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1. Overview
Oh my God! Not another database language. Well, yes and no. The ADAMS language has

been created because we perceive a need that is not fulfilled by existing database languages. But
ADAMS, (Advanced DAta Management System) is not intended to be a complete language by
itself. Instead it has been designed to provide a clean database interface for existing program-
ming languages, such as Ada, C, Fortran, and Pascal.

The reasons for undertaking the ADAMS project are described in the following paragraphs

(1) The relational model, which provides the basis of most current database systems has proven
itself extremely valuable for the representation the kinds of data used in most business
operations. But deficiencies appear if one tries to use it in data fusion kinds of applications.
Foremost, is its inability to adequately represent scientific data using array configurations.
In some systems, there have been ad hoc fixes, such as the definition of "array" data types,
to circumvent this problem. However, such an approach violates the relational model, for
example, one can not join relations over such array attributes.

(2) A characteristic of most database systems, is that the data sets (relations) belong to distinct
separate databases. Data sets in one database can seldom be used in conjunction with data
sets of another database, for fear of violating internal implementation constraints. This
effectively fragments an organization’s data. All the available data ought to be conceptu-
ally accessible by any process, subject only to limitations imposed by security or privacy.
Some newer database systems, such as ORACLE, are attempting to remedy this with con-
structs that allow cross-database references.

(3) Existing database languages were designed for large centralized processors, with more
recent modifications to accommodate very loosely coupled distributed networks of proces-
sors. To fully exploit the potential of tightly coupled parallel processing, one needs a
language that encourages parallel database access and processing.

(4) Finally, we note the awkward status of read/write statements in traditional programming
languages. In many languages, such as Algol and Pascal [JeW75], they are a kind of step-
child which is explicitly disavowed by the parent language In others, only inherently
sequential stream I/O is supported. None, with the possible exception of persistent Pascal
[BuA86, CAD87], employ a computational model in which the process is coequal with a
permanent database from which specific data items are directly accessible.

ADAMS was created in response to these kinds of perceived deficiencies. This report
represents the combined design efforts of its authors over a three month period. It builds on
several earlier reports, notably [PSF87] which was later presented at the 1988 Hypercube Confer-
ence as [PSF88], [PFW88], and [Klu88]. Each of these has presented fragments of ADAMS syn-
tax. But, much of this early syntax has been modified in the light of trial usage, especially of the
prototype interpreter described in [Klu88]. The reader is warned to use only this, most recent,
version of ADAMS.

1.1. Goals of ADAMS
The overriding goal in designing ADAMS was to create a flexible database system that

would actually be used by a large number of applications programmers. This, in turn, translated
into a number of more specific goals which are detailed below.

Flexibility: Data comes in many forms, for use in many different applications. For example,
one may want to represent

relations,
scientific arrays,
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images and topographic data, and
inference networks.

It was our intention that ADAMS should be able to describe at least all of these different
data forms, as well as others we had not considered.

Simplicity: One of the strengths of the relational model is its conceptual simplicity. It is rela-
tively easy to learn and to implement. A common problem that arises when older com-
putational forms are extended is that they become quite complex. There are special cases
to learn, and more importantly, to implement. An example is Galileo [ACO85], a
strongly typed interactive language which embraces many pre-defined special types.

Our goal has been to keep the number of basic constructs to a minimum. To this end, we
envision sets as the basic aggregation concept.

Embeddability: We would describe a new language as embedded, if its constructs are clearly
delimited and can be treated as if they were comment statements in the host language.
The host language compiler is untouched and host language statements need not be
parsed to interpret ADAMS statements. In contrast, a new language is an extension if its
constructs become integral components of one, or more, of the host language constructs.
A language extension requires a much more sophisticated pre-processor or modification
of the host language compiler itself.

ADAMS is deliberately designed as an embedded language. A pre-processor converts
ADAMS statements into host language statements. There is no modification of the host
language itself. For example, host language variables can be used in ADAMS state-
ments, but ADAMS variables may not appear in host language constructs.

Parallelizability: The language paradigm of existing database systems is based on sequential
processes running on a single processor. Given a parallel operating environment, one can
implement utility processes in parallel as in [DGS88], but there is seldom facilities for a
programmer to exploit the inherent possibility of parallel data access at the applications
level. ADAMS is not specifically a parallel processing language; but since we are imple-
menting it on the Institute’s two hypercube configurations it includes fine grained data
denotation which permits the application programmer to designate individual subsets of a
distributed database.

Portability: A database system must be capable of operating on different kinds of hardware
under different operating systems. The ease with which this is accomplished is the tradi-
tional sense of "portability". By keeping its basic constructs "simple", ADAMS supports
this kind of portability. It is being concurrently implemented in a traditional multi-
processing environment, and in a parallel processing environment.

Another aspect of "portability" is its ability to be used by several different programming
languages in the same hardware environment. For this kind of portability a "real" value
when read from the persistent database must be converted to a "real" type that is
appropriate for the individual language.

Efficiency: This has not been a primary goal; at least we have not sought efficiency in the cus-
tomary sense. For example, we have not optimized storage structures so that block data
transfers can be facilitated.
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It is our firm belief that the major speed up in data handling will come from the parallel
processing of data sets; and that this in turn will be facilitated by flexible storage mechan-
isms and flexible naming conventions which may be slow by single processor standards.
In ADAMS the database implementor is able to make effective use of parallel processors
and storage devices. This will be the source of its efficiency.

1.2. General Philosophy
ADAMS is based on what may be called the entity database model [Pfa88]. That is, its fun-

damental units of organization are "entities", or "objects", or as ADAMS calls them "elements"†.
Every ADAMS element is uniquely identifiable. One may loosely say that ADAMS is "object
oriented"; and in a somewhat different context one might considers its elements to be objects.
The difference between ADAMS and other object-oriented databases is largely one of degree.
For example, ADAMS does not hide the logical structure of the data that it represents—instead
its primary function is to publically describe a logical structure. (However, much of the fine-
grain implementation structure is hidden.) And, although there exist mechanisms for associating
methods with instance elements of particular classes, such methods are neither the sole, nor even
the primary, interface mechanism as they are in true object-oriented systems.

ADAMS "elements" are the basis for representing the logical structure of the data. Actual
stored data values are drawn from user definable codomains. It is possible to create sets of ele-
ments in ADAMS, but not sets of data values.

Every ADAMS element must belong to a class. The class system supports multiple inheri-
tance [Car84]. In this regard, and in its syntax and usage, ADAMS is a semantic database system
in the sense of [HuK87].

Probably the most important aspect of ADAMS is its treatment of names. Although there
are many different ways of referencing desired data elements and their values [KhC86], at some
fundamental level data access depends on the ability to name elements, or sets of elements, in the
database. In the relational model, which assumes that all tuples of a relation must have distinct
keys, only the relations and attributes must be explicitly named; all tuples can be identified by
associated data values. A more appropriate paradigm is the use of names in traditional program-
ming languages to identify variables and procedures. However, the scope of these names is
always limited to the program itself. The same name can be repeatedly used in different pro-
grams. In contrast, the names of elements in a persistent database must themselves be persistent.
And they must be unique. This requires a much larger "name space" and much more sophisti-
cated naming conventions than most programmers are accustomed to.

ADAMS employs a hierarchical name space which allows a programmer to both construct
private data names as well as shared, common data names. It also supports the indexing of
names, an important mechanism for extending a name space, without the usual connotation that
the indexed names denote an array structure. It also makes the distinction between literal
ADAMS names, the names of host language variables, and variable strings whose runtime values
may denote literal ADAMS names.

It should be emphasized that the introduction of persistent names introduces a level of com-
plexity that is completely missing in traditional programming languages, but one which must be
addressed in any treatment of persistent database access.

�����������������������������������������������������������������������

† In this report we will use "element", "entity", and less often "object" as synonyms.
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1.3. Basic Constructs
ADAMS has only five basic constructs: they are codomain, class, set, attribute, and map.

All computing systems must have a primative (or atomic) level in which the meaning of a
sequence of bits is defined by convention. These are data values. In ADAMS the conventional
meaning of a sequence of bits is known as a codomain. For example, one may have a codomain
consisting of "real" numbers, or of nine digit social security numbers, or of all strings beginning
with the letter ’T’. In many programming languages, these would be called "data types". In the
relational model, they would be called simply "domains". We use our terminology because they
actually serve as "codomains" to attribute functions.

The concept of class is fundamental to ADAMS. Every nameable entity must belong to a
class. A class represents a generic entity—its structure and its properties. All individual entities,
or instances, within the class share the same structure and properties. All classes are declared and
named by the user, except for the three pre-defined classes set, attribute and map classes.

In most database processing we work with sets of data items, not just single entities, for
example, the set of "all computer science students with grade point average greater than 3.2".
Such sets must themselves be entities. They belong to a pre-defined class of type set.

Both attributes and maps are single valued functions whose domain consists of ADAMS
entities belonging to one or more classes. They are distinguished by the nature of their image
spaces: the image space of an attribute is a codomain (from whence we get that term), and the
image space of a map function is a class of ADAMS elements.

In other words, the functional value of an attribute function a on a particular entity x,
denoted by x.a will be an atomic data value from a codomain, while the functional value of a
map, denoted by x.m will be another entity, say y.

We would re-emphasize that any entity instance belonging to either a user defined class or
to a user defined attribute, map, or set class can be named. It has an "independent" existence.
Specific values in a codomain can not be named. They have no independent existence, save as
the current value of an attribute function acting on an entity instance.

1.4. ADAMS Statements
Since ADAMS is an embedded language, every ADAMS statement is clearly delimited—

just like a comment. We use the delimiters << and >>, but clearly any other set of delimiters
could serve as well. Thus the basic ADAMS syntax is:

<ADAMS_stmt> ::= <b_delimiter> <statement_body> <e_delimiter>

<b_delimiter> ::= <<

<e_delimiter> ::= >>

The <statement_body> denotes any of 33 ADAMS statements. These statements may be
generally grouped into five general types: those declaring generic codomains and classes; those
establishing entity instances; those manipulating sets; those accessing elements and data values;
and finally, a few miscellaneous statements. We enumerate all of the different ADAMS state-
ment types below. A more detailed expansion of each will be found in the sections indicated to
the right of each statement.

<statement_body> ::= <open_ADAMS_stmt> 1.4
<codomain_decl_stmt> 2.2
<subscript_pool__decl_stmt> 2.2
<extend_pool_stmt> 2.2
<add_codomain_method> 2.2
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<attribute_decl_stmt> 3.3
<attribute_instance_stmt> 3.3
<attribute_assign_stmt> 3.3
<map_decl_stmt> 4.2
<map_instance_stmt> 4.2
<map_assign_stmt> 4.2
<class_decl_stmt> 5.2.1
<elem_instance_stmt> 5.2.1
<delete_element_stmt> 5.2.1
<variable_decl_stmt> 8.2
<set_decl_stmt> 6.2.1
<set_instance_stmt> 6.2.1
<view_stmt> 6.2.1

<fetch_stmt> 3.2
<store_stmt> 3.2
<looping_stmt> 6.2.2
<exit_loop_stmt> 6.2.2
<element_of_stmt> 6.2.2
<set_copy_stmt> 6.2.2
<set_assign_stmt> 6.2.2
<make_empty_stmt> 6.2.2
<insert_stmt> 6.2.2
<remove_stmt> 6.2.2
<union_stmt> 6.2.2
<intersect_stmt> 6.2.2
<complement_stmt> 6.2.2
<var_assign_stmt> 8.2
<rescope_stmt> 9.2
<erase_entry_stmt> 9.2
<start_trans_stmt> 10.2
<abort_trans_stmt> 10.2
<end_trans_stmt> 10.2
<lock_stmt> 10.2
<unlock_stmt> 10.2
<close_ADAMS_stmt> 1.4

There is no well-formed ADAMS program, because the program concept exists only in the
host language. ADAMS simply consists of one or more ADAMS statements embedded in a host
language program or procedure. However, any sequence of executing ADAMS statements must
be preceded with an <open_ADAMS_stmt> and eventually terminated with a
<close_ADAMS_stmt>. These have the syntactic structure:

<open_ADAMS_stmt> ::= open_ADAMS <job_id>

<close_ADAMS_stmt> ::= close_ADAMS <job_id>

These statements open and close, respectively, various ADAMS dictionaries. They need be
issued only by the main program executing on any processor. The <job_id> is used to co-
ordinate execution on multiple processors.

Any ADAMS statement can fail for a variety of reasons. The open_ADAMS statement
creates a statement status word, called A$STATUS, which can, and should be, tested after execut-
ing any ADAMS statement. In Fortran programs this is located in labelled common /ADAMS/.
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1.5. Running Examples
To provide examples of the ADAMS statements described in the following sections, we

will establish two running database examples. The first is designed to illustrate and exercise
those features which are used in relational and semantic database models. It was described in
[PSF88] and served as a prototype implementation test vehicle in [Klu88]. The second database
will be used to illustrate scientific usage.

A practice used by the ADAMS group, is to capitalize the names of generic sets, such as
codomains and classes, and to represent specific entity instances in lower case letters. While this
seems to be a valuable convention, it is not an ADAMS rule.

1.5.1. Relational
ADAMS is designed to be more flexible than familiar relational database systems.

Nevertheless, relational databases are a fundamental way of structuring information. In Figure 1,
we show an entity-relationship diagram for a traditional "students", "faculty", "courses" type
database that we will use as a running example to illustrate various ADAMS features.

boxht = 0.3i
boxwid = 2.2i
FACULTY: box invis "FACULTY: (name, rank, dept)"

move down 1.0i from FACULTY
X1: box invis

move left 0.8i from X1
STUDENTS: box invis "STUDENTS: (name, major, s_nbr)"

move right 0.8i from X1
COURSES: box invis "COURSES: (c_nbr, c_name, term)"

arrow from STUDENTS.n to FACULTY.s "advisor " above
arrow from COURSES.n to FACULTY.s " instructor" above
arrow from STUDENTS.e to COURSES.w "enrollment(grade)" above
arrow from COURSES.w to STUDENTS.e

Entity-Relationship Diagram
Figure 1.

One running example will implement this structure as a 3NF relational database. It will contain
the following four relations that one would expect in such an implementation.

Schema Keys

FACULTY: (fname, rank, dept ) fname
STUDENT: (sname, major, s_nbr, fname) sname
COURSE: (c_nbr, c_name, term, fname) c_nbr, term
ENROLL: (sname, c_nbr, term, grade) sname, c_nbr, term

Here the attribute fname in the STUDENT and COURSE schema implements the single valued
advisor and instructor relationships respectively. We will find, however, that it is difficult to cap-
ture all aspects of the relational model in an entity based mode. Projection, for example, will not
be easy.

1.5.2. Semantic
ADAMS is a database system that is actually based on the semantic model, not the rela-

tional model. One consequence of this distinction is that a "relation" is an instance set of "tuple"
entities, not a flat table as in Codd’s original formulation. Thus FACULTY and STUDENTS
denote classes of entities, not specific instances. In Figure 2, one has two different FACULTY
"relations" called tenured and untenured, and two different STUDENT "relations" called
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undergrad and graduate. Moreover, the advisor and instructor relationships are represented as
maps, not as tuple attributes.

boxht = 0.3i
boxwid = 0.75i

Ten: box invis "tenured"
move right 1.0i from Ten

Unten: box invis "untenured"
move down 1.0i from Unten

X1: box invis
move left 1.0i from X1.e

Ugrad: box invis "undergraduate"
move left 1.0i from Ugrad

Grad: box invis "graduate"
move right 0.7i from X1

Course: box invis "courses"
move down 1.0i from X1

Enroll: box invis "enrollment"

arrow from Grad.n to Ten.s " advisor" below
arrow from Grad.n to Unten.s " advisor" below
arrow from Ugrad.n to Ten.s
arrow from Ugrad.n to Unten.s
arrow from Course.n to Ten.s " instructor" above
arrow from Course.n to Unten.s
arrow from Enroll.n to Grad.s " student" above
arrow from Enroll.n to Ugrad.s
arrow from Enroll.n to Course.s " course" below

Semantic Database Schema
Figure 2.

1.5.3. Scientific
The running example from the scientific domain is simply a doubly subscripted real array,

or matrix. Any programming language can handle such matrices as an aggregate data type. Few
database models handle multiply subscripted arrays in a flexible manner. The simplest example
will be just a real 3×5 array

x
1,1

x
1,2

x
1,3

x
1,4

x
1,5

x = x
2,1

x
2,2

x
2,3

x
2,4

x
2,5

x
3,1

x
3,2

x
3,3

x
3,4

x
3,5
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2. Codomains

2.1. General Description
A data value is a finite string of bits which has meaning when interpreted with respect to the

conventions of some programming environment. An ADAMS codomain is an abstract set of all
possible values which can be so interpreted. In this sense, an ADAMS codomain is very similar
to the more familiar data type, such as "real", "integer", "float", "REAL*4", "boolean", "LOGI-
CAL", etc. The data type "real", used in a Pascal environment on a 8080 chip, specifies how 32
bits should be subdivided so they can be interpreted as the sign, mantissa, and exponent of a real
number.

But ADAMS is not concerned with the interpretation of values in a programming environ-
ment. It is concerned with the storage of such values in a form which allows later access. As
such it is quite concerned with mechanisms for converting (or coercing) values in some storage
format into forms that can be interpreted by the accessing process in its own processing environ-
ment. It is also concerned with the integrity of the database. Therefore, it is concerned that
values stored in the database actually belong to that abstract set specified by the codomain
definition.

Consequently, an ADAMS codomain definition has a three-fold purpose:

(1) specification of the form of legal values in the codomain;

(2) specification of processes to coerce (or convert) values from the storage format used by
ADAMS to a form that will be interpretable by the accessing process in its own
environment—and, inversely, the conversion of "internal" values back into the ADAMS
storage format;

(3) specification of values to be returned (or stored) when an actual value is

(a) undefined, or
(b) unknown.

Codomains can be regarded as similar to primative classes in strictly object-oriented
languages; however, they are not used to build up higher level classes in the same way.

2.2. Syntax
<codomain_decl_stmt> ::= <codomain_name> isa CODOMAIN

<membership_clause>
[ <access_method_clause > ]
[ <other_method> ]
[ <undefined_clause> ]
[ <unknown_clause> ]
[ <scope_clause> ]

<codomain_name> ::= <actual_name>

<membership_clause> ::= consisting of #<regular_expression># |
validated by <codomain_method_def>

<access_method_clause> ::= fetch: <codomain_method_def>
store: <codomain_method_def>

�����������������������������������������������������������������������

† In this syntactic notation, [ ... ] denotes an optional construct; [ ... ]* denotes that it can be repeated indefinitely.
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<other_codomain_method> ::= <method_name>: <codomain_method_definition>

<method_name> ::= <actual_name>

<undefined_clause> ::= udf = <literal_value>

<unknown_clause> ::= ukn = <literal_value>

<literal_value> ::= ’ <codomain_value> ’

<codomain_method_def> ::= <extern_def_codomain_method> |
<locally_def_codomain_method>

<extern_def_codomain_method> ::= EXTERNAL <name>

<locally_def_codomain_method> ::= <host_language_proc>

<subscript_pool__decl_stmt> ::= <subscript_pool_name> instantiates_a SUBSCRIPT POOL
of <codomain_name> values
[ <consisting_of_clause> ]

<extend_pool_stmt> ::= add <subscript_value> to <subscript_pool_name> POOL

<subscript_pool_name> ::= <actual_name>

<add_codomain_method> ::= add method to <codomain_name> CODOMAIN
<method_name>: <codomain_method_def>

2.3. Semantics
(1) A <codomain_decl> declares a generic set of data values defined in terms of the member-

ship clause; and assigns <codomain_name> as the name of this set. This name is entered
into the dictionary, together with its associated information. This definition declares the
form that these values will take in ADAMS storage—it does not indicate how they will be
represented in any particular computing environment.

(2) To insure database integrity, all codomain values are validated before committing them to
permanent storage. A value is validated either by comparing it with the
<regular_expression> or by invoking the user supplied boolean <codomain_method>. This
latter can be used to provide user-defined run-time consistency checking, or to circumvent it
altogether by having it always return true.

(3) ADAMS assumes as its general paradigm that all codomain values are stored as variable
length ASCII strings. Therefore, in general, it will be necessary to define
<codomain_method>s which convert values between their ADAMS storage format and the
corresponding internal computational representation. These format conversion (or coer-
cion) routines are declared in the <access_method_clause>.

Notice that if either a "fetch", or "store" method is declared, then both must be declared.

(4) The presumption that the stored version will be an ASCII string can be changed by provid-
ing access methods which convert (or do no conversion) into any user specified form. If no
<access_method_clause> is provided, the default assumption is that the internal representa-
tion of the value is a string (NULL terminated in C), and treated accordingly.

(5) All <codomain_method>s are assumed to be procedures with two fixed parameters, the first
denoting an internal representation, the second an ADAMS <value_desig>nator. That is,
they have the form
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<name> (int_rep, value_desig)
<type> *int_rep;
char *value_desig;

in C. In Fortran, the form would be
SUBROUTINE <name> (int_rep, value_desig)

<type> int_rep;
CHAR*<n> value_desig

(6) There exist two pre-defined ADAMS access procedures of the form
adams$f (buffer, buf_len, value_desig)
untyped *buffer;
int buf_len;
char *value_desig;

and
adams$s (buffer, buf_len, value_desig)
untyped *buffer;
int buf_len;
char *value_desig;

which f(etch) (or s(tore)) the designated value into (or from) the designated buffer without
modification.

(7) A subscript pool is a sequential enumeration of codomain values that can be used as sub-
script values. There is no provision in ADAMS for changing the members of the pool.
Only additional values can be added to the pool.

The codomain values of a pool must be distinct.

(8) There may be several fetch and store methods associated with a single codomain. For
example, a different version of "fetch" will normally be required by each host language
used to access the ADAMS database. Similarly, different hardware architectures may
require different conversion routines. Hidden by the ADAMS interpreter is a run-time
environment status consisting of (<host_language>, <hardware_system>).

An <add_codomain_method> statement permits the addition of codomain methods,
appropriate to new host environments, to an already existing CODOMAIN declaration
made in a different environment.

(9) A <literal_value>, enclosed in single quotes, denotes a particular value in the codomain. It
must be a string (or other expression) that matches the form of the regular expression
defining the codomain. It need not be a literal in the host language; consequently, it need
not be coerced into a different form.

(10) If the <literal value> of either the <undefined_clause> or the <unknown_clause> is not a
member of the regular set defined by the <membership_clause>, it is added to the set (finite
union).

The udf value is returned by ADAMS whenever a <value_desig> has not been defined in
ADAMS storage. A ukn value must have been previously assigned by the user to
<value_desig>.

The default udf value is an octal zero, or NULL.

(11) Note that all literal codomain values must be quoted, even if they are numeric. This is in
contrast to ADAMS literals which are unquoted.
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(12) Codomain and subscript pool names are <actual_name>s, consequently they can be neither
subscripted nor parameterized.

2.4. Examples
One would expect most of the commonly used codomains (or types) to be globally declared

with SYSTEM scope. Below are samples declaring a REAL codomain for both C and Fortran
host languages.

C host language:
REAL isa CODOMAIN

consisting of #( |+|-)[0-9]*.[0-9]*#
fetch:

fetch (dest, value_desig)
float *dest;
char *value_desig;

{
char IO_buf[20]

adams$f (IO_buf, 20, value_desig);
if (*IO_buf != ’ ’)

sscanf (IO_buf, "%f", dest);
else

*dest = 0.0;
}

store:
store (source, value_desig)
float *source;
char *value_desig;

{
char IO_buf[20]

sprintf (IO_buf, 20, source);
if (*IO_buf != ’ ’)

adams$s (IO_buf, 20, value_desig);
}

udf = 0.0
scope is SYSTEM

Fortran host language:
REAL isa CODOMAIN

consisting of #( |+|-)[0-9]*.[0-9]*#
fetch:

SUBROUTINE FETCH (DEST, VALUE)
REAL DEST
CHAR*30 VALUE

CHAR*20 BUFFER

CALL adams$f (BUFFER, 20, VALUE)
IF (LEN(BUFFER) .GT. 0) THEN

READ (BUFFER, ’(F20.10)’) DEST
ELSE

DEST = 0.0
ENDIF
END
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store:
SUBROUTINE STORE (SOURCE, VALUE)

REAL SOURCE
CHAR*30 VALUE

CHAR*20 BUFFER

WRITE (BUFFER, ’(F20.10)’) SOURCE
CALL adams$s (BUFFER, 20, VALUE)
END

udf = 0.0
scope is SYSTEM

The subscript pool concept allows the kind of "enumerated subscript" that occurs in Pascal.
For instance, if we wanted to subscript ADAMS names with various makes of automobiles we
could declare:

<< autos instantiates_a SUBSCRIPT POOL of STRING values
consisting of { ’chevrolet’, ’dodge’, ’ford’, ’plymouth’ }
with access_name autos, scope is USER >>

We can never eliminate ’ford’ from the pool or change its spelling; it may have been used to sub-
script some permanent name. But we can add to a subscript pool as in

<< add ’toyota’ to autos POOL >>

Readily the most commonly used subscripts are integer, and we want to declare such a pool
of subscripts. We name this pool Zahlen, the German word for the natural numbers, that is often
used in mathematics. This pool, which we will use repeatedly in our matrix examples, we make a
SYSTEM concept.

<< z instantiates_a SUBSCRIPT POOL of INTEGER values,
with access_name Zahlen, scope is SYSTEM >>

This subscript pool is empty. The following bit of C-code inserts the first n non-negative integers
in their natural order.

i = 0;
while (i <= n)

{
<< add i to Zahlen POOL >>

++i;
}

2.5. Discussion
The functions of a "codomain" and a subscript "pool" are orthogonal in ADAMS. The

former provides values for attribute functions. The latter provides values that can be used to sub-
script names. The subscript "pool’ concept is associated with codomains and included in the sec-
tion simply because fetch and store conversion methods must be defined for codomains. This
allows subscript operations to piggyback on them.
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3. Attributes

3.1. General Description
An ADAMS attribute is a single valued function defined on instances of a class whose

range, or codomain, is a codomain. The attribute is itself an ADAMS entity belonging to a class
of similar functions that map into the same codomain. For example, the attributes ’age’ and
’nbr_of_dependents’ might both be instances in a class ’INTEGER_ATTR’.

3.2. Syntax
<attribute_decl_stmt> ::= [ var ] <attr_class_entry> isa ATTRIBUTE

with image [ <scope> ] <codomain_name>
[ <association_clause> ]*
[ <restriction_clause> ]
[ <scope_clause> ]

<attr_class_entry> ::= <dict_class_entry>

<attribute_instance_stmt> ::= [ var ] <attr_entry> instantiates_a <attr_class>
[ <scope_clause> ]

�

<ADAMS_var> instantiates_a <attr_class>
[ <scope_clause> ]

<attr_entry> ::= <dict_instance_entry>

<fetch_stmt> ::= fetch into <host_variable> from <value_desig>

<store_stmt> ::= store from <host_expression> into <element_desig>.<attr_desig>

<attr_assign_stmt> ::= <element_desig> . <attr_desig> = <value_desig>

<value_desig> ::= <element_desig>.<attr_desig>
�

<literal_value>

3.3. Semantics
(1) Attributes exist as the functional link between ADAMS entities and their associated data

values. What are traditional known as "data values" only exist as attribute images. Thus all
"data" must be referenced by the applicative form

<element_desig>.<attr_desig>

(2) The "image_is_clause" is required in all attribute declarations.

(3) The clauses that may appear in an <attribute_decl> may be used in general class declara-
tions and are therefore treated in that section.

(4) The representation of attributes is best visualized as an associative "triple", whose com-
ponents are

( <element_id>, <attribute_id>, <attribute_value> ).

Specification of the first two components, as in <element_desig>.<attr_desig> yields the
unique third component <attribute_value>. Specification of the second two components
will, in general, yield the set of <element_id>s that appear as the first component in at least
one such triple in ADAMS storage. Actually, the implementation of inverse operators is a
bit more restrictive. The syntax for this is discussed in 7.2.
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(5) The second form of attribute instantiation allows the use of a temporary <ADAMS_var> to
denote the new element. It is difficult to imagine this really being used in practice, except
for attribute functions of LOCAL scope.

(6) Both designators of the <element_desig>.<attr_desig> of a <fetch_statement> are first
evaluated. The designated attribute instance must be defined over the class of the desig-
nated instance element. If it is, the corresponding triple (since all attributes are single
valued, there can be but one), if any, is accessed for its <attribute_value>. The codomain to
which this <data_value> belongs is known—it is the image space of the attribute class to
which this instance belongs. Using the "fetch method" of the codomain declaration, this
value is converted from its ADAMS storage format into its corresponding computational
type and stored in (or assigned to) the <host_variable>.

If no such triple exists in ADAMS storage, then the undefined value, udf for that codomain
is returned as the value.

(7) The semantics of a <store_statement> are similar. However, in this case the current value
of the <host_expression> is converted from its computational format to its ADAMS
representation using the "store method" of the codomain. If a triple ( <element_desig>,
<attr_desig>, <old_value> ) already exists, then the <old_value> is replaced by the
ADAMS form of the <host_expression>. If no such triple exists (this is the first assignment
to this attribute on this entity instance) then a new triple is created.

(8) The fetch and store statements both move an ADAMS codomain value to (or from) a host
variable. Ususally some conversion (or coercion) will be required. The assign statement is
completely within the ADAMS codomain representation structure. No coercion is required.

3.4. Examples
Three distinct steps must be followed before an attribute function can be used to store and

access data. First, the codomain must be defined, as in
<< DATE isa CODOMAIN

consisting of #[0-9]{2}/[0-9]{2}/88#
scope is SYSTEM >>

Since no access method has been declared, the ASCII string is fetched and delivered as the data
value.

Second, a generic class of attributes which map into this codomain must be declared, as in
<< DATE_ATTR isa ATTRIBUTE with image DATE, scope is GROUP >>

And finally, specific attributes (or instances) in this class must be declared, as in
<< b_date instantiates_a DATE_ATTR, scope is USER >>
<< date_last_mod instantiates_a DATE_ATTR, scope is USER >>

Now, if x is an entity designator (variable, literal name, etc.) and the attributes b_date and
date_last_mod have been defined on the class to which x belongs, one can use fetch and store
commands of the form:

<< fetch into birth_date from x.b_date >>
<< store from today() into x.date_last_mod >>

3.5. Discussion
In earlier versions of ADAMS attributes were designated as either assigned (functional

value explicitly established by a previous assignment statement) or computed (functional value
computed on retrieval using other information). Associated with computed attributes was to have
been a method, or procedure, for computing the attribute value at retrieval time. The problem is:
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"where does one define this associated computation method?". It makes no sense to declare it
with a generic class of type ATTRIBUTE. Nor does the ADAMS paradigm permit its definition
with a particular instance attribute. So it has been eliminated. The effect of a "computed attri-
bute" can be created by defining a method associated with a particular class.

The fact that attributes are themselves ADAMS elements is an important one. Internally,
they are represented just like any other entity. Any attribute, or more accurately any class of
ATTRIBUTE, may itself have associated attributes or maps (although we have not yet discovered
any practical application of this level of generality). However, this has implications in the "dot"
notation used to designate data values in ADAMS.

Suppose, for example, that x denotes an entity instance of some class on which the attribute
instances f and a are both defined. Suppose further that the attribute a is defined on the class of
attributes to which f belongs. Then, x.f and x.a designate specific values in the codomains of f
and a, respectively. And f.a denotes a value in the codomain of a. They are all <value_desig>s.
But the expression x.f.a is meaningless because the prefix x.f is not an <element_desig>.

One implementation approach is to let every attribute instance entry in the dictionary have a
pointer to its attribute index structure. (Actually this must be an indirect pointer to allow for sub-
scripts on the <actual_name>.) This index structure is used to access data values given an
<element_desig>. A similar inverse index is used to access multiple elements which have a
given <data_value>.

The syntax for fetch and store statements is admittedly cumbersome. A syntax such as
<host_variable> <- <element_desig>.<attr_desig>

would be much more "natural". These "wordy" fetch and store constructs may have the advan-
tage of emphasizing the nature of these operations; but we should consider simplifying the syn-
tax.
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4. Maps

4.1. General Description
An ADAMS map is a single valued function defined on instances of a class whose range, or

co_domain, is a class. Notice that the only difference between attributes and maps is that the
image of the former is always a data value, while the image of the latter is an ADAMS entity, or
element. A map is also itself an ADAMS entity that belongs to a class of all similar functions
which map into the same class.

4.2. Syntax
<map_decl_stmt> ::= [ var ] <map_class_entry> isa MAP

with image <dict_class_entry>
[ <association_clause> ]*
[ <restriction_clause> ]
[ <scope_clause> ]

<map_class_entry> ::= <dict_class_entry>

<map_instance_stmt> ::= [ var ] <map_entry> instantiates_a <map_class>
[ <scope_clause> ] �

<ADAMS_var> instantiates_a <map_class>
[ <scope_clause> ]

<map_entry> ::= <dict_inst_entry>

<map_assign_stmt> ::= <element_desig> . <map_desig> = <element_desig>

4.3. Semantics
(1) A <map_type> is just a dictionary name (possibly parametrized) which belongs to the MAP

class. A map instance must belong to a MAP class.

Similarly a <map_name> is just the literal name of a map instance.

(2) The "image_is_clause" is required in all map declarations.

(3) The clauses that may appear in an <map_decl> may be used in general class declarations
and are therefore treated in that section.

(4) The representation of maps is best visualized as an associative "triple", whose components
are

( <element_id>, <map_id>, <map_value> ).

Specification of the first two components, as in <element_desig>.<map_desig> yields the
unique third component <map_value> which is a unique element identifier. Specification
of the second two components will, in general, yield the set of <element_id>s that appear as
the first component in at least one such triple in ADAMS storage.

(5) If m denotes map instance, and the element instance y belongs to the image class of the
map class of which m is an instance, then execution of the statement

<< x.m = y >>

makes the element y the image of x under the map m .
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4.4. Examples
The following example is based on semantic network of figure 2 in section 1.5.2. Two

maps are indicated from the instance sets of graduate, undergrad, and courses to the instance sets
tenured and untenured, which we will assume comprise entities from the class FACULTY_REC.
This class we assume has already been declared. Then the three statements

<< FACULTY_MAP isa MAP with image FACULTY_REC, scope is USER >>

<< advisor instantiates_a FACULTY_MAP, scope is USER >>
<< instructor instantiates_a FACULTY_MAP, scope is USER >>

establish these maps. The first ADAMS statement defines the class of FACULTY_MAP func-
tions. It asserts that the image of any such map function will be an entity from the class
FACULTY_REC. advisor is then established as one instance of such a map; as is instructor.

Note that these map functions have been defined. They have not been associated with enti-
ties of type STUDENT_REC or COURSE_REC as yet.

4.5. Discussion
It is much easier to declare generic attribute and map classes using parameterized class

declarations, as in Section 8.

Map functions can be implemented in a manner that is virtually identical to that of attri-
butes.

The possibility of having a <restriction_clause> in a map class has been provided, but it is
difficult to envision appropriate restrictions at this time. It might be possible to define one-to-one
maps by this mechanism.
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5. ADAMS Classes

5.1. General Description
An ADAMS class is a generic description of a collection of entities with the same, or simi-

lar, properties. Generally, the user defines classes that reflect the properties that characterize the
entities in the database. Since classes can be, and normally are, defined in terms of other classes,
a hierarchical class structure arises, which is frequently described by the term class inheritance.
In fact, the class structure of ADAMS is not really hierarchical since it supports multiple inheri-
tance. Instead it is a lattice of classes.

The ATTRIBUTE and MAP classes described in the preceding section are special kinds of
classes. They were treated first because of the important role that attributes and maps play in the
user definition of classes. This section shows how an individual user can create new classes. The
most important construct is the <association_clause> which declares that specific sets of attri-
butes and/or maps will be valid over elements of the class. The <restriction_clause> can be used
to restrict membership in this class only to entities of the <super_class> which satisfy certain
constraints.

5.2. Syntax
The syntax of class declaration is subdivided into to portions. The first describes the gen-

eral mechanisms for describing new classes; the second examines in detail how predicate restric-
tions are formed.

5.2.1. Class Syntax
<class_decl_stmt> ::= [ var ] <dict_class_entry> isa <super_class>

[ <class_decl_body> ]

<elem_instance_stmt> ::= [ var ] <dict_inst_entry> instantiates_a <class_name>
[ AND <class_name> ]*
[ <scope_clause> ] �

<ADAMS_var> instantiates_a <class_name>
[ AND <class_name> ]*
[ <scope_clause> ]

<super_class> ::= <dict_class_entry> [ AND <dict_class_entry> ]*a �
CLASS � ATTRIBUTE � MAP � SET

<class_decl_body> ::= FORWARD |
[ <association_clause> ]*
[ <restriction_clause> ]
[ <scope_clause> ]

<association_clause> ::= having [ <synonym> = ] <association_set>

<synonym> ::= <actual_name>

<association_set> ::= <set_desig> | <clustered_attr_enum>

<clustered_attr_enum> ::= ’{’ ’(’ <attr_cluster> ’)’ [ , <attr_cluster> ]* ’}’

<attr_cluster> ::= ( <attr_cluster> ) �
<attr_cluster>, <attr_cluster> �
<enumeration_element>
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<restriction_clause> ::= provided # <predicate> # | provided <boolean_method>

<delete_element_stmt> ::= delete <element_desig>

5.2.2. Predicate Syntax
The syntax for forming <predicate>s we treat in this separate section. Basically a <predi-

cate> is an expression in the first order predicate logic which will evaluate to either true or false.
However, the rules are somewhat different to ensure that all such expressions are "safe", that they
can be deterministically evaluated.

<predicate> ::= <disjunct> [ or <disjunct> ]*

<disjunct> ::= <conjunct> [ and <conjunct> ]*

<conjunct> ::= <term> | ( <predicate> ) |
<quantifier> ’[’ <predicate> ’]’

<term> ::= <equality_comparison> | <order_comparison>

<equality_comparison> ::= <element> <equality_test> <element> |
<data_value> <equality_test> <data_value>

<order_comparison> ::= <data_value> <order_test> <data_value>

<element> ::= <logical_var> | <element_desig>

<data_value> ::= <literal_value> | <element>.<attr_desig> � <variable_name>

<equality_test> ::= = | !=

<order_test> ::= < | <= | > | >=

<logical_var> ::= <bound_var> | <free_var>

<quantifier> ::= (all <bound_var> in <set_desig>) �
(exists <bound_var> in <set_desig>)

<free_var> ::= $X | $x

5.3. Semantics

5.3.1. Class Semantics
(1) The most common superclass is simply CLASS. The next most common is a single

<super_class>, in which case the class being declared inherits all of the associations and
restrictions of its super class.

If multiple inheritance is specified with the AND option, then the declared class inherits all
of the associations and restrictions of each of its super classes. These conjoined super
classes must have some common super class as their least upper bound; that is, the ADAMS
class structure consists of 4 distinct semi-lattices. The predefined classes CLASS, ATTRI-
BUTE, MAP, and SET are generic super classes which provide upper bounds for their
respective semi-lattices.

(2) In section 8.2, a <class_name> is defined to be an <actual_name> or one of the predefined
generic classes—CLASS, SET, ATTRIBUTE, or MAP. When a <class_name> is
employed in the course of a parameterized class declaration, it may actually have the lexical
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form of a <dict_class_entry> with embedded $n parts as shown in the examples. The
preprocessor replaces the parts with the corresponding actual parameter on instantiation to
create an <actual_name>. To do this the preprocessor employs a construct <p_class_name>
for "parameterized class name" which has basically the same structure as <class_name>.
We have deliberately omitted it from this syntax for the sake of clarity.

Other components in a class declaration, such as <attr_desig>, <set_desig>, etc. may be
similarly parameterized.

(3) If the var option is missing then the literal string constituting the <dict_class_entry> (or
<dict_name_entry>) is the dictionary lookup string. If var precedes the declaration, then
<dict_class_entry> (or <dict_name_entry>) is presumed to be a host language variable of
type "string" whose current value is the corresponding dictionary name. See 8.5 for a dis-
cussion of the handling of literal and variable identifiers.

(4) The FORWARD option for a <class_decl_body> is similar to that of Pascal, and for the
same reason. In order to define a map one must first identify the class which is its image
space. If the map is a function from a class back into itself, such as the "subpart_of" rela-
tionship, this becomes difficult. The FORWARD construct conveys sufficient information
to create the basic dictionary entry. Subsequently, a complete declaration must be pro-
vided.

(5) An <association_clause> associates an existing instance set of attributes or maps with the
elements of the class. This set may be either named (presuming a previous instance
declaration) or enumerated (implying creation of the instance at compile/run-time?).

There may be repeated <association_clause>s. This is necessary to associate both attributes
and maps with a class. It also provides for the possibility of associating several different
sets of attributes (or maps) with a class, thereby supporting a view concept which is ela-
borated in section 12.

It is also possible to provide an optional <synonym> for the association set. This
<synonym> may be used to access individual elements of the set. The conventional
synonyms attrs and maps are considered public. Any association sets so identified will be
displayed on a request to describe the class. Association sets with other (or no) synonyms
are treated as private.

(6) The clustered attribute enumeration permits a parenthesized enumeration of attributes, such
as { (a ,b ,c ), d , ( (e ,f ), (g ) ) }. This "clustering" may, or may not, be used to optimize the
retrieval of attribute values. Logically, the clustered enumeration above is equivalent to the
enumeration { a ,b ,c ,d ,e ,f ,g }. To simplify the recognition of a clustered attribute
enumeration, the syntax expects the first sequence to begin with a parenthesized cluster.

(7) The <predicate> or user supplied <boolean_method> or a restriction clause is evaluated
whenever an instance of the class is created. If it evaluates false, then the ADAMS state-
ment fails.

At most one free variable is permitted in a predicate used for class declaration, and it is
denoted by $x or $X. This free variable always denotes the current instance of the class
which is being tested for class membership. It is completely analogous to the "SELF" con-
struct which is used in several object oriented languages.

(8) Declaration of an entity instance (element) via a "instantiates_a" statement, or by any other
ADAMS operation, will allocate the "next" unique id to identify the instance. It will also
create the "instance body" which is a record consisting of at least
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a. CLASS pointer,
b. set reference counter (set membership count)
c. removal bit
d. given name (if any)

This little stub representation is required to implement the class_of and name_of system
procedures (11.2), and the issue of element deletion (6.5).

(9) In the second form of element instantiation, the <ADAMS_var> denotes the newly instan-
tiated element; but no entry is made into the dictionary. If the <ADAMS_var> is later set
to denote some other instance (by means of a "denotes" statement) then this reference to the
instantiated element may be lost.

(10) In as system that supports the representation of persistent data, the deletion of information
can be much more difficult than its creation. In effect, the <delete_element> statement is
the inverse of the <elem_instance> (or "instantiates_a") statement; and the <erase_entry>
statement is the inverse of the <class_decl> (or "isa") statement.

But care must be taken! Readily, a class can not be erased if there exist any instances of
that class, or instances in any sub-class of it. Similarly, an element can not be deleted if it
exists in an existent set. These are two important examples of internal database consistency
that must be maintained. The use of a set reference counter in every instance body can be
used to protect against the latter. In addition, a removal bit must be included in the
representation to support deferred removal. (See 6.4.) A reference counter which keeps
track of all instances belonging to a class, and another recording all sub-class references,
can also be exploited.

When a persistent element instance is created, its reference counter is set to one. The
"delete" statement first decrements the reference counter; if it is then zero, the element is
actually deleted and its storage returned to the system.

(11) What can not be assured, given the environment in which ADAMS exists, is that when a
CLASS or an instance is deleted there will be no extant process that refers to it. This latter
is a form of external consistency.

5.3.2. Predicate Semantics
(1) Atomic truth values are obtained only from equality or order comparisons. Elements can

only be tested for equality; either they have the same unique id or they do not. Codomain
values (e.g. <data_value>s) can also be tested for equality. In this syntactic formulation we
have also allowed for order comparison, but whether this can be actually implemented is
open to question.

(2) Quantification is always over existing set instances, never over an abstract class.

(3) Any named construct used in a class declaration, whether <super_class> or <set_desig>
must have a scope equal to, or higher than, the current declaration. This dependence must
be recorded with the named construct in its <reference_counter> so that it can not be inad-
vertently deleted, thereby making the declaration invalid.

5.4. Examples
The tuples and relations of the relational database illustrated in Figure 1 (section 1.5.1)

could be declared as follows.
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<< FACULTY_TUPLE isa CLASS
having attrs = { name, soc_sec_nbr, b_date, rank, dept } >>

<< FACULTY_REL isa SET of FACULTY_TUPLE elements >>
<< faculty instantiates_a FACULTY_REL >>

<< STUDENT_TUPLE isa CLASS
having attrs = { name, soc_sec_nbr, b_date, major, advisor }>>

<< STUDENT_REL isa SET of STUDENT_TUPLE elements >>
<< students instantiates_a STUDENT_REL >>

The codomain of the advisor attribute is presumably the same as that of name so that student
tuples can be joined with faculty tuples to obtain the advisor relationship. There are no maps in
the relational model.

A much cleaner way of declaring relational schema, tuples, and relations is developed in
Section 8 where parameterized class declaration is explored.

The following ADAMS statements use inheritance to create the FACULTY_REC class
from a PERSON_REC class.

<< PERSON_REC isa CLASS
having data_fields = { name, soc_sec_nbr, b_date },
scope is USER >>

<< FACULTY_REC isa PERSON_REC
having fac_data_fields = { rank, dept },
scope is USER >>

Once the FACULTY_REC class has been declared, the advisor map can be declared, and it
becomes possible to declare a STUDENT_REC entity which also inherits the basic properties of
a PERSON_REC.

<< FACULTY_MAP isa MAP with image FACULTY_REC, scope is USER >>

<< advisor instantiates_a FACULTY_MAP, scope is USER >>

<< STUDENT_REC isa PERSON_REC
having stu_data_fields = { major },
having maps = { advisor },
scope is USER >>

Notice that this latter declaration has two <association_clause>s, one for attributes and one for
maps.

If faculty (or staff) members are also allowed to take courses, so that they are students as
well, we might want to create the class

<< PART_TIME_REC isa FACULTY_REC AND STUDENT_REC >>

Entity instances in this class would inherit the attributes and maps of both super classes.

If a provision of being a "student" is that the individual have a declared major, we could add
a <restriction_clause> as follows

<< STUDENT_REC isa PERSON_REC
having stu_data_fields = { major },
having maps = { advisor },
provided # $x.major != udf(dept) #
scope is USER >>

The following provides an example of the var construct. It allows the dictionary name of a
class to be accepted from input and associated with the dictionary entry for the class at runtime.
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char class_name[20];
. .
. .
scanf ("%s", class_name);

<< var class_name isa CLASS, scope is USER >>
. .
. .

5.5. Discussion
The syntax for the <elem_instance_stat> permits the designation of an element that inherits

the properties of two classes, even though the corresponding "intersection class" has not been
explicitly created by means of a <class_decl_stat>. This follows the discussion in [Pfa88]. Per-
mitting statements such as

<< x instantiates_a DOCTOR AND PATIENT >>

would undoubtedly be a convenient shorthand. But there are potential problems. Two imple-
mentation schemes are possible. One is to create an "unnamed" intersection class from the
super-classes DOCTOR and PATIENT, to which x will not belong. The other is to support mul-
tiple pointers out of the dictionary entry for x to all of its class memberships. The former seems
much preferable, but correctly implemented it requires a search of the dictionary to discover
whether any class which multiply inherits from DOCTOR and PATIENT already exists in either
a named or unnamed form. This will eventually lead to the nasty problem of synonym detection
and resolution.

It might be wise to leave this feature unimplemented for a while.

Implementing the <predicate> construct in full generality at this time would seem to be
quite difficult. However, there does not appear to be any real syntactic or semantic limitations.

These examples graphically demonstrate how useful inheritance can be in simplifying the
definition of classes.

The handling of literal and variable identifiers in ADAMS is quite different from traditional
programming languages where it is customary to "quote" literal strings. For example, in the
statement

<< advisor instantiates_a FACULTY_MAP, scope is USER >>

both advisor and FACULTY_MAP are literal strings. This can be quite confusing at first. In
[Klu88] we suggested changing the syntax to read

<< "advisor" instantiates_a "FACULTY_MAP", scope is USER >>

but this suggestion seems ill-advised. It would make the declaration of ADAMS names much
clearer, but it would make their subsequent use more awkward. In particular, every map and
attribute reference would have to be quoted, as in

<< fetch into fac_name from x."advisor"."name" >>

Observe that in most literal strings in traditional programming languages are not quoted.
Numeric literals are not quoted because they can be recognized by their form. Literal function
and procedure names are not quoted because they are declared, or are otherwise recognizable
from the context. The ADAMS policy has been to assume that every non-reserved string in an
ADAMS statement is a literal; that is, it is the literal name of an ADAMS element, unless the
string is explicitly declared to be a variable. The two ways that this is done are

(1) by using the ADAMS_var statement to declare the identifier to be a host language variable
of type UNIQUEID; and

(2) prefixing a host language string variable with var in isa or instantiates_a declaration state-
ments.
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6. Sets

6.1. General Description
Sets are the fundamental ADAMS structure. Indeed, in keeping with our goal of simplicity,

they are the only aggregation structure. Still there are significant semantic problems associated
with their implementation. These arise primarily from (1) set operations over entities of different
classes in the class hierarchy, and (2) entity deletion.

Sets are fundamental. But sets are not an easy concept to emulate.

6.2. Syntax
The Syntax of this section is broken into two sections, that of set denotation followed by

that of set manipulation statements.

6.2.1. Set Denotation
<set_decl_stmt> ::= [ var ] <set_class_entry> isa SET

of <dict_class_entry> elements
[ <association_clause> ]*
[ <restriction_clause> ]
[ <scope_clause> ]

<set_class_entry> ::= <dict_class_entry>

<set_instance_stmt> ::= [ var ]<set_entry> instantiates_a <set_class>
[ <initial_clause> ]
[ <scope_clause> ] �

<ADAMS_var> instantiates_a <set_class>
[ <initial_clause> ]
[ <scope_clause> ]

<set_class> ::= <class_name>

<initial_clause> ::= consisting of <set_desig>

<view_stmt> ::= <set_desig> attributes_of <class_name> �
<set_desig> maps_of <class_name>

6.2.2. Set Manipulation
<looping_stmt> ::= for_each <ADAMS_var> in <set_desig> do

[ <host_language_statement> ]*
[ <ADAMS_statement> ]*

<end_loop_stmt> ::= exit_loop

<element_of_stmt> ::= <adams_var> is_an_element_of <set_desig>

<set_copy_stmt> ::= copy_to <element_desig> from <set_desig>

<set_assign_stmt> ::= assign_to <element_desig> from <retrieval_set> �
assign_to <element_desig> from <enumerated_set> �
NULLSET

<make_empty_stmt> ::= make_empty <element_desig>
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<insert_stmt> ::= insert <element_desig> into <set_desig>

<remove_stmt> ::= remove <element_desig> from <set_desig>

<union_stmt> ::= <element_desig> is_union_of <set_desig> [ , <set_desig> ]*

<intersect_stmt> ::= <element_desig> is_intersection_of <set_desig> [ , <set_desig> ]*

<complement_stmt> ::= <element_desig> is_complement_of <set_desig1> wrt <set_desig2>

6.3. Semantics

6.3.1. Set Denotation
(1) Only in the set instantiating statement is a initialization clause <initial_clause> permitted,

which will initialize the newly denoted set to some existent set. The latter may be a named
set, or it may be an enumerated set that is completely designated in the instantiating state-
ment, or it may be a created set in the form of a <retrieval_set>.

(2) NULLSET is the literal ADAMS name of the empty set.

(3) The view statement, in the form of either attributes_of or maps_of provides a mechanism
for obtaining all of the attributes and/or maps associated with a class and its super classes.
Note that the association mechanism only provides access to the functions associated with a
particular element at its level of definition.

The view statement provides no security mechanism. Possibly, it should not be imple-
mented in the same form as given.

(4) Since a set is an ADAMS element a <set_desig> must be a general <element_desig>. But,
it is convenient to allow other more flexible ways of denoting sets, such as by enumeration
or by retrieval operations—these are embraced by the concept of a <set_desig>. However,
it makes no sense to have an enumerated set be the destination of a set operation, such as
union. Consequently, we can not use <element_desig> and <set_desig> interchangeably.
Syntactic details and differences are given in section 8.2. To understand the following
manipulative semantics, it is convenient to assume that an <element_desig> is synonymous
with a "set_name".

6.3.2. Set Manipulation
(1) A set is implemented by a structure (possibly an O-tree [OrP88]) which denotes what ele-

ments (e.g. which unique id’s) constitute the set. It is a set of references to its constituent
elements.

It is anticipated that the constituent elements of many sets will be distributed over distinct
storage devices.

(2) To reference an association set, either the name of the set must be explicitly known, or a
synonym, which was established in the class declaration, must be used.

(3) A set loop statement is a true iteration statement, it performs the enclosed set of statements
for each element in <set_desig>. Behavior will be unpredictable if the composition of
<set_desig> is altered in the course of the loop.

The initial for_each initializes a looping statement which sets the <variable_name> equal
to each element in the designated set in turn and then executes any following host language
and/or ADAMS statements up to the closing <e_delim> ">>".
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(4) The loop variable, <variable_name>, need not be declared, since its class is completely
specified by the class of elements in the existing <set_desig>.

(5) The exit_loop statement is exactly analogous to a "break" statement in C. It permits the
immediate exit from the innermost ADAMS set loop. Note that inclusion of the C "break"
statement within an ADAMS loop will also exit the loop — it will not exit any enclosing C
iterator.

(6) The <element_of> construct returns the uid of a single element in a set. If the set consists
of more than one element, it is indeterminant which element will be assigned to the
<adams_var>. It primary purpose is to de-reference a unique element in a retrieval set, e.g.
{ x }, when retrieval is based on a unique key.

The statement fails if the set is empty, so it should normally be preceded with an is_empty
test, which inturn normally implies that the <set_desig> will also be and <adams_var>.

(7) The class of the destination <element_desig> of a set copy statement must be the same as,
or higher in the hierarchy, than the class of the source <set_desig>. Thus, if people is a set
of PERSON entities, then

<< copy_to people from tenured >>

will succeed but
<< copy_to undergrads from people >>

and
<< copy_to untenured from undergrad >>

will fail. The last statement, in which the classes of untenured and undergrad are not com-
parable can not make semantic sense, since the elements in untenured would not have
several FACULTY attributes defined over them, while having several STUDENT attributes
defined. It would violate the class system.

The preceding "copy_to" statement, in which the destination <element_desig> is lower in
the hierarchy than the source <set_desig>, could be semantically interpreted to mean: "for
each element of class PERSON in the set people, create a corresponding element of class
STUDENT in the set undergrads. Duplicate all of the PERSON attributes from the source
element, and set all remaining STUDENT attributes to ’undefined’." However, no such
interpretation would make sense for a set assignment with the same two operands; so we
prefer to apply the rule above to both statements.

(8) The <set_assign> statement differs from the <set_copy> in that the <source_set> is either a
<retrieval_set> or an <enumerated_set>, neither of which are named. The <elem_desig>
now designates the <source_set>.

(9) A set with persistent scope can not have non-persistent members (.e.g. whose scope is
LOCAL) else persistent references would disappear when the creating process terminates.

But clearly, any set can have elements whose scope is higher that the scope of the set. For
example, a local set can reference persistent elements. Less obvious is whether a set should
be allowed to reference persistent elements of lower scope. Such a mechanism could be
viewed as compromising the security of USER elements (see also 9.4). Or it could be
viewed as a mechanism for exporting USER elements. Our implementation will assume the
latter, and allow a set with persistent scope to include any elements of persistent scope.

(10) Insertion of an element of the set must

a) check that the element is of a class that can belong to the set,
b) check that the element has LOCAL scope if the set has LOCAL scope, and
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c) increment the set reference counter of the element, if the set is persistent.

We employ the latter rule, so that on process termination, ADAMS will not have to decre-
ment the set reference counter of all elements that were included in temporary LOCAL sets.
But it has a consequence discussed in section 6.5.

(11) Set assignment is a copy by reference. That is, the set of references constituting the source
<set_desig> replaces the set of references that had constituted the destination
<element_desig>.

All elements of the destination set must be first "removed", that is their set reference
counters decremented, then replaced with pointers to the elements of the source set, each of
whose reference counters are incremented.

The ADAMS <set_copy> statement
<< copy_to <dest_set> from <source_set> >>

is completely equivalent to
<< make_empty <dest_set> >>
<< for_each x in <source_set>
<< insert x into <dest_set> >>

>>

Note that the <source_set> is unaltered. Also note that the <dest_set> must be a
<element_desig> of type SET (whose class is above that of <desig_set> in the class hierar-
chy (note 6)).

(12) Removal of an element from a set does not, in general, delete the element from the system.
It does, however, decrement the set reference counter of the element. If as a result the refer-
ence counter is zero, and if the deletion bit has been set, then the element is physically
deleted.

(13) When a set instance is declared (with a "instantiates_a" statement), it is automatically
empty. The <make_empty> statement will remove any elements from an existing set. Note
that the following three ADAMS sequences

<< make_empty S >>

<< assign_to S from NULLSET >>

<< for_each x in S do
<< remove x from S >>

>>

are all equivalent.

(14) Like assign and copy, the set operators union, intersection, and complement must establish
the class of the result within the class hierarchy. The elements of a relative complement
will belong to the same class as the class of <set_desig1>. The elements of a union will
belong to the class which is the least upper bound in the class hierarchy of its constitutent
elements. The elements of a intersection must belong to a class that is below (in the class
hierarchy) or the same, as the class of every argument <set_desig>. Such a greatest lower
bound may not have been defined by the user; it must be defined on the fly. See "Imple-
menting Set Operators over Class Hierarchies" [Pfa88] for more details.

If <set_desig1> denotes the set { a, b, c } and <set_desig2> denotes the set { b, c, d, e, f }
then execution of the ADAMS statement
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<< <element_desig> is_complement_of <set_desig
1
> wrt <set_desig

2
> >>

will leave <element_desig> denoting the set { d, e }.

6.4. Examples
The example below is a horrible way of retrieving all undergraduate students who are

majoring in CS. A <retrieval_set>, as described in the next section, would be much more
efficient.

char data_value[20];
.
.

<< cs_majors instantiates_a STUDENT_SET >>
<< for_each x in undergrad do
<< fetch into data_value from x.major >>

if (strcmp (data_value, "CS") == 0)
<< insert x into cs_majors >>

>>

The following C code implements a rather inefficient set intersection operator. The system
intersection operator employed by the <intersect_statement> is much better; we present this only
to illustrate principles of set manipulation and ADAMS coding.

intersect (Z, X, Y)
<< ADAMS_var Z, X, Y >>

/*
** This procedure forms a set Z which denotes those elements
** belonging to both the sets X and Y (i.e. their intersection).
*/
{

<< ADAMS_var z_elem >>

<< copy_to Z from X >>
<< for_each z_elem in Z do

if(!member_of(z_elem, Y))
<< remove z_elem from Z >>

>>
}

The O(n) algorithm is trivial; let Z initially be all of X and strike out those elements which are
not also in Y. The member_of function is described in section 11.

The treatment of element removal can be illustrated by the following example. Note that
these statements need not occur in the same process!

<< x instantiates_a Q>>
.
.
.

<< insert x into S >>
.
.
.

<< delete x >>
.
.
.

<< remove x from S >>

If x and S have persistent scopes, then on completion of the second statement the reference
counter of the element x will be 1 (because of the insertion). Consequently, the following request
to remove x as an element will be deferred, only its deletion bit will be set. When, subsequently
the element is deleted from S, its reference counter will have been decremented to zero and
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because its deletion bit has been set, it will be actually deleted.

6.5. Discussion
The implementation of sets is going to be dicey, as some of the following comments indi-

cate.

It is not clear how to represent a set in a distributed memory environment. In a uni-
processor, or a shared memory, environment a set could be represented by a single element
referencing structure. In a multi-memory, multi-device environment should the defining element
membership structure of the set also be distributed?

Set copy could be denoted by a more traditional assignment operator symbol, such as :=.
Then we could have

<dest_set> := <source_set>

instead of
copy_to <dest_set> from <source_set>

But is this wise? Does the different syntax serve to focus the user’s attention on the nature of the
assignment, or is it just distracting?

This is the place to explore the implementation of a relational project operator, ΠX (set ).
The problem really has to do with the class hierarchy. Elements in the set ΠX (set ) belong to
class X, where X belongs somewhere between the class of "set elements" and the universal class
CLASS. But how is such a class created and inserted into the hierarchy?

In the element deletion example of the preceding section, the element x was not actually
deleted by the <delete_element> statement, because its set reference counter was non-zero. But
if S was a LOCAL set that counter would not be incremented. The element x would be deleted
even though a reference to it still occurred. This is a clear anomaly. But, if the set S is LOCAL,
the insert, remove, and delete statements must all occur in the same program—so it is a clear pro-
grammer error, not an ADAMS error!

In our current implementation of
for_each <elem_desig> in <set_desig>

<loop_body>

the set denoted by <set_desig> can not be altered. However, changing this limitation as in
[AgG89], would effectively yield fixpoint queries [AhU79].
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7. Attribute and Map Inverses

7.1. General Description
ADAMS attributes and maps are, by design, single valued. Expressions of the form

<element_desig>.<attr_desig> and <element_desig>.<map_desig> denote a single data value or
ADAMS element, respectively. But the essence of much database processing is the access to
those elements, or entities, which have some specified attribute (or map) value. For example, we
might want to access all STUDENT entities whose major is ’CS’. We want to denote the inverse
image of the data value ’CS’ under the major attribute function. In general, the inverse image of
any function is a set.

This section describes the syntax of such set denotation, which we will generally call a
<retrieval_set>. This special form of set denotation could have logically been included in the
preceding section, but there is sufficient material to treat it separately.

Regarding all attributes and maps as sets of triples of the form

( <element_id>, <attribute_id>, <data_value> )

or

( <element_id>, <map_id>, <element_id> )

specification of the first two components in each case will yield the unique (because both are
functions) third component. An inverse operation occurs whenever the last two triple com-
ponents are specified, as in

( x , major, ’CS’ )

or

( x , advisor, y )

where y is a unique faculty id. In both cases we want the set of all elements x for which the tri-
ple exists in the ADAMS database. The first case would yield all elements "who major in CS" as
above.

One of the earliest treatments of data representation by means of ordered triples is the semi-
nal LEAP system [FeR69] which simulated associative memory by hash coding. However, this
triple notation by itself is syntactically incomplete. The elements { x } of the inverse set must all
belong to some class; and that class must be specified. To see that this is really a problem, con-
sider an inverse of the form

( x , name, ’Chip’ )

The inverse element, x , might denote a person, a dog, or even an electronic component whose
"name" is ’chip’. To be well formed, the class of the inverse elements must be specified. To be
safe, the inverse elements must be restricted to a finite set.

Inverse operations are specified using a predicate syntax, not a triple syntax.

7.2. Syntax
<retrieval_set> ::= ’{’ <bound_var> in <set_desig> ’|’ <predicate> ’}’

7.3. Semantics
(1) A retrieval set can only consist of elements. It is impossible to retrieve a set of "data

values".

(2) The class of a retrieval set is well defined; it must be the same as <set_desig>.
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(3) Because all elements satisfying the predicate expression are restricted to membership in
<set_desig>, this retrieval expression must be "safe" (p.247, [Mai83]).

7.4. Examples
The following straight forward example retrieves CS majors. It is equivalent to

{ x } = ’CS’.major-1 |
undergrad

that is, the inverse image of the major attribute restricted to the set undergrad.
<< cs_majors instantiates_a STUDENT_SET >>
<< assign_to cs_majors from { x in undergrad | x.major = ’CS’ }>>

The following is an interesting array inverse. It finds all zero elements of the array x .
<< zeros instantiates_a REAL_ATTRIBUTE_SET >>
<< assign_to zeros from { f in x->attr | x.f = ’0’ } >>

Note that zeros is a set of attributes. Assuming that we might like the identity of the zeros, we
might expect to display their locations by

<< for_each f in zeros do
printf ("%s0, name_of(f) );
>>

7.5. Discussion
The issue of order comparisons, or inequalities, in predicate expressions is still very much

in the air. Suppose, in the matrix example that we wanted the identity of all negative entries, as
in:

<< negative instantiates_a REAL_ATTRIBUTE_SET >>
<< assign_to negative from { f in x->attr | x.f < ’0’ } >>

What does the ’<’ mean?, less than lexicographically? or less than numerically? The latter would
require either creating the attribute index using numeric keys or fetching x.f , converting it to a
numeric value, and performing the comparison in the host language.
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8. ADAMS Names and Designators

8.1. General Description
A designator is a symbolic string which serves to designate a single ADAMS element; it

may be a data value, an attribute, a map, an entity, or a set of entities. The most basic designator
is a name. By an ADAMS name we mean a literal string that identifies an ADAMS element. In
all host languages the literal sequence, -2.53, denotes the unique real value ’-2.53’, or more
correctly the binary string whose conventional interpretation is that real value. In ADAMS,
literals are names, each of which denotes a distinct entity, that are entered into the dictionary for
subsequent use.

But simple "literal names" turn out to be inadequate for denoting and describing vast collec-
tions of persistent data. We find we want to be able to parameterize names and to be able to sub-
script them as well. Moreover, as noted by [KhC86] naming is not the only way of identifying
objects. Objects, or entities, may be designated in a variety of ways. A variable may be used to
designate different entities, depending on its current value. (In ADAMS, variables function
effectively as pointers.) An entity may be designated by an expression, which is evaluated at
run-time. A set entity may be designated by retrieval expression which both creates the set and
denotes it as well.

This section details the various ways that ADAMS designators may be constructed. Since
the designation, or identification, of data and sets of data, is central to ADAMS role in storing and
accessing of large databases, this syntax is crucial. And since naming is a key form of designa-
tion, a flexible syntax for forming names is important.

8.2. Syntax
<char_seg> ::= <string of letters and/or digits>

<param_seg> ::= $<ordinal_number>

<pattern_seg> ::= <char_seg> � <param_seg>

<dict_class_entry> ::= <pattern_seg> [ _<pattern_seg> ]*

<actual_name> ::= <char_seg> [_<char_seg>]*

<dict_instance_entry> ::= <actual_name> |
<actual_name> ’[’ <subscript_decl> ’]’

<subscript_decl> ::= <subscript_pool_name> [ , <subscript_pool_name> ]*

<class_name> ::= [ <scope> ] <actual_name>

<element_name> ::= <actual_name> | <subscripted_name>

<subscripted_name> ::= <actual_name> ’[’ <subscript> ’]’

<subscript> ::= <subscript_value> [ ,<subscript_value> ]*

<subscript_value> ::= <subscript_pool_elem> � ( <int_expression> )

<ADAMS_var> ::= <actual_name>

<variable_list> ::= <ADAMS_var> [, <variable_list> ]

<variable_decl_stmt> ::= ADAMS_var <variable_list>
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<element_desig> ::= [ <scope> ] <element_name> � <variable_name> �
<element_desig>.<map_desig> � <ADAMS_var>

<variable_name> ::= var <host_language_variable>

<attr_desig> ::= <element_desig>

<map_desig> ::= <element_desig>

<set_desig> ::= <element_desig> | <enumerated_set> |
NULLSET | <retrieval_set> |
<element_desig>-><synonym>

<range> ::= <subscript_value> .. <subscript_value>

<range_subscript> ::= <range> [ , <subscript> ]*

<enumeration_elem> ::= <element_name> |
<actual_name>’[’<range_subscript>’]’

<enumerated_set> ::= ’{’ [ <enumeration_elem> [ , <enumeration_elem> ]* ]* ’}’

<var_assign_stmt> ::= <ADAMS_var> denotes [ var ] <element_desig>

8.3. Semantics
(1) ADAMS names are composed of segments separated by underscore. The segment may

consist of characters (letters and/or digits) or it may be a formal parameter of the form $n.

"Actual" names have no parameter segments. Similarly, "instance" names, which are used
to actually denote entities in ADAMS storage, may have not parameter segments but may
be subscripted. Codomain, subscript pool, and variable names may be neither parameter-
ized nor subscripted.

(2) A dictionary "class_name" is a pattern asserting that all names with this pattern have the
declared properties of the class. Such dictionary names with parameter segments can be
used only in class definition statements, such as

<char_seg>_$1_<char_seg> isa ...

or

$1_<char_seg>_<char_seg>$2 isa ...

The parameter segment, $n, can match any character segment, and that character segment
(actual parameter) will replace the parameter segment (formal parameter) throughout the
remainder of the definition, wherever it appears again. Note that a single (formal) parame-
ter segment can never be replaced by a segmented (actual) string.

These dictionary "class names" provide a mechanism for parameterized name formation.
Only the pattern need be stored in the dictionary. Instantiation names can not be parameter-
ized.

Since, by itself a parameter segments such as $1 would match all (unsegmented names), a
<dict_class_name> must contain at least one character segment.

(3) All ADAMS variables in a program segment must be declared, otherwise the character
string is assumed to be a instance name that exists in the dictionary.
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(4) To instantiate an entity using a "instantiates_a" statement, one need only establish a one-
to-one correspondence between the denoting name, which may be subscripted, and a unique
element id. There is no need to actually allocate storage for the entity. If the dictionary
instance name is a simple <actual_name>, then a unique id is allocated for that name. If the
instance name is subscripted, e.g. x[<subscript_pool>, <subscript_pool>], then as before a
unique id is associated with the <actual_name>. This must be modified by a distinct integer
suffix for each of its possible n subscript values. Thus the correspondence is defined impli-
citly, rather than explicitly.

Dictionary lookup of instance names, even if subscripted, is always by the initial
<actual_name> portion.

(5) The most commonly used subscripts are the non-negative integers 0, 1, 2, ... , which are
often programmatically manipulated within the host language. To provide for this, there is
a predefined subscript pool of such natural numbers denoted by natural. These natural sub-
scripts are then represented in ADAMS statements by integer expressions in the host
language. To emphasize this they must be delimited by parentheses ( ... ), which are inter-
preted to mean "evaluate the enclosed host language integer expression, and if non-negative
use as the subscript value".

Given a doubly subscripted ADAMS instance x [ <natural >, <natural > ], an ADAMS
statement referencing this instance might be:

<< store from particle_mass into x[(3), (n+5/2)] >>

(6) In ADAMS, even if a name is subscripted with values from several subscript pools, it is the
n-tuple of all subscript values that is treated as a single "subscript".

(7) Using the var <host_language_variable> construct permits ADAMS to escape its own
name space and use program names. The current value of the <host_language_variable> is
used provide the appropriate string, in the case of declarations and other ADAMS construc-
tors, or value, in the case of retrieval expressions.

(8) Since attributes, maps, and sets are all ADAMS elements (or entities), their designators all
have the form of a general <element_desig>. However, there are situations, such as
<value_desig>, where one must use a <attr_desig> as one of its components. Such con-
straints are not easily captured in the BNF syntax we are using.

(9) It is assumed that the compiler has access to the dictionary. It must, in order to verify
instance names. Consequently, all literal instance names can be replaced with the
corresponding unique id’s at compile time. (This assumes no change to the dictionary entry
after compilation, or the last exectution of the program.)

(10) It is also assumed that compilation creates the LOCAL version of the dictionary in the form
of a loadable program unit. It has all the needed information. Consequently, sophisticated
pattern matching will have no run-time penalty.
Where new names are declared with permanent scope (USER, GROUP, or SYSTEM) these
are marked, and actually copied into those portions of the dictionary on successful comple-
tion of the program.

(11) An <enumerated_set> is just that, the enumeration of the literal names of zero, or more,
constituent elements. For convenience, we also allow the use of a <range> of subscript
values in this construct as a simple way of declaring enumerated sets. This is the only use
of the <range> construct.

Both <subscript_value>s of the <range> must exist, and the first must precede the second in
the subscript pool.
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(12) An <ADAMS_var> denotes a element (more particularly, its unique id). It is unnecessary
to declare the class of a <ADAMS_var> because it can be determined by the context (as in a
set loop construct). Actually <ADAMS_var>s will be typed in the host language, as in the
C declaration

UNIQUEID <ADAMS_var>;

Thus variable names, and the variable assignment statement can be used to provide an inter-
face between ADAMS designations and host language procedures as in

<< <ADAMS_var> denotes <set_desig> >>
CALL SORT (<ADAMS_var>)

The host language type, UNIQUEID, of <ADAMS_var>s may be environment dependent.

It is worth noting that while an ADAMS variable can be assigned to denote any element

8.4. Examples
The first three statements illustrate how ADAMS declares generic relations and relational

tuples. The last two statements then use these SYSTEM declarations to define an instance rela-
tion, faculty, as illustrated in section 1.5.1. This relation is initially empty.

<< SCHEMA isa SET
of ATTRIBUTE elements, scope is SYSTEM >>

<< $1_TUPLE isa CLASS
having attributes = $1 , scope is SYSTEM
provided #$1.class_of = ’SCHEMA’# >>

<< $1_RELATION isa SET
of $1_TUPLE elements, scope is SYSTEM >>

<< FACULTY instantiates_a SCHEMA
consisting of { name, soc_sec_nbr, b_date, rank, dept },
scope is USER >>

<< faculty instantiates_a FACULTY_RELATION, scope is USER >>

In the example of Section 4.4, a map class with the class name FACULTY_MAP was
declared so that instance maps called advisor and instructor of this class could be established. A
parameterized class declaration, such as below, would have been preferable.

<< $1_MAP isa MAP with image $1_REC, scope is USER >>

<< advisor instantiates_a FACULTY_MAP, scope is USER >>
<< instructor instantiates_a FACULTY_MAP, scope is USER >>

While this offers no economy in the definition of these two specific maps, it does provide a
mechanism for defining the student and course maps without having to additionally declare
STUDENT_MAP and COURSE_MAP. The following instantiations would sufficient.

<< student instantiates_a STUDENT_MAP, scope is USER >>
<< course instantiates_a COURSE_MAP, scope is USER >>

In the following example we will use subscripting to declare (a) the class of all doubly sub-
scripted real arrays, or matrices, and (b) a particular 5x8 matrix denoted by x.
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<< $1_ATTRIBUTE isa ATTRIBUTE
with image $1,
scope is SYSTEM >>

<< val[Zahlen, Zahlen] instantiates_a REAL_ATTRIBUTE,
scope is USER >>

<< REAL_$1_X_$2_MATRIX isa CLASS
having attr = { val[1..$1, 1..$2] },
scope is USER >>

<< x instantiates_a REAL_5_X_8_MATRIX
scope is USER >>

Subsequently, procedures can make use of the permanent data that is denoted by elements of x.
For example,

<< fetch into a[3, 5] from x.val[3,5] >>

An important use of the ADAMS_var concept is the instantiation of elements that have no
name—that is, they have no associated entry in the dictionary. Most elements will be of this
type. In the following example<

<< ADAMS_var x >>
.
.
while (accepting_data)

{
... <accept data from input>

<< x instantiates_a Q >>
<< store from data1 into x.a1 >>
<< store from datan into x.an >>
<< insert x into data_set >>

}

an indefinite number of Q-type elements are being instantiated, having input data associated with
their attributes, and being inserted into a known set data_set. In this code x does not denote the
literal name of the element; it is just a variable denoting an arbitrary element (actually its UNI-
QUEID) for the duration of the loop. By declaring x to be an ADAMS_var the preprocessor is
made aware of this.

8.5. Discussion
Literals are much more important in ADAMS than in traditional languages. In host pro-

gramming languages, literal strings typically "denote themselves", whether they are numeric
literals or quoted literals. In ADAMS, a literal string (or name) denotes a single identifiable
object, or class. The dictionary is simply a mechanism for looking up the meaning of these literal
names.

It is important to note that instance names and variables have the same form, so that it is
impossible to distinguish them within the context of a single ADAMS statement. This is not true
in many other programming languages. In these languages, literals are recognizable because they
are 1) numeric, 2) quoted, or 3) used in a definable context (e.g. procedure names). Two impor-
tant exceptions are named constants in Pascal and defined constants in C. Their literal nature is
discoverable only by compilation. ADAMS employs this paradigm.

Name segments that are to function as "actual parameters" in a parameterized
<dictionary_name> are not distinguished as such. This makes the resulting names more natural,
but it also can lead to problems. For example, which of the two dictionary name patterns,
$1_RELATION or R_$1, should R_RELATION match? There are several, somewhat unelegant,
ways of resolving this (e.g. actual parameter segments can not be capitalized) but I am inclined

37



to wait and see how the present scheme works out.

The syntax of this section has developed the differences between a <dict_class_entry>, a
<dict_inst_entry>, a <class_name>, and a <element_name>. The first two represent the form of
names as they are entered into the dictionary. The former can be parameterized with $n seg-
ments; the latter can specify subscript domains (or pools) that provide subscript values. The last
two represent the form of names as they are used in a program to reference dictionary entries. An
<element_name> can be subscripted, and <class_name> can not—it must be an <actual_name>
comprised of character segments.

In the preceding sections, we have been careful to insure that the syntax conforms to these
rules, but we have also used the words attr, map, and set to emphasize other aspects. The follow-
ing table summarizes the various synonyms we have used in preceding sections

Defined by Referenced by

<dict_class_entry> <class_name>
<attr_class_entry> <attr_class_name>
<map_class_entry> <map_class_name>
<set_class_entry> <set_class_name>

<dict_inst_entry> <element_name>
<attr_entry> <attr_name>
<map_entry> <map_name>
<set_entry> <set_name>

Notice that the type of ADAMS variables is not declared. This prevents strong type check-
ing at compile time. It would be relatively straightforward to correct this. Notice also that only
ADAMS variables can be assigned to denote different entities, using the <var_assign_stat>.
There is no equivalent statement of the form

<element_desig> denotes <element_desig>

This may be beneficial—one can not have two ADAMS names denoting the same entity with
attendant reference counter issues; or it may be detrimental—one can not easily reassign map
images.

A goal of ADAMS, as well as many other object-oriented database systems such as
[OBB89], is to enable static type checking at compile time and minimal interaction with the dic-
tionary at run time. Unfortunately, if one is dealing with persistent data this is easier said than
done. Readily, if the <elem_desig> is a string variable whose value will be provided at run-time
in an interactive mode, then the associated type checking must be provided at run time. But there
are also more subtle problems, even when all element designators are literal names. A particular
name, x, need not exist in the dictionary at compile time—although it must exist before the pro-
cess is actually executed. It must be type checked at execution. Or, the element x which was
validated at compilation may be subsequently deleted from storage (and the dictionary) and
replaced by an element of a different class, but same name, before execution. Again, its type will
have to be validated at run time.

38



9. The Dictionary

9.1. General Description
The dictionary has just two functions. To associate with each literal ADAMS name either

(a) the properties of any entity in the class, if it is a CLASS name, or (b) the unique id
corresponding to that literal name.

9.2. Syntax
The dictionary concept adds only one construct to the ADAMS syntax; that is the scope

construct. But it also adds to essential dictionary manipulation statements.

<scope_clause> ::= scope is <scope>

<scope> ::= SYSTEM | TASK | USER | LOCAL

<rescope_stmt> ::= rescope <entry_type> <dict_entry> as <scope>

<erase_entry_stmt> ::= erase <entry_type> <dict_entry>

<entry_type> ::= CLASS | INSTANCE | CODOMAIN | SUBSCRIPT_POOL

<dict_entry> ::= <dict_class_entry> | <dict_inst_entry>

9.3. Semantics
The semantics associated with the dictionary and dictionary maintenance are more fully dis-

cussed in [PFW88]. Here we only mention some of the highlights.

(1) Name scopes are hierarchical. Names declared to have SYSTEM scope are available to all
users. Those declared TASK are available to all members working on a common task,
while USER names are private to that user. LOCAL names are not persistent; they exist
only for the duration of the program.

(2) An ADAMS construct can only reference other constructs of the same or higher scope.

(3) Note that scope is only associated with dictionary entries, that is with the names of ADAMS
classes and elements. Representations themselves are only categorized as either persistent
or temporary (LOCAL). The persistence of a named instance is determined by the scope of
its name. The default persistence of an unnamed instance (e.g. denoted in the program by
an ADAMS variable) is governed by the scope of its class. The only meaningful use of a
<scope_clause> in the instantiation of an unnamed instance is to declare it to be a LOCAL
(temporary) instance of an other persistent class.

The elements of a persistent set must themselves be persistent.

(4) To a compiling, or executing, program the dictionary can be viewed as consisting of four
sub-dictionaries—its local, user, task, and system sub-dictionaries. For name resolution, the
local sub-dictionary is searched first, then the user, task, and system sub-dictionaries, in that
order. Consequently, a user can "redefine" any name declared at a higher scope.

(5) Insertion of a new <dictionary_name> into a sub-dictionary can succeed only if that
<dictionary_name> does not already exist in that sub-dictionary or in any higher sub-
dictionary that is being referenced along a path through the sub-dictionary. This requires
keeping track of name reference by user id’s.

(6) Dictionary names can not be deleted if they are currently being referenced by entries in
other sub-dictionaries.
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(7) Rescoping a name can be viewed as a process of deleting and then adding it again; but not
quite. It must be conducted with respect to all other users, ignoring the user issuing the
command.

(8) Unlike the "delete" statement, the "erase" statement does not delete a data item from per-
sistent storage, it merely erases its name from the dictionary. Erasing a <class_name> is
identical to deleting it, since classes only have existence in the dictionary.

(9) Names appearing in the dictionary are segregated according to the 4 <entry_type>s. This is
primarily a convenience for maintaining the dictionary itself, but it has the additional value
of extending the name space. A class and a codomain can have the same name. In all other
ADAMS statements the <entry_type> is apparent from the context. Only in these two state-
ments must it be explicitly stated.

9.4. Discussion
All ADAMS statements which manipulate the dictionary, including

<class_decl_statement>s isa
<elem_instance_statement>s instantiates_a
<rescope_statement>s rescope
<erase_entry_statement> erase

must appear in the same source file as the main program which will invoke them. This curious
restriction is imposed by the a desire to optimize performance. But, before examining why we
impose this restriction, lets consider its consequences. With this restriction, no isa or
instantiates_a statements creating either class or instance entries can appear in any separately
compiled code, such as utility routines. This would seem to be a serious restriction. But consider
that no isa or instantiates_a statement involving literal names can, in general, be executed twice!
The names are persistent. Requiring such statements to be with (or even as) the main program
involves little hardship. More general, parameterized isa or instantiates_a statements in which
the <dict_entry> is a host language string variable would be precluded from pre-compilation, and
this might be irksome. For example, one can imagine a general interactive class declaration
module in which a user is prompted for various components needed to define the class.

The reason for this restriction comes from the following. At run time, the open_ADAMS
statement, among other initialization functions, attaches the working dictionary comprised of the
three persistent user ,task , and system sub-dictionaries, together with an empty local sub-
dictionary. In the course of execution the running ADAMS program may add entries to this
local, temporary dictionary. It will save considerable run-time overhead if the compiler actually
creates this local dictionary at compile time, and simply prepends it to the object code. It can
then then be simply loaded by the initial open_ADAMS statement and the run-time equivalents
of the declaration statements can be no-ops. Moreover, this permits the compiler to replace all
literal names with the corresponding element UNIQUID’s to eliminate most run-time dictionary
lookups. If a persistent class, or entry, declaration is made the same procedure is followed,
except that instead of a no-op the run-time equivalent becomes a rescope action which may, or
may not, succeed at the time of execution. In order, to build such a local sub-dictionary at com-
pile time, the pre-processor must see all of the relevant declarations; hence they must be in a sin-
gle source code file, the same one which will issue the open_ADAMS command.

We have indicated that this restriction has been imposed for the sake of efficiency. We
should note that it is also a necessity. The preprocessor would have to create some form of local
dictionary to perform type checking on the ADAMS code it is scanning. Moreover, we could not
allow reference to a non-local dictionary entry which has not yet been entered, but which will be
entered by a separate module which will be run before the current code.
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There is no statement to rename a dictionary entry—i.e. change the name of an existing
class from Q to FOO. This is a clear consequence of persistence in the name space. There may
exist programs which refer to the class by its literal name Q. If this were changed, those pro-
grams could become inoperable. A possible solution would be to allow name aliasing. Both Q
and FOO could denote the same class. On one hand, giving a class, or instance, a new and possi-
bly more descriptive name by an alias operator could be valuable, on the other hand it would tend
to exhaust the name space.

The requirement that ADAMS declarations only reference other declarations of equal, or
higher, scope is questionable. It is intended to provide a measure of security. For example, it is
debatable whether a SYSTEM class should have associated USER attribute instances which are
in some sense private to that user. On the other hand, one might want a TASK class which
employs attributes defined several different users within that task. Moreover, enforcing this con-
straint in the <rescope_stmt> is difficult. What is clearly required is that no persistent ADAMS
construct (class or instance) reference a non-persistent construct. Only this is currently enforced.
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10. Transactions

10.1. General Description
ADAMS provides the user with nested transactions based on the well-known model of

Moss [Mos85]. These transactions are designed only to provide concurrency control. Fault
tolerance and reliability control will be buried within the ADAMS implementation and will not
be accessible to the user. However, the casual user need not become involved with either the
transaction concept or concurrency control at all.

A transaction is an ADAMS element (entity or object) belonging to the system defined
class TRANSACTION. A root transaction with LOCAL scope is created automatically by the
<open_ADAMS_statement> and automatically committed (if possible) by the
<close_ADAMS_statement>. None of the intervening ADAMS statements can modify the per-
sistent data space unless the final committment is successful. By creating nested sub-transactions
the user can establish whether the intervening statements within the sub-transaction are committ-
able. If a sub-transaction is not committable (i.e. the <end_trans_statement> fails) the user has
the option of re-executing that sub-transaction or otherwise repairing the damage. If the sub-
transaction is committable (i.e. the <end_trans_statement> succeeds), it is known that none of its
intervening statements can prevent commitment of the root transaction. But the actions of its
statements will actually be committed if and only if the root transaction commits.

10.2. Syntax
<start_trans_stmt> ::= tr_start <trans_desig>

<end_trans_stmt> ::= tr_end <trans_desig>

<abort_stmt> ::= abort <trans_desig>

<lock_stmt> ::= lock <element_desig>

<unlock_stmt> ::= unlock <element_desig>

10.3. Semantics
The semantics of transactions depend on the following SYSTEM declarations
<< TRSTATUS isa CODOMAIN

consisting of #who_knows_what#,
with scope SYSTEM >>

<< tr_status instantiates_a to TRSTATUS_ATTRIBUTE
with scope SYSTEM >>

<< TRANSACTION isa CLASS forward >>
<< TRANSACTIONS isa SET of TRANSACTION elements

with scope SYSTEM >>
<< tr_parent instantiates_a TRANSACTION_MAP >>
<< tr_subset instantiates_a TRANSACTIONS_MAP >>
<< TRANSACTION isa CLASS

having attr = { tr_status, [others ?] }
having maps = { tr_parent, tr_subset, [others ?] }
tr_start:

<definition of tr_start method>
tr_end:

<definition of tr_end method>
with scope SYSTEM >>

(1) Note that the declarations of tr_status, tr_parent, and tr_subset above presume generic
parameterized declarations of the form
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<< $1_ATTRIBUTE isa ATTRIBUTE
with image $1
scope is SYSTEM >>

<< $1_MAP isa MAP
with image $1
scope is SYSTEM >>

(2) The normal sequence to create a sub-transaction would be
<< tr1 instantiates_a TRANSACTION >>
<< tr_start tr1 >>

The first statement creates a transaction element (entity or object). The second statement
actually initializes it. We separate these two functions, so that if the sub-transaction tr1
fails to be committable, it may be reused.

(3) The <open_ADAMS_statement> creates and initializes the root transaction. But the syntax
does not provide a mechanism for returning its identity. It is a "hidden", implicit transac-
tion that is unavailable for user manipulation.

(4) The root transaction can not commit if any of its sub-transactions are uncommittable. But
note that an ABORT(ed) sub-transaction is vacuously committable.

(5) ADAMS will always use time-stamping to passively enforce serializability. The optional
use of a <lock_statement> permits a user to guarantee that no time-stamp reference conflict
can occur on the named entity.

If <element_desig> is a set, then the set itself and each of its constituent elements is also
locked. This provides an easy mechanism for granting may locks in one fell swoop. But
this is only a 1 level inclusion.

(6) A subtransaction must inherit the locks of its parent; a similar inheritance must also be
implemented with respect to time-stamping.

(7) When a sub-transaction, or the root transaction, terminates entities locked in that transaction
are automatically unlocked. The user initiated <unlock_statement> is strictly optional.

(8) To implement the above lock release, each transaction must have an associated <lock_set>.
But this can not be an ADAMS set, because in general elements from distinct classes can be
locked; it must be a system maintained "set".

10.4. Examples
The following example illustrates the process for granting a set of locks on "all the under-

graduate CS majors", presumably for the purpose of a massive update.
<< cs_majors instantiates_a STUDENT_SET >>
<< assign { x in undergrad | x.major = ’CS’ } to cs_majors >>
<< lock cs_majors >>

10.5. Discussion
There is no provision for deadlock detection in the ADAMS syntax. Should there be?

Is the "unlock" option unwise? Moss requires his nested transactions to retain the lock until
the entire transaction terminates. Moreover, suppose a set of elements, such as cs_majors is
locked, and in the course of processing elements of the set are either inserted or deleted. How
would an

<< unlock cs_majors >>

statement be interpreted? Would elements that have been deleted from the set be "unlocked"?
Should elements that are inserted into a set be automatically locked, and those deleted
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automatically unlocked? Both seem risky. A reasonable approach might be to associate with
each process an "invisible" global lockset consisting of all locks obtained by the process. An
unlock command would remove all locks in the intersection of lockset and the set denoted in the
unlock statement. All remaining locks in lockset would be automatically removed on process ter-
mination.

Moss requires that only leaf transactions modify the database? Is this a necessary charac-
teristic of nested transactions? Can it be enforced?
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11. System Procedures
The basic imbedded structure of ADAMS dictates that an ADAMS statement, denoted by

its beginning and ending delimiter will be converted into corresponding host language code
and/or procedure calls by the preprocessor. But in a complete interface there invariably arise
occasions when a host language statement must invoke some predefined ADAMS procedure.
These are typically of two forms: (1) to extract information from the dictionary for comparison,
testing, or display; or (2) to test some aspect of the system. The latter will be boolean (or LOGI-
CAL) functions.

We call these "system procedures". It would be equally true to call them "methods", espe-
cially the latter functions which are clearly associated with specific ADAMS classes.

Since a system procedure (or method) is a host language construct, all formal and actual
parameters must be recognized in the type structure of the host language. The ADAMS <vari-
able> construct is important here. It is the only ADAMS construct which must have a predefined
corresponding host language type. (The correspondence between codomains and host language
types is not pre-defined. It is established with fetch and store methods.)

11.1. Dictionary Interrogation
Many of the procedures below return strings as their functional value—that is, a "string" in

the sense of the host language. Others accept strings as their argument.

class_of ( <ADAMS_element_var> );
returns the class of the designated instance element, as a string. This function
must be defined for all elements.

name_of ( <ADAMS_element_var> );
returns the name of the designated instance element, as a string. Note that most
instances will be unnamed.

unique_id_of ( <ADAMS_element_var> );
returns the unique_id identifying every ADAMS element in a printable string
form.

class_of_member ( <ADAMS_set_var> );
returns the class of the members (elements) of the designated set, as a string. If
the argument is not a SET, it returns the null string.

image_of ( <ADAMS_function_var> );
returns the class of image objects of the designated function, either attribute or
map, as a string. If the argument is neither an ATTRIBUTE nor a MAP, it
returns the null string.

is_instance_name ( <string> );
returns true if the name denoted by the <string> is the name of an instance in the
user’s dictionary.

is_class_name ( <string> );
returns true if the name denoted by the <string> is, or could be, a class name in
the dictionary.
(Note: because of parameterized class naming, it is impossible to always know if
a particular actual name is being used as a name.

11.2. Class Functions
The following functions each return scalar values that are typed according to the host

language’s conventions, usually either integer or boolean; they are functions that are associated
with a particular kind of ADAMS class (or derivative class).
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Notice that in every case the arguments are ADAMS variables, that is entity identifiers
which have been cast into a specific host language variable form.

11.2.1. SET Functions

is_member_of ( <ADAMS_element_var>, <ADAMS_set_var> );
returns true if the <element> is a member (or element) of the specified <set>.

is_empty ( <ADAMS_set_var> );
returns true if the <set> is empty, and false otherwise.

card ( <ADAMS_set_var> );
returns the integer cardinality of the specified <set>.

11.3. Other Predicates
same_element ( <ADAMS_elem_var>, <ADAMS_elem_var> ) returns true if the two variables

denote the same element.
ADAMS_success;

returns true if the last executed ADAMS statement succeeded.
ADAMS_fail;

returns true if the last executed ADAMS statement failed.
This and the preceding function simply test the ADAMS_status register.

11.4. Discussion
Should all system procedures (or methods) be clearly identifiable, say with an embedded

dollar sign, etc.
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12. Program Examples
In this section we simply provide a small collection of illustrative ADAMS examples.

12.1. A Very Small Test Case
The following two short programs which can be used as a simple test case illustrate the

basic principles of ADAMS. The first program simply defines a persistent codomain, an attribute
class with two attribute instances, a generic class, and a set class. No data, as we customarily
understand it, is created or stored.

main()
/*
** This program creates a simple database structure.
** EMPLOYEE is a class of elements with attributes, or schema
** { name, job }
** EMPLOYEE_SET is the class of sets of EMPLOYEE elements.
** ’employees’ is an instance set (e.g. relation) of EMPLOYEE
** class elements. ’employees’ is initially empty.
*/
{
char job_id[10];

<< open_ADAMS job_id >>

<< string isa CODOMAIN
consisting of #[a-zA-Z0-9]#
scope is USER >>

<< STRING_ATTRIBUTE isa ATTRIBUTE
with image string
scope is USER >>

<< name instantiates_a STRING_ATTRIBUTE, scope is USER>>
<< job instantiates_a STRING_ATTRIBUTE, scope is USER>>

<< EMPLOYEE isa CLASS
having { name, job },
scope is USER >>

<< EMPLOYEE_SET isa SET of EMPLOYEE elements,
scope is USER >>

<< employees instantiates_a EMPLOYEE_SET, scope is USER >>

<< close_ADAMS job_id >>
}

The following short program actually instantiates a number of elements belonging to the class
EMPLOYEE, assigns input values to the two string attributes name and job, and inserts each
newly instantiated element into the existing set employees. The reader should feel completely
comfortable with these two examples before looking at the more complex ones which follow.

main()
/*
** This program enters data into the simple database structure
** created by the program above, and echoes it back.
** Note: ’job_id’ is currently a dummy parameter to ’open_ADAMS’.
*/
{
char job_id[10];
char in_name[20], in_job[20];
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int n;

<< open_ADAMS job_id >>
<< ADAMS_var x >>

printf ("Enter name and job for each employee\n");
printf (" A ’quit’ string terminates entry\n");
n = 10;
while (n--)

{
printf ("name >>");
scanf ("%s", in_name);
if (*in_name == ’q’)

break;
printf (" job >>");
scanf ("%s", in_job);
if (*in_job == ’q’)

break;
<< x instantiates_a EMPLOYEE, scope is USER >>
<< store from in_name into x.name >>
<< store from in_job into x.job >>
<< insert x into employees >>

}

<< for_each x in employees do
<< fetch into in_name from x.name >>
<< fetch into in_job from x.job >>

printf ("%-20.20s\t%-20.20s\n", in_name, in_job);
>>

<< close_ADAMS job_id >>
}

The following small program illustrates the use of retrieval sets. It re-emphasizes that
ADAMS is not designed to be an end-user database system; in particular, it does not provide the
user with an interactive query language. Instead, queries must first be ’parsed’ to create an
appropriate 1st order predicate expression. If queries were initially expressed in an SQL syntax,
such as,

SELECT name, job
FROM employees
WHERE name = in_name AND job = in_job

they could be converted to the equivalent ADAMS expression
{ x in employees |

x.name = var in_name and x.job = var in_job }
to actually perform the query.

main()
/*
** This program queries the simple database structure
** created by the program above, and echoes it back.
*/
{
char job_id[10];
char in_name[20], in_job[20];
int n;

<< open_ADAMS job_id >>
<< ADAMS_var x >>

<< response instantiates_a EMPLOYEE_SET, scope is LOCAL >>
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n = 10;
while (n--)

{
printf ("Enter name and/or job search key\n");
printf (" Use * to indicate a don’t care conditon.\n");
printf (" ’quit’ as either search key will terminate.\n");
printf ("name >>");
scanf ("%s", in_name);
if (*in_name == ’q’)

break;
printf (" job >>");
scanf ("%s", in_job);
if (*in_job == ’q’)

break;
/* ’Parse’ input query */

if (*in_name == ’*’ && *in_job == ’*’)
{
printf ("No search criteria specified\n");
printf ("Dumping all ’employees’\n");

<< copy_to response from employees >>
}

if (*in_name != ’*’ && *in_job == ’*’)
{ /* Only ’name’ specified */

<< assign_to response from
{ x in employees | x.name = var in_name } >>

}
if (*in_name == ’*’ && *in_job != ’*’)

{ /* Only ’job’ specified */
<< assign_to response from

{ x in employees | x.job = var in_job } >>
}

if (*in_name != ’*’ && *in_job != ’*’)
{ /* Both attributes specified */

<< assign_to response from
{ x in employees |

x.name = var in_name and
x.job = var in_job } >>

}
printf ("\nResponse set is:\n");

<< for_each x in response do
<< fetch into in_name from x.name >>
<< fetch into in_job from x.job >>

printf ("\t%-20.20s\t%-20.20s\n", in_name, in_job);
>>
}

<< close_ADAMS job_id >>
}

12.2. Definition of the Running Semantic Example
The following program defines the database structure shown in figure 1.2, and instantiates 6

permanent, but empty, sets named tenured, untenured, graduate, undergrad, courses, and enroll-
ment.

main()
/*
** This program creates the school database structure described
** in the paper "ADAMS Interface Language" presented
** at the Hypercube Conference Jan 1988.
** It does not actually insert any elements into its
** sets (or relations).
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*/
{
char job_id[10];

<< open_ADAMS job_id >>

/* codomain definitions */
<< string20 isa CODOMAIN

consisting of #[a-zA-Z0-9]{1,20}#
scope is USER >>

<< academicrank isa CODOMAIN
consisting of
#(research|visiting|)(full|associate|assistant)professor#
scope is USER >>

<< deptcode isa CODOMAIN
consisting of #[0-3][0-9]#
scope is USER >>

<< coursenbr isa CODOMAIN
consisting of #[A-Z]{2,4}[0-9]{3}#
scope is USER >>

<< academicterm isa CODOMAIN
consisting of #[8-9][0-9][1-3]#
scope is USER >>

<< SSnbr isa CODOMAIN
consisting of #[0-9]{9}#
scope is USER >>

<< gradeoption isa CODOMAIN
consisting of
#A+|A|A-|B+|B|B-|C+|C|C-|D+|D|D-|F|INC|P|WP|WF#
scope is USER >>

<< date isa CODOMAIN
consisting of #[0-9]{2}/[0-9]{2}/88#
scope is USER >>

/* attribute definitions */
<< string20_ATTRIBUTE isa ATTRIBUTE with image string20, scope is USER >>
<< deptcode_ATTRIBUTE isa ATTRIBUTE with image deptcode, scope is USER >>
<< coursenbr_ATTRIBUTE isa ATTRIBUTE with image coursenbr,

scope is USER >>
<< academicterm_ATTRIBUTE isa ATTRIBUTE with image academicterm,

scope is USER >>
<< SSnbr_ATTRIBUTE isa ATTRIBUTE with image SSnbr, scope is USER >>
<< gradeoption_ATTRIBUTE isa ATTRIBUTE with image gradeoption,

scope is USER >>
<< date_ATTRIBUTE isa ATTRIBUTE with image date, scope is USER >>

<< name instantiates_a string20_ATTRIBUTE, scope is USER >>
<< rank instantiates_a deptcode_ATTRIBUTE, scope is USER >>
<< dept instantiates_a deptcode_ATTRIBUTE, scope is USER >>
<< c_nbr instantiates_a coursenbr_ATTRIBUTE, scope is USER >>
<< c_name instantiates_a string20_ATTRIBUTE, scope is USER >>
<< term instantiates_a academicterm_ATTRIBUTE, scope is USER >>
<< major instantiates_a deptcode_ATTRIBUTE, scope is USER >>
<< s_nbr instantiates_a SSnbr_ATTRIBUTE, scope is USER >>
<< grade instantiates_a gradeoption_ATTRIBUTE, scope is USER >>
<< date_last_mod instantiates_a date_ATTRIBUTE, scope is USER >>

/* a class declaration reqired */
/* for the following map functions */

<< FACULTYREC isa CLASS
having data_fields = { name, rank, dept },
scope is USER >>

<< FACULTY isa SET of FACULTYREC elements,
having { date_last_mod },
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scope is USER >>
/* map functions */

<< FACULTYREC_MAP isa MAP with image FACULTYREC, scope is USER >>

<< advisor instantiates_a FACULTYREC_MAP, scope is USER >>
<< instructor instantiates_a FACULTYREC_MAP, scope is USER >>

/* class declarations required */
/* for the following map functions */

<< STUDENTREC isa CLASS
having data_fields = { name, major, s_nbr },
having maps = { advisor },
scope is USER >>

<< STUDENTS isa SET of STUDENTREC elements,
scope is USER >>

<< COURSEREC isa CLASS
having data_fields = { c_nbr, c_name, term },
having maps = { instructor },
scope is USER >>

<< COURSES isa SET of COURSEREC elements,
scope is USER >>

/* Final declaration of many-to many */
/* enrollment relationship */

<< STUDENTREC_MAP isa MAP with image STUDENTREC, scope is USER >>
<< COURSEREC_MAP isa MAP with image COURSEREC, scope is USER >>
<< student instantiates_a STUDENTREC_MAP, scope is USER >>
<< course instantiates_a COURSEREC_MAP, scope is USER >>

<< ENROLLREC isa CLASS
having data_fields = { grade },
having maps = { student, course },
scope is USER >>

<< ENROLLMENT isa SET of ENROLLREC elements,
scope is USER >>

/* FINALLY, the 6 actual data sets */
<< courses instantiates_a COURSES, scope is USER >>
<< enrollment instantiates_a ENROLLMENT, scope is USER >>
<< tenured instantiates_a FACULTY, scope is USER >>
<< untenured instantiates_a FACULTY, scope is USER >>
<< graduate instantiates_a STUDENTS, scope is USER >>
<< undergrad instantiates_a STUDENTS, scope is USER >>

<< close_ADAMS job_id >>
}

A slight variant of the definitional program above, which makes use of hierarchical class
definitions in which both PROFESSORs and STUDENTs are sub classes of PERSON, is shown
below. In addition we have used parameterized declarations to simplify the definition of maps
and attributes.

main()
/*
** This program creates a database structure based
** on the one described
** in the paper "ADAMS Interface Language" presented
** at the Hypercube Conference Jan 1988
** The significant change is that, students and faculty
** are subclasses of the class of PEOPLE, and consequently
** inherit all ’people’ properties.
** It does not actually insert any elements into its
** sets (or relations).
*/
{
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char job_id[10];

<< start_ADAMS job_id >>

/* codomain definitions */
<< string20 isa CODOMAIN

consisting of #[a-zA-Z0-9]{1,20}#
scope is USER >>

<< academicrank isa CODOMAIN
consisting of
#(research|visiting|)(full|associate|assistant)professor#
scope is USER >>

<< deptcode isa CODOMAIN
consisting of #[0-3][0-9]#
scope is USER >>

<< coursenbr isa CODOMAIN
consisting of #[A-Z]{2,4}[0-9]{3}#
scope is USER >>

<< academicterm isa CODOMAIN
consisting of #[8-9][0-9][1-3]#
scope is USER >>

<< SSnbr isa CODOMAIN
consisting of #[0-9]{9}#
scope is USER >>

<< gradeoption isa CODOMAIN
consisting of
#A+|A|A-|B+|B|B-|C+|C|C-|D+|D|D-|F|INC|P|WP|WF#
scope is USER >>

<< date isa CODOMAIN
consisting of #[0-9]{2}/[0-9]{2}/88#
scope is USER >>

/* attribute definitions */
<< $1_ATTRIBUTE isa ATTRIBUTE

with image $1, scope is SYSTEM >>

<< name instantiates_a string20_ATTRIBUTE, scope is USER >>
<< rank instantiates_a academicrank_ATTRIBUTE, scope is USER >>
<< dept instantiates_a deptcode_ATTRIBUTE, scope is USER >>
<< c_nbr instantiates_a coursenbr_ATTRIBUTE, scope is USER >>
<< c_name instantiates_a string20_ATTRIBUTE, scope is USER >>
<< term instantiates_a academicterm_ATTRIBUTE, scope is USER >>
<< major instantiates_a deptcode_ATTRIBUTE, scope is USER >>
<< soc_sec_nbr instantiates_a SSnbr_ATTRIBUTE, scope is USER >>
<< b_date instantiates_a date_ATTRIBUTE, scope is USER >>
<< grade instantiates_a gradeoption_ATTRIBUTE, scope is USER >>
<< date_last_mod instantiates_a date_ATTRIBUTE, scope is USER >>

/* a class declaration reqired */
/* for the following map functions */

<< PERSON isa CLASS
having data_fields = { name, soc_sec_nbr, b_date },
scope is USER >>

<< PROFESSOR isa PERSON_REC
having fac_data_fields = { rank, dept },
scope is USER >>

<< FACULTY isa SET of FACULTY_REC elements,
having { date_last_mod },
scope is USER >>

/* map functions */
<< $1_MAP isa MAP

with image $1, scope is SYSTEM >>
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<< advisor instantiates_a PROFESSOR_MAP, scope is USER >>
<< instructor instantiates_a PROFESSOR_MAP, scope is USER >>

/* class declarations required */
/* for the following map functions */

<< STUDENT isa PERSON
having stu_data_fields = { major },
having maps = { advisor },
scope is USER >>

<< STUDENTS isa SET of STUDENT elements,
scope is USER >>

<< COURSE isa CLASS
having data_fields = { c_nbr, c_name, term },
having maps = { instructor },
scope is USER >>

<< COURSES isa SET of COURSE elements,
scope is USER >>

/* Final declaration of many-to many */
/* enrollment relationship */

<< student instantiates_a STUDENT_MAP, scope is USER >>
<< course instantiates_a COURSE_MAP, scope is USER >>

<< ENROLL_REC isa CLASS
having data_fields = { grade },
having maps = { student, course },
scope is USER >>

<< ENROLLMENT isa SET of ENROLL_REC elements, scope is USER >>
/* FINALLY, the 6 actual data sets */

<< courses instantiates_a COURSES, scope is USER >>
<< enrollment instantiates_a ENROLLMENT, scope is USER >>
<< tenured instantiates_a FACULTY, scope is USER >>
<< untenured instantiates_a FACULTY, scope is USER >>
<< graduate instantiates_a STUDENTS, scope is USER >>
<< undergrad instantiates_a STUDENTS, scope is USER >>

<< close_ADAMS job_id >>
}

The following program which loads data into the school database, is primarily of interest
because of the way that it employs conjunctive retrieval sets to verify in-coming data values.

main()
/*
** This module provides a data entry capability
** for the elements in the basic sets of the "school database"
** described in the "ADAMS Interface Language" paper presented
** at the Hypercube Conference, Jan 1988.
**
** It accepts data from a file with format:
** p[u/t] <name> <rank> <dept> professor[untenured/tenured]
** u <name> <ss_nbr> <major> <advisor_name> undergraduate
** g <name> <ss_nbr> <major> <advisor_name> graduate
** c <cnum> <cname> <term> <instructor> course
** e <cnum> <term> <s_name> <ss_nbr> enrollment
** redirected to <stdin>;
** which it then inserts into one of the six basic data sets
** tenured (FACULTY)
** untenured (FACULTY)
** undergrad (STUDENTS)
** graduate (STUDENTS)
** courses (COURSES)
** enrollment (ENROLLMENT).
** Note the frequent use of retrieval sets to verify input and
** establish appropriate maps.
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*/
{
char response[25], attr_value[25], attr_value2[25], attr_value3[25];
char jobid[10];
char name_in[25], rank_in[25], dept_in[25],

ss_in[25], major_in[25], cname_in[25],
cnum_in[25], cterm_in[25], adv_in[25],
inst_in[25];

int advisor_found, course_found, instructor_found, student_found;

<< open_ADAMS job_id >>
<< ADAMS_var f, s, c, e, q_result >>

while (scanf ("%s", response) != EOF)
{
switch (response[0])
{
case ’p’: /* ’tenured’ faculty input */
<< f instantiates_a PROFESSOR, scope is USER >>

scanf("%s %s %s", name_in, rank_in, dept_in);
/* ECHO input */

printf("faculty: %s %s %s \n",
name_in, rank_in, dept_in);

<< store into f.name from name_in >>
<< store into f.rank from rank_in >>
<< store into f.dept from dept_in >>

if (response[1] == ’t’)
{

<< insert f into tenured >>
}

if (response[1] == ’u’)
{

<< insert f into untenured >>
}

break;

case ’u’: /* ’undergrad’ input */
<< s instantiates_a STUDENT, scope is USER >>

scanf("%s %s %s %s", name_in, ss_in, major_in, adv_in);
/* ECHO input */

printf("undergrad: %s %s %s %s\n",
name_in, ss_in, major_in, adv_in);

<< store into s.name from name_in >>
<< store into s.soc_sec_nbr from ss_in >>
<< store into s.major from major_in >>

/* retrieve student’s advisor */
advisor_found = 0;

<< assign_to q_result from
{ f in tenured | f.name = var adv_in

and f.dept = var major_in } >>
if ( !is_empty (q_result))

{
<< f is_an_element_of q_result >>
<< s.advisor = f >>

advisor_found = 1;
}

if ( !advisor_found )
{ /* advisor not tenured, try untenured */
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<< assign_to q_result from
{ f in untenured | f.name = var adv_in

and f.dept = var major_in } >>
if ( !is_empty (q_result))

{
<< f is_an_element_of q_result >>
<< s.advisor = f >>

advisor_found = 1;
}

}
<< insert s into undergrad >>

break;

case ’g’: /* ’graduate’ student input */
<< s instantiates_a STUDENT, scope is USER >>

scanf("%s %s %s %s", name_in, ss_in, major_in, adv_in);
/* ECHO input */

printf("graduate: %s %s %s %s\n",
name_in, ss_in, major_in, adv_in);

<< store into s.name from name_in >>
<< store into s.soc_sec_nbr from ss_in >>
<< store into s.major from major_in >>

/* retrieve student’s advisor */
advisor_found = 0;

<< assign_to q_result from
{ f in tenured | f.name = var adv_in

and f.dept = var major_in } >>
if ( !is_empty (q_result))

{
<< f is_an_element_of q_result >>
<< s.advisor = f >>

advisor_found = 1;
}

if ( !advisor_found )
{ /* advisor not tenured, try untenured */

<< assign_to q_result from
{ f in untenured | f.name = var adv_in

and f.dept = var major_in } >>
if ( !is_empty (q_result))

{
<< f is_an_element_of q_result >>
<< s.advisor = f >>

advisor_found = 1;
}

}
<< insert s into graduate >>

break;

case ’c’:
<< c instantiates_a COURSE, scope is USER >>

scanf("%s %s %s %s", cnum_in, cname_in, cterm_in, inst_in);
/* ECHO input */

printf("course: %s %s %s %s\n",
cnum_in, cname_in, cterm_in, inst_in);

<< store into c.c_nbr from cnum_in >>
<< store into c.c_name from cname_in >>
<< store into c.term from cterm_in >>

/* retrieve course instructor */
instructor_found = 0;

<< assign_to q_result from
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{ f in tenured | f.name = var inst_in } >>
if ( !is_empty (q_result))

{
<< f is_an_element_of q_result >>
<< c.instructor = f >>

instructor_found = 1;
}

if ( !instructor_found )
{ /* instructor not tenured, try untenured */

<< assign_to q_result from
{ f in untenured | f.name = var inst_in } >>

if ( !is_empty (q_result))
{

<< f is_an_element_of q_result >>
<< c.instructor = f >>

instructor_found = 1;
}

}
<< insert c into courses >>

break;

case ’e’:
scanf("%s %s %s %s", cnum_in, cterm_in, name_in, ss_in);

/* ECHO input */
printf("enrollment: %s %s %s %s\n",

cnum_in, cterm_in, name_in, ss_in);

/* retrieve course element */
course_found = 0;

<< assign_to q_result from
{ c in courses | c.c_nbr = var cnum_in

and c.term = var cterm_in } >>
if ( !is_empty (q_result))

{
<< c is_an_element_of q_result >>

course_found = 1;
}

/* retrieve student element */
student_found = 0;

<< assign_to q_result from
{ s in graduate | s.name = var name_in

and s.soc_sec_nbr = var ss_in } >>
if ( !is_empty (q_result))

{
<< s is_an_element_of q_result >>

student_found = 1;
}

if ( !student_found )
{ /* student not graduate, try undergrad */

<< assign_to q_result from
{ s in undergrad | s.name = var name_in

and s.soc_sec_nbr = var ss_in } >>
if ( !is_empty (q_result))

{
<< s is_an_element_of q_result >>

student_found = 1;
}

}
if ( course_found && student_found)

{
<< e instantiates_a ENROLL_REC, scope is USER >>
<< e.student = s >>
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<< e.course = c >>
<< insert e into enrollment >>

}
else

{
if ( !course_found)

printf ("\tUnknown course\n");
else

printf ("\tUnknown student\n");
}

break;
case ’q’:

break;
default:

printf ("unrecognized option on input line\n");
break;

}
}

printf ("\nDisplay of ’tenured’ faculty\n");
<< for_each f in tenured do

<< fetch into attr_value from f.name >>
printf ("%20s, ", attr_value);

<< fetch into attr_value from f.rank >>
printf ("%20s, ", attr_value);

<< fetch into attr_value from f.dept >>
printf ("%s\n", attr_value);

>>
printf ("\nDisplay of ’untenured’ faculty\n");

<< for_each f in untenured do
<< fetch into attr_value from f.name >>

printf ("%20s, ", attr_value);
<< fetch into attr_value from f.rank >>

printf ("%20s, ", attr_value);
<< fetch into attr_value from f.dept >>

printf ("%s\n", attr_value);
>>
printf ("\nDisplay of ’courses’ \n");

<< for_each c in courses do
<< fetch into attr_value from c.c_nbr >>

printf ("%10s, ", attr_value);
<< fetch into attr_value from c.c_name >>

printf ("%20s, ", attr_value);
<< fetch into attr_value from c.term >>

printf ("%5s, ", attr_value);
<< fetch into attr_value from c.instructor.name >>

printf ("instructor: %15s, ", attr_value);
<< fetch into attr_value from c.instructor.dept >>

printf ("%s\n", attr_value);
>>
printf ("\nDisplay of ’graduate’ students\n");

<< for_each s in graduate do
<< fetch into attr_value from s.name >>

printf ("%20s, ", attr_value);
<< fetch into attr_value from s.soc_sec_nbr >>

printf ("%15s, ", attr_value);
<< fetch into attr_value from s.major >>

printf ("%5s, ", attr_value);
<< fetch into attr_value from s.advisor.name >>

printf ("advisor: %s\n", attr_value);
>>
printf ("\nDisplay of ’undergraduate’ students\n");

<< for_each s in undergrad do
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<< fetch into attr_value from s.name >>
printf ("%20s, ", attr_value);

<< fetch into attr_value from s.soc_sec_nbr >>
printf ("%15s, ", attr_value);

<< fetch into attr_value from s.major >>
printf ("%5s, ", attr_value);

<< fetch into attr_value from s.advisor.name >>
printf ("advisor: %s\n", attr_value);

>>
printf ("\nDisplay of ’enrollment’\n");

<< for_each e in enrollment do
<< fetch into attr_value from e.student.name >>
<< fetch into attr_value2 from e.course.c_nbr >>
<< fetch into attr_value3 from e.course.term >>

printf ("\t%s, %s, - %s\n",
attr_value2, attr_value3, attr_value);

>>

<< close_ADAMS job_id >>
}

A very small, but representative, database as displayed by the latter portion of this program
is shown below.

Display of ’tenured’ faculty
Pfaltz, Prof, CS

Simmonds, Prof, APMA
Cohoon, Assoc.Prof, CS

Chartres, Prof, APMA

Display of ’untenured’ faculty
Son, Asst.Prof, CS

French, Asst.Prof, CS

Display of ’courses’
CS_662, Database_Design, s90, instructor: Son, CS
CS_662, Database_Design, s89, instructor: Pfaltz, CS
CS_186, Intro_Fortran, s90, instructor: Pfaltz, CS
CS_320, Discrete_Math, f89, instructor: Chartres, APMA

Display of ’graduate’ students
McElrath, 123-45-6789, CS, advisor: Pfaltz

Loyd, 234-56-7890, CS, advisor: Pfaltz
Watson, 345-67-8901, CS, advisor: Son
Segal, 456-78-9012, CS, advisor: French

Display of ’undergraduate’ students
Able, 111-22-3333, CS, advisor: Pfaltz
Baker, 222-33-4444, CS, advisor: Son

Charlie, 333-44-5555, APMA, advisor: Simmonds
Dog, 444-55-6666, CS, advisor: French
Easy, 555-66-7777, CS, advisor: Pfaltz
Fox, 666-77-8888, APMA, advisor: Simmonds

George, 777-88-9999, CS, advisor: Son
How, 888-99-0000, APMA, advisor: Chartres
Item, 999-00-1111, CS, advisor: Son

Display of ’enrollment’
CS_662, s90, - Segal
CS_662, s90, - Able
CS_662, s89, - McElrath
CS_662, s89, - Loyd
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CS_186, s90, - Baker
CS_186, s90, - Charlie
CS_186, s90, - Item
CS_320, f89, - Charlie
CS_320, f89, - Dog
CS_320, f89, - George
CS_320, f89, - How
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