

[McK94b] McKee, S.A., Moyer, S.A., Wulf, Wm.A., Hitchcock, C., “Increasing
Memory Bandwidth for Vector Computations”, Proc. Conf. on Prog. Lang.
and Sys. Arch., Zurich, Switzerland, March, 1994; also University of
Virginia, Technical Report CS-93-34.

[McK94c] McKee, S.A., “Dynamic Access Ordering for Symmetric Shared-Memory



Dynamic Access Ordering: Bounds on Memory Bandwidth

77

Multiprocessors”, University of Virginia, Technical Report CS-94-14,
April, 1994.

[McM86] McMahon, F.H., “The Livermore Fortran Kernels: A Computer Test of the
Numerical Performance Range”, Lawrence Livermore National Laboratory,
UCRL-53745, December, 1986.

[Moy93] Moyer, S.A., “Access Ordering and Effective Memory Bandwidth”, Ph.D.
Dissertation, Department of Computer Science, University of Virginia,
Technical Report CS-93-18, April, 1993.

[Ost89] Osterhaug, Anita, ed., Guide to Parallel Programming on Sequent
Computer Systems, Prentice Hall, 1989.

[Qui91] Quinnell, R., “High-speed DRAMs”, EDN, May 23, 1991.

[Ram92] “Architectural Overview”, Rambus Inc., Mountain View, CA, 1992.


