
Join Point Encapsulation

David Larochelle
drl7x@cs.virginia.edu

Karl Scheidt
∗

Department of Computer
Science

University of Virginia

kgs3c@cs.virginia.edu

Kevin Sullivan
sullivan@cs.virginia.edu

ABSTRACT
At the heart of aspect-oriented programming is the
exposure of certain phenomena in the execution of
one set of program elements to behavioral modifica-
tions specified by other elements. The phenomena
are join points. The modifying elements are aspects.
The problem that we address is that current aspect-
oriented languages do not provide adequate means
to control the exposure of join points for behavioral
modification by aspects. Rather, these languages
define certain classes of join points (e.g., method
calls) and expose all instances thereof. In a nut-
shell, then, current languages lack join point encap-
sulation mechanisms. We map a solution space and
describe one proof-of-concept design that we have
implemented for AspectJ. A key feature of our de-
sign is that it is, itself, aspect-oriented: We use As-
pectJ’s pointcut language to identity cross-cutting
sets of join points to be encapsulated. The poten-
tial benefits of such a modularity-supporting mecha-
nism include improved ease of reasoning about pro-
gram behavior and the ability to assure the absence
of side-effects through enforced non-interference by
aspect code, and improved ease of design evolution.

1. INTRODUCTION
Aspect-oriented programming (AOP) languages enable the
modular representation of cross-cutting concerns: behaviors
whose constituent parts are scattered among and modify the
behaviors of other modular constructs. The key to aspect
languages is making certain phenomena in the execution of
one modular construct accessible to modifications specified
by others. The phenomena exposed are join points. Aspect
code can modify the behavior of base code at join points [4].

∗All authors are from the Department of Computer Sci-
ence, University of Virginia, 151 Engineer’s Way, P.O. Box
400470, Charlottesville, VA 22904-4740 USA. Tel. +1 434
982 2200. FAX: +1 434 982 2214.

Aspect languages define certain classes of join points as ac-
cessible for modification. AspectJ [3] join points, for exam-
ple, include object initialization, method call and execution,
and data field manipulation. All instances of such join points
are accessible and together form a universe of join points for
a system. An aspect language also provides a sublanguage
used to concisely select subsets of join points called point-
cuts. Such a pointcut language is at the heart of the ability
of an aspect language to modularize crosscutting concerns.
It enables designers to specify behavioral modifications that
affect an entire system.

The problem we address is that currently aspect languages
do not allow designers to constrain the accessibility of join
points to aspects. There is no effective way to encapsu-
late join points to make them not subject to aspect-imposed
modification. Thus, using the terminology of Meyer [6], all
modules are necessarily open, and one cannot close or par-
tially close them. In a sense, every module’s interface is
extended by a large, implicit set of events, and at any such
point, behavior observation and modification are possible.

We believe that it is undesirable to make all join points nec-
essarily subject to behavioral observation and modification
by aspects. To do so unnecessarily and adversely conflates a
mechanism (join points) and a policy (that they’re all always
visible). Our solution is to decouple them. In particular, we
advocate maintaining or perhaps even broadening the set
of join points in a given aspect language but then enabling
the designer to impose a join-point-visibility policy as most
appropriate for the given system. To do so, we provide a
second kind of mechanism that we call join point encapsu-
lation.

The contribution of this paper is the case for providing join
point encapsulation mechanisms, a mapping of the design
space for mechanisms of this kind, and a usable, proof-
of-concept design and implementation for the AspectJ lan-
guage. Our design and implementation leverages the design,
implementation, and philosophy of AspectJ. In particular,
we use the existing pointcut language and advice constructs,
introducing only a new kind of advice: join point encapsula-
tion advice, or restriction advice. Restriction advice serves
to encapsulate the join points selected by a pointcut against
modification by other aspects thus enabling the modular
representation of the encapsulation of crosscutting sets of
join points. That is, we provide an aspect-oriented join point
encapsulation mechanism.



The rest of this paper is organized as follows. Section 2
presents a motivating example of the problem. Section 3
maps a design space of possible mechanisms to solve the
problem. Section 4 introduces restriction advice as one
specific join point encapsulation mechanism. Section 5 dis-
cusses our implementation of such a mechanism for AspectJ.
Section 6 presents some discussion of our work and related
work. Section 7 summarizes and concludes with a discus-
sion of possible future directions.

2. MOTIVATING EXAMPLE
One common pattern in object-oriented programming is to
have a publicly accessible method that is implemented by
calling a separate private method which may have a differ-
ent signature. This technique allows the public interface to
be maintained while changing the private implementation,
and allows multiple public interfaces (with different default
arguments, perhaps) to use the same private implementa-
tion:

public class SomeClass {

public void method(String a) {

method_impl(a,null);

}

public void method(String a,

String b) {

method_impl(a,b);

}

private void method_impl(String a,

String b) {

// private implementation

}

}

Here, method is implemented by calls to method impl with
default arguments supplied. This technique is useful be-
cause it allows the private implementation to be changed
without affecting code that uses only the public interface.
This allows a lot of flexibility: in a future version of the
class, method impl could be removed entirely, and the im-
plementation moved to the two versions of method.

However, in AspectJ, even private method join points are ex-
posed to modification by aspects. Even though method impl

is not a part of a public interface, aspects can still advise its
call join point. This join point is thus, in essence, part of a
broad, implicit interface exposed by the class to the pointcut
language and thus to aspect modules. The visibility of this
join point in turn creates the potential for dependencies on
the private method to arise from external aspect modules.

More generally, visibility of join points has the potential to
be counterproductive in several dimensions, depending on
the particular circumstances of a system. First, join points
can expose otherwise encapsulated implementation details
(e.g., private methods). Doing this can undermine the de-
signer’s intent to use an information hiding design strategy,
and the use of abstraction to limit what must be known to
understand an object’s behavior. Second, the accessibility of
join points creates opportunities for aspects to change pro-
gram behaviors in ways that the designer might not want.

For example, a designer might want to hide the join point
interface of an object altogether to ensure that it is possible
to reason about the complete behavior of the object based
only on local information (e.g., in the context of a safety-
critical system, where what a module does not do can be
as important as what it does do). If it is not possible to
prevent aspects from modifying object behavior, then it is
impossible to provide such assurances. Third, a designer
might want to provide assurances that an object will not
violate specified type or system invariants—assurances that
can hinge on promises that an object’s actions can have no
unintended side-effects, as might be created by aspects.

A means for limiting what join points are exposed to mod-
ification by advice could solve these problems. For exam-
ple, the join points for method impl could be marked as re-
stricted and unavailable to modification by outside advice.
This restriction would preclude aspects from using parts of
the implicit interface that were either meant to be imper-
manent or abstracted to improve comprehensibility.

A different solution to this problem would be to design an
aspect language that did not expose the call join points of
private methods. This solution is wholly unsatisfactory. It
works precisely by undoing what aspect languages do, and it
goes against a significant trend, to expose more phenomena
of program execution so as to enable new kinds of modular-
ity. Rather, we see again the need to decouple the join point
mechanism from currently hard-wired policies concerning
join point visibility to aspect code.

3. A DESIGN SPACE
In this section we discuss some of the important dimensions
of the design space for mechanisms for control of join point
visibility.

3.1 Who says what’s visible?
There are several constructs in a typical aspect-oriented lan-
guage that could be modified to express join point visibility
restrictions. One that we considered was to have classes en-
capsulate their own join points. Another approach would be
to have separate constructs define join point visibility.

In the end, we decided to use aspects as separate constructs
for expressing join point visibility policies. This approach
actually generalizes the class-based approach provided that
these restriction aspects can be declared within classes. More-
over, choosing aspects as the mechanism allows crosscutting
visibility policies for an entire module or system to be ex-
pressed in modular form.

3.2 How expressive are encapsulation policies?
The visibility of a given join point in a system can in prin-
ciple be constrainted in many ways. Each requires a more
or less expressive language for stating encapsulation poli-
cies. We discuss three. The first is to have restrictions
based on the scope from which a given aspect attempts to
advise the join point. Such a mechanism could, for exam-
ple, allow a given module to be implemented internally in
an aspect-oriented way while preventing external modules
from advising its methods. The early prototype mechanism
that we present in more detail in the next section makes all
restrictions global.



Second, visibility restrictions could be based on the kind of
advice that an aspect attempts to bind to a join point. This
would allow one to specify, for example, a join point is not
accessible to around advice, but is accessible to before and
after advice. Such a mechanism could be useful if a module
needs to guarantee that a certain action will surely be per-
formed, without foreclosing the possibility of unanticipated
modifications by other kinds of advice. The mechanism that
we present does not currently support this level of discrim-
ination.

Third, visibility restrictions could be made to hinge on the
manner in which an aspect names a join point. It might
make sense, for example, to disallow advice that matches
a join point using the name of a private method, but to
allow advice that attaches to the same join point using a
more generic specifier, such as a wildcard or a cflowbelow
pointcut. This level of selectivity would allow unanticipated
modification without allowing the potentially undesired cou-
pling that can occur if the names of private methods in one
module are referenced in another.

The simple mechanism that we describe next does not sup-
port this kind of approach. Our mechanism has the virtue
of exploiting the existing pointcut language to select join
points for encapsulation. It is easy to understand and use
and easy to implement. A richer mechanism as discussed
here would require a meta-language for expressing proper-
ties of pointcut expressions. We intend to explore this issue
in the future.

3.3 How to handle violations?
An attempt by an aspect to advise a join point encapsulated
against that advice could result in a variety of behaviors.
For example, the compiler could decline to advise the join
point silently, issue a warning, or issue a compile-time error.
The designer could also be given a choice of which of these
policies to use for a particular case.

Which policy makes the most sense generally depends on the
situation. If an aspect that performs logging is not able to
attach to all of its desired join points, this may be acceptable
and we may wish to just ignore such conflicts. However, if
an aspect enforcing a locking protocol cannot attach to all of
its desired join points, this could cause the program to fail,
and so we may want this violation to result in a compile-time
error.

Our prototype design simply declines to advise and issues
warnings each time an aspect attempts to advise an encap-
sulated join point.

4. OUR DESIGN: RESTRICTION ADVICE
In this section, we describe the particular point in this de-
sign space that we selected as a starting point to explore
the issue of join point encapsulation. In a nutshell, we in-
troduce a new kind of advice: advice not meant to modify
program behavior at a join point, but to restrict the visibility
of the join point to aspects. We call this join point encap-
sulation advice, or just restriction advice, to identify which
join points are encapsulated against aspects. This solution
takes advantage of the power of AspectJ’s existing pointcut
language to specify sets of join points to be encapsulated.

Restriction advice specifies which join points are not avail-
able for modification by aspects. The default is to expose
all join points that are not specifically restricted. This al-
lows existing AspectJ programs to be used without modifi-
cation. More importantly, it allows aspects to continue to
modify classes in ways not anticipated by the original class
designers, while allowing class designers to specify that cer-
tain parts of the class are private to the implementation and
should not be exposed.

Restriction advice looks like any other advice. It uses the
pointcut language to specify what join points it applies to:

pointcut private_impl():

call(private *

SomeClass.*_impl(..));

restrict(): private_impl();

The pointcut private impl identifies those join points within
SomeClass that are restricted, namely, the private * impl

methods that are not intended to be permanent parts of the
class’s interface. The restrict advice marks the specified
join points as unavailable to modification by aspects.

When the weaver applies aspects to a class for which restric-
tions are given, it will attach advice only to join points that
match the aspect’s pointcut and do not match any of the
restricted pointcuts.

For example, consider a piece of advice that attempts to
modify methods in SomeClass, above:

aspect SomeAspect {

pointcut target_methods():

call(* SomeClass.*(..));

before(): target_methods() {

do_something();

}

}

Because there is restriction advice matching method impl,
the weaver does not allow the before advice to attach to
the restricted join points, but it may still apply to any other
exposed join points in the class. When the weaver processes
this aspect, the target methods() pointcut effectively be-
comes the following:

pointcut target_methods():

call(* SomeClass.*(..)) &&

! call(private *

SomeClass.*_impl(..));

Restrict advice, like other kinds of advice, must appear in
an aspect. There are two main ways we anticipate restrict
advice to be used: as an inner aspect describing the restric-
tions that apply to the class it is contained within, or as an



external, top-level aspect describing what restrictions apply
to the system or package as a whole.

By using an inner aspect for restrictions, each class can spec-
ify what restrictions apply to it. This allows a class like
SomeClass to specify what methods in it are restricted, and
such restrictions could even be inherited if written correctly.
This is probably the most straightforward use of restrictions,
and makes the most sense when inner aspects restrict only
methods in the class they are contained within.

The other alternative, placing restriction advice in top-level
aspects that apply to the entire system, has interesting pos-
sibilities for modularity. This allows all of the join point visi-
bility rules for a system to be encoded in a single place, mak-
ing it possible to apply default policies to an entire project.
For example, a package might set a default policy forbidding
advice attachment to private methods, or to any methods
that access a particular private data structure which might
be removed in a future version. Because the restrictions are
specified in a separate module, it makes it easy to substitute
different restriction policies without changing the individual
classes to which they apply.

5. IMPLEMENTATION
We implemented our restriction language in AspectJ ver-
sion 1.0.3. We modified the ajc compiler to recognize the
keyword restrict and parse our restrictions. Parsing oc-
curs as it would for a before advice statement, except that
no code body is required. We modified the advice planning
pass of the compiler so that when the compiler checks each
join point for matching advice, it also checks for matching
restrictions. If the join point is restricted, the compiler does
not create a plan for weaving the advice, as it normally
would, but issues a warning to the user instead.

Consider a simple main for SomeClass:

public static void main(String[] args) {

SomeClass sc = new SomeClass();

sc.method("Hello");

}

In addition, consider the following aspect to trace all method
calls of SomeClass:

aspect Tracer {

pointcut allMethodCalls():

call(* SomeClass.*(..));

before(): allMethodCalls() {

System.out.println("In method "+

thisJoinPoint.getSignature());

}

}

When compiled and run, this program produces the follow-
ing output:

In method void SomeClass.main(String[])

In method void SomeClass.method(String)

In method void SomeClass.method_impl(

String, String)

Now consider adding the following inner aspect to SomeClass

(which makes use of an anonymous pointcut):

static aspect restrictImpl {

restrict():

call (* SomeClass.*_impl(..))

}

During compilation, we get the following warning:

Warning: Restricting attachment of

advice Planner(before()) to code at

method-call(private void

SomeClass.method_impl(String, String))

The output that is produced when the program is run is as
follows:

In method void SomeClass.main(String[])

In method void SomeClass.method(String)

This shows that the compiler correctly determines that the
join point is restricted, and does not attach advice to it, as
it otherwise would. All other join points in the program
are handled normally. The compiler issues a warning to
indicate that there is a conflict between a piece of advice
and a restriction, because this may indicate a programming
error.

Our prototype handles restrictions for join points whose el-
ements are known statically. It does not yet handle the
dynamic case. If a pointcut includes the cflowbelow key-
word, our mechanism cannot always determine if a given
join point is included. That decision requires information
that is not known until run-time. A correct implementa-
tion would exploit run-time hooks (as are already used in
the AspectJ implementation) at each dynamic join point to
determine if the restriction applies before calling any asso-
ciated advice. At compile time it might be possible to warn
of possible dynamic restriction violations. It would be rela-
tively easy to either decline such advice silently or to raise
runtime exceptions to flag their occurance.

6. RELATED WORK
6.1 Visibility Restrictions in AspectJ
Our proof-of-concept design and implementation extends
the AspectJ [3] language. AspectJ provides some features
for controlling access to private members of classes by as-
pects. The code body of an aspect’s advice must respect
normal Java visibility rules, and thus may not directly call
private methods or access private data members. However,
as we have demonstrated here, aspects are allowed to attach
advice to private member methods of a class, and this pro-
vides an undesirable implicit extension of the interface of
that class.



6.2 The AspectJ declare error Construct
The declare error construct of AspectJ has been used to
enable a compiler to enforce design rules [9]. Many design
rules can be described using AspectJ’s powerful pointcut
language to identify situations in which the design rules are
violated. The declare error construct is then used to issue a
fatal error if a violation exists. For example, the following
code would enforce the rule that no kernel procedure may
access methods outside the kernel module:

pointcut bad_method_call():

call(* (!Kernel+).*(..))

&& within(Kernel+);

declare error: bad_method_call():

"method call from kernel class

to non-kernel class";

Although the declare error statement, acting on the exten-
sive AspectJ pointcut language, is a powerful construct and
has been shown to be effective as a means of enforcing de-
sign rules, it is not powerful enough to provide the kind of
restrictions that would resolve the problem described in this
paper. In order for the declare error statement to be able to
restrict attachment of advice to join points, it would have to
be possible to describe, using the pointcut language itself,
either the attachment of advice to a join point, or the match-
ing of a join point to a declared pointcut, neither of which
is possible with the existing AspectJ pointcut language.

6.3 Other Related Systems
A well known project related to our work is HyperJ [7]. Its
core idea is to support multi-dimensional separation of con-
cerns using a mechanism called Hyperspace. HyperJ pro-
vides some facilities that are similar to aspects in AspectJ.
It does not provide a way to specify to what extent code
in one concern space may interact with the code of another
concern space.

PROSE [8] is an AOP platform based on the Java Virtual
Machine that allows dynamic weaving and un-weaving. An
aspect in PROSE is entirely specified in Java. It must first
be compiled and given to PROSE, which will apply the as-
pect to the base class dynamically. PROSE does not limit
the interaction between base classes and aspect classes.

Lieberherr et al. [5] have designed a language called Deme-
ter/J. It is a high-level interface to the programming lan-
guage Java that allows the user to write adaptive Java pro-
grams.

Composition filters [1] provide a set of filters that have
five important characteristics: Modular extension, Orthog-
onal extension, Open-ended, Aspect-oriented and Declara-
tive. Neither Demeter/J nor Composition Filters focuses on
limiting the power of aspectual code.

Although most existing AOP languages provide some type
of access control, we are not aware of any AOP system that
has focused on limiting the implicit interfaces that are open
to aspects, as we have addressed here.

7. CONCLUSION AND FUTURE WORK
In this paper we make a four-part contribution to research
on the design of aspect-oriented programming languages.
First, we frame the problem of join point visibility. Second,
we identify join point encapsulation as a basic and needed
language mechanism. Third, we identify important consid-
erations in the design of such a mechanism. Finally, we have
demonstrated the feasibility of providing such a mechanism
in the context of a relatively mature aspect-oriented lan-
guage, namely AspectJ. Our design is notable for exploiting
existing elements of the AspectJ language design, and par-
ticularly for enabling the encapsulation of crosscutting sets
of join points.

Our results are limited in several ways. First, we do not
yet have extensive experience using join point encapsula-
tion. Our lack of experience leaves several questions unre-
solved. One question is whether, in practice, the use of re-
strictions would significantly reduce designers ability to use
aspects effectively. The answer depends in part on whether
restrictions can be limited in scope. The mechanism we have
provided might, in fact, be too blunt.

Second, our design and implementation are meant as proofs-
of-concept. They could be more sophisticated in several di-
mensions. We view this work as a starting point for an ex-
ploration of the problem and design space. That our mech-
anism is fully implemented as an extension of the AspectJ
compiler enables a broader set of researchers to begin such
an exploration.

Nor have we addressed some more fundamental issues. One
area that we have not explored seriously is that concern-
ing meta-pointcut languages that would be needed to ex-
press encapsulation policies based on the form of pointcut by
which an aspect attempts to advise a method. The tradeoffs
of language complexity for expressiveness in this direction
remain as open questions.

As observed at the start of this paper, the essence of aspect-
oriented programming is in the exposure of certain phenom-
ena of program execution to crosscutting modification by
aspects. One of the most important decisions that an as-
pect language designer makes is the choice of the kinds of
join points to expose.

Some researchers have speculated that the logical conclusion
of the aspect paradigm lies in exposure of all execution phe-
nomena implied by the semantics of a given programming
language [2]. To the extent that such a future is realized,
the importance of join point encapsulation will be magnified.
The two ideas together might promise software developers
the best of two worlds: the ability to modularize crosscut-
ting concerns involving all manner of program behaviors, on
one hand, and the ability to control the undisciplined use of
such flexibility, on the other.

8. ACKNOWLEDGEMENTS
This work was supported in part by the National Science
Foundation under grants ITR-0086003 and CCR-0092945,
and by NASA Langley Research Center. We thank Gregor
Kiczales for helping us to understand some of the accessibil-
ity criteria visibility restriction mechanisms might support.



9. NOTE TO REVIEWERS
We will make our AspectJ-based implementation available
on request. We do plan to make it available to the research
community shortly.

10. ADDITIONAL AUTHORS
Additional authors, also from the Department of Computer
Science at the University of Virginia:
Yuan Wei (email: yw3f@cs.virginia.edu),
Joel Winstead (email: jaw2u@cs.virginia.edu), and
Anthony Wood (email: wood@cs.virginia.edu).

11. REFERENCES
[1] M. Aksit, K. Wakita, J. Bosch, L. Bergmans, and

A. Yonezawa. Abstracting Object Interactions Using
Composition Filters. In R. Guerraoui, O. Nierstrasz,
and M. Riveill, editors, Proceedings of the ECOOP’93
Workshop on Object-Based Distributed Programming,
volume 791, pages 152–184. Springer-Verlag, 1994.

[2] M. Jackson. Personal communication between Michael
Jackson and Kevin Sullivan.

[3] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An overview of AspectJ.
In Proceedings of the European Conference on
Object-Oriented Programming (ECOOP), pages
327–353, Budapest, Hungary, June 2001.

[4] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In M. Akşit and
S. Matsuoka, editors, Proceedings European Conference
on Object-Oriented Programming, volume 1241, pages
220–242. Springer-Verlag, Berlin, Heidelberg, and New
York, 1997.

[5] K. Lieberherr, D. Orleans, and J. Ovlinger.
Aspect-Oriented Programming with Adaptive Methods.
Communications of the ACM, 44(10):39–41, 2001.

[6] B. Meyer. Object-oriented Software Construction.
Prentice-Hall, New York, London, 1988.

[7] H. Ossher and P. Tarr. Multi-dimensional separation of
concerns and the hyperspace approach. In Proceedings
of the Symposium on Software Architectures and
Component Technology: The State of the Art in
Software Development. Kluwer, 2000.

[8] A. Popovici, T. Gross, and G. Alonso. Dynamic
weaving for aspect oriented programming. In 1st
International Conference on Aspect-Oriented Software
Development (AOSD), Enschede, The Netherlands,
April 2002.

[9] M. Shomrat and A. Yehudai. Obvious or not?:
regulating architectural decisions using aspect-oriented
programming. In Proceedings of the 1st international
conference on Aspect-oriented software development,
pages 3–9. ACM Press, 2002.


