
 1

Generalizing AOP for Aspect-Oriented Testing
Hridesh Rajan

Department of Computer Science, University of Virginia
151 Engineer’s Way, P.O. Box 400740

Charlottesville, Virginia 22904-4740, USA
+1 434 982 2296

hr2j@cs.virginia.edu

Kevin Sullivan
Department of Computer Science, University of Virginia

151 Engineer’s Way, P.O. Box 400740
Charlottesville, Virginia 22904-4740, USA

+1 434 982 2206

sullivan@cs.virginia.edu

ABSTRACT
In profiling program execution to assess the adequacy of a test set,
a challenge is to select the code to be included in the coverage
assessment. Current mechanisms for doing this are coarse-grained,
assume traditional concepts of modularity, require tedious and
error-prone manual selection, and leave the tester’s intent implicit
in the input provided to the testing tools. The aspect-oriented
constructs of languages such as AspectJ promise to help ease and
extend our ability to select the code to be included in a test
adequacy criterion and to document the tester’s intent within the
source code itself. Our contribution is a language-centric
approach to automated test adequacy analysis that we call concern
coverage. We claim that our approach enables explicit, precise,
abstract, and machine-readable representation of the tester’s intent
and that it can ease testing by eliminating the need for manual
selection and explicit maintenance of test adequacy criteria.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Testing tools – code coverage
analysis, testing. D.3.3 [Programming Languages]: Language
constructs and features – generalized join point model,
generalized advice.

General Terms
Measurement, Design, Experimentation, Languages, Verification.

Keywords
Concern coverage, generalized join point models, generalized
advice, Eos, C#, coverage adequacy criteria.

1. INTRODUCTION
The problem that we address in this paper is that the state of the
art in selecting the code that is to be included in an adequacy
criterion, and to be monitored at runtime to measure adequacy,
falls short in three ways. First, current mechanisms are too
coarse-grained and too closely based on traditional modules to
support fine-grained selection of scattered code. Second, these

mechanisms require tedious, error-prone manual selection of
included or excluded elements, usually through the GUI of a
testing tool. Commercial tools for code coverage analysis such as
IBM Rational’s Pure Coverage [48], and open source tools such
as Quilt [63], for example, provide control over exclusion or
inclusion of code at the file, class, and function level only, and
only by manual enumeration through a graphical user interface.
Third, expressing adequacy criteria by selecting modules alone
does not clearly express the intent of the tester, potentially
complicating downstream system maintenance and evolution.

To address these shortcomings we present an approach and a
system for what we call concern coverage. The idea is to express
the test adequacy criterion in an abstract, declarative form as a
part of the code base to be tested. The criterion is represented
using aspect-oriented [4][34] pointcut constructs in the style of
AspectJ [3]. The tool then automates the rest of the analysis.

Our language-centric approach addresses the three problems
enumerated above. First, the underlying declarative language
allows expression of complex, crosscutting adequacy criteria.
Second, the tool takes the declarative representation as input and
automates the analysis, relieving the tester of the costly and error-
prone task of manual code selection. Third, the representation of
adequacy criterion clearly expresses the tester’s intent as part of
the source code itself.

The rest of this paper is organized as follows. Section 2 presents
background on code coverage and aspect-oriented programming.
Section 3 presents our approach and language extensions needed
to support it. Section 4 describes our framework for implementing
tools based on these extensions. Section 5 describes AspectCov,
our coverage analysis tool built using our framework, and presents
an evaluation of our ideas. Section 6 discusses the related work.
Section 7 concludes.

2. BACKGROUND
2.1 Aspect-oriented programming
To make this work self-contained, we briefly review basic
concepts in the dominant aspect-oriented model. The central idea
is that aspects enable the modular representation of crosscutting
concerns. A concern is a dimension in which a design decision is
made, and is crosscutting if it cannot be realized in traditional
object-oriented designs except with scattered and tangled code
[38]. By scattered we mean not localized in a module but
fragmented across a system. By tangled we mean intermingled
with code for other concerns [33].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
Conference’05, Month 1–2, 2005, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

 2

Dominant aspect languages add five key constructs to the object-
oriented model: join points, pointcuts, advice, introductions (not
discussed in any detail in this paper), and aspects. We provide a
simple example to make the points concrete.

1 aspect Tracing {

2 pointcut tracedCall():

3 call(* *(..));

4 before(): tracedCall() {

5 /* Trace the call */

6 }

7 }

An aspect (lines 1-7), performs behavioral modification to
program execution event exposed by the language definition.
These events are called join points. The execution of a method in
the program in which the Tracing aspect appears is an example of
a join point. A pointcut (lines 2-3) is a predicate that selects a
subset of join points for such modification—here, any call to any
method. An advice (see lines 4-6) serves as a before, after, or
around method to effect such a modification at each join point
selected by a pointcut [50].

2.2 Code Coverage Analysis
Exhaustive testing [7] refers to exercising all possible inputs of a
program in order to prove the absence of faults. Unfortunately, in
the typical case of vast or infinite input spaces, exhaustive testing
is infeasible [24], and any sub-set of an exhaustive test set can
only show the presence of bugs not their absence [13]. Even
though exhaustive testing is not always possible, thorough testing
can provide a basis for sufficient confidence in program behavior.
A test adequacy criterion is a predicate defining what properties
of a program must be exercised to constitute a thorough test [24].
Adequacy criteria help determine when testing may cease [29].

Code coverage analysis is a technique to determine whether a set
of test cases satisfy an adequacy criterion. It helps find areas of a
program not sufficiently exercised by a set of test cases, gives a
measure of the quality of a test set, and can determine whether a
test set meets coverage requirements. In general, adequacy is
assessed against selected parts of a code base, and those parts are
scattered across the program. Measuring coverage requires that
the source code be instrumented at points of interest. Something
like a break point in debugging has to be inserted at each point of
interest. To instrument code manually is a burden on the tester.

Code coverage tools are meant to help remove this burden by
automating the task of code coverage analysis. Coverage tools are
designed with specific adequacy criteria in mind. For example, a
tool might allow statement coverage, path coverage, condition
coverage, segment coverage etc. These tools, however, limit the
flexibility of code coverage. The limited set of code coverage
criteria is all a tester can choose from, and the code against which
adequacy is to be evaluated can be designated only by the limited
means supported by the given tool.

In practice, testers are often not interested in coverage of all
program elements, but rather in selected elements. One might
wish to select only non-library and non-environment-generated
code, for example. Similarly, a tester of one module might want to
include the code of the module or function that is being tested,

and perhaps closely related code elsewhere in the system, but not
more distantly related code. In her proposed roadmap for testing
[27], Harrold points out the need to express selective test
adequacy criterion in the context of component based systems.

We need to identify the types of testing information about a
component that a component user needs for testing
applications that use the component. For example, a
developer may want to measure coverage of the parts of the
component that her application uses. To do this, the
component must be able to react to inputs provided by the
application, and record the coverage provided by those
inputs. For another example, a component user may want to
test only the integration of the component with her
application. To do this, the component user must be able to
identify couplings between her application and the
component.

She also outlines the need for expressive, and even code-based,
representations of testing policies in general and coverage criteria
in particular:

We need to develop techniques for representing and
computing the types of testing information that a component
user needs.… Likewise, standards for representing testing
information about a component, along with efficient
techniques for computing and storing this information, could
be developed. For example, coverage information for use in
code-based testing or coupling information for use in
integration testing could be stored with the component.

More generally, a tester might wish to define test adequacy
criteria in terms of coverage of code that relates to concerns that
are lexically spread across the code base. For example, one might
want to cover scattered synchronization, transaction, serialization,
or security related code. Schulte [53] observed the need to
represent such selective and crosscutting adequacy criteria in large
projects inside Microsoft, where the tester is only interested in
testing selected parts of a large code base. At Microsoft the need
is met using relatively ad hoc techniques.

We see two basic kinds of mechanisms for representing adequacy
criteria: tool-centric and language-centric. In the former approach,
common in commercial tools, the coverage tool provides a fixed
set of adequacy criteria, with the possibility of manually selecting
code elements against which adequacy is to be evaluated. This
approach does not offer enough flexibility. The latter approach
provides a language front end to the analysis tool. The flexibility
in representing adequacy criteria depends on the expressiveness of
this front-end language. Our approach is of the latter kind.

3. OUR APPROACH
Our work views an adequacy criterion as a crosscutting concern in
the sense that it is a requirement for the testing process that maps
to monitoring execution of program elements scattered across the
code base. Existing mechanisms for performing this monitoring
operate at traditional level of modularity and thus suffer from
what has been called the tyranny of dominant decomposition [57].
It is not surprising that the existing mechanisms to measure test
adequacy exhibit similar problems as non-modular crosscutting
concerns in code.

 3

Assessing the satisfaction of test adequacy criteria requires
monitoring of key points in program execution. As mentioned, in
aspect-oriented terminology, a join point is a point in the
execution of a program. An adequacy criterion, like a pointcut,
selects a subset of join points. The idea behind our approach is to
express the code to include in an adequacy criterion using
declarative, aspect-oriented pointcut constructs. For example, one
could express the test adequacy criterion Coverage of all non-
recursive external function calls on types in the package foo.bar
and all its direct and indirect sub-packages as the following
aspect, and then expect the tool support to automate the rest of the
code coverage analysis. The type pattern foo.bar..* in AspectJ [3],
represents all types in the package foo.bar and all its direct and
indirect sub-packages. In the later sections, we will complete the
aspect body.

aspect FunCov{

 // Monitor coverage of all external function calls on types in foo.bar..*

}

These test coverage aspects, which are included within the code
base itself, result in automated, fine-grained, selective
instrumentation to enable the required dynamic monitoring and
data collection. These aspects address the three problems. First,
they support the expression of complex, crosscutting coverage
criteria. For example, FunCov selects calls in multiple packages
and sub-packages using a simple type pattern foo.bar..*.

Second, these aspects relieve the tester of the tedious and error-
prone task of manually selecting and reselecting files, packages,
and functions to be included. For example, to select the set of
program execution points constituting the criterion represented by
FunCov using a GUI based tool, a tester would have to go through
all files and select all calls to any method in the package foo.bar
and all its direct and indirect sub-packages, and then manually
determine whether given calls are non-recursive and external.

Third, these coverage aspects document and communicate tester
intent in explicit, precise, abstract, and machine-readable forms.
Such expressions also remain valid as the source code evolves. It
would be easy to add a new call to a method in foo.bar package to
a program and forget to update the test set and the adequacy
criterion. Using predicates to express the code to be covered
resolves this issue.

Unfortunately, current aspect language designs in the AspectJ
style are not ideally suited to our task in two ways. First, they lack
join point models at a granularity fine enough to support white-
box testing. The problem is not merely accidental. Rather, it
reflects a fundamental decision made by the language designers,
that the only join points that should be exposed are at module
boundaries (e.g., calls to methods). Such a black box join point
model is inadequate to support white box test set assessment. For
example, no aspect languages that we know of, except for
experimental versions of our own Eos language, expose branches
as join points. This shortcoming would preclude precise, abstract
expression of crosscutting branch coverage criteria. We address
this problem by introducing the idea of generalized (white-box)
join point models and pointcut languages. As an example, in this
paper, we present an aspect language design that exposes branches
as join points.

Second, with the exception of a few ad hoc mechanisms, most
aspect languages support only one action at join points selected by
aspects, namely weaving of advice to modify normal program
behavior. This mechanism can support the profiling needed for
coverage analysis, but it is not an efficient mechanism for this
purpose. Other mechanisms, such as those proposed by Ball and
Larus [5][6], are likely to be superior in many cases. We address
this problem by introducing the idea of generalized advice:
directives that can be processed by the supporting tools to cause
actions other than mere weaving of advice code at designated join
points. An example would be the application of the Ball-Larus
algorithm to instrument the join points for profiling or tracing.

To evaluate the feasibility of these ideas, we have designed and
implemented Eos-T (where T is for testing), a version of Eos [18],
[49] with added support for generalized join point and pointcut
models and generalized advice. Eos is an aspect-oriented version
of C# [43] a .NET [44] language. It was the first aspect language
to support both first-class aspect instances and instance-level
advising along with rich join point and pointcut models in the
AspectJ style. Eos-T is implemented by a fully functional
compiler, comprising approximately 40,000 source lines of code
(most inherited from Eos). With Eos-T, we have been able to
demonstrate the feasibility and potential utility of selective code
coverage analysis by compiling large, open source C# programs as
exemplars. Eos-T is available to the research community.

In the rest of this section, we discuss the need for the language
model extension to support our ideas and describe how the
extensions incorporated in Eos-T achieve some of our goals. We
then describe our framework and its embodiment in AspectCov.

3.1 Need for Language Model Extension
The promise of aspect-orientation for modularizing crosscutting
concerns encouraged us to use it to represent adequacy criteria in
a modular way. In particular, pointcuts seemed like an effective
vehicle to select program elements, execution of which
contributes to the satisfaction of an adequacy criterion. For
example, the FunCov criterion discussed earlier could be
represented by the simple pointcut highlighted in the code below.

aspect FunCov{
 /* Apply code coverage to all the join points selected by */
 call (* foo.bar..*.*(..)) && ! within(foo.bar..*);
}

Here, the tester uses the pointcut call (* foo.bar..*.*(..)) to specify
that adequacy is to be measured against all method calls on types
in the direct or indirect sub-package of foo.bar, and then uses the
pointcut !within(foo.bar..*) to exclude calls from within the package
or sub-packages themselves. All join points in the lexical scope of
the specified types are selected by the within pointcut designator.
The operator ! complements the set to select all join points that
are not in the lexical scope of the specified types.

As it turns out, the join point model and pointcut sub-languages of
the current aspect languages are not fine grained enough to
express test adequacy criteria at a granularity needed for testing. A
hypothetical language L, which supports only method execution
as join points will limit the possible adequacy criteria to some
variant of function coverage. Extending the join point model of L
to include the exception handlers will allow us to express the error
code coverage as well. Further, to express the statement coverage
criteria we will need the join point model of L to contain

 4

individual statements. The AspectJ language model, clearly the
most mature and well-developed model, recognizes method call &
execution, field get and set, exceptions, control flow, etc., as join
points but it does not recognize basic blocks or branches as join
points precluding the possibility to do decision coverage.

Second, most aspect languages only support weaving of advice
code at a join point selected by an aspect, but not other useful
actions. Apart from weaving advice, one might want to schedule
these points for code coverage analysis, schedule these points for
manual inspection, monitor the bugs reported in the program
segments written by a particular programmer, automatically
generate/update related sections of the program documentation,
etc. The potential action list is not limited to the actions
mentioned above but might include any other activity in the
software development life cycle amenable to automation. We thus
envision decoupling the notion of pointcut expressions from the
actions to be taken at the designated join points, with advising as
a special case.

In the next subsection, we will discuss the language extensions to
Eos to enable representation of test adequacy criteria as aspects.

3.2 Eos-T and its Extended Join Point Model
To provide a basis for an early evaluation of the potential value of
a generalized join point model in supporting aspect-oriented test
coverage analysis, Eos-T extends the join point model of Eos and
AspectJ to include basic blocks as join points.

Such join points enable selective branch coverage profiling based
on declarative pointcut expressions. The Eos-T join point model
includes statement-level join points, iterations, and conditionals.
These statements, called predicates in the control flow graph
(CFG) terminology [1], along with method calls and returns, mark
the beginning and the end of a basic block in a program. Each of
these join points is discussed in detail in the rest of this sub-
section.

A conditional statement in C# is an if statement or a switch
statement, whereas an iteration statement is either of the while,
do-while, for, and foreach statements. The Eos-T pointcut
sublanguage allows selecting these join points using the pointcut
designators (PCDs) conditional and iteration. The syntax of these
PCDs is as follows:

conditional_pointcut: CONDITIONAL (conditional_construct)
conditional_construct : IF | SWITCH | *
iteration_pointcut: ITERATION (iteration_constructs)
iteration_constructs : iteration_construct |
 iteration_construct || iteration_construct
iteration_construct: WHILE | FOR | DOWHILE| FOREACH|*

The following pointcut expressions show some of the usage of the
conditional and the iteration PCDs.

pointcut allConditional() : conditional(*);// Select all conditionals
pointcut allif(): conditional(if); // Select all if statements
pointcut allswitch(): conditional(switch); // Select all switches
pointcut allIterations() : iteration(*); // Selects all iteration statements
pointcut allwhile(): iteration(while); // Selects all while statements
pointcut allfor(): iteration(for); // Selects all for statements

Table 1: Pointcut designators (PCDs) supported by Eos-T

PCD Explanation
call(Signature) Matches every methods call site matched

by the signature
Execution(Signature) Matches execution of every method

matched by the signature
fget(Signature) Matches variable read for variables

matching the signature
fset(Signature) Matches variable write for variables

matching the signature
Initialization(Signature) Matches object initialization/constructor

calls matching the signature
Handler(TypePattern) Matches exception handlers catching an

exception of type matched by the pattern
Adviceexecution() Matches execution of every advice
Within(TypePattern) Matches each join point within the type

matched by the pattern
withincode(Signature) Matches every join point within the

method matched by the signature
Pget(Signature) Matches property read for variables

matching the signature
Pset(Signature) Matches property write for variables

matching the signature
Conditional(if/switch) Matches conditional join points (if and

switch statements)
Iteration(while/dowhile/for
/foreach)

Matches iteration join points (while, do-
while, for and for each statements)

In addition to these new PCDs, EOS-T also supports the PCDs
shown in Table 1. The PCDs can be composed together by ||
(disjunction) and && (conjunction) operators. These PCDs and
patterns are mostly inherited from AspectJ, and are discussed in
more details in the AspectJ user’s manual [3].

Most of the PCDs shown in the table are anchored to an interface
element and they select a group of join points with respect to that
interface element. For example, the call PCD is anchored to an
interface element, method name, and it picks out all the calls to
the specified method regardless of where the call is made from. As
can be observed, the conditional and the iteration PCDs are not
anchored to any named interface element. They are instead
anchored to the programming language constructs and select all
the program elements that belong to that construct type. To refine
the selection of the join points further, these PCDs can be
composed with other PCDs like within, withincode etc. For
example, the following pointcut expression matches all the if’s
within the TestHarness class.

pointcut ifTestHarness() : conditional(if) && within(TestHarness);

Similarly, the following pointcut expression matches all while
loops in the Test function of the class TestHarness.

pointcut whileTest() : iteration(while) &&
 withincode(public void TestHarness.Test());

The expressive join point model of Eos-T thus allows the
expression of more complex adequacy criteria than can be
expressed by traditional file, module, and function enumeration.
In addition, it relieves the tester of the tedious and error-prone
task of manually selecting and reselecting the files, packages,
functions that are to be included in the coverage analysis.

 5

3.3 Generalized Advice
Most aspect languages and approaches including AspectJ and the
original Eos language only support the weaving of advice code at
selected join points. The possibility of enabling other actions
opens up a range of new possibilities for expressing actions across
the software lifecycle as part of the source code itself: in a precise,
abstract, modular and composable form. The list of possible
action includes but is not limited to code coverage analysis, code
inspection, bug monitoring, automated document generation, etc.

This approach promises two potentially significant benefits. First,
representing actions explicitly and abstractly within the code base
promises to increase the reliability of certain lifecycle activities,
by representing them in the place most visited by real developers,
in a form in which they are easily subject to automation. Second,
as opposed to other representations of the same information, this
representation does not require separate maintenance efforts.

For example, consider the documentation and realization of a test
adequacy criterion. Traditionally, one would document it in a test
plan and realize it by selecting options in the analysis tool. At the
beginning of each test session or after test case execution is
finished, depending on the coverage analysis tool being used, this
criterion will be replicated in the testing environment by manually
selecting the program elements that are to be included in the
coverage analysis. The changes in the adequacy criterion can be
introduced either by the management, which will be first reflected
in the test plan and then replicated in the testing environment, or
by the testing staff, which will first experiment with the criteria in
the testing environment and then document it in the test plan.

In both cases, additional maintenance effort is required to make
the documentation in the test plan and its realization in the testing
environment consistent. This additional maintenance is required
because the translation process from test plan documentation to
the testing environment and vice versa contains a manual
component: selecting program elements for analysis. Providing
language and tool support to automate this manual component
will dramatically reduce the required additional effort. This
support is provided in Eos-T as generalized advice. An instance of
generalized advice has the following syntax:

action IDENTIFIER(): Pointcut;

An identifier depicting the name of the action follows the new
keyword action followed by a pointcut expression. The pointcut
expression identifies the subset of program elements at which the
action should be taken. This extension enables us to embed useful
actions in the source code. Tools recognizing these extensions can
automatically perform these embedded actions. In the next
Section, we describe our framework for implementing tools that
recognize these extensions.

4. FRAMEWORK

As illustrated in Figure 1, our framework provides application
programming interfaces (APIs) for source code parsing1, abstract
syntax tree (AST) manipulation, code weaving, action
registration, code generation and code compilation. The utility
API provides miscellaneous functions like command line
argument processing, database manipulation, string manipulation,
etc. The framework logic consists of three stages: initialization,
run, and close up. In the initialization stage, the framework parses
the source code and constructs the abstract syntax tree. While
parsing, it collects all the encountered actions. A tool built on top
of our framework uses the action registration interface to register
the action it intends to handle with the framework. After
initializing itself, the framework calls a tool specific initialization
handler. Similarly, in each of the three stages, the framework
iterates through the collected actions and calls appropriate
handlers, thus allowing each tool to perform its task.

As opposed to other frameworks for implementing verification
tools, e.g., Aristotle [28], our framework recognizes crosscutting
concerns and offers an interface to perform crosscutting actions.
Java byte code transformation tools such as BCEL [9], SOOT
[56], etc. similarly allow arbitrary transformation of java classes;
however, they do not recognize crosscutting structure and do not
allow crosscutting transformation. In the next Section, we
demonstrate the use of this framework, along with the aspect
language extensions embodied in Eos-T, to implement a coverage
tool supporting concern coverage as a test adequacy criterion.

5. THE ASPECTCOV TESTING TOOL
Our tool for code coverage analysis is intended to provide the ease
of tool-based instrumentation coupled with the flexibility of
specifying concern coverage criteria using a declarative language.
The tester can use the entire pointcut sub-language of Eos-T to
specify the coverage criteria. Use of the declarative language
enables explicit, precise, and abstract specification of the tester’s
intentions.

1 Currently our parser API only parses C# source code; however,

we are extending it to include support for the intermediate
language (MSIL).

Framework Logic

Application

Pa
rs

er
 A

PI

A
ST

 M
an

ip
. A

PI

C
od

e
G

en
. A

PI

C
om

pi
la

tio
n

A
PI

Fig. 1 Framework overview

W
ea

vi
ng

 A
PI

U
til

ity
 A

PI

A
ct

io
n

R
eg

. A
PI

 6

The ability to select a subset of program elements using the
declarative language improves the efficiency of code coverage
analysis. Even in scenarios where complete coverage is essential,
the ability to select will improve efficiency. For example, a user
can instruct AspectCov to cover and track metrics for only the
uncovered portion of the design. In this way, coverage is directed
towards the problematic design areas, reducing the overhead in
each successive simulation and speeding the verification process.
Using an expressive pointcut language also allows significantly
more sophisticated coverage criteria to be represented.

We built our code coverage tool using a combination of our
framework and the NUnit unit-testing framework [46]. Our tool
performs the following steps to achieve its goal.

1. On construction, it registers itself with the framework to
receive notifications for the action AspectCov.

2. In the initialization stage, it collects all the AspectCov
actions. As we have discussed previously, every action
contains a pointcut expression. In case of AspectCov
action, this pointcut expression specifies the sub-set of
join points that correspond to a given coverage concern.

3. In the run stage, our tool selects a union2 of these sub-
sets of join points that need to be instrumented.

4. It generates an aspect containing handcrafted advice to
serialize the reflective information at the join point and
send it to the code coverage information collection
server running at a well-known port. To optimize it
further, this communication is performed using a shared
stream, if the test and analysis machine are the same.

5. The selected join points are instrumented to invoke the
handcrafted advice in the aspect trace. Any of the
optimal instrumentation algorithms can be plugged in to
actually instrument the code.

6. The abstract syntax tree of the instrumented program is
compiled into assembly3.

7. This instrumented assembly is loaded into the NUnit
unit-testing framework.

8. The tester can now execute the test-suite of the program
using the familiar graphical user interface (GUI) of
NUnit and obtain coverage information for the specified
concern. AspectCov stores the coverage information as a
coverage matrix, the rows of which represent the join
points for which coverage is measured, and the columns
of which represent the tests in the test suite. If data from
previous runs for the project is available, it also presents
the metrics, change across components, and change
across tests described by Elbaum, Gable, and Rothermel
[16] to give an idea of the change in coverage between
versions.

2 More sophisticated mechanisms such as [1], [5], [6], [25], [36],

[47], [51], etc. can also be used.
3 Assembly is the Microsoft .NET framework’s equivalent of an

executable.

Fig. 2 Screen shot of AspectCov integrated with NUnit.

As can be observed in Figure 2, we have introduced two new GUI
elements to NUnit: a button to start the code coverage analysis
and a tab to display the analysis results. Currently we are using
the NUnit framework [46] as a testing tool; however, our
approach can be easily extended to other testing infrastructures.
Figure 2 shows the bottom line coverage for the selected concern
at the bottom of the right hand panel.

The overheads incurred by AspectCov are as follows:

1. Development time overhead: The tester’s time spent to
write the coverage aspect. This overhead is minimal
given the simplicity of the aspect.

2. Compilation overhead: The code base and the coverage
aspect need to be compiled. Currently our approach
works at the source code level so recompiling the source
is necessary. This overhead might be eliminated by
working at the MSIL level for C# and byte code level
for Java.

3. Run-time overhead: At every join point subject to
coverage analysis, the auto-generated coverage advice is
invoked. This coverage advice can be inlined for further
optimization. For other possible applications of our
approach, the first two overheads will remain the same.
The third overhead will vary depending upon the
specific application.

AspectCov currently instruments all join points selected by a
given pointcut, but it does not try to further optimize the number
of join points instrumented. Optimal profiling approaches such as
the Ball et al. approach [5] will be used in future. Finding a
spanning set [41] of the coverage concern will further optimize
the number of join points instrumented. Nevertheless, we see that
instrumentation is added to the application only at selected join
points, which results in a decrease in the size of the resulting
application and run-time of test execution. Overall, decisions in
this dimension are orthogonal to the central contribution of this
work in the method and system for concern coverage based on
two generalizations of the aspect-oriented programming model.

To compute test set adequacy AspectCov first statically determines
the set of join points that belong to the coverage concern and then
at run-time calculates the subset of this set that is executed by the
test-set to determine coverage percentage. Therefore, the
adequacy criteria may only contain pointcut expressions that are
statically determinable [3]. As with the declare constructs in

 7

AspectJ, the pointcuts cflow, cflowbelow, this, target, args and if
may not be included in the adequacy criteria, directly or
indirectly, because they need run-time information to be
accurately determined.

5.1 Example coverage scenarios
To use AspectCov for code coverage analysis, one simply adds
test coverage aspects to the source code base. The code coverage
concerns are expressed in the aspects. Multiple code coverage
aspects can co-exist in the code base. Code coverage aspects can
also co-exist with aspects.

Consider the adequacy criterion Every modification to the value
field of the class Model should be covered. We will represent the
criterion as follows:

aspect ValueModificationCoverage {
 action AspectCov(): fset(public int Model.value)
}

The aspect ValueModificationCoverage contains only one
AspectCov action, which is applied to all program elements
selected by the pointcut expression, fset(public int Model.value).
The pointcut starts with the PCD fset, for field set, which matches
all program elements where a field is modified. The pointcut
expression further narrows the match by specifying the pattern
(public int Model.value). This pattern means match only when the
field modified is a public field of the type integer, and it belongs
to the class Model and has the name value.

Now let us reconsider the adequacy criterion discussed, but not
concretized, in Section 3. Adding the following simple coverage
aspect to the code base will be sufficient for the task.

aspect FunctionCoverage {
 action AspectCov():call (* foo.bar..*.*(..)) && ! within(foo.bar..*);
}

Similarly, the adequacy criterion error code coverage and
decision coverage will be simply represented as:

aspect ErrorAspectCoverage {
 action AspectCov(): handler(System.Exception+);
}

aspect DecisionCoverage {
 action AspectCov(): conditional(*);
}

We now use the triangle problem (one of the most common
examples in the testing literature) to demonstrate some of the
scenarios in which our approach is used for specifying adequacy
criteria as test coverage aspects. The triangle problem requires the
program to read three numbers representing the lengths of three
sides of a triangle and determine whether the triangle is
equilateral, isosceles, or scalene.

The interface of our Triangle class contains mutators and
inspectors for the three edges of the triangle, a default constructor,
a constructor that takes all three edges as arguments, and a
function Type that returns the type of the triangle: equilateral,
isosceles, scalene or illegal.

Table 2: Coverage results

Package Line of

Code

Total

number of

join points

Coverage
Percentage

NAnt.Core 11,356 3641 20.0

NAnt.DotNet 2253 784 15.9

NAnt.ZipTasks 230 65 100.0

NAnt.Console 155 41 53.4

SharpCVSLib 9245 2567 56.9

From now on, we present only the pointcut expression part of the
coverage aspect. The adequacy criterion Decision coverage only
within the Triangle component, will be expressed as the following
pointcut expression in the coverage aspect:

conditional(*) && within(Triangle)

As shown in Table 1, the syntax of the within PCD is
within(TypePattern). It matches every join point from the code
defined in a type in TypePattern. The richness of type patterns
allows us to express quite interesting coverage concerns. For
example, the pointcut within(eos..*) && !within(eos.ast..*)
excludes the AST library from the coverage concern. Similarly,
the pointcut within(CodeObject+) && !within(CodeObject)
includes all the sub-types of CodeObject in the coverage but not
the abstract class CodeObject itself.

After a modification to the method Type, the tester wants to
perform decision coverage within the method; the tester can now
specify this concern as the following pointcut expression:

conditional(*) && withincode(Triangle.Type)

To test the modifications in the function as well as the calls to the
function, the pointcut expression can modified as follows:

call(public * Triangle.Type(..))

 || (conditional(*) && withincode(Triangle.Type))

Another tester testing a crossword application that uses the
triangle component wants to cover the coupling between the
application and the component. This adequacy criterion can be
expressed as the following pointcut in coverage aspect:

call(public * Triangle.*(..)) && !within(Triangle)

The criterion shown above means cover all calls to any method of
the Triangle type which are not made within the type itself i.e. all
calls from the application.

5.2 Test Runs of AspectCov
To assess the practicality of our approach, we have applied it to
two significant, real open source C# projects, NAnt [45] and
SharpCVSLib [10]. NAnt is a build tool similar to Ant but for the
.NET framework, SharpCVSLib is a CVS client library for the C#
language. The source code of these projects contains
approximately 19,000 and 9,000 source lines, as of this writing,
respectively. We selected these projects for evaluation based on
their open source nature and the availability of test suites.

 8

Table 3: Space overhead of AspectCov

Package Concern Coverage
Criteria

Total
number
of join
points

instrum-
ented

Executable
size before

instrum-
entation

Executable
size after
instrum-
entation

NAnt.Core Handler(any) 78 385,024 417,792

NAnt.Core iteration(any)

 ||
conditional(any)

848 385,024 712,704

NAnt.DotNet Handler(any) 8 90,112 94,208

NAnt.DotNet iteration(any)

 ||
conditional(any)

233 90,112 188,416

Table 4: Time overhead of AspectCov

The NAnt project contains four sub-projects for which unit test-
cases were available. We wanted to obtain decision and loop
coverage of these sub-projects. This adequacy criterion was
represented as the following coverage aspect:

aspect DecisionCoverage {
action AspectCov():iteration(*)||conditional(*);
}

To measure the coverage, we simply added the aspect to the code
base of each sub-project. We provided the modified code to
AspectCov to measure the coverage. Table 2 presents the results.
The data show that the test sets provided with these open source
projects achieve coverage at best modest for most components,
and plausibly not sufficient to meet a test of reasonableness.

We present detailed analysis of the test runs for two sub-projects,
NAnt.Core and NAnt.DotNet, to assess the time and space
overhead imposed by AspectCov. Two different coverage criterion
were applied. The first criterion iteration(*) ||
conditional(*)measured the branch coverage of the projects; the
second criterion handler(System.Exception+) measured the error
code coverage adequacy.

Table 3 presents the executable size before and after
instrumentation. The executable size increases with the number of
join points matching the coverage adequacy criterion. Currently,
AspectCov weaves each matched join point. As mentioned before
there are two optimizations possible. First, only the spanning set
of the matched join points could be weaved. The spanning set is

the minimal set of join points, execution of which implies
execution of every matched join point. Second, complete weaving
at these join points is not required to determine coverage
adequacy. The coverage can be determined by just inserting a
counter at the matched join points. Table 4 shows the time
overhead of AspectCov. The time overhead also increases with the
number of matched join points. The optimizations techniques
described above will also reduce this overhead. In any case, the
overheads appear very reasonable.

6. RELATED WORK
6.1 Program instrumentation
Instrumenting programs to obtain run time information is a well-
studied area. Ball and Larus showed techniques for efficient path
profiling and tracing programs [5], [6]. Their work describes
algorithms to minimize the number of instrumentation points
required in a program. Probert [47] describes a technique for
optimal insertion of probes. There are other approaches for
optimal program profiling as well, such as by Agrawal [1],
Graham et al. [25] , Knuth et al. [36] , Ramamoorthy et al. [51],
etc. A hardware-based approach for software profiling is Digital
Continuous Profiling Infrastructure (DCPI) [14], [15], and [62]
that uses performance counters on the Alpha processors. All the
approaches mentioned above emphasize increasing the efficiency
of obtaining run time information when the set of program
elements to be profiled are already specified. Our approach, on
the other hand, provides means to select the program elements to
be profiled. It appears hybrid approaches that combine the best of
both worlds are possible, but exploration of this idea remains as
future work. In our experience with Nant and SharpCVSLib, the
performance impact was acceptable, in large part because of the
highly selective instrumentation that our approach achieves.

6.2 Testing and code coverage analysis
There are many commercial and open source code coverage tools
available, such as IBM Rational’s Pure Coverage, Quilt [63], etc.
These tools work well when the required code coverage criteria
nicely fits in one of the options hard-coded inside the tools,
however, they have no support for the crosscutting concern
coverage that our approach provides.

The COverage MEasurement Tool (COMET) [26] developed at
IBM Haifa Research Lab for system verification and micro-
architecture verification has a flavor similar to that of our work.
The main idea is also to separate coverage criteria specification
from the coverage analysis tool for enhanced flexibility. COMET
uses a language containing first order temporal logic predicates
along with simple arithmetic operators to define the model used
for code coverage analysis. COMET is meant for functional
coverage (functionality of the program) whereas our approach
focuses on program-based selective coverage. COMET is used to
test hardware designs ranging from systems to microprocessors
and ASICs, whereas our approach is meant for software
verification. The learning curve for COMET tends to be steep and
writing models needs expertise [60].

Souter, Shepherd and Pollock [55] demonstrate the reduction in
test suite execution overhead and increased precision in coverage
information that will result if testing is performed with respect to
concerns. They also present a framework for guiding selective
instrumentation for scalable coverage analysis. Their framework

Package Concern Coverage
Criteria

Total
number of
join points
instrum-

ented

Time to
test before
instrum-
entation
(Secs)

Time to
test after
instrum-
entation
(Secs)

NAnt.Core Handler(any) 78 31.421 31.562

NAnt.Core iteration(any)

 ||
conditional(any)

848 31.421 40.281

NAnt.DotNet Handler(any) 8 2.671 2.891

NAnt.DotNet iteration(any)

 ||
conditional(any)

233 2.671 3.206

 9

allows the tester to build a concern using FEAT’s graphical user
interface [21]. The merit of our approach over their framework is
that it avoids an explicit selection of program elements.

The approach presented by Tikir et al. [58] performs code
coverage analysis by dynamic instrumentation of the program.
Code coverage for Java (CC4J) [35] uses load time adaptation for
code coverage analysis. As of now, our approach performs static
instrumentation; however, the binding time for program
instrumentation is orthogonal to our concerns.

Our goal is neither to minimize the number of instrumentation
points required for code coverage analysis as in [5], [6] and [47]
nor to minimize the overhead of analysis and overhead as in [58].
We intend to provide a mechanism in the form of a declarative,
source code language for expressing test adequacy criteria. It is,
however, possible to achieve the benefits of selective and dynamic
code coverage analysis together and optimize the overhead of
analysis, but it is beyond the scope of this work.

6.3 AOP and Program Transformation
There are few approaches utilizing aspect-oriented programming
for testing and verification purposes. Mahrenholz et al.[40]
showed the use of AspectC++ for debugging and monitoring
tasks. Ubayashi et al. [59], for example, described how to verify
aspect-oriented programs using model checking and an AOP
based model-checking framework. Their framework consists of
multiple aspects, each specifying some property in the form of
before and after advice. This approach however relies completely
on execution of the weaved/instrumented program, and the
properties that can be checked are limited to those that can be
expressed in form of pre and post conditions.

There are other program transformation frameworks besides
BCEL [9] and SOOT [56]. Kotik and Markosian [37] used
REFINE for software analysis and test generation. One
disadvantage of REFINE and a similar system, Gentle [61], is that
both require learning a specialized transformation function
notation that is quite different from the source or target language.
Another similar program transformation system is TXL [11] that,
unlike previous transformation systems, allows use of the target
language. These meta-programming approaches to transformation
are powerful but complex when compared to transformations
using aspect-oriented approaches.

6.4 Declare Constructs in AspectJ
AspectJ [3] provides three static crosscutting mechanisms with a
flavor similar to the actions in our approach. The declare parent
construct modifies the inheritance hierarchy of existing classes to
declare a superclass or interface. The declare error and declare
warning constructs identify certain usage patterns in the code base
and emit compile time errors and warnings for policy
enforcement. The policy enforcement enabled by these constructs
is a primitive form of automated software inspection [17].

These constructs are similar to actions in the sense that they
perform activity other than weaving, namely compile time editing
of the code base and generation of messages. These constructs are,
however, limited in the sense that the language designers of
AspectJ need to add a new construct for each new software
activity to be automated. Our action construct is far more general
in that it allows the tool developers to choose their own action
identifier and to define corresponding actions independent of the

aspect language designer. In fact, the current AspectJ constructs
become special cases of the action construct. In the future work
section we describe how a more elaborate software inspection
[19], [20] and smell detection [22] tool might be realizable using
our language extensions and tool framework.

6.5 Attributes and Annotations
Attributes in .NET [44] languages, and annotations introduced in
J2SE 5.0 [30], both called tags from now onwards, allow the
designer to attach metadata to language constructs. A possible
application of these tags is to examine the compiled assembly in
case of .NET languages or .class/.jar file in case of J2SE for
certain pre-defined metadata and perform actions based on that
metadata. Burke [8] using JBoss AOP [31] and Shukla et al. [54]
using C# attributes, among others, demonstrate aspect weaving as
a possible action at points marked by specific metadata.

As pointed out by Kiczales [32], these tags are synergistic with
aspect-oriented constructs. These tags explicitly request additional
behavior at the join points where they are applied, where as
pointcuts implicitly select join points. Currently our framework
only allows join point selection using pointcuts, but in future
extensions of the framework we hope to provide support for
selection using tags.

We do not see as much value in representing test adequacy criteria
using explicit tags. Doing so increases the burden on the tester to
manually apply tag at points subject to test profiling.

7. CONCLUSION
In this paper, we have presented and demonstrated significant
potential utility in an approach to using aspect languages to
express test adequacy criteria relative to crosscutting concerns.
Our approach allows tester intentions to be represented abstractly
within source code. We provided a white-box join point model,
and a generalized action framework to support white-box testing
tools. We evaluated potential utility by implementing language
extensions, a framework, and a tool built on the framework. We
assessed the expressiveness of the approach and the performance
of the tool against two open source projects. One challenge now is
to find a way to express a broader range of adequacy criteria.
Pursuing the generalizations of aspect-oriented language model
embodied in our approach and in Eos-T promises to help address
this challenge.

We also made some progress toward extremes of aspect-oriented
programming in two dimensions. The first is exposure of all
semantically meaningful points in program execution as join
points. The second is the ability to trigger arbitrary actions (e.g.,
inspections, document generation, etc) on code selected by
pointcuts. The opening of compilation and execution to external
behavioral modification clearly has dangers, but also appears to
create new possibilities for automating software development.

8. FUTURE WORK
Software inspection, introduced by Fagan [19], [20] and reported
by others [23], [52] is a well-known technique for improving
software quality. It involves examining the software artifacts for
aspects known to be potentially problematic. Manual software
inspection techniques such as formal code reviews and structured
walk-through are formal, labor-intensive processes guided by

 10

well-defined rules. The costs sometimes result in inspections that
are not performed well or sometimes even not at all.

Tools for automated code inspection try to address this problem
by relieving the programmers of the manual inspection burden.
One such class of automatic code inspection tools [17] used to
detect code smells [22] automatically finds and reports bad design
and programming styles.

Similar to coverage analysis tools, automatic code inspection tools
limit the flexibility to the set of predefined bad design and
programming styles hard-coded in the tool. The developer cannot
specify her own specific smells. This verification process is also a
candidate for the use of a declarative language to specify smell
patterns in the program that can be detected later using tools that
could be implemented using our framework. A typical smell in
OO program is the use of switch statements in a method. This
smell can be identified using simple pointcut expression:

conditional(switch) && withincode(* *.*(..))

Similar smells can be represented as pointcut expressions and
associated with a CodeInspection action. This flexibility enables
organization, team, and individual level customization of the
automatic inspection process. A tool similar to our code coverage
analyzer can be implemented for this task using our framework.

[Note to reviewers: The Eos-T compiler is freely available
from www.cs.virginia.edu/~eos for research and teaching.]

9. ACKNOWLEDGMENTS
We would like to thank Wolfram Schulte for valuable discussion
about the coverage analysis practices inside Microsoft and
Michael Tashbook for providing valuable comments on the draft.
This work was supported in part by the National Science
Foundation under grant ITR-0086003.

10. REFERENCES
[1] Agrawal, H.,"Dominators, Super Blocks and Program

Coverage", POPL 94, Portland, Oregon, pp. 25-34.

[2] AspectC++ Homepage: http://www.aspectc.org.

[3] AspectJ Homepage: http://www.eclipse.org/aspectj.

[4] Aspect Oriented Software Development:
http://www.aosd.net.

[5] Ball, T., and Larus, J., “Optimally Profilling and Tracing
Programs”, ACM Transactions on Programming Languages
and Systems, Vol 16, no. 4, July 1994, pp 1319 – 1360.

[6] Ball, T., and Larus, J.,"Efficient Path Profiling," 29th Annual
IEEE/ACM International Symposium on Microarchitecture,
Paris, France, pp. 46-57.

[7] Boehm, B., “Software and its impact: a quantitative
assessment”, Datamation 19(May 1973), 48-59.

[8] Burke B., “Aspect-Oriented Annotations”, http://onjava.com
article dated Aug 25, 2004.

[9] Byte Code Engineering Library (BCEL):
http://jakarta.apache.org/bcel/

[10] CVS client library for C#: http://sharpcvslib.sourceforge.net/

[11] Cordy, J. R., Halpern-Hamu, C D., and Promislow, E.,
"TXL: a rapid prototyping system for programming language
dialects.", Computer Languages 16(1)(1991): 97-107.

[12] Cordy, J.R., and Shukla, M., "Practical Metaprogramming",
Proc. CASCON'92, IBM Centre for Advanced Studies 1992
Conference, Toronto, November 1992, pp. 215-224.

[13] Dahl, O. J. , Dijkstra, E. W., and Hoare, C. A. R. “Structured
Programming”, Academic Press, New York, 1972.

[14] Dean, J., Hicks, J.E., Waldspurger, C.A., Weihl, W. E., and
Chrysos, G.,"ProfileMe: Hardware Support for Instruction-
Level Profiling on Out-of-Order Processors," Proceedings of
the Thirtieth Annual IEEE/ACM International Symposium
on Microarchitecture, December 1-3, 1997, Research
Triangle Park, North Carolina, USA.

[15] Dean, J., Waldspurger, C. A., and Weihl, W.E.,
"Transparent, Low-Overhead Profiling on Modern
Processors," Workshop on Profile and Feedback-Directed
Compilation held in conjunction with PACT' 98. October
1998, Paris, France.

[16] Elbaum, S., Gable, D., Rothermel, G., “The impact of
software evolution on code coverage information”, IEEE
International conference on Software Maintenance, 2001.

[17] Emden, E. V., and Moonen, L.,"Java Quality Assurance by
Detecting Code Smells", Proceedings of the 9th Working
Conference on Reverse Engineering, IEEE Computer Society
Press Oct 2002.

[18] Eos Homepage: http://www.cs.virginia.edu/~eos

[19] Fagan, M.E., "Design and Code Inspections to Reduce Errors
in Program Development.”, IBM Systems Journal, 15, 3,
1976, pp 182-211.

[20] Fagan, M.E., "Advances in Software Inspections.”, IEEE
Transactions in Software Engineering SE-12, 7 (July) 1986,
pp 744-751.

[21] FEAT: http://www.cs.ubc.ca/labs/spl/projects/feat/

[22] Fowler, M., "Refactoring: Improving the Design of Existing
Code.", Addison-Wesley, 1999.

[23] Gilb, T., and Graham, D., "Software Inspection.", Addison-
Wesley, 1993.

[24] Goodenough, J. B., Gerhart, S. L., “Toward a Theory of Test
Data selection”, IEEE Transactions on Software Engineering,
1(2), 156-173, 1975.

[25] Graham, S.L., Kessler, P.B., and McKusick, M.K.,. An
execution profiler for modular programs. Software Practice
and Experience, 13:671-685, 1983.

[26] Grinwald, R., Harel, E., Orgad, M., Ur S., and Ziv, A., “User
Defined Coverage – A Tool Supported Methodology for
Design Verification”, Design Automation Conference, 1998,
pp 158 – 163.

[27] Harrold, M. J., "Testing: A Roadmap", In Future of Software
Engineering, 22nd International Conference on Software
Engineering, June 2000.

[28] Harrold M. J., and Rothermel, G., "Aristotle: A System for
Research On and Developement of Program-Analysis-Based
Tools.", Technical Report OSU-CISRC-3/97-TR17,

 11

Department of Computer and Information Science, The Ohio
State University, March 1997.

[29] Hong, Z., Patrick A. V. H., and John H. R. M., “Software
unit test coverage and adequacy”, ACM Computing Surveys,
29(4):366–427, 1997.

[30] Java: http://java.sun.com

[31] JBoss AOP: http://www.jboss.org/products/aop

[32] Kiczales, G., “The More the Merrier”, Software
Development Magazine, Sept 2004.

[33] Kiczales, G., “The fun has just begun”, Key note address of
International Conference on Aspect-Oriented Software
Development, Boston, MA, 2003.

[34] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes,
C., Loingtier, J. and Irwin, J., “Aspect-oriented
programming,” in Proceedings of the European Conference
on Object-Oriented Programming (ECOOP), Springer-
Verlang, Lecture Notes on Computer Science 1241, June
1997.

[35] Kniesel, G., Austermann, M., "CC4J - Code Coverage for
Java - A Load-Time Adaptation Success Story", In
Component Deployment - IFIP/ACM Working Confrerence,
CD 2002, Berlin, Germany, June 20-21, 2002, Proceedings,
Springer LNCS 2370, pp. 155-169, 2002. ISBN 3-540-
43847-5.

[36] Knuth, D., E., and Stevenson, F., R., Optimal measurement
points for program frequency counts. BIT, 13:313-322, 1973.

[37] Kotik, G., Markosian L., "Automating software analysis and
testing using a program transformation system", Proceedings
of the ACM SIGSOFT '89 third symposium on Software
testing, analysis, and verification, Key West, Florida, United
States, Pages: 75 - 84, 1989.

[38] Lamping, J., “The role of the base in aspect-oriented
programming”, First Workshop on Multi-Dimensional
Separation of Concerns in Object-oriented Systems (at
OOPSLA '99).

[39] Larus, J., "Whole Program Paths," Proceedings of the
SIGPLAN ‘99 Conference on Programming Languages
Design and Implementation (PLDI 99), May 1999, Atlanta
Georgia.

[40] Mahrenholz, D., Spinczyk, O., Schröder-Preikschat, W.,
"Program Instrumentation for Debugging and Monitoring
with AspectC++", The 5th IEEE International Symposium on
Object-oriented Real-time Distributed Computing ,
Washington DC, USA, April 29 - May 1, 2002.

[41] Marrè, M., and Bertolino, A.,"Using Spanning Sets for
Coverage Testing", IEEE Transactions on Software
Engineering, Vol. 29, No. 11, November 2003, p. 974-984.

[42] Masuhara, H., and Kiczales G., “Modular Crosscutting in
Aspect-Oriented Mechanisms”, ECOOP 2003, Darmstadt,
Germany, July 2003.

[43] Microsoft. C# Specification Homepage.
http://msdn.microsoft.com/net/ecma

[44] Microsoft .Net: http://www.microsoft.com/net

[45] NAnt homepage: http://nant.sourceforge.net/

[46] NUnit homepage: http://nunit.sourceforge.net/

[47] Probert, R. L., "Optimal Insertion of Software Probes in
Well-Delimited Programs," IEEE Transactions on Software
Engineering, January, 1981, pp. 34-42.

[48] Rational PureCoverage: http://www.ibm.com

[49] Rajan, H., and Sullivan, K., “Eos: Instance-Level Aspects for
Integrated System Design”, 2003 Joint European Software
Engineering Conference and ACM SIGSOFT Symposium on
the Foundations of Software Engineering (ESEC/FSE 03),
(Helsinki, Finland, Sept 2003).

[50] Rajan, H., and Sullivan, K., "Classpects: Unifying Aspect-
and Object-Oriented Language Design", Technical Report
CS-2004-21, Department of Computer Science, University of
Virginia, Sept 2004.

[51] Ramamoorthy, C. V., Kim, K.H., and Chen. W. T., "Optimal
placement of software monitors aiding systematic testing."
IEEE Transactions on Software Engineering, SE-1(4):403-
411, Dec. 1975.

[52] Russell, G. W., "Experience with inspection in ultralarge-
scale developments.", IEEE Software, 8(1):25-31, 1991.

[53] Schulte, W., Personal communication with Hridesh Rajan at
Microsoft Research

[54] Shukla, D., Fell, S., and Sells, C., “Aspect-Oriented
Programming Enables Better Code Encapsulation and
Reuse”, MSDN Magazine, March 2002.

[55] Souter, A. L., Shepherd, D., and Pollock, L L., "Concern-
based Testing," IEEE International Conference on Software
Maintenance, September, 2003

[56] Soot: a Java Optimization Framework:
http://www.sable.mcgill.ca/soot/

[57] Tarr, P., Ossher, H., Harrison, W., and Sutton, Jr. S.M., "N
Degrees of Separation: Multi-Dimensional Separation of
Concerns." Proceedings of the International Conference on
Software Engineering (ICSE'99), May, 1999.

[58] Tikir MM, Hollingsworth JK.,“Efficient instrumentation for
code coverage testing.”, ACM. Sigsoft Software Engineering
Notes, vol.27, no.4, July 2002, pp.86-96. USA.

[59] Ubayashi, N., Tamai, T., "Aspect-oriented programming with
model checking", Proceedings of the 1st international
conference on Aspect-oriented software development,
Enschede, The Netherlands, 148 - 154, 2002.

[60] Ur, S., Ziv, A., “Of-The-Shelf Vs. Custom Made Coverage
Models, Which is the one for You? ”, STAR 98 May 1998.

[61] Vollmer, J., "Experiences with Gentle: efficient compiler
construction based on logic programming." Proc. 3rd
International Symposium on Programming Language
Implementation and Logic Programming (PLILP 91),
Springer Verlag Lecture Notes in Computer Science
528(1991): 425-426.

[62] Weihl, W.E., "CPI: Continous Profiling Infrastructure",
DIGITAL Forefront Magazine, Winter 1997, pages 27-28.

[63] Quilt: http://quilt.sourceforge.net/

