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ABSTRACT 
In profiling program execution to assess the adequacy of a test set, 
a challenge is to select the code to be included in the coverage 
assessment. Current mechanisms for doing this are coarse-grained, 
assume traditional concepts of modularity, require tedious and 
error-prone manual selection, and leave the tester’s intent implicit 
in the input provided to the testing tools. The aspect-oriented 
constructs of languages such as AspectJ promise to help ease and 
extend our ability to select the code to be included in a test 
adequacy criterion and to document the tester’s intent within the 
source code itself. Our contribution is a language-centric 
approach to automated test adequacy analysis that we call concern 
coverage. We claim that our approach enables explicit, precise, 
abstract, and machine-readable representation of the tester’s intent 
and that it can ease testing by eliminating the need for manual 
selection and explicit maintenance of test adequacy criteria.     

Categories and Subject Descriptors 
D.2.5 [Testing and Debugging]: Testing tools – code coverage 
analysis, testing. D.3.3 [Programming Languages]: Language 
constructs and features – generalized join point model, 
generalized advice. 

General Terms 
Measurement, Design, Experimentation, Languages, Verification. 

Keywords 
Concern coverage, generalized join point models, generalized 
advice, Eos, C#, coverage adequacy criteria.  

1. INTRODUCTION 
The problem that we address in this paper is that the state of the 
art in selecting the code that is to be included in an adequacy 
criterion, and to be monitored at runtime to measure adequacy, 
falls short in three ways.  First, current mechanisms are too 
coarse-grained and too closely based on traditional modules to 
support fine-grained selection of scattered code.  Second, these 

mechanisms require tedious, error-prone manual selection of 
included or excluded elements, usually through the GUI of a 
testing tool. Commercial tools for code coverage analysis such as 
IBM Rational’s Pure Coverage [48], and open source tools such 
as Quilt [63], for example, provide control over exclusion or 
inclusion of code at the file, class, and function level only, and 
only by manual enumeration through a graphical user interface. 
Third, expressing adequacy criteria by selecting modules alone 
does not clearly express the intent of the tester, potentially 
complicating downstream system maintenance and evolution. 

To address these shortcomings we present an approach and a 
system for what we call concern coverage. The idea is to express 
the test adequacy criterion in an abstract, declarative form as a 
part of the code base to be tested. The criterion is represented 
using aspect-oriented [4][34] pointcut constructs in the style of 
AspectJ [3]. The tool then automates the rest of the analysis.  

Our language-centric approach addresses the three problems 
enumerated above. First, the underlying declarative language 
allows expression of complex, crosscutting adequacy criteria. 
Second, the tool takes the declarative representation as input and 
automates the analysis, relieving the tester of the costly and error-
prone task of manual code selection. Third, the representation of 
adequacy criterion clearly expresses the tester’s intent as part of 
the source code itself.  

The rest of this paper is organized as follows. Section 2 presents 
background on code coverage and aspect-oriented programming.  
Section 3 presents our approach and language extensions needed 
to support it. Section 4 describes our framework for implementing 
tools based on these extensions. Section 5 describes AspectCov, 
our coverage analysis tool built using our framework, and presents 
an evaluation of our ideas. Section 6 discusses the related work. 
Section 7 concludes. 

2. BACKGROUND 
2.1 Aspect-oriented programming 
To make this work self-contained, we briefly review basic 
concepts in the dominant aspect-oriented model. The central idea 
is that aspects enable the modular representation of crosscutting 
concerns. A concern is a dimension in which a design decision is 
made, and is crosscutting if it cannot be realized in traditional 
object-oriented designs except with scattered and tangled code 
[38]. By scattered we mean not localized in a module but 
fragmented across a system.  By tangled we mean intermingled 
with code for other concerns [33]. 
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Dominant aspect languages add five key constructs to the object-
oriented model: join points, pointcuts, advice, introductions (not 
discussed in any detail in this paper), and aspects. We provide a 
simple example to make the points concrete.  

1 aspect Tracing { 

2   pointcut tracedCall(): 

3       call(* *(..)); 

4   before(): tracedCall() { 

5       /* Trace the call */ 

6   } 

7 } 

An aspect (lines 1-7), performs behavioral modification to 
program execution event exposed by the language definition. 
These events are called join points. The execution of a method in 
the program in which the Tracing aspect appears is an example of 
a join point. A pointcut (lines 2-3) is a predicate that selects a 
subset of join points for such modification—here, any call to any 
method. An advice (see lines 4-6) serves as a before, after, or 
around method to effect such a modification at each join point 
selected by a pointcut [50]. 

2.2 Code Coverage Analysis 
Exhaustive testing [7] refers to exercising all possible inputs of a 
program in order to prove the absence of faults. Unfortunately, in 
the typical case of vast or infinite input spaces, exhaustive testing 
is infeasible [24], and any sub-set of an exhaustive test set can 
only show the presence of bugs not their absence [13]. Even 
though exhaustive testing is not always possible, thorough testing 
can provide a basis for sufficient confidence in program behavior. 
A test adequacy criterion is a predicate defining what properties 
of a program must be exercised to constitute a thorough test [24]. 
Adequacy criteria help determine when testing may cease [29]. 

Code coverage analysis is a technique to determine whether a set 
of test cases satisfy an adequacy criterion. It helps find areas of a 
program not sufficiently exercised by a set of test cases, gives a 
measure of the quality of a test set, and can determine whether a 
test set meets coverage requirements. In general, adequacy is 
assessed against selected parts of a code base, and those parts are 
scattered across the program. Measuring coverage requires that 
the source code be instrumented at points of interest. Something 
like a break point in debugging has to be inserted at each point of 
interest. To instrument code manually is a burden on the tester.  

Code coverage tools are meant to help remove this burden by 
automating the task of code coverage analysis. Coverage tools are 
designed with specific adequacy criteria in mind. For example, a 
tool might allow statement coverage, path coverage, condition 
coverage, segment coverage etc. These tools, however, limit the 
flexibility of code coverage. The limited set of code coverage 
criteria is all a tester can choose from, and the code against which 
adequacy is to be evaluated can be designated only by the limited 
means supported by the given tool.  

In practice, testers are often not interested in coverage of all 
program elements, but rather in selected elements.  One might 
wish to select only non-library and non-environment-generated 
code, for example. Similarly, a tester of one module might want to 
include the code of the module or function that is being tested, 

and perhaps closely related code elsewhere in the system, but not 
more distantly related code.  In her proposed roadmap for testing 
[27], Harrold points out the need to express selective test 
adequacy criterion in the context of component based systems.  

We need to identify the types of testing information about a 
component that a component user needs for testing 
applications that use the component. For example, a 
developer may want to measure coverage of the parts of the 
component that her application uses. To do this, the 
component must be able to react to inputs provided by the 
application, and record the coverage provided by those 
inputs. For another example, a component user may want to 
test only the integration of the component with her 
application. To do this, the component user must be able to 
identify couplings between her application and the 
component. 

She also outlines the need for expressive, and even code-based, 
representations of testing policies in general and coverage criteria 
in particular: 

We need to develop techniques for representing and 
computing the types of testing information that a component 
user needs.… Likewise, standards for representing testing 
information about a component, along with efficient 
techniques for computing and storing this information, could 
be developed. For example, coverage information for use in 
code-based testing or coupling information for use in 
integration testing could be stored with the component. 

More generally, a tester might wish to define test adequacy 
criteria in terms of coverage of code that relates to concerns that 
are lexically spread across the code base. For example, one might 
want to cover scattered synchronization, transaction, serialization, 
or security related code. Schulte [53] observed the need to 
represent such selective and crosscutting adequacy criteria in large 
projects inside Microsoft, where the tester is only interested in 
testing selected parts of a large code base. At Microsoft the need 
is met using relatively ad hoc techniques.  

We see two basic kinds of mechanisms for representing adequacy 
criteria: tool-centric and language-centric. In the former approach, 
common in commercial tools, the coverage tool provides a fixed 
set of adequacy criteria, with the possibility of manually selecting 
code elements against which adequacy is to be evaluated. This 
approach does not offer enough flexibility. The latter approach 
provides a language front end to the analysis tool. The flexibility 
in representing adequacy criteria depends on the expressiveness of 
this front-end language. Our approach is of the latter kind.  

3. OUR APPROACH 
Our work views an adequacy criterion as a crosscutting concern in 
the sense that it is a requirement for the testing process that maps 
to monitoring execution of program elements scattered across the 
code base. Existing mechanisms for performing this monitoring 
operate at traditional level of modularity and thus suffer from 
what has been called the tyranny of dominant decomposition [57]. 
It is not surprising that the existing mechanisms to measure test 
adequacy exhibit similar problems as non-modular crosscutting 
concerns in code.  
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Assessing the satisfaction of test adequacy criteria requires 
monitoring of key points in program execution. As mentioned, in 
aspect-oriented terminology, a join point is a point in the 
execution of a program. An adequacy criterion, like a pointcut, 
selects a subset of join points. The idea behind our approach is to 
express the code to include in an adequacy criterion using 
declarative, aspect-oriented pointcut constructs. For example, one 
could express the test adequacy criterion Coverage of all non-
recursive external function calls on types in the package foo.bar 
and all its direct and indirect sub-packages as the following 
aspect, and then expect the tool support to automate the rest of the 
code coverage analysis. The type pattern foo.bar..* in AspectJ [3], 
represents all types in the package foo.bar and all its direct and 
indirect sub-packages. In the later sections, we will complete the 
aspect body.  

aspect FunCov{  

   // Monitor coverage of all external function calls on types in foo.bar..*  

} 

These test coverage aspects, which are included within the code 
base itself, result in automated, fine-grained, selective 
instrumentation to enable the required dynamic monitoring and 
data collection.  These aspects address the three problems.  First, 
they support the expression of complex, crosscutting coverage 
criteria. For example, FunCov selects calls in multiple packages 
and sub-packages using a simple type pattern foo.bar..*.   

Second, these aspects relieve the tester of the tedious and error-
prone task of manually selecting and reselecting files, packages, 
and functions to be included. For example, to select the set of 
program execution points constituting the criterion represented by 
FunCov using a GUI based tool, a tester would have to go through 
all files and select all calls to any method in the package foo.bar 
and all its direct and indirect sub-packages, and then manually 
determine whether given calls are non-recursive and external. 

Third, these coverage aspects document and communicate tester 
intent in explicit, precise, abstract, and machine-readable forms.  
Such expressions also remain valid as the source code evolves.  It 
would be easy to add a new call to a method in foo.bar package to 
a program and forget to update the test set and the adequacy 
criterion. Using predicates to express the code to be covered 
resolves this issue. 

Unfortunately, current aspect language designs in the AspectJ 
style are not ideally suited to our task in two ways. First, they lack 
join point models at a granularity fine enough to support white-
box testing.  The problem is not merely accidental.  Rather, it 
reflects a fundamental decision made by the language designers, 
that the only join points that should be exposed are at module 
boundaries (e.g., calls to methods).  Such a black box join point 
model is inadequate to support white box test set assessment.  For 
example, no aspect languages that we know of, except for 
experimental versions of our own Eos language, expose branches 
as join points. This shortcoming would preclude precise, abstract 
expression of crosscutting branch coverage criteria.  We address 
this problem by introducing the idea of generalized (white-box) 
join point models and pointcut languages.  As an example, in this 
paper, we present an aspect language design that exposes branches 
as join points.   

Second, with the exception of a few ad hoc mechanisms, most 
aspect languages support only one action at join points selected by 
aspects, namely weaving of advice to modify normal program 
behavior. This mechanism can support the profiling needed for 
coverage analysis, but it is not an efficient mechanism for this 
purpose.  Other mechanisms, such as those proposed by Ball and 
Larus [5][6], are likely to be superior in many cases.  We address 
this problem by introducing the idea of generalized advice: 
directives that can be processed by the supporting tools to cause 
actions other than mere weaving of advice code at designated join 
points.  An example would be the application of the Ball-Larus 
algorithm to instrument the join points for profiling or tracing.  

To evaluate the feasibility of these ideas, we have designed and 
implemented Eos-T (where T is for testing), a version of Eos [18], 
[49] with added support for generalized join point and pointcut 
models and generalized advice.  Eos is an aspect-oriented version 
of C# [43] a .NET [44] language. It was the first aspect language 
to support both first-class aspect instances and instance-level 
advising along with rich join point and pointcut models in the 
AspectJ style. Eos-T is implemented by a fully functional 
compiler, comprising approximately 40,000 source lines of code 
(most inherited from Eos). With Eos-T, we have been able to 
demonstrate the feasibility and potential utility of selective code 
coverage analysis by compiling large, open source C# programs as 
exemplars. Eos-T is available to the research community. 

In the rest of this section, we discuss the need for the language 
model extension to support our ideas and describe how the 
extensions incorporated in Eos-T achieve some of our goals. We 
then describe our framework and its embodiment in AspectCov.  

3.1 Need for Language Model Extension 
The promise of aspect-orientation for modularizing crosscutting 
concerns encouraged us to use it to represent adequacy criteria in 
a modular way. In particular, pointcuts seemed like an effective 
vehicle to select program elements, execution of which 
contributes to the satisfaction of an adequacy criterion. For 
example, the FunCov criterion discussed earlier could be 
represented by the simple pointcut highlighted in the code below.  

aspect FunCov{  
    /* Apply code coverage to all the join points selected by */ 
              call (*  foo.bar..*.*(..)) && ! within( foo.bar..*); 
} 

Here, the tester uses the pointcut call (*  foo.bar..*.*(..)) to specify 
that adequacy is to be measured against all method calls on types 
in the direct or indirect sub-package of foo.bar, and then uses the 
pointcut !within(foo.bar..*) to exclude calls from within the package 
or sub-packages themselves. All join points in the lexical scope of 
the specified types are selected by the within pointcut designator. 
The operator ! complements the set to select all join points that 
are not in the lexical scope of the specified types.  

As it turns out, the join point model and pointcut sub-languages of 
the current aspect languages are not fine grained enough to 
express test adequacy criteria at a granularity needed for testing. A 
hypothetical language L, which supports only method execution 
as join points will limit the possible adequacy criteria to some 
variant of function coverage. Extending the join point model of L 
to include the exception handlers will allow us to express the error 
code coverage as well. Further, to express the statement coverage 
criteria we will need the join point model of L to contain 
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individual statements. The AspectJ language model, clearly the 
most mature and well-developed model, recognizes method call & 
execution, field get and set, exceptions, control flow, etc., as join 
points but it does not recognize basic blocks or branches as join 
points precluding the possibility to do decision coverage. 

Second, most aspect languages only support weaving of advice 
code at a join point selected by an aspect, but not other useful 
actions. Apart from weaving advice, one might want to schedule 
these points for code coverage analysis, schedule these points for 
manual inspection, monitor the bugs reported in the program 
segments written by a particular programmer, automatically 
generate/update related sections of the program documentation, 
etc. The potential action list is not limited to the actions 
mentioned above but might include any other activity in the 
software development life cycle amenable to automation.  We thus 
envision decoupling the notion of pointcut expressions from the 
actions to be taken at the designated join points, with advising as 
a special case. 

In the next subsection, we will discuss the language extensions to 
Eos to enable representation of test adequacy criteria as aspects.  

3.2 Eos-T and its Extended Join Point Model 
To provide a basis for an early evaluation of the potential value of 
a generalized join point model in supporting aspect-oriented test 
coverage analysis, Eos-T extends the join point model of Eos and 
AspectJ to include basic blocks as join points.  

Such join points enable selective branch coverage profiling based 
on declarative pointcut expressions. The Eos-T join point model 
includes statement-level join points, iterations, and conditionals. 
These statements, called predicates in the control flow graph 
(CFG) terminology [1], along with method calls and returns, mark 
the beginning and the end of a basic block in a program. Each of 
these join points is discussed in detail in the rest of this sub-
section. 

A conditional statement in C# is an if statement or a switch 
statement, whereas an iteration statement is either of the while, 
do-while, for, and foreach statements.  The Eos-T pointcut 
sublanguage allows selecting these join points using the pointcut 
designators (PCDs) conditional and iteration. The syntax of these 
PCDs is as follows:  

conditional_pointcut: CONDITIONAL (conditional_construct) 
conditional_construct : IF | SWITCH | * 
iteration_pointcut: ITERATION (iteration_constructs) 
iteration_constructs : iteration_construct |  
                                   iteration_construct || iteration_construct 
iteration_construct: WHILE | FOR | DOWHILE| FOREACH|* 

The following pointcut expressions show some of the usage of the 
conditional and the iteration PCDs.  

pointcut allConditional() : conditional(*);// Select all conditionals 
pointcut allif(): conditional(if); // Select all if statements 
pointcut allswitch(): conditional(switch); // Select all switches 
pointcut allIterations() : iteration(*); // Selects all iteration statements 
pointcut allwhile(): iteration(while); // Selects all while statements 
pointcut allfor(): iteration(for); // Selects all for statements  

 

 

Table 1: Pointcut designators (PCDs) supported by Eos-T 

PCD Explanation 
call(Signature) Matches every methods call site matched 

by the signature 
Execution(Signature) Matches execution of every method 

matched by the signature 
fget(Signature) Matches variable read for variables 

matching the signature 
fset(Signature) Matches variable write for variables 

matching the signature 
Initialization(Signature) Matches object initialization/constructor 

calls matching the signature 
Handler(TypePattern) Matches exception handlers catching an 

exception of type matched by the pattern 
Adviceexecution() Matches execution of every advice 
Within(TypePattern) Matches each join point within the type 

matched by the pattern 
withincode(Signature) Matches every join point within the 

method matched by the signature 
Pget(Signature) Matches property read for variables 

matching the signature 
Pset(Signature) Matches property write for variables 

matching the signature 
Conditional(if/switch) Matches conditional join points (if and 

switch statements) 
Iteration(while/dowhile/for
/foreach) 

Matches iteration join points (while, do-
while, for and for each statements) 

 

In addition to these new PCDs, EOS-T also supports the PCDs 
shown in Table 1. The PCDs can be composed together by || 
(disjunction) and && (conjunction) operators. These PCDs and 
patterns are mostly inherited from AspectJ, and are discussed in 
more details in the AspectJ user’s manual [3]. 

Most of the PCDs shown in the table are anchored to an interface 
element and they select a group of join points with respect to that 
interface element. For example, the call PCD is anchored to an 
interface element, method name, and it picks out all the calls to 
the specified method regardless of where the call is made from. As 
can be observed, the conditional and the iteration PCDs are not 
anchored to any named interface element. They are instead 
anchored to the programming language constructs and select all 
the program elements that belong to that construct type. To refine 
the selection of the join points further, these PCDs can be 
composed with other PCDs like within, withincode etc. For 
example, the following pointcut expression matches all the if’s 
within the TestHarness class.  

pointcut ifTestHarness() : conditional(if) && within(TestHarness); 

Similarly, the following pointcut expression matches all while 
loops in the Test function of the class TestHarness. 

pointcut whileTest() : iteration(while) &&  
  withincode(public void TestHarness.Test()); 

The expressive join point model of Eos-T thus allows the 
expression of more complex adequacy criteria than can be 
expressed by traditional file, module, and function enumeration.  
In addition, it relieves the tester of the tedious and error-prone 
task of manually selecting and reselecting the files, packages, 
functions that are to be included in the coverage analysis. 
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3.3 Generalized Advice 
Most aspect languages and approaches including AspectJ and the 
original Eos language only support the weaving of advice code at 
selected join points. The possibility of enabling other actions 
opens up a range of new possibilities for expressing actions across 
the software lifecycle as part of the source code itself: in a precise, 
abstract, modular and composable form. The list of possible 
action includes but is not limited to code coverage analysis, code 
inspection, bug monitoring, automated document generation, etc.  

This approach promises two potentially significant benefits. First, 
representing actions explicitly and abstractly within the code base 
promises to increase the reliability of certain lifecycle activities, 
by representing them in the place most visited by real developers, 
in a form in which they are easily subject to automation. Second, 
as opposed to other representations of the same information, this 
representation does not require separate maintenance efforts.  

For example, consider the documentation and realization of a test 
adequacy criterion. Traditionally, one would document it in a test 
plan and realize it by selecting options in the analysis tool. At the 
beginning of each test session or after test case execution is 
finished, depending on the coverage analysis tool being used, this 
criterion will be replicated in the testing environment by manually 
selecting the program elements that are to be included in the 
coverage analysis. The changes in the adequacy criterion can be 
introduced either by the management, which will be first reflected 
in the test plan and then replicated in the testing environment, or 
by the testing staff, which will first experiment with the criteria in 
the testing environment and then document it in the test plan.  

In both cases, additional maintenance effort is required to make 
the documentation in the test plan and its realization in the testing 
environment consistent. This additional maintenance is required 
because the translation process from test plan documentation to 
the testing environment and vice versa contains a manual 
component: selecting program elements for analysis. Providing 
language and tool support to automate this manual component 
will dramatically reduce the required additional effort. This 
support is provided in Eos-T as generalized advice. An instance of 
generalized advice has the following syntax:  

action IDENTIFIER( ): Pointcut; 

An identifier depicting the name of the action follows the new 
keyword action followed by a pointcut expression. The pointcut 
expression identifies the subset of program elements at which the 
action should be taken. This extension enables us to embed useful 
actions in the source code. Tools recognizing these extensions can 
automatically perform these embedded actions. In the next 
Section, we describe our framework for implementing tools that 
recognize these extensions.  

4. FRAMEWORK 

 

As illustrated in Figure 1, our framework provides application 
programming interfaces (APIs) for source code parsing1, abstract 
syntax tree (AST) manipulation, code weaving, action 
registration, code generation and code compilation. The utility 
API provides miscellaneous functions like command line 
argument processing, database manipulation, string manipulation, 
etc. The framework logic consists of three stages: initialization, 
run, and close up. In the initialization stage, the framework parses 
the source code and constructs the abstract syntax tree. While 
parsing, it collects all the encountered actions. A tool built on top 
of our framework uses the action registration interface to register 
the action it intends to handle with the framework. After 
initializing itself, the framework calls a tool specific initialization 
handler. Similarly, in each of the three stages, the framework 
iterates through the collected actions and calls appropriate 
handlers, thus allowing each tool to perform its task.   

As opposed to other frameworks for implementing verification 
tools, e.g., Aristotle [28], our framework recognizes crosscutting 
concerns and offers an interface to perform crosscutting actions. 
Java byte code transformation tools such as BCEL [9], SOOT 
[56], etc. similarly allow arbitrary transformation of java classes; 
however, they do not recognize crosscutting structure and do not 
allow crosscutting transformation. In the next Section, we 
demonstrate the use of this framework, along with the aspect 
language extensions embodied in Eos-T, to implement a coverage 
tool supporting concern coverage as a test adequacy criterion. 

5. THE ASPECTCOV TESTING TOOL 
Our tool for code coverage analysis is intended to provide the ease 
of tool-based instrumentation coupled with the flexibility of 
specifying concern coverage criteria using a declarative language. 
The tester can use the entire pointcut sub-language of Eos-T to 
specify the coverage criteria. Use of the declarative language 
enables explicit, precise, and abstract specification of the tester’s 
intentions.  

                                                                 
1 Currently our parser API only parses C# source code; however, 

we are extending it to include support for the intermediate 
language (MSIL). 
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The ability to select a subset of program elements using the 
declarative language improves the efficiency of code coverage 
analysis. Even in scenarios where complete coverage is essential, 
the ability to select will improve efficiency. For example, a user 
can instruct AspectCov to cover and track metrics for only the 
uncovered portion of the design. In this way, coverage is directed 
towards the problematic design areas, reducing the overhead in 
each successive simulation and speeding the verification process. 
Using an expressive pointcut language also allows significantly 
more sophisticated coverage criteria to be represented. 

We built our code coverage tool using a combination of our 
framework and the NUnit unit-testing framework [46]. Our tool 
performs the following steps to achieve its goal.  

1. On construction, it registers itself with the framework to 
receive notifications for the action AspectCov. 

2. In the initialization stage, it collects all the AspectCov 
actions. As we have discussed previously, every action 
contains a pointcut expression. In case of AspectCov 
action, this pointcut expression specifies the sub-set of 
join points that correspond to a given coverage concern.  

3. In the run stage, our tool selects a union2 of these sub-
sets of join points that need to be instrumented.  

4. It generates an aspect containing handcrafted advice to 
serialize the reflective information at the join point and 
send it to the code coverage information collection 
server running at a well-known port. To optimize it 
further, this communication is performed using a shared 
stream, if the test and analysis machine are the same. 

5. The selected join points are instrumented to invoke the 
handcrafted advice in the aspect trace. Any of the 
optimal instrumentation algorithms can be plugged in to 
actually instrument the code. 

6. The abstract syntax tree of the instrumented program is 
compiled into assembly3. 

7. This instrumented assembly is loaded into the NUnit 
unit-testing framework.  

8. The tester can now execute the test-suite of the program 
using the familiar graphical user interface (GUI) of 
NUnit and obtain coverage information for the specified 
concern. AspectCov stores the coverage information as a 
coverage matrix, the rows of which represent the join 
points for which coverage is measured, and the columns 
of which represent the tests in the test suite. If data from 
previous runs for the project is available, it also presents 
the metrics, change across components, and change 
across tests described by Elbaum, Gable, and Rothermel 
[16] to give an idea of the change in coverage between 
versions. 

                                                                 
2 More sophisticated mechanisms such as [1], [5], [6], [25], [36], 

[47], [51], etc. can also be used.  
3 Assembly is the Microsoft .NET framework’s equivalent of an 

executable. 

 

Fig. 2 Screen shot of AspectCov integrated with NUnit. 

As can be observed in Figure 2, we have introduced two new GUI 
elements to NUnit: a button to start the code coverage analysis 
and a tab to display the analysis results. Currently we are using 
the NUnit framework [46] as a testing tool; however, our 
approach can be easily extended to other testing infrastructures. 
Figure 2 shows the bottom line coverage for the selected concern 
at the bottom of the right hand panel. 

The overheads incurred by AspectCov are as follows: 

1. Development time overhead: The tester’s time spent to 
write the coverage aspect. This overhead is minimal 
given the simplicity of the aspect.  

2. Compilation overhead: The code base and the coverage 
aspect need to be compiled. Currently our approach 
works at the source code level so recompiling the source 
is necessary. This overhead might be eliminated by 
working at the MSIL level for C# and byte code level 
for Java.  

3. Run-time overhead: At every join point subject to 
coverage analysis, the auto-generated coverage advice is 
invoked. This coverage advice can be inlined for further 
optimization. For other possible applications of our 
approach, the first two overheads will remain the same. 
The third overhead will vary depending upon the 
specific application.  

AspectCov currently instruments all join points selected by a 
given pointcut, but it does not try to further optimize the number 
of join points instrumented. Optimal profiling approaches such as 
the Ball et al. approach [5] will be used in future. Finding a 
spanning set [41] of the coverage concern will further optimize 
the number of join points instrumented. Nevertheless, we see that 
instrumentation is added to the application only at selected join 
points, which results in a decrease in the size of the resulting 
application and run-time of test execution. Overall, decisions in 
this dimension are orthogonal to the central contribution of this 
work in the method and system for concern coverage based on 
two generalizations of the aspect-oriented programming model. 

To compute test set adequacy AspectCov first statically determines 
the set of join points that belong to the coverage concern and then 
at run-time calculates the subset of this set that is executed by the 
test-set to determine coverage percentage. Therefore, the 
adequacy criteria may only contain pointcut expressions that are 
statically determinable [3]. As with the declare constructs in 
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AspectJ, the pointcuts cflow, cflowbelow, this, target, args and if 
may not be included in the adequacy criteria, directly or 
indirectly, because they need run-time information to be 
accurately determined.  

5.1 Example coverage scenarios 
To use AspectCov for code coverage analysis, one simply adds 
test coverage aspects to the source code base. The code coverage 
concerns are expressed in the aspects. Multiple code coverage 
aspects can co-exist in the code base. Code coverage aspects can 
also co-exist with aspects.  

Consider the adequacy criterion Every modification to the value 
field of the class Model should be covered. We will represent the 
criterion as follows: 

aspect ValueModificationCoverage { 
 action AspectCov(): fset(public int Model.value) 
} 

The aspect ValueModificationCoverage contains only one 
AspectCov action, which is applied to all program elements 
selected by the pointcut expression, fset(public int Model.value). 
The pointcut starts with the PCD fset, for field set, which matches 
all program elements where a field is modified. The pointcut 
expression further narrows the match by specifying the pattern 
(public int Model.value). This pattern means match only when the 
field modified is a public field of the type integer, and it belongs 
to the class Model and has the name value.  

Now let us reconsider the adequacy criterion discussed, but not 
concretized, in Section 3. Adding the following simple coverage 
aspect to the code base will be sufficient for the task.  

aspect FunctionCoverage { 
    action AspectCov():call (*  foo.bar..*.*(..)) && ! within( foo.bar..*);  
} 

Similarly, the adequacy criterion error code coverage and 
decision coverage will be simply represented as:  

aspect ErrorAspectCoverage { 
    action AspectCov(): handler(System.Exception+);  
} 

aspect DecisionCoverage { 
    action AspectCov(): conditional(*);  
} 

We now use the triangle problem (one of the most common 
examples in the testing literature) to demonstrate some of the 
scenarios in which our approach is used for specifying adequacy 
criteria as test coverage aspects. The triangle problem requires the 
program to read three numbers representing the lengths of three 
sides of a triangle and determine whether the triangle is 
equilateral, isosceles, or scalene. 

The interface of our Triangle class contains mutators and 
inspectors for the three edges of the triangle, a default constructor, 
a constructor that takes all three edges as arguments, and a 
function Type that returns the type of the triangle: equilateral, 
isosceles, scalene or illegal. 

 

 

Table 2: Coverage results 

Package Line of 

Code 

Total 

number of 

join points 

Coverage 
Percentage 

NAnt.Core 11,356 3641 20.0 

NAnt.DotNet 2253 784 15.9 

NAnt.ZipTasks 230 65 100.0 

NAnt.Console 155 41 53.4 

SharpCVSLib 9245 2567 56.9 

 

From now on, we present only the pointcut expression part of the 
coverage aspect. The adequacy criterion Decision coverage only 
within the Triangle component, will be expressed as the following 
pointcut expression in the coverage aspect: 

conditional(*) && within(Triangle)  

As shown in Table 1, the syntax of the within PCD is 
within(TypePattern). It matches every join point from the code 
defined in a type in TypePattern. The richness of type patterns 
allows us to express quite interesting coverage concerns. For 
example, the pointcut within(eos..*) && !within(eos.ast..*) 
excludes the AST library from the coverage concern. Similarly, 
the pointcut within(CodeObject+) && !within(CodeObject) 
includes all the sub-types of CodeObject in the coverage but not 
the abstract class CodeObject itself.  

After a modification to the method Type, the tester wants to 
perform decision coverage within the method; the tester can now 
specify this concern as the following pointcut expression: 

conditional(*) && withincode(Triangle.Type)  

To test the modifications in the function as well as the calls to the 
function, the pointcut expression can modified as follows:  

call(public * Triangle.Type(..))  

    ||  (conditional(*)  &&  withincode(Triangle.Type))  

Another tester testing a crossword application that uses the 
triangle component wants to cover the coupling between the 
application and the component. This adequacy criterion can be 
expressed as the following pointcut in coverage aspect: 

call(public * Triangle.*(..))  &&  !within(Triangle)  

The criterion shown above means cover all calls to any method of 
the Triangle type which are not made within the type itself i.e. all 
calls from the application.  

5.2 Test Runs of AspectCov 
To assess the practicality of our approach, we have applied it to 
two significant, real open source C# projects, NAnt [45] and 
SharpCVSLib [10]. NAnt is a build tool similar to Ant but for the 
.NET framework, SharpCVSLib is a CVS client library for the C# 
language. The source code of these projects contains 
approximately 19,000 and 9,000 source lines, as of this writing, 
respectively. We selected these projects for evaluation based on 
their open source nature and the availability of test suites.  
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Table 3: Space overhead of AspectCov 

Package Concern Coverage 
Criteria 

Total 
number 
of  join 
points 

instrum-
ented 

Executable 
size before 

instrum-
entation 

Executable 
size after 
instrum-
entation 

NAnt.Core Handler(any) 78 385,024 417,792 

NAnt.Core iteration(any)    

     || 
conditional(any) 

848 385,024 712,704 

NAnt.DotNet Handler(any) 8 90,112 94,208 

NAnt.DotNet iteration(any)    

     || 
conditional(any) 

233 90,112 188,416 

 

Table 4: Time overhead of AspectCov 

 

The NAnt project contains four sub-projects for which unit test-
cases were available. We wanted to obtain decision and loop 
coverage of these sub-projects. This adequacy criterion was 
represented as the following coverage aspect:  

aspect DecisionCoverage { 
action AspectCov():iteration(*)||conditional(*);  
} 

To measure the coverage, we simply added the aspect to the code 
base of each sub-project. We provided the modified code to 
AspectCov to measure the coverage. Table 2 presents the results.  
The data show that the test sets provided with these open source 
projects achieve coverage at best modest for most components, 
and plausibly not sufficient to meet a test of reasonableness. 

We present detailed analysis of the test runs for two sub-projects, 
NAnt.Core and NAnt.DotNet, to assess the time and space 
overhead imposed by AspectCov. Two different coverage criterion 
were applied. The first criterion iteration(*) || 
conditional(*)measured the branch coverage of the projects; the 
second criterion handler(System.Exception+) measured the error 
code coverage adequacy.  

Table 3 presents the executable size before and after 
instrumentation. The executable size increases with the number of 
join points matching the coverage adequacy criterion. Currently, 
AspectCov weaves each matched join point. As mentioned before 
there are two optimizations possible. First, only the spanning set 
of the matched join points could be weaved. The spanning set is 

the minimal set of join points, execution of which implies 
execution of every matched join point. Second, complete weaving 
at these join points is not required to determine coverage 
adequacy. The coverage can be determined by just inserting a 
counter at the matched join points. Table 4 shows the time 
overhead of AspectCov. The time overhead also increases with the 
number of matched join points. The optimizations techniques 
described above will also reduce this overhead. In any case, the 
overheads appear very reasonable. 

6. RELATED WORK 
6.1 Program instrumentation 
Instrumenting programs to obtain run time information is a well-
studied area. Ball and Larus showed techniques for efficient path 
profiling and tracing programs [5], [6]. Their work describes 
algorithms to minimize the number of instrumentation points 
required in a program. Probert [47] describes a technique for 
optimal insertion of probes. There are other approaches for 
optimal program profiling as well, such as by Agrawal [1], 
Graham et al. [25] , Knuth et al. [36] , Ramamoorthy et al. [51], 
etc. A hardware-based approach for software profiling is Digital 
Continuous Profiling Infrastructure (DCPI) [14], [15], and [62] 
that uses performance counters on the Alpha processors. All the 
approaches mentioned above emphasize increasing the efficiency 
of obtaining run time information when the set of program 
elements to be profiled are already specified. Our approach, on 
the other hand, provides means to select the program elements to 
be profiled. It appears hybrid approaches that combine the best of 
both worlds are possible, but exploration of this idea remains as 
future work. In our experience with Nant and SharpCVSLib, the 
performance impact was acceptable, in large part because of the 
highly selective instrumentation that our approach achieves. 

6.2 Testing and code coverage analysis 
There are many commercial and open source code coverage tools 
available, such as IBM Rational’s Pure Coverage, Quilt [63], etc. 
These tools work well when the required code coverage criteria 
nicely fits in one of the options hard-coded inside the tools, 
however, they have no support for the crosscutting concern 
coverage that our approach provides.  

The COverage MEasurement Tool (COMET) [26] developed at 
IBM Haifa Research Lab for system verification and micro-
architecture verification has a flavor similar to that of our work. 
The main idea is also to separate coverage criteria specification 
from the coverage analysis tool for enhanced flexibility. COMET 
uses a language containing first order temporal logic predicates 
along with simple arithmetic operators to define the model used 
for code coverage analysis. COMET is meant for functional 
coverage (functionality of the program) whereas our approach 
focuses on program-based selective coverage. COMET is used to 
test hardware designs ranging from systems to microprocessors 
and ASICs, whereas our approach is meant for software 
verification. The learning curve for COMET tends to be steep and 
writing models needs expertise [60]. 

Souter, Shepherd and Pollock [55] demonstrate the reduction in 
test suite execution overhead and increased precision in coverage 
information that will result if testing is performed with respect to 
concerns. They also present a framework for guiding selective 
instrumentation for scalable coverage analysis. Their framework 

Package Concern Coverage 
Criteria 

Total 
number of  
join points 
instrum-

ented 

Time to 
test before 
instrum-
entation 
(Secs) 

Time to 
test after 
instrum-
entation 
(Secs) 

NAnt.Core Handler(any) 78 31.421 31.562 

NAnt.Core iteration(any)    

     || 
conditional(any) 

848 31.421 40.281 

NAnt.DotNet Handler(any) 8 2.671 2.891 

NAnt.DotNet iteration(any)    

     || 
conditional(any) 

233 2.671 3.206 
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allows the tester to build a concern using FEAT’s graphical user 
interface [21]. The merit of our approach over their framework is 
that it avoids an explicit selection of program elements. 

The approach presented by Tikir et al. [58] performs code 
coverage analysis by dynamic instrumentation of the program. 
Code coverage for Java (CC4J) [35] uses load time adaptation for 
code coverage analysis. As of now, our approach performs static 
instrumentation; however, the binding time for program 
instrumentation is orthogonal to our concerns.  

Our goal is neither to minimize the number of instrumentation 
points required for code coverage analysis as in [5], [6] and [47] 
nor to minimize the overhead of analysis and overhead as in [58]. 
We intend to provide a mechanism in the form of a declarative, 
source code language for expressing test adequacy criteria. It is, 
however, possible to achieve the benefits of selective and dynamic 
code coverage analysis together and optimize the overhead of 
analysis, but it is beyond the scope of this work. 

6.3 AOP and Program Transformation  
There are few approaches utilizing aspect-oriented programming 
for testing and verification purposes. Mahrenholz et al.[40] 
showed the use of AspectC++ for debugging and monitoring 
tasks. Ubayashi et al. [59], for example, described how to verify 
aspect-oriented programs using model checking and an AOP 
based model-checking framework. Their framework consists of 
multiple aspects, each specifying some property in the form of 
before and after advice. This approach however relies completely 
on execution of the weaved/instrumented program, and the 
properties that can be checked are limited to those that can be 
expressed in form of pre and post conditions. 

There are other program transformation frameworks besides 
BCEL [9] and SOOT [56]. Kotik and Markosian [37] used 
REFINE for software analysis and test generation. One 
disadvantage of REFINE and a similar system, Gentle [61], is that 
both require learning a specialized transformation function 
notation that is quite different from the source or target language. 
Another similar program transformation system is TXL [11] that, 
unlike previous transformation systems, allows use of the target 
language. These meta-programming approaches to transformation 
are powerful but complex when compared to transformations 
using aspect-oriented approaches. 

6.4 Declare Constructs in AspectJ 
AspectJ [3] provides three static crosscutting mechanisms with a 
flavor similar to the actions in our approach. The declare parent 
construct modifies the inheritance hierarchy of existing classes to 
declare a superclass or interface. The declare error and declare 
warning constructs identify certain usage patterns in the code base 
and emit compile time errors and warnings for policy 
enforcement. The policy enforcement enabled by these constructs 
is a primitive form of automated software inspection [17]. 

These constructs are similar to actions in the sense that they 
perform activity other than weaving, namely compile time editing 
of the code base and generation of messages. These constructs are, 
however, limited in the sense that the language designers of 
AspectJ need to add a new construct for each new software 
activity to be automated. Our action construct is far more general 
in that it allows the tool developers to choose their own action 
identifier and to define corresponding actions independent of the 

aspect language designer. In fact, the current AspectJ constructs 
become special cases of the action construct. In the future work 
section we describe how a more elaborate software inspection 
[19], [20] and smell detection [22] tool might be realizable using 
our language extensions and tool framework.  

6.5 Attributes and Annotations 
Attributes in .NET [44] languages, and annotations introduced in 
J2SE 5.0 [30], both called tags from now onwards, allow the 
designer to attach metadata to language constructs. A possible 
application of these tags is to examine the compiled assembly in 
case of .NET languages or .class/.jar file in case of J2SE for 
certain pre-defined metadata and perform actions based on that 
metadata. Burke [8] using JBoss AOP [31] and Shukla et al. [54] 
using C# attributes, among others, demonstrate aspect weaving as 
a possible action at points marked by specific metadata. 

As pointed out by Kiczales [32], these tags are synergistic with 
aspect-oriented constructs. These tags explicitly request additional 
behavior at the join points where they are applied, where as 
pointcuts implicitly select join points. Currently our framework 
only allows join point selection using pointcuts, but in future 
extensions of the framework we hope to provide support for 
selection using tags.  

We do not see as much value in representing test adequacy criteria 
using explicit tags. Doing so increases the burden on the tester to 
manually apply tag at points subject to test profiling.  

7. CONCLUSION 
In this paper, we have presented and demonstrated significant 
potential utility in an approach to using aspect languages to 
express test adequacy criteria relative to crosscutting concerns. 
Our approach allows tester intentions to be represented abstractly 
within source code. We provided a white-box join point model, 
and a generalized action framework to support white-box testing 
tools. We evaluated potential utility by implementing language 
extensions, a framework, and a tool built on the framework. We 
assessed the expressiveness of the approach and the performance 
of the tool against two open source projects. One challenge now is 
to find a way to express a broader range of adequacy criteria. 
Pursuing the generalizations of aspect-oriented language model 
embodied in our approach and in Eos-T promises to help address 
this challenge. 

We also made some progress toward extremes of aspect-oriented 
programming in two dimensions. The first is exposure of all 
semantically meaningful points in program execution as join 
points. The second is the ability to trigger arbitrary actions (e.g., 
inspections, document generation, etc) on code selected by 
pointcuts. The opening of compilation and execution to external 
behavioral modification clearly has dangers, but also appears to 
create new possibilities for automating software development. 

8. FUTURE WORK 
Software inspection, introduced by Fagan [19], [20] and reported 
by others [23], [52] is a well-known technique for improving 
software quality. It involves examining the software artifacts for 
aspects known to be potentially problematic. Manual software 
inspection techniques such as formal code reviews and structured 
walk-through are formal, labor-intensive processes guided by 
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well-defined rules. The costs sometimes result in inspections that 
are not performed well or sometimes even not at all. 

Tools for automated code inspection try to address this problem 
by relieving the programmers of the manual inspection burden.  
One such class of automatic code inspection tools [17] used to 
detect code smells [22] automatically finds and reports bad design 
and programming styles. 

Similar to coverage analysis tools, automatic code inspection tools 
limit the flexibility to the set of predefined bad design and 
programming styles hard-coded in the tool. The developer cannot 
specify her own specific smells. This verification process is also a 
candidate for the use of a declarative language to specify smell 
patterns in the program that can be detected later using tools that 
could be implemented using our framework. A typical smell in 
OO program is the use of switch statements in a method. This 
smell can be identified using simple pointcut expression: 

conditional(switch) && withincode(* *.*(..))  

Similar smells can be represented as pointcut expressions and 
associated with a CodeInspection action. This flexibility enables 
organization, team, and individual level customization of the 
automatic inspection process. A tool similar to our code coverage 
analyzer can be implemented for this task using our framework. 

 

[Note to reviewers: The Eos-T compiler is freely available 
from www.cs.virginia.edu/~eos for research and teaching.] 
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