A Characterization of Associativity

Arthur Charlesworth

IPC-TR-90-007
November 30, 1990

Institute for Parallel Computation
School of Engineering and Applied Science
University of Virginia

Charlottesville, VA 22903
and

Department of Mathematics and Computer Science
University of Richmond
Richmond, VA 23173

This research was supported by the National Aeronautics and Space
Administration, under grant number NAG-1-774. by the Jet Propul-
sion Laboratory, under grant number 95722, and by sabbatical fund-
ing from the University of Richmond.

A Characterization of Associativity

Arthur Charlesworth

University of Richmond and University of Virginia

Abstract

A necessary and sufficient condition for the associativity of a function
is given, in terms of a particular relation being a function. The concept
of an associative function is generalized to the concept of a function being
associative relative to a sequence and a characterization of such relative
associativity is also given. These two characterizations are applied to the
problem of proving the associativity, or relative associativity, of a function.

Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Concur-
rent Programming; D.3.3 [Programming Languages]: Language Constructs

General Terms: Languages

Additional Key Words and Phrases: associativity, reduction, parallel program-
ming.

Contents

1

INTRODUCTION

ASSOCIATIVITY RELATIVE TO A SEQUENCE
CHARACTERIZATION THEOREMS

APPLYING THE CHARACTERIZATION THEOREMS
COMPOSITES OF ASSOCIATIVE FUNCTIONS
APPENDIX

REFERENCES

12

15

16

21

1 INTRODUCTION

Among the most efficiently implementable operations involving the participa-
tion of multiple processes are the associative operations. Partial computations
of associative operations can be combined using a variety of efficient techniques,
such as read/modify/write on shared memory machines, processor trees on dis-
tributed memory hypercubes, and shifts or pointer doubling on Single Instruc-
tion Multiple Data parallel computers. For this reason, support for computing
reductions of finite sequences using standard associative functions,; such as +,
* and, or, max, and min, is commonly provided within languages for parallel
computing.!

Support for using less trivial programmer-defined associative functions is
provided by a general reduction operator. Given that a function f is known to
be associative, a general reduction operator R obtains the reduction R(f,s) of
a finite sequence s using the function f. Such a general reduction operator is
provided in several languages for parallel computing, such as iPSC/2 Fortran
and C [Int89] and the innovative and less conventional languages Connection
Machine Lisp [HS86] and Paralation Lisp [Sab88]. Since R need apply f only
to the sequence s, it 1s not necessary that f be associative, only that f satisfy
an associativity property relative to the sequence s. The concept of associa-
tivity relative to a sequence is defined and studied in this paper. This concept
extends the applicability of R; e.g., there exists a nonassociative function that
is associative relative to any nondecreasing sequence of records.

It is not always easy to prove the associativity of a function f, defined by a
function program written in a programming language. To illustrate this, notice
that since the defining equation f(z, f(y,z)) = f(f(=,y),z) for associativity
involves 4 applications of f, a straightforward proof of the associativity of f
using such a proof of correctness involves the consideration of p* cases, where
p 1s the number of cases used in proving the correctness of a single application
of f. A similar observation can be made about proving relative associativity.
Although ad-hoc arguments based on special properties of f can reduce the
number of cases significantly, the effort required to reduce the number of cases
can increase the difficulty of the associativity proof. The main results of this
paper are characterization theorems for associativity and relative associativity,
which provide an alternative approach to proving associativity that requires the
consideration of no more than p cases.

1Language support for reductions was provided much earlier by APL [Ive62].

2 ASSOCIATIVITY RELATIVE TO A SEQUENCE

Before presenting a mathematical characterization of associativity it is neces-
sary to provide preliminary definitions and results related to associativity and
reductions. Throughout this paper the notation < sy, --,s, > denotes a se-
quence s of n elements and o denotes string concatenation. By a “slice” of a
sequence we shall mean a sequence of consecutive terms of the given sequence.

We begin by defining the concept of associativity relative to a sequence. In-
tuitively, a function is associative relative to a sequence if the defining equation
for associativity f(z, f(y,z)) = f(f(x,y),z) is satisfied whenever z, y, and z
result from applying f zero or more times, grouping from the right, to three
adjacent nonnull finite slices of the given sequence. To facilitate a more precise
definition of relative associativity, we define the f-reduction of a sequence, even
if the function f fails to be associative.

DEFINITION 1. Let s be a finite sequence of elements of £ and let f be a
function from £ x E to E. The f-reduction of the sequence < x > os, denoted
fr(< & > o0s), is defined to equal « if s is the null string and to equal f(z, f-(s))
otherwise.

DEFINITION 2. Let s be a sequence of elements of £ and let f be a func-
tion from E x F to E. To say that f is associative relative to s means that

F(fr(51), F(fr(s2), Fr(s3))) = F(F(fr(s1), fr(82)), fr(s3)) holds for any nonnull

finite sequences sy, so, and sz such that sy o s5 0 s3 1s a slice of s.

Notation for slices of a sequence is used far more often than notation for
terms of a sequence in this paper. Thus for convenience the subscript notation
s;, when used outside angle brackets, denotes a slice of s. When it is necessary
to denote a term of s outside angle brackets, a phrase such as “the i'* term of
s” will be used.

LEMMA 1. Let f be a function from E x E to E and let s be a sequence of
elements of E. If [is associative relative to s, then f(x, f(y,2)) = f(f(=,y),z)
holds for each triple of consecutive terms xz, y, and z of s.

PROOF. Let s1, s2, and s3 be < & >, <y >, and < z >, respectively. Then

[l fy,2)) = [fUf(<z>), f(fi(<y>), fr(<2>)))
= JUU(<e>) fi(<y>)) fr(<z>))
= f(f(l‘,y),z)

where the first and last equality follow from the definition of f. and the second
equality follows from the fact that f is associative relative to s. O

The following example shows that the converse of Lemma 1 does not hold
and thus the notion of relative associativity would be weakened if Definition 2
were phrased more directly in terms of the defining equation for associativity.

EXAMPLE 1. There is a function f from E x E to E and a sequence
s of elements of E such that f(z, f(y,z)) = f(f(x,y),2z) for each triple of
consecutive terms x, y, and z of s, yet f fails to be associative relative to s.
For let E ={1,2,3,4}, let s be the sequence < 1,2,3,4 >, and let f be any
function from E x E to E such that

(L4 = f(2,3)=f2,4)=1
L) = f(3,3)=2

f(1,2) = 3

f(3,4) = 4

Then

(L £(2,3)) = f(f(1,2),3)

since both sides evaluate to 2, and

f2,1(3,4)) = [f(f(23).4)

since both sides evaluate to 1. However f is not associative relative to s since,
ifs1 =<1,2>, 55 =<3>, and s3 =< 4 >, then

F(Fr(s0), [(Fr(52), £r(s3))) = f(F(1,2),f(3,4))
f(3,4)
= 4

whereas

f(f(fr(sl)afr(SZ)): fT(53)) = f(f(f(la 2)’3):4)
f(f(3,3),4)
f(2,4)

The definition of associativity relative to a sequence i1s based on the arbi-
trary choice of defining f, so that grouping is from the right. The next result
demonstrates that, in fact, the choice of grouping does not matter. To simplify
the statement of this result, for a function f from £ x F to E and a sequence s
of n elements of E, we use the phrase “reduct of s with respect to f” to mean
any element of F that can be obtained by applying f a total of n — 1 times

to the sequence, according to the ordering imposed by the sequence but with
no restriction on the grouping used. More precisely: for a sequence having a
single term, the term itself is a reduct of the sequence with respect to f; for
a sequence < z,y > of two terms, the element f(z,y) of F is a reduct of the
sequence with respect to f, and for any other sequence < z > oto < y >, the
elements f(a,y) and f(z,b) of E are reducts of the sequence with respect to f,
where a is a reduct of < x > of with respect to f and b is a reduct of to < y >
with respect to f. There are no other reducts of a sequence with respect to f
beyond those just specified.

LEMMA 2. Let f be a function from E x E to E and let s be a sequence
of elements of E. Then f is associative relative to s if and only if for any
nonnull finite sequences sy, sz, and ss such that s; o sy 0 s3 s a slice of s,
f(31,f(52,33)) = f(f(51,52),53), where for i =1,2,3, 57 denotes a reduct of s;
with respect to f.

PROOF. Clearly f is associative relative to s if the stated condition holds,
since for any sequence u, f.(u) is easily seen to be a reduct of u. To see the
converse, assume that f is associative relative to s. It suffices to show that for
each slice ¢ of s, f.(¢) is equal to each reduct of ¢ with respect to f, and this
can be proven by strong induction on the number of terms of ¢ as follows. The
result clearly follows from the definition of f. if £ has 1 or 2 terms, and the
result follows from Lemma 1 if ¢ has 3 terms, so assume the result holds for
slices shorter than ¢, where ¢ has more than 3 terms. Let z and y be the first
and last terms of ¢ so that { =< & > ouo < y >, for some slice u of s of length
at least 2, say u =< z > ov. FEach reduct of ¢ has either the form f(a,y) or the
form f(z,b), where a is a reduct of < « > ou with respect to f and b is a reduct
of uo < y > with respect to f. Now

flx.b) = [z fr(uo<y>))
= £t

by the induction hypothesis and the definition of f,, and

flayy) = f(fr(<z>o0u)y)

F(f (@, fr(u)),y)

FIr(<a>), fr(w), [r(< y >))

Ffr(<a>), f(fr (), (< y >)))

[, f(fr(w), £r(< y >)))
(H(<y>))
(
(
(

(< 2> 00), f
fr(0), fr(< ¥y >)))

N, (< y>))

), [(< y>))))

l
Sy

3]

(
fla, f(f(z,
[, F(F(fr(< 2 >), fr(v
= flo, f(fr(<z>), f(fr(v

3]

[, f(z, f(fr(v),y)
fla, f(z, fr(vo <y >)))
fle, fr(uo < y >))
= fr(t)
where the first equality and third from last equality follow from the induction
hypothesis, the fourth and ninth equalities follow from the assumption that f is

associative relative to s, the sixth equality follows from the definition of v, and
the remaining equalities follow from the definition of f,..O

LEMMA 3. Let f be a function from £ x E to E. The following statements
are equivalent:

1. f is associative.
2. f is associative relative to s, for each sequence s of elements of E.

3. f is associative relative to s, for each nonnull finite sequence s of elements

of E.

PROOF. To see that (1) implies (2), let f be associative, let s be given, and
let s1, s9, and s3 be nonnull finite sequences such that s; o s5 0 s3 is a slice of
s. By denoting the elements f.(s1), fr(s2), and f.(s3) of E by #, y, and z,
respectively, and by applying the defining equation for associativity, it is clear
that f is associative relative to s.

Since each nonnull finite sequence is a sequence, (2) implies (3).

To see that (3) implies (1), assume f is associative relative to s, for each
nonnull finite sequence s of elements of £/, and let x, y, and z be any elements
of E. Since f is associative relative to the sequence < z,y, z >, it follows from

Lemma 1 that f(z, f(y,z)) = f(f(z,y),z). O

The following example illustrates the fact that there are naturally occurring
functions for which associativity relative to a sequence is more general than
assoclativity.

EXAMPLE 2. There exists a nonassociative function that is associative
relative to any nondecreasing sequence of records. The maximal plateau problem
[Gri81] asks for the length of the longest plateau in a nondecreasing sequence u of
integers, where a plateau is a slice of the sequence all of whose values are equal.
The maximal plateau problem can be solved using a general reduction operator
as follows. Define a type PLATEAU_TYPE consisting of records having integer
fields LEN, FIRST_LEN, LAST_LEN, FIRST, and LAST, and define a sequence s of
such records such that the first three fields of each record of s have the value
1 and the remaining two fields of the i'” term of s have the value of the i*®

term of u. The ordering on u imposes a corresponding ordering on s so that s
becomes a nondecreasing sequence of records. The length of the longest plateau
of u can then be obtained by computing R(f, s), where R is a general reduction
operator and f is the function given in Figure 1. The intent of the programmer
is that the following specification be satisfied, when f is applied to a nonnull
slice t =< #;,...,%; > of s, and where u; denotes < w;,...,u; >: ANS.LEN
is the length of the longest plateau in wu;, where u; is in nondecreasing order,
ANS.FIRST_LEN is the length of the longest plateau in u; that starts at the first
component of u;, ANS.LAST_LEN is the length of the longest plateau in uy that
ends at the last component of u;, ANS.FIRST is the value of the first component
of u;, and ANS.LAST is the value of the last component of w;.

To see the nonassociativity of f, let X and ¥ be records of type PLATEAU_TYPE
such that

X.LEN = 1 Y.LEN = 1
X.FIRST_LEN = 1 Y.FIRST_LEN = 1
X.LAST_LEN = 1 Y.LAST_LEN = 1
X.FIRST =10 Y.FIRST = 20
X.LAST = 10 Y.LAST = 20

Then £(X, £(Y,Z)) differs from £(£(X,Y), Z), where Z has the same value as
X, since

f(X, £(Y,X)).LEN = 1 f(£E,Y), X).LEN = 1
f(X, £(Y,X)).FIRST_LEN = 1 f(£(X,Y), X).FIRST_LEN = 2
f(X, £(Y,X)).LAST_LEN = 2 f(£(X,Y), X).LAST_LEN = 1
f(X, £(Y,X)).FIRST =10 £(£(X,Y), X).FIRST =10
f(X, £(Y,X)).LAST =10 f£(£(X,Y), X).LAST =10

For an example in which the lack of associativity of f causes two different
values to be computed for the field LEN, note that

(X, £(X, £(Y,X)).LEN = 2
whereas

£(X, £(£(X,Y), X)).LEN = 3.
A proof of the relative associativity of f appears in Section 4.1.0

The function in Example 2 is also associative relative to the sequence nat-
urally corresponding to any nonincreasing sequence and, more generally, any
sequence in which each subsequence consisting of equal component values is a

slice. (This is consistent with an observation in [Gri81] concerning a program
to solve the maximal plateau problem.)

Other applications of using general reduction operators that, like Example 2,
involve the use of records to collect information are discussed in [Cha90]. Among

function f (L, R:

in PLATEAU_TYPE) return PLATEAU_TYPE is

ANS: PLATEAU_TYPE;

function MAX (X, Y: in INTEGER) return INTEGER is

begin

if X > Y then

return X;
else
return Y;
end if;
end MAX;

begin —- f

if L.LAST = R.FIRST then

ANS.LEN :
else
ANS.LEN :=
end if;
if L.FIRST

MAX (MAX (L.LEN, R.LEN), L.LAST_LEN + R.FIRST_LEN);
MAX (L.LEN, R.LEN);

R.FIRST then

ANS .FIRST_LEN := L.LEN + R.FIRST_LEN;

else

ANS .FIRST_LEN :

end if;

L.FIRST_LEN;

if L.LAST = R.LAST then
ANS .LAST_LEN := L.LAST_LEN + R.LEN;

else

ANS.LAST_LEN := R.LAST_LEN;

end if;

ANS.FIRST :

ANS.LAST

return ANS;
end f;

L.FIRST;
R.LAST;

Figure 1: A Function to Help Solve the Maximal Plateau Problem

such applications are computing the number of peaks in a sequence of distinct
terms (a term of the sequence is a “peak” if it is greater than both its prede-
cessor and successor), computing the number of runs in a sequence, computing
the maximum sum among the nonempty slices of a sequence, and computing
the index of the first component of a vector whose value satisfies a particular
property, such as being maximal, minimal, nonzero, or positive; if desired, the
index of the last such component could be found instead.

LEMMA 4. Let s and t be nonnull finite sequences of elements of a set F
and let f be associative relative to sot. Then f.(sot) = f(f-(s), f-(1)).

PROOF. By induction on the length of s. First assume s has length 1, say
sis < x >. Then

fr(sot) = fr(<x>ot)
= Sl fr (1))
= f(fr(s):fr(t))'

Now assume s has length greater than 1, say s =< & > ou, where u is nonnull
and has length less than that of s. Then

fr(s ° t) = f

r

(< z>ou)ot)
< x>o(uot))
f(x, fr(uot))

S, f(fr(u), fr(2)
[(<x>) f(f
(
(

(
(

(l
~

X

=

= f fr(< r > Ou)afr(t))
= J(fr(s) [(1))

where the third and fifth equalities follow from the definition of f,., the fourth
follows from the induction hypothesis, and the sixth follows from Lemma 2.0

3 CHARACTERIZATION THEOREMS

RELATIVE ASSOCIATIVITY CHARACTERIZATION THEOREM. Let u be
a nonnull finite sequence of elements of a set E, let f be a function from E X
Eto E, let S be the set of slices of u, and let R denote the smallest subset of S
x E such that

(a) for each term x of u, R contains the pair (< z >, x) and

(b) for each s in S, R contains each pair (s, f(t',1")), where (s',1') and (s",1")
are in R and s 15 s’ concatenated with s".

Then the following statements are equivalent:
1. f is associative relative to u.
2. R s a function from S to E.

3. Ris a function from S to E that maps each s in S to f.(s).

PROOF. First note that a smallest subset of S x E satisfying (a) and (b)
exists, since S x E itself satisfies (a) and (b) and the intersection of all subsets
of S x F that satisfy (a) and (b) satisfies (a) and (b) and obviously is included
in each subset of S x F satisfying (a) and (b).

Since (3) clearly implies (2), it suffices to show that (1) implies (3) and (2)
implies (1). To see that (1) implies (3), suppose f is associative relative to w.
We show that for all s in S, any element of R whose first coordinate is s has
second coordinate f.(s), by induction on the length of s. First assume s has
length 1, say s is < & >, and note that the only pair having first coordinate
< x > that needs to be in R for R to satisfy (a) and (b) is (< & >,z). Since R
is the smallest subset of S x E satisfying (a) and (b), it follows that the only
element of R whose first coordinate is < « > has second coordinate z, and thus
the result holds, since f.(s) equals #. Now assume s has length greater than
1. Since R is the smallest subset satisfying (a) and (b), the second coordinate
of any pair in R whose first coordinate is s can be denoted as f(t',¢"), where
(s',1') and (s”,1”) are in R and s is s’ o s”. Each of s’ and s” is nonnull, since
each is in S, so it follows from s = s’ 0 s” that each of s’ and s” has length less
than that of s. By the induction hypothesis, ¢’ = f.(s’) and ¢’ = f.(s") so

f ") ("), £ (™)
= fr(s'0s")
= fr(s)

where the second equality follows from Lemma 4, using the fact that f is asso-
ciative relative to u (and hence associative relative to s’ o s”).

To see that (2) implies (1), suppose R is a function from S to E, say fr. To
see that f 1s associative with respect to u, let sy, s9, and s3 be nonnull finite
sequences such that s; o s9 0 s31s a slice of u. Then

(e (s1), F(fr(52), £r(53))) = F(fr(s1), F(fr(52), [r(s3)))
= (fR() fR(Sz © 53))

Jr(s10(s20s3))

fR((Sl © 52) © 53)

f(fR(51 ° 52) fR(53))

F(f(fr(s1), fr(s2)), fr(s3))

= S(f(fr(51), fr(s2)), fr(s53))

where the second, third, fifth, and sixth equalities follow from (b) and the
fourth follows from the associativity of string concatenation; this proof will
thus be complete when the first and last equalities have been justified. This is
accomplished by showing that, for each s in S, fr(s) = fr(s). We proceed by
induction on the length of s. First assume s has length 1, say s is < & >. Then

fR(S) = fR(< T >)
= =z
= fil<z>)
= [fr(s)
where the second equality follows from (a) and the third equality follows from

the definition of f.. Now assume s has length greater than 1, say s =< & > of,
where ¢ 1s nonnull and has length less than that of s. Then

fr(s) = fr(<z>ot)
f(fr(<z>), fr(1))
=[x fr(1))
[z, £ (1)
= fr(<x>ol)
= [fr(s)
where the first and last equality follow from the structure of s, the second fol-

lows from (b), the third follows from (a), the fourth follows from the induction
hypothesis, and the fifth follows from the definition of f,.. O

When 1t 1s possible to prove that a function is in fact associative, rather
than just associative relative to a sequence, the following simpler theorem can
be used. For convenience, we denote the Relative Associativity Characterization
Theorem and the Associativity Characterization Theorem by RACT and ACT,

10

respectively.

ASSOCIATIVITY CHARACTERIZATION THEOREM. Let S denote the
set of nonnull finite sequences of elements of a set E, let f be a function from
E x Eto E, and let R denote the smallest subset of S x E such that

(a) for each x in E, R contains the pair (< x >,x) and

(b) for each s in S, R contains each pair (s, f(t',1")), where (s',1') and (s",1")
are in R and s 15 s’ concatenated with s".

Then the following statements are equivalent:
1. f 1s associative.
2. R s a function from S to E.
3. Ris a function from S to E that maps each s in S to f.(s).

PROOF. For each nonnull finite sequence u of elements of £ let R, denote
the relation defined in the statement of RACT and let S, denote the set of
nonnull finite slices of u. Note that the S above is the union of all the S,,.

That a smallest R exists follows from an argument similar to that in the first
paragraph of the proof of RACT.

To complete this proof, it suffices to show that the following statements are
equivalent:

1. f is associative.
f 1s associative relative to u, for each nonnull finite sequence u of E.

R, is a function from S, to F, for each nonnull finite sequence u of E.

N

R, is a function from S, to F that maps each s in .Sy, to f.(s), for each
nonnull finite sequence u of E.

ot

R 1s a function from S to E.

6. R is a function from S to F that maps each s in S to f.(s)

By Lemma 3, (1) and (2) are equivalent. By RACT, (2), (3), and (4) are
equivalent. Clearly (6) implies (5). Thus it suffices to show that (5) implies (3)
and (4) implies (6), but both of these implications follow from the similarity of
the definitions of R and R,. [In this proof, note the necessity of being able to
conclude that the values of R,(s) and Ry (s) agree, whenever f is associative
relative to two nonnull finite sequences u and u/ and the sequence s is in both
sets Sy, and Sy,.] O

11

4 APPLYING THE CHARACTERIZATION
THEOREMS

Let f be a function defined by a subprogram written in a programming language.
As pointed out in Section 1, a straightforward proof of the associativity of f
based on the proof of correctness of the function subprogram and using the
definition of associativity involves the consideration of p* cases, where p is the
number of cases in the proof of correctness of a single application of f.

The next result shows that using the characterization theorems, instead of
the definition of associativity, requires the consideration of no more than p cases.

PROPOSITION. Let E be a set, let f be a function from Ex E to E, where
f 1s defined by a subprogram, and let p be the number of cases in a given proof
of correctness of f.
(a) If the result of reducing an arbitrary finite nonnull sequence of E by f has
been specified and this specification is satisfied for each sequence consisting of
a single term, then a proof of the associativity of f based on the given proof of
correciness of f requires the consideration of at most p cases.
(b) Let u be a finite sequence of E. If the result of reducing an arbitrary nonnull
slice of u by f has been specified and this specification is satisfied for each slice
of u consisting of a single term, then a proof of the associativity of f relative
to u based on the given proof of correciness of f requires the consideration of at
most p cases.

PROOF. Proof of (a) using ACT. (A similar proof of (b) can be given us-
ing RACT.) Let R be the set containing the pairs (s,s), where s is a nonnull
sequence of F and s is the specified value of reducing s using f. By the hypoth-
esis, R contains (< x >, z) for each # in E. Let st and s// be arbitrary nonnull
slices of an arbitrary sequence s of £ such that s is the concatenation of s/ and
stt. By ACT, if (s, f(st,s1)) is the unique element of R whose first coordinate
i1s s, then f is associative. That is, to conclude that f is associative 1t suffices
to show that f(s/,st) is the unique specified reduction of s by f. Since only a
single application of f is involved, at most p cases need to be considered, one
for each of the cases in the given proof of correctness of f.0

Note that since ACT is a characterization of associativity, we are not required
to prove a property stronger than the associativity of f in using the method in
the above proof. Of course, the analogous statement for the use of RACT in
proving relative associativity also holds. This method will now be illustrated
for the function f in Example 2.

Let f be the function given in Figure 1 to help find the length of the longest
plateau in a nondecreasing sequence of integers. The number of logical paths
in the code for f is 24, since 24 = (4 + 2) x 2 x 2. As will be shown in this

12

section, due to obvious properties of the code for f, only 6 cases, rather than
24, need to be considered in proving the correctness of a single application of f.
It follows that a straightforward proof of the relative associativity of f using the
definition of associativity and such a proof of correctness of f involves 6* = 1296
cases. Since such a proof is both long and straightforward, such a proof is not
presented in this paper.

The appendix illustrates how numerous ad-hoc arguments can reduce the
length of a proof based on the definition of relative associativity. The present
section demonstrates how using the method in the proof of the Proposition
avoids the kind of time consuming and error-prone ad-hoc arguments used in
the appendix.

Let u be any slice of a nondecreasing finite sequence of integers and let s
be the natural corresponding sequence of records of type PLATEAU_TYPE; that
is, the fields LEN, FIRST_LEN, and LAST_LEN of each term of s have the value 1,
and the fields FIRST and LAST of the i** term of s both have the same value as
the i** term of u.

A proof of the associativity of f relative to s using the method in the proof
of the Proposition proceeds as follows. A specification of the effect of reducing
an arbitrary nonnull slice of s using f is given in Example 2. Note that the
reduction of s obviously has the specified value when s has a single term. Now
let st and stf be arbitrary nonnull slices of s such that s is the concatenation
of st and s/f. Let ur and u/t denote the subsequences of u corresponding to s/
and sff, respectively; e.g. if s/ is the sequence < s;,...,s; >, then u/ denotes
the sequence < u;,...,u; >. Let variables L and R be assigned the specified
reduction of s/ and s/f, respectively, so that:

e L.LEN is the length of the longest plateau in w/.

e L.FIRST_LEN is the length of the longest plateau in w/ that starts at the
first component of /.

L.LAST_LEN is the length of the longest plateau in u/ that ends at the last
component of u/.

L.FIRST is the value of the first component of u/.
e L.LAST is the value of the last component of u/.

and

R.LEN is the length of the longest plateau in w/r.

e R.FIRST_LEN is the length of the longest plateau in w7 that starts at the
first component of ur.

R.LAST_LEN is the length of the longest plateau in w/f that ends at the last
component of uf!.

13

e R.FIRST is the value of the first component of /.
e R.LAST is the value of the last component of u//.

Clearly the specified value of the reduction of any nondecreasing finite se-
quence by f 1s unique, due to the nature of the specification of f. Thus, due
to RACT, we can conclude that f is associative if we show that £(L, R) is the
specified reduction of s by f. We present a proof of this fact having the same
amount of detail as the proof in the appendix.

if L.LAST = R.FIRST
Then L.LAST_LEN + R.FIRST_LEN is the length of a plateau so
ANS.LEN = max (max (L.LEN, R.LEN), L.LAST_LEN + R.FIRST_LEN)
is the length of the longest plateau in u.

if L.LAST # R.FIRST
Then no plateau extends from the end of u’ to the beginning of
u’’ so ANS.LEN = max (L.LEN, R.LEN) is the length of the
longest plateau in u.

if L.FIRST = R.FIRST
Then a plateau extends from the beginning of u’ into u’’ so
ANS.FIRST_LEN = L.LEN + R.FIRST_LEN is the length of the
longest plateau starting at the first component of u.

if L.FIRST # R.FIRST
Then no plateau extends from the beginning of u’ into u’’ so
ANS .FIRST_LEN = L.LEN is the length of the longest plateau
starting at the first component of u.

if L.LAST = R.LAST
Then a plateau extends from the end of u’ to the end of u’’ so
ANS .LAST = L.LAST_LEN + R.LEN is the length of the longest
plateau ending at the last component of u.

if L.LAST # R.LAST
Then no plateau extends from the end of u’ to the end of u’’ so
ANS.LAST = R.LAST_LEN is the length of the longest plateau ending
at the last component of u.

Finally, since u is u/ concatenated with w//, ANS.FIRST and ANS.LAST are as-
signed the specified values. O

14

5 COMPOSITES OF ASSOCIATIVE FUNC-
TIONS

The function f in Example 2 is defined in terms of simpler functions. A natural
question arises when such functions must be shown to be associative: Can an
associative function, or a function that is associative relative to a sequence, be
characterized as the composite of certain well-behaved functions? The most
natural candidate for “well-behaved functions” are the associative functions
themselves and such a characterization would be quite useful, since many func-
tions that need to be shown associative, or associative relative to a sequence,
are easily shown to be composites of associative functions.

On the one hand, an associative function f can always be written as the
composite of associative functions, namely

fle,y) = flpu(x,y),pa(z,y))

where p; and ps are the projection functions py(#,y) = x and pa(z,y) = y, which
are easily seen to be associative. Does the converse hold; i.e. is the composite
of associative functions necessarily associative, or at least associative relative to
a nontrivial sequence? (We view as trivial any sequence consisting entirely of
zeroes, as well as any sequence having less than three terms, for which relative
associativity is of no importance.) The answer is “no”:

EXAMPLE 4. There are associative functions fi, fo, and f3 such that their
composite f, defined by

flxy) = filfez,y), f3(2,y))

fails to be associative relative to any nontrivial sequence. For let fi(z,y) = v +y,
let f5 and f3 be the projection function pi, defined above, and let f be defined
by

flxy) = filfe(z,y), f3(2,y)

Then f(z,y) = © + & = 2x, which is not associative since f(z, f(y,z)) = 2z
whereas f(f(z,y),z) = 4x. Tt is easy to see that f also fails to be associative
relative to any nontrivial sequence.O

15

6 APPENDIX

Let f be the function given in Figure 1 to help find the length of the longest
plateau in a sequence. Let u be any nondecreasing sequence of integers and let
s be the natural corresponding sequence of records of type PLATEAU_TYPE; that
is, the fields LEN, FIRST_LEN, and LAST_LEN of each term of s have the value
1, and the fields FIRST and LAST of the ** term of s both have the same value
as the " term of u. In Section 4.1 f is proven to be associative relative to s
using the method in the proof of the Proposition of Section 4. In this section f
is shown to be associative relative to s using the definition of associativity and
ad-hoc arguments based on special properties of f.

LEMMA. Let t =< t;,...,t; > be any slice of s, let T be f,(t), and let
U =< U;,...,u; >. Then T.LEN s the length of the longest plateau in uy,
T.FIRST_LEN is the length of the longest plateau in u; that starts at the first
component of uy, T.LAST_LEN is the length of the longest plateau in u; that ends
at the last component of u;, T.FIRST is the value of the first component of uy,
and T.LAST s the value of the last component of u;.

PROOF. By induction on the length of ¢. The Lemma clearly holds for
slices of length 1, so assume it holds for slices of length n and let ¢ be a slice of
length n 4 1, say t =< & > ov. Since f,(t) = f(x, fr(v)), T results from a call
on f for which L.LEN, L.FIRST_LEN, and LAST_LEN have value 1 and L.FIRST,
L.LAST have equal values, a value that is no greater than R.FIRST, and by the
induction hypothesis, R satisfies the above conditions. It is then straightforward
to check that the value ANS returned by this call satisfies the above conditions.O

PROPOSITION. The function f is associative relative to the sequence s.

PROOF. To shorten the proof, we replace if statements by conditional
expressions. For example, the statement:

if L.FIRST = R.FIRST then
ANS.FIRST_LEN := L.LEN + R.FIRST_LEN;
else
ANS.FIRST_LEN := L.FIRST_LEN;
end if;

is replaced by

ANS.FIRST_LEN := [if L.FIRST = R.FIRST then L.LEN + R.FIRST_LEN
else L.FIRST_LEN];

Let 51055053 be aslice of s, let uy, us, and ug be the slices of u corresponding to
1, 82, and s3, and let X, Y, and Z denote f.(s1), fr(s2), and f.(s3), respectively.

16

TO SHOW: £(X, £(Y,2)).x = £(£(X,Y), Z).x
for x = LEN, FIRST_LEN, LAST_LEN, FIRST, and LAST.

£(X, £(Y,Z)).LEN
= [if X.LAST = £(Y,Z).FIRST then
max (X.LEN, £(Y,Z).LEN, X.LAST_LEN + £(Y,Z).FIRST_LEN)
else
max (X.LEN, £(Y,Z).LEN)]
[if X.LAST = Y.FIRST then
max (X.LEN,
[if Y.LAST = Z.FIRST then
max (Y.LEN, Z.LEN, Y.LAST_LEN + Z.FIRST_LEN)
else max (Y.LEN, Z.LEN)],
X.LAST_LEN + [if Y.FIRST = Z.FIRST then
Y.LEN + Z.FIRST_LEN
else Y.FIRST_LEN])

else
max (X.LEN,
[if Y.LAST = Z.FIRST then
max (Y.LEN, Z.LEN, Y.LAST_LEN + Z.FIRST_LEN)
else max (Y.LEN, Z.LEN)])
1
= [if Y.LAST = Z.FIRST then
max ([if X.LAST = Y.FIRST then
max (X.LEN, Y.LEN, X.LAST_LEN + Y.FIRST_LEN)
else max (X.LEN, Y.LEN)],
Z.LEN,
[if X.LAST = Y.LAST then X.LAST_LEN + Y.LEN else Y.LAST_LEN]
+ Z.FIRST_LEN)
else
max ([if X.LAST = Y.FIRST then
max (X.LEN, Y.LEN, X.LAST_LEN + Y.FIRST_LEN)
else max (X.LEN, Y.LEN)],
Z.LEN)

Proof of the last equality:
if Y.LAST = Z.FIRST
if X.LAST = Y.FIRST
if Y.FIRST = Z.FIRST Then clearly X.LAST = Y.LAST.
The first expression is equal to
max (X.LEN, Y.LEN, Z.LEN, Y.LAST_LEN + Z.FIRST_LEN,
X.LAST_LEN + Y.LEN + Z.FIRST_LEN)
and the second expression is equal to
max (X.LEN, Y.LEN, X.LAST_LEN + Y.FIRST_LEN,
Z.LEN, X.LAST_LEN + Y.LEN + Z.FIRST_LEN)
Now since Y.FIRST = Y.LAST, all of u2 is a plateau so

17

X.LAST_LEN + Y.LEN + Z.FIRST_LEN >=
Y.LAST_LEN + Z.FIRST_LEN and
X.LAST_LEN + Y.LEN + Z.FIRST_LEN >=
X.LAST_LEN + Y.FIRST_LEN so the two
expressions are equal.
if Y.FIRST # Z.FIRST Then clearly X.LAST # Y.LAST.
The first expression is equal to
max (X.LEN, Y.LEN, Z.LEN, Y.LAST_LEN + Z.FIRST_LEN,
X.LAST_LEN + Y.FIRST_LEN)
and the second expression is equal to
max (X.LEN, Y.LEN, X.LAST_LEN + Y.FIRST_LEN, Z.LEN,
Y.LAST_LEN + Z.FIRST_LEN)
so the two expressions are equal.
if X.LAST # Y.FIRST Then X.LAST # Y.LAST since the sequence is nondecreasing.
Thus both expressions equal
max (X.LEN, Y.LEN, Z.LEN, Y.LAST_LEN + Z.FIRST_LEN)
if Y.LAST # Z.FIRST Then Y.FIRST # Z.FIRST since the sequence is nondecreasing.
if X.LAST = Y.FIRST The first expression is equal to
max (X.LEN, Y.LEN, Z.LEN, X.LAST_LEN + Y.FIRST_LEN)
and the second expression is equal to
max (X.LEN, Y.LEN, X.LAST_LEN + Y.FIRST_LEN, Z.LEN)
so the two expressions are equal.
if X.LAST # Y.FIRST Both expressions equal max (X.LEN, Y.LEN, Z.LEN).

= [if Y.LAST = Z.FIRST then
max ([if X.LAST = Y.FIRST then
max (X.LEN, Y.LEN, X.LAST_LEN + Y.FIRST_LEN)
else max (X.LEN, Y.LEN)],
Z.LEN,
£(X,Y).LAST_LEN + Z.FIRST_LEN)
else
max ([if X.LAST = Y.FIRST then
max (X.LEN, Y.LEN, X.LAST_LEN + Y.FIRST_LEN)
else max (X.LEN, Y.LEN)],
Z.LEN)
[if Y.LAST = Z.FIRST then
max (£(X,Y).LEN, Z.LEN, £(X,Y).LAST_LEN + Z.FIRST_LEN)
else
max (£(X,Y).LEN,
Z.LEN)
[if £(X,Y).LAST = Z.FIRST then
max (£(X,Y).LEN, Z.LEN, £(X,Y).LAST_LEN + Z.FIRST_LEN)
else
max (£(X,Y).LEN,
Z.LEN)]
£f(£(X,Y), Z).LEN

18

f(X, £(Y,Z)).FIRST_LEN
[if X.FIRST £(Y,Z) .FIRST then X.LEN + f(Y,Z).FIRST_LEN else X.FIRST_LEN]
[if X.FIRST Y.FIRST then X.LEN +

[if Y.FIRST = Z.FIRST then Y.LEN + Z.FIRST_LEN else Y.FIRST_LEN]
else X.FIRST_LEN]
[if X.FIRST = Z.FIRST then

[if X.LAST = Y.FIRST then

max (X.LEN, Y.LEN, X.LAST_LEN + Y.FIRST_LEN)

else max (X.LEN, Y.LEN)] + Z.FIRST_LEN
else

[if X.FIRST = Y.FIRST then X.LEN + Y.FIRST_LEN else X.FIRST_LEN]]

Proof of the last equality:
if X.FIRST = Y.FIRST Then X.LAST = Y.FIRST, since the sequence is nondecreasing.
if Y.FIRST = Z.FIRST Then X.FIRST = Z.FIRST.
The first expression is equal to
X.LEN + Y.LEN + Z.FIRST_LEN
and the second expression is equal to
max (X.LEN, Y.LEN, X.LAST_LEN + Y.FIRST_LEN) + Z.FIRST_LEN.
Note that, since X.FIRST = Z.FIRST, and since the
sequence is nondecreasing, all terms from
X.FIRST to Z.FIRST have the same value; thus
X.LAST_LEN + Y.FIRST_LEN = X.LEN + Y.LEN so
X.LAST_LEN + Y.FIRST_LEN = max (X.LEN, Y.LEN,
X.LAST_LEN + Y.FIRST_LEN) so
the second expression is also equal to
X.LEN + Y.LEN + Z.FIRST_LEN.
if Y.FIRST # Z.FIRST Then X.FIRST # Z.FIRST.
Both expressions equal X.LEN + Y.FIRST_LEN.
if X.FIRST # Y.FIRST Then X.FIRST # Z.FIRST, since the sequence is nondecreasing.
Both expressions equal X.FIRST_LEN.

[if £(X,Y).FIRST = Z.FIRST then f(X,Y).LEN + Z.FIRST_LEN else f(X,Y).FIRST_LEN]
f(£(X,Y), Z).FIRST_LEN

f(X, £(Y,Z)).LAST_LEN
[if X.LAST = £(Y,Z).LAST then X.LAST_LEN + £(Y,Z).LEN else f(Y,Z).LAST_LEN]
[if X.LAST = Z.LAST then X.LAST_LEN + f(Y,Z).LEN else f(Y,Z).LAST_LEN]
[if X.LAST = Z.LAST then
X.LAST_LEN + [if Y.LAST = Z.FIRST then
max (Y.LEN, Z.LEN, Y.LAST_LEN + Z.FIRST_LEN)
else max (Y.LEN, Z.LEN)]
else [if Y.LAST = Z.LAST then Y.LAST_LEN + Z.LEN else Z.LAST_LEN]]

[if Y.LAST = Z.LAST then
[if X.LAST = Y.LAST then X.LAST_LEN + Y.LEN else Y.LAST_LEN] + Z.LEN

19

else Z.LAST_LEN]

Proof of the last equality:
if X.LAST = Z.LAST Then X.LAST = Y.LAST = Z.FIRST = Z.LAST, since the
sequence is nondecreasing.
The first expression equals
X.LAST_LEN + max (Y.LEN, Z.LEN, Y.LAST_LEN + Z.FIRST_LEN)
The second expression equals
X.LAST_LEN + Y.LEN + Z.LEN
Note that the first expression can be rewritten as
X.LAST_LEN + Y.LAST_LEN + Z.FIRST_LEN since
Y.LAST_LEN + Z.FIRST_LEN = Y.LEN + Z.LEN
so the two expressions are equal.
if X.LAST # Z.LAST
if Y.LAST = Z.FIRST
if Y.LAST = Z.LAST Then X.LAST # Y.LAST.
Both expressions equal Y.LAST_LEN + Z.LEN.
if Y.LAST # Z.LAST Both expressions equal Z.LAST_LEN
if Y.LAST # Z.FIRST Then Y.LAST # Z.LAST, since the sequence is nondecreasing.
Both expressions equal Z.LAST_LEN.

[if £(X,Y).LAST = Z.LAST then

[if X.LAST = Y.LAST then X.LAST_LEN + Y.LEN else Y.LAST_LEN] + Z.LEN
else Z.LAST_LEN]
[if £(X,Y).LAST = Z.LAST then f(X,Y).LAST_LEN + Z.LEN else Z.LAST_LEN]
f(£(X,Y), Z).LAST_LEN

f(X, £(Y,Z)).FIRST
X.FIRST
£(X,Y).FIRST
f(£(X,Y), Z).FIRST

£(X, £(Y,Z)).LAST
£(Y,Z) .LAST
Z.LAST

f(£(X,Y), Z).LAST

20

7 REFERENCES

I

[Cha90] Charlesworth, A. The nondeterministic divide. Tech. Rep. IPC-
TR-90-005, Inst. for Parallel Computation, U. of Virginia, Nov. 1990.

[Gri81] Gries, D. The Science of Programming. Springer-Verlag, New York,
1981.

[HS86] Hillis, W. D. and Steele, G. L., Jr. Data parallel algorithms. Comm.
ACM, 29, 12, (Dec. 1986), 1170-1183.

[Int89] Intel Corporation, iPSC/2 Programmer’s Reference Manual. Beaver-
ton, Or.; Oct. 1989.

[Ive62] Iverson, K. E., A Programming Language. John Wiley and Sons,
New York, 1962.

[Sab88] Sabot, G. The Paralation Model: Architecture-Independent Parallel
Programmaing. MIT Press, Cambridge, 1988.

21

