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Abstract

The Legion Project spends most of its time building metacomputing environments
and applications, but we are also actively building a clustered system, which we have
named Centurion. Centurion is currently a cluster of 64 Alpha PCs, networked with low-
latency gigabit networking hardware from Myricom, joined by a dozen x86-architecture
PCs. We plan on doubling the size of the cluster in the near future. This shared-nothing,
heterogeneous environment is an ideal fit for the Legion metacomputing system, which
provides services such as naming, scheduling, heterogeneous communications, and par-
allel 1/O. Centurion is roughly the size of ”small” HPC systems in use today at super-
computing centers, giving us the opportunity to compare price and performance with
traditional systems, and investigate the hardware and software challenges of building
large clusters with commodity hardware.

This paper will cover our experiences with Centurion and Legion. We begin with an
overview of the Legion metacomputing system. We will then discuss the costs and hid-
den costs of assembling a cluster. We then describe the performance of Centurion, using
microbenchmarks of the communications system, standard parallel application bench-
marks, and user applications. User applications running on the system come from a
variety of scientific disciplines, and range from traditional MPI codes taken straight from
supercomputers to more novel applications using ”bag of tasks” and macro-dataflow for-
malisms. Within this range of applications, we will discuss our successes and failures
with hiding network latency, load balancing, and most importantly, usability of the
system by researchers without extensive training in parallel computing.
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1 Introduction

The coming of gigabit networking technology makes possible the construction of nationwide
virtual computers comprising workstations, high-performance supercomputers, and clusters
of machines. To realize the potential that the physical infrastructure provides, software
must be developed that is easy to use, supports large degrees of parallelism in applications
code, and manages the complexity of the underlying physical system for the user. The Le-
gion project at the University of Virginia is developing such software [5]. Legion addresses
issues such as parallelism, fault tolerance, security, autonomy, heterogeneity, resource man-
agement, and access transparency in a multi-language environment.

As part of this effort, we are building our own clustered system, called Centurion.
Centurion is currently composed of 64 Digital Equipment Corporation Alpha processors,
and will soon be expanded to be over 200 machines and 300 processors. These processors are
interconnected by both a high-speed, low-latency system-area network intended for heavy-
duty application communication (Myrinet), and a partially-switched 100 Mbps Ethernet
control network.

We have learned much in the process of constructing both the hardware and software for
this system. Our experiences range from basic hardware assembly through system software
configuration and run-time system development to application deployment. In this paper,
we will describe some of our experiences in each of these areas. In particular, the ultimate
vardstick for success is whether our system can successfully run scientific applications in a
cost-effective manner.

In the remainder of this paper, we will give overviews of the run-time system and
the hardware, describe our experiences with the hardware, discuss related work, provide
performance measurements, describe applications, and give conclusions.

2 The Software: Legion

Legion is an object-oriented distributed computing system. The Legion design encompasses
ten basic objectives: site autonomy, support for heterogeneity, extensibility, ease-of-use, par-
allel processing to achieve performance, fault tolerance, scalability, security, multi-language
support, and global naming. These objectives are described in greater depth in Grimshaw
et al. [5]. Many of the features supplied by Legion are superfluous in the environment under
discussion—support for heterogeneity, parallel processing, and ease-of-use are of primary
interest to us here. The other features are important in the context of connecting clusters
from remote sites.

Supporting heterogeneity requires Legion to accommodate vastly differing computing
capabilities among constituent machines, including differences in architectures, operating
systems, and installed software. Such support is important to run complex distributed
computations, such as a weather forecasting and visualization program-—portions of the
computation may be best suited for vector supercomputers, message-passing architectures,
or graphics workstations.



In the context of Centurion, Legion provides automatic binary management to ensure
that the same program can run on multiple architectures simultaneously. Legion’s automatic
binary management is one of the ways it simplifies use of a distributed system. Other salient
features include a unified namespace to provide location-transparent execution and support
for automatic checkpointing, migration, and fault recovery.

Legion’s programming model, the macro-dataflow model, supports both intra-object and
inter-object parallelism. The macro-dataflow model is based on dataflow graphs, where arcs
represent communication and nodes represent computation. The dataflow model is realized
in Legion because an object waits for all incoming data items and then automatically invokes
the requisite method in the dataflow graph. Results of the method invocation are passed
along the arcs in the macro-dataflow graph (which may imply returning results to the caller,
or passing them to one or more separate objects in Legion space).

Legion also support fault tolerance, which is a boon to cluster builders. Because objects
in Legion can be transparently migrated, failure of a single node does not negatively affect
the rest of the system. This graceful degradation at the software level is necessary in an
environment comprised of cheap, interchangeable hardware, and facilitates hot-swapping of
failed components.

3 The Hardware: Centurion

3.1 Phasel

The original 64 nodes of Centurion were funded by an NSF Major Research Infrastructure
grant. This grant recognized that computation is increasingly central to the conduct of
science and engineering, augmenting both theory and experimentation. The purpose of this
grant was to develop a platform for collaboration between computer scientists and discipline
scientists (biologists, material scientists, physicists, etc.).

The original suite of target applications included those from biochemistry, chemical
engineering, computer science, electrical engineering, engineering physics, environmental
science, and materials science. All of the applications shared a need for significantly more
computation power than had been available. Further, all of the applications were either
already parallelized or are being parallelized in collaboration with the computer science
team members.

Thus, we set out to build a 25 gigaflop multicomputer from commercial, off-the-shelf
(COTS) components, with the express purpose of supporting scientific computation. We
ended up constructing a 604 peak gigaflop COTS machine. In the process, we faced many
tradeoffs and learned quite a bit about cluster construction.

3.2 Hardware tradeofls

The usual problem of buying any system is to spend a fixed pot of money to buy the
fastest system for whatever problem one plans to run. Like most computer scientists, we
had a huge variety of problems in mind, so we used the SPEC95 cpu benchmarks to assess



individual node performance. We were happy to consider any CPU, but there is no cost-
effective way to buy SPARC or MIPS chips, and we were ignorant about cheap Power PC
options. This left x86 and alpha as options. The next question revolved around the OS. We
knew how to cheaply administer Linux; however, Linux doesn’t run the compilers usually
used to generate SPEC95 results. Using some benchmarking results for a few combinations
of hardware, Linux, and gcc/g77, we convinced ourselves that there was approximately a
10% to 20% performance loss on both the x86 and Alpha systems in question due to using
gee/gT7 verses the best commercial compiler, and that gec/g77 (mainly eges) was steadily
improving these results. So we felt confident in using SPEC95 with proprietary compilers to
compare hardware, with the expectation that the relative performance with gce/g77 would
be the same, even if the absolute performance were somewhat worse.

At the time of our benchmarking, the SPEC95 integer and floating point benchmarks
for the most cost-effective Alpha-based system were roughly twice that of a single x86-based
system, and dual x86 systems were roughly the same cost as single-cpu Alpha systems. We
chose single-cpu Alpha systems. We return to the compiler question later in this paper. In
addition, we had 16 dual-processor Intel Pentium-Pro-based machines acquired piecemeal
from various sources.

We wanted to buy “a lot” of network bandwidth because we wanted to attack tradi-
tional supercomputing problems, which commonly require large bandwidth and low latency
communications. ATM was extremely expensive and not that much faster than 100 megabit
switched Ethernet. Gigabit Ithernet was incapable of connecting large numbers of nodes
at the time of our purchase. The only moderately expensive, high-bandwidth, low-latency
network available at that time was Myrinet. We paid approximately $3,000 per node for
the cpu, memory, and disk; Myrinet cost $1,700 per node for a low-latency network with
a bisection bandwidth of 32 gigabit/sec. for a 64 node system. While spending 40% of
our total money on networking may seem extravagant, we expect that networks with this
level of performance to be much cheaper next year, and we wanted to experiment with next
year’s typical ratio of communications to computation.

In addition to this fast and expensive network, we also spent a small amount of money
per node for a “minimal” Ethernet network. The cheapest Ethernet topology that we could
think of consisted of a 16-port 100 megabit switch connecting 9 100 megabit hubs, each
with 7 systems. This cost approximately $110 per node, including cards and cables. In
contrast, a 64-port 100 megabit switch costs around $400 per node.

3.3 Experiences with Centurion

The first question most people ask when they consider buying a cluster of individual ma-
chines instead of a single, large machine, is “aren’t there a lot of hidden costs of ownership,
ranging from assembly to higher maintenance costs?” These concerns are doubled when
the cluster in question runs Linux and is not assembled by a vendor. We have attempted

1We refer to the collection as Stone Soup because of the similarity in our PC acquisition to the manner
in which the soldier accumulated soup ingredients in the popular folk tale.



to assess these costs. Unfortunately (or fortunately?), our team includes a sysadmin who
has commercial experience administering hundreds of machines, which may not be typical
for most academic departments.

Initial physical assembly and installation of the OS via disk cloning took approximately
2 hours of semi-skilled labor per node; the cost of this labor is only a small fraction of
the cost of a node. We later had to re-install a different OS version from scratch; for that
we worked out a network install that took approximately 10 minutes of labor per node.
We administer the machines using RedHat “packages” and a few simple iterators which
copy files or perform commands on all nodes. We have not had the cluster for long enough
to assess long-term maintenance costs; we did lose 2 cpus and 1 disk (out of 64) to infant
mortality. We had prepared for this situation by ordering spare units which were kept ready
to be swapped in. Again, the Legion run-time environment facilitates this kind of hot-swap
repair at the node level.

We did suffer a bit because of our choice in operating systems. We chose Linux because
we desired a free Unix clone that ran on both Alphas (our new architecture) and Intel boxes
(our old architecture). Also, this helped us to remain compatible both with our research
partners at the Department of Energy National Labs, and with earlier cluster efforts. Red-
Hat 5.0/Alpha was shipped with broken C++ libraries, and RedHat was uninterested in
fixing it, so we downgraded to 4.2. Driver support for Alpha Linux takes a back-seat to x86
drivers; we had to look around a bit to find out which driver versions actually worked with
Alpha Linux. We discovered that we could crash all 64 machines simultaneously with cer-
tain floating point exceptions; that was solved by installing a newer kernel version (2.0.33).
Myrinet’s network software did not work correctly with a network this large; other large
Myrinet networks do not use the drivers supplied by Myricom. However, Myricom was able
to fix their driver in 2 days.

Thus, the operating system was a case of getting what we paid for, and we complicated
the matter by choosing the highest-performance architecture available, not the one for which
the OS had the best support. We knew this was the case when we made the decision to go
with Linux, and we are, overall, satisfied with the outcome. We are considering a move to
Digital Unix on the Alpha boxes, but this would bring its own set of challenges (compiler
support, OS incompatibility with our nodes and our research collaborators, etc.).

3.4 Phase 11

For Phase I of Centurion, we purchased a homogeneous machine with relatively good (and
expensive) networking. For Phase II, which is funded by the Office of Naval Research
through the DURIP program, we want to experiment with scheduling heterogeneous pro-
cessors and networks, so we will be buying a large number of x86 and alpha processors, and
use a large 100 megabit Ethernet switch to link them.

The machine will then have several degrees of heterogeneity, including processor type,
memory per node, interconnection network, and possibly system software. The purpose of
the DURIP award is to study application performance and scheduling in a heterogeneous
environment, so that we can develop technology usable by the DoD to best run their com-



plex applications. Phase II will provide us with a rich environment for operating systems
research, as well.

4 Related Work

There are three other projects which we believe are of primary importance when discussing
cluster work such as Centurion. First, the Beowulf project [7] at NASA is one of the best-
known “pile of PC” cluster projects. However, Beowulf systems aim for the lowest-price
point rather than the best price-performance tradeoff. This has advantages in that there is
less risk—ifree operating system support is better for Intel platforms than for others, and
well-understood technologies such as Ethernet provide no surprises in installation, configu-
ration, or use.

The Networks of Workstation (NOW) [1] project at UC Berkeley was focused more
on system-level research rather than supporting scientific computing applications. Sandia
National Labs has the Computational Plant project, which is constructing multicomputers
from DEC Alpha nodes. However, they have ported their custom OS (Puma) to the Alpha,
with the intent of providing ASCI Red-like system functionality on a COTS base.

In our case, we focused on scientific computing and high performance using commodity
components and OS software. Thus, we have made different choices than each of the projects
mentioned above, although Centurion shares some common ground with each.

5 System Component Performance

Before we examine application performance on our cluster, we will describe microbenchmark
performance measurements taken on components of the cluster, including the interconnec-
tion networks and the various processors. These microbenchmarks are important so that
we can properly set our expectations for application performance.

5.1 Myrinet performance

Myrinet offers 2 different interfaces to the system; the usual “networking” interface via
the kernel running protocols such as TCP and UDP, and a user-level interface similar to
U-Net [2] or the VIA standard [4]. Gigabit networking requires a low-overhead interface
in order to get gigabit performance; there have been many demonstrations of 700 to 900
gigabit sustained transfers using Myrinet with various user-level interfaces. However, we
have yet to write an interface between the Legion networking code and a user-level Myrinet
interface, so we are still using the kernel interface. This interface gives us a raw performance
(measured by netperf) of 240 megabit/s for both TCP and UDP. This compares favorably
with the loopback result of 650 megabit/s and 850 megabit/s for TCP and UDP. TCP
latency was 390 usec, compared to 60 usec for the loopback.

As mentioned earlier our Myrinet setup has a theoretical bisection bandwidth of 32
gigabits per second, and we were unable to produce a bottleneck in the network under any



load we could generate.

5.2 Ethernet performance

The single-node netperf results are roughly 70 megabits for TCP and UDP. Ideally we
should be able to hit near 100 megabits, but the drivers are often unable to do that, and
our network is not quiet. TCP latency was 103 usec to a node on the local hub, and 130
usec to a node on a remote hub. Note that the latency numbers are lower than Myrinet; we
attribute this to high overhead in the Myrinet kernel driver, because we know that user-level
Myrinet protocols can achieve sub-10 usec latencies [6].

The performance of our cluster using the cheap semi-switched 100 megabit Ethernet
topology described earlier is hard to quantify. While an Ethernet segment with one sender
and one receiver can achieve full wire speed, our experience shows that segments with many
senders and receivers may only achieve 30% of the theoretical maximum, and latencies
become substantial. This is, essentially, similar performance to traditional Ethernet in terms
of relative saturation levels; given that the lowest branch of our cluster topology are based
on unswitched Ethernet, this is not at all surprising. The measured bisection bandwidth
(each system sending to a system on a different hub) is 400 megabit/s. The bisection
bandwidth of today’s large 100 megabit switches ($400/node as opposed to $110/node) is
often bound by limited backplane bandwidth to a few gigabits; as you can see, this is far
better than our semi-switched (but cheap) network.

5.3 Stone soup performance

In addition to the 64 alphas we have been discussing thus far, we already owned 16 dual-
processor 200mhz Pentium Pro machines, all of which have Myrinet cards. These machines
are mostly used by our developers, but we do heterogeneous computations using Legion on
these machines and Centurion on a regular basis.

The issue of compilers is always a vexing one for Linux systems. For the x86, the
compilers from the Portland Group have published SPEC numbers that are slightly higher
(under Linux) than Intel’s best fp results; our running of gce-2.7.2 is 22% slower than Intel’s
best result in integer, and 23% slower in fp?. Intel has made optimized BLAS routines for
Linux available via public ftp as part of the ASCI Red project. We have a long-standing
relationship with Sandia’s MPCRL (the people who do the OS support for ASCI Red), so
we expect to use these optimized routines in the future to maintain compatibility with work

at the MPCRL.

5.4 Alpha performance

The issue of compilers is doubly interesting on the alpha, because it was known that gcc
does a poor job of generating code for the alpha. However, our running of SPEC95fp
with gee/eges-1.0.1 showed that gece was between 7% faster and 30% slower than Digital’s

2full details available upon request



compiler. (This SPEC result is not formally publishable because SPEC has never bothered
to approve how we compiled ‘make’, but we are happy to provide the details upon request.)
It is also possible to cross-compile with Digital’s compiler on a Digital Unix machine and
run the resulting (statically-linked) binaries under Linux.

In addition to compiler quality, library quality is also an issue. As usual this is a work
in progress; good fundamental math library routines for the Alpha will be released in July
1998, and an optimized BLAS matrix-multiply routine written by a patent clerk in Japan
(K. Goto) is faster than Digital’s BLAS routines, but not all BLAS routines are available
in optimized form under Linux.

6 Applications

To illustrate the use of Centurion to support scientific applications, we will describe our
experiences in porting four separate applications to the machine. We have selected these
programs as a representative sample of the application universe in which we work; the suite
represents a computational fluid dynamics code, generic parameter-space studies in Fortran,
a macro dataflow program for genomics, and a particle-in-cell code used in materials science.

6.1 Nameless Ocean Model (NOM)

As part of our participation in the Department of Defense High-Performance Computing
Modernization (HPCMOD) program, we have helped the NAVO MSRC? conduct bench-
marks on various hardware. The “Nameless Ocean Model” is one program used for this
purpose. This program solves shallow-water equations; this sort of code is used today to
simulate shallow estuaries and in modeling of oceans and ice in the polar regions. It is a
Fortran program which uses a time-explicit finite difference technique, which can be thought
of as applying an expensive stencil operation repeatedly to all points on a grid. Computa-
tional fluid dynamics (CFD) programs are often thought to require such low latencies and
high bandwidth communications that they are not suitable for clusters of machines, but we
will show that this particular code runs well on our cluster.

The version of the code handed to us had already been parallelized for a homogeneous
machine, using MPI message-passing. It was parallelized in the traditional way, namely
the computational domain was decomposed in two dimensions into squares, and boundary
regions were exchanged between adjacent squares every timestep, as shown in figure 1.
Other CFD techniques such as implicit or spectral methods require more communications.

It turns out that this code runs quite well on our existing, homogeneous cluster. Using
our semi-switched 100 mbit networking, the code got 155 MFlops “out of the box” on 4
cpus. After suitable cache-friendly optimizations, it got 476 Mflops on 4 cpus and 3700
Mflops on 49 cpus. This code gets around 650 Mflops on a single Cray T90 cpu. More
interesting to us is a comparison to an SGI Origin 2000; we get about 70% of the O2k’s
performance at 49 cpus, but our machine costs 1/10 as much.

Major Shared Resource Center—a DoD supercomputer center.



-

Boundary

Data \1

= (LTI

e

Node Boundary

2 ++§ 5 EIIIITE E
SRS FETIIIIIE &
0T i
1111
2 r\g» Sfunnnan: s
5 EIImTE /%\Jr -

Figure 1: Nameless Ocean Model decomposition




In the near future, we plan on building a generic tool which can work with the application
to statically allocate different-sized domains to processors of different speeds. In this way,
we will take advantage of Centurion Phase II, as well as our other existing infrastructure
such as the Stone Soups.

6.2 Flogger

As part of our exploration of ways to run generic, non-Legion-aware programs under Legion,
we have built an example tool which allows remote, transparent execution of serial programs
whose only interaction with the user is via disk files. One real-life class of applications which
benefit from this is scientific parameter-space searches. For example, we might want to run
several programs in sequence which compute the lift generated by a particular airplane
wing at various atmospheric pressures and angles of attack, and we have thousands of
combinations of pressures and angles and wing designs. Each run might take only a few
hours on a single cpu, but the total cpu time consumed could be many cpu-years. This sort
of problem is something we call a "bag of tasks.”

Since our interests extend beyond cluster computing to metacomputing, the example
tool we built used existing Legion mechanisms to securely transport both the executable
program and data files to remote nodes and return the output files to the user. This is
overkill on a cluster, but is very useful when the resources used by a computation span
several administrative domains, which do not share NFS-mounted filesystems.

To date, we have used this example tool to run "bag of tasks” computations which
transparently used Centurion and machines (with a different architecture) at the San Diego
Supercomputer Center. The example tool consists of 163 lines of perl code.

6.3 Complib

An on-going research project which pre-dates the Legion effort is the Mentat Programming
Language, a C++ superset which supports coarse-grained parallel processing. Mentat al-
lows the programmer to declare instances of particular C++4 classes to represent objects,
which execute in separate addresses spaces. The Mentat compiler and run-time system
then performs macro-dataflow on the inputs and results of method calls on these objects,
automatically building graphs of inter-related method calls and executing each method call
as its inputs become available.

We have used this language to construct an application for DNA and protein sequence
comparison, called Complib. Biologists determine the structure of new proteins by compar-
ing their sequences to a library of known proteins. This algorithm maps well to the notion
of macro-dataflow. The MPL code for the fundamental kernel of the program is shown in
figure 2. The match function computes an integer result which represents the degree of
similarity of the two genetic sequences (the test sequence and one from the library). This
function is stateless; thus, we know that all iterations of this loop could be performed in

*The name implies that one just reaches into the bag and grabs the next task to be run; tasks are
completely independent, and order of execution is not important.
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mentat stateless compute;
mentat collector;

doi=1,n

do j 1, m
collector.result(compute.match(sequence(i),sequence(j)))
enddo
enddo

Figure 2: MPL program for Complib

Compute
Objects

Collector

Figure 3: The Macro-Dataflow graph for Complib

parallel. The Mentat compiler is able to recognize this property in the Mentat program
shown in figure 2. From this code, the Mentat run-time system generates the graph shown
in figure 3.

The underlying Legion run-time system has the opportunity to decide the number of
“compute” objects created to process this loop, and to use the Legion resource management
facilities for object placement. Once the worker objects are placed, we can load balance the
computation by directing method calls to the worker objects with the lightest load (smallest
number of outstanding requests).

6.4 Particle-in-cell Code

Another problem run on Centurion was a particle-in-cell code which is used to simulate
particle deposition onto a surface. In this simulation, the surface of interest is broken
down into small areas called cells. Each cell tracks the deposition of a number of particles
(hence the name). One application of this code is modeling the production of VLSI chips
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by ion deposition. We were presented with a serial version of this code, and parallelized
it in the obvious fashion, decomposing the spatial domain, having neighboring domains
exchange messages. Even though the amount of computation per particle was fairly small,
the number of particles needing to be exchanged was small enough that the code runs quite
well on our 100 mbit semi-switched Ethernet network.

As seen in figure 4, we observed super-linear speedup. We attribute this to a lack of
sufficient cache when only a few processors were used. The data represent a variety of spatial
decompositions; if the number of rows is > 1, this indicates a 2-dimensional decomposition.
Full details are available in [3].

7 Concluding Remarks

In this paper, we have described some of our experiences building the Centurion cluster, and
porting and tuning applications to our run-time system using the cluster. Qur experiences in
building the cluster demonstrate that a high-performance multicomputer can be constructed
from inexpensive commodity parts. Our experience moving a range of applications to
Centurion leads us to conclude that such a platform is well-suited to many applications,
even some which have historically been regarded as impractical for distributed-memory
multicomputers.

In short, we have demonstrated that with proper care and feeding, a COTS cluster
can outperform dedicated supercomputers at a fraction of the cost. A system capable of
sustaining computation rates comparable to commercial supercomputers can be had for a
fraction of the cost, and Moore’s law dictates that the price-performance ratio on these
machines will continue to grow faster than that for dedicated supercomputers.
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