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Abstract

Floorplan design is an important stage in the VLSI design cycle. Designing a floorplan calls for
arranging a given set of modules in the plane to minimize the weighted sum of area and wire
length measures. This paper presents a method to solve the floorplan design problem using
distributed genetic aldorithms. Distributed genetic algorithms, based on the paleontological
theory of punctuated equilibria, offer a conceptual meodification to the traditional genetic
algorithms. Experimental results on several problem instances demonstrate the efficacy of our
method, and point out the advantages of using this method over other methods, such as
sirnulated annealing. Our method has performed better than the simulated annealing
approach, both in terms of the average cost of the solutions found and the best-found solution,
in almost all the problem instances tried.

t Submitted to IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems. A conference version of this paper appears in the 1988 IEEE International
Conference on Computer-Aided Design.



1. Introduction

Floorplan design is an important stage in the VLSI design cycle. It has received considerable
attention in the literature [Laro85, OrTrE82, O11883, OTTE84, SECHS8H, STOC83, WONGSESE,
WoNG88, Wo086]. Designing a floorplan calls for arranging a given set of modules in the plane
to minimize the weighted sum of area and wire length measures. Therefore, floorplan design is

an optimization problem.

Floorplan design problem has been tackled via simulated annealing [OTTE84, WONGSB6].
We present another approach based on distributed genetic algorithms. Section 2 of this paper
reviews the floorplan design problem formulation. In Section 3, we briefly discuss sequential
genetic algorithms, and present our distributed genetic algorithm paradigm based on the
theory of punctuated equilibria. Section 4 presents the implementation details of the
application of the distributed genetic algorithms to the floorplan design problem. In Section 5,
we show experimental resulis to demonstrate the efficacy of our method. Conclusions and
future directions are in Section 6. A preliminary version of this paper has appeared elsewhere

[COHO88h].

2. Floorplan Design Problem

Following Wong and Liu [WoNG86], the floorplan design problem is formulated as follows: there
is a set M consisting of m given modules, named 1,2,..,m. Throughout this paper, we restrict
our attention to rectangular modules. Module { is characterized by a triple (A, r, s), where A,
is the area of the module, and r; and s; (r<s;) are the lower and upper bounds, respectively on
the allowed aspect ratio, i.e., the ratio of height h; to width w, of the module. Each module has
a fixed or a free orientation. Let M, be the set of modules with fixed orientation, and M, be the
set of modules with free orientation; M; and M, are disjoint, and M = M, UM,. Then, for each

module i, the following relationships must hold:
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If r; = 5, the module i is said to be rigid; otherwise, it is flexible. A floorplan for the given m
modules consists of an enveloping rectangle R partitioned by horizontal and vertical line
segments into m non-overlapping rectangular regions; these regions are labeled 1,2,...m.
Region i, with width x; and height y,, must be large enough to accommodate module { The
aspect ratio of R is required to lie between two given numbers, p and g, p £ g. For each pair of

modules i and j there is a cost ¢; > 0. The center of a region is the geometric center of the

region. The floorplan design problem is to find a floorplan such that the objective function

A+ LAY cydy (@)
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is minimized, where A is the area of the rectangle R, d; is the Manhattan distance between the

centers of the regions i and J, ¥ cydy is an estimate of the wire length, and A is a user specified
g

constant controlling the relative importance of the area and the wire length measures.

By restricting the partitions of the rectangle R into recursive subdivisions, one obtains a
slicing structure. An example is provided in Figure 1{a}. Henceforth, our attention will be
restricted to floorplans which are slicing structures. Let the operations of a horizontal cut and
a vertical cut be dencted by the operators + and * respectively. Operators + and * are of
different fypes. Slicing structures comprising the m given modules (also called operands) can
be represented by slicing trees [OTTES2, OTTES3] or Polish expressions [WONGS8E] over the
alphabet £ =1{1,2,..,m,%+}. In a slicing tree operators are internal nodes and operands are
leaves. There exists a one-io-one mapping from the set of slicing trees to the set of Polish
expressions. The Polish expression associated with a slicing tree can be obtained by a post-
order traversal [AHO74] of the slicing tree. Although there can be more than one slicing tree or
Polish expression for the same slicing structure, unigueness can be achieved by systematically
partitioning R from top to bottom and from right to left at any stage of recursive subdivision,
This results in slicing structures being represented as skewed slicing trees or normalized Polish
expressions [WONGS6]. Figures 1{b) and 1(c) both provide slicing trees and Polish expressions

that correspond to slicing structure of Figure 1(a). In a skewed slicing tree, no operator of the
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Figure I — A slicing structure and its representations

same type appears as the right son of an operator. In a normalized Polish expression,
operators of the same {ype do not occur next to one another. There also exists a one-to-one
mapping from the set of skewed slicing trees to the set of normalized Polish expressions.
Thus, the slicing tree and Polish expression given in Figure 1(b) are respectively skewed and
normalized. while the slicing tree and Polish expression of Figure 1(c} are not. Note that a
slcing tree, a Polish expression, a skewed slicing tree, and a normalized Polish expression ail
have m operands and (m — 1) operators, resulling in a toial size of (2xm — 1). By convention,
we number the ifems, i.¢., operands or operators, in a Polish expression or a normalized Polish

expression from left to right ranging from 1 to (2xm - 1).



The set of possible dimensions, (x,y;) of the region { accommodating the module { can be
determined using the following information: (A;,r,s). whether the module { has fixed or free
orientation, and Equations (1)-(3). Such a set, termed the bounding region of module i is a
subset of the Cartesian plane, and is characterized by a monotonically nonincreasing curve,
called the bounding curve of module L When bounding curves of the modules are piecewise
linear, the bounding curve of a slicing structure can be obtained by doing simple addition
operations on the “corners” identifying the piecewise linear curves [WoONG86]. This gives a

method of computing the area and wire length measures of a floorplan.

3. Genetic Algorithms

Sequential Genetic Algorithims: The genetic algorithm (GA} paradigm has been proposed to
generate solutions to a wide range of problems [HoLL75, HoLL86]. In particular, several
optimization problems have been investigated. These include control systems [GOLDS3],
function optimization [BETH81], and combinatorial problems [CoHoOS87a, Davi85, FOURSS,
GoLD8S, GREFBS, SMITBB]. A more complete motivation and exposition for the material in this

section can be found in our recent paper {COHO87Db].

In a genetic algorithm, a population of solutions to the problem at hand is maintained and
allowed to evolve through successive generations. A suitable encoding of each solution in the
population is used to allow computation of the fitness, i.e., a measure of the solution’s
competence, and manipulation to form new solutions. These capabilities provide the means to
create a sequence of generations. To create the next generation new solutions are formed by
either merging two solutions from the current generation via a crossover operator or modifying
an individual solution using a rmulfation operator. The solutions to be included in the next
generation are then probabilistically selected according to the fitness values from the set
comprising the current generation and the newly formed solutions. Typically a constant
number of solutions are selected so that the maintained population is of fixed size. After an
arbitrary number of generations the process is terminated and the best remaining solution (or

the best ever seen) is reported.



There are many simple avenues fo paralielize a sequential genetic algorithm (assuming a
global shared memory), e.g., selecting and crossing-over pairs of solutions in parallel, and
mutating solutions in parallel. However, such avenues result in only a simple hardware
accelerator, and will not be suitable for local-memory, message-passing, distributed models of
computation. Therefore, we have turned our attention to the theory of punctuated equilibria

that provides a suitable paradigm to map genetic algorithms onto a distributed system.

Punctuated Equilibria: The theory of punctuated equilibria has been proposed fo resolve certain
paleontological dilemmas in the geological record [ELDR72, ELDRS8S]. Punctuated equilibria is
based on two principles: allopatric speciation and stasis. Allopafric speciation involves the
rapid evolution of new species after a small set of members of a species, peripheral isolates,
becomes segregated into a new environment. Stasis, or stability, of a species is simply the
notion of lack of change. It implies that after equilibria is reached in an environment there is
very little drift away from the genetic composition of a species. Ideally, a species would persist
until its environment changes (or the species would drift very little}). Punctuated equilibria
stresses that a powerful method for generating new species is to thrust an old species into a
new environment, where change is beneficial and rewarded. For this reason we should expect
a genetic algorithm approach based on punctuated equilibria to perform better than the typical

single environment scheme,

What are the implications for the genetic algorithm approach? If the envircnment is
unchanging then equilibrium should be rapidly attained. The resulting “equivalence classes”
of similar solutions would correspond to “species”. It is possible that solutions in the
“vicinities” of minima of the objective function have not been explored. A genetic algorithm
relies on the mutation and crossover operators to eventually create solutions “near” the
minima. While stasis indicates that an isolated population will stabilize over time, allopatric
speciation indicates that continued evolution can be obtained through the introduction of
previously stabilized species into different environments. Therefore, a genetic algorithm should
alternate the maintenance of populations isolated in different environments to allow the

development of species with the introduction of species to new environments.



We create different enviromments by having the fitness measure defined relative to the
current local population. In this way, exchanging sets of solutions between local populations
will alter the evaluation of the members (of the local populations), and introduce new
competitors thereby effecting the desired allopatric speciation. Alternate schemes for
establishing different environments are possible, of course. For example, if the problem
domain requires a multi-objective fitness measure, various low-order approximations to or
projections of the true fitness measure could be used at different populations. This multi-

objective fitness scheme and others will be investigated in our continuing research.

Genetic Algorithms with Punctuated Equilibria: Our basic model of a genetic algorithm with
punctuated equilibria assigns a set of n solutions to each of N processors, for a total population
of size nxN. The set assigned to each processor is its subpopulation. The processors are
connected by an intercommection network. In practice, we might expect a conventional
topology to be used, such as a mesh or a hyper-cube. The network should have sufficient

connectivity and small diameter to ensure adequate mixing as time progresses.

The overall structure of our approach is seen in Figure 2. There are E major iterations

called epochs. During an epoch each processor, disjointly and in parallel, executes the genetic

initialize
for E iterations do
parfor each processor {do
run GA for G generations
endfor
parfor each processor i do
for each neighbor jof ido
send a set of solutions, Sy, from ito f
endfor
endfor
parfor each processor i do
select an n element subpopulation
endfor
endfor

Figure 2 — High-level description of a genetic algorithm with punctuated equilibria




algorithm on its subpopulation. Theoretically each processor continues until it reaches
equilibrium. Since, as yef, we know of no adequate stopping criteria we have used a fixed
number, G, of generations per epoch. This considerably simplifies the problem of
synchronizing the processors, since each processor should be completed at nearly the same
time. After each processor has stopped there is a phase during which each processor copies
randomly selected subsets (of size S = | Sy |) of its population to neighboring processors. Each
processor now has acquired a surplus of solutions and must probabilistically select a set of n

solutions to survive to be is initial subpopulation at the beginning of the next epoch.

The relationship to punctuated equilibria is the following. Each processor corresponds to
a disjoint environment (as characterized by the mix of solutions residing in it). After G
generations we expect to see the emergence of some very fit species. Then a catastrophe
occurs and the environments change. This is simulated by having representatives of
geographically adjacent environments regroup to form the new environments. By varying the

amount of redistribution, S, we can control the amount of disruption.

The genetic algorithm code used by each processor is shown in Figure 3. The crossover
rate, 0 < C <1, determines how many new offspring are produced during each generation.

Parerds are chosen probabilistically (by fitness) with replacement, The crossover itself, and

for G iterations do
while nxC < number of offspring
created do
select two solutions
crossover the two solutions to create offspring
endwhile
add all offspring to subpopulation
calculate fitnesses
select a population of n elements
generate nxM random mutations
endfor

Figure 3 — Genetic algorithm used within an epoch at each processor




other details, are discussed below. The filnesses are recalculated, relative to the new larger
population. Then, probabilistically (by fitness) without replacement, the next population is
selected, Finally, in a uniformly random manner elements are mutated. The mufation rate,

0 < M < 1, determines how many mutations altogether are performed during each generation.

We have already developed a systern to shmulate a distributed genetic algorithm,
experimernted with the NP-complete Optimal Linear Arrangement problem, and empirically
demonstrated that our formulation is much more than a simple hardware accelerator version

of sequential genetic algorithms [CoHO87Db].

4. implementation Detalls

How should slicing structures be represented? The fact that a slicing structure can be
represented by more than one Polish expression may be advantageous to a genetic algorithm
because it maintains a pool of solutions. This can provide a representational diversity to a
genetic algorithm with punctuated equilibria, specifically when a subpopulation is approaching
equilibrium, in terms of the fitness measure. Therefore, we initially conducted two sets of
experiments, representing slicing structures using normalized Polish expressions in one set
and non-normalized {ordinary) Polish expressions in the other set. Since the resulis were
consistently better when non-normalized Polish expressions were used, we decided to use that

representiation,

We have four types of crossover operators, CO;, COz, COg and CO,. The first three
crossover operators take two Polish expressions as parents and produce an offspring; the
crossover aperator CO, produces two offspring. The alm of these crossover operators is to
bring in building blocks from parents into offspring [HoLL75]. Crossover operators try to
identify and combine building blocks to produce “good” solutions. For the floorplan design
problem, with solutions encoded as Polish expressions {equivalently, as slicing trees), building
blocks are Polish subexpressions corresponding to subtrees in a slicing tree. Viewed from the
point of a slicing structure (and hence a floorplan), these building blocks correspond to sub-

slicing structures, ie., an arrangement of modules belonging to a subset of the set of given



modules, M.

The operator CO, first copies the operands from a parent into the corresponding positions
in the offspring. Then, it copies the operators from the second parent, by malking a left to right
scan, to complete the offspring. Figure 4{a) gives an illustration of CO,. It is to be noted that
CO, propagates groups of operands from the first parent into the offspring. The second
crossover operator, CO, starts out by copying the operators from a parent into the
corresponding positions in the offspring. Then, it completes the construction of offspring by
copying the operands, by making a left to right scan, from the second parent. Figure 4(b)
illustrates the operation of CO;. By propagating the groups of operators from the first parent
into the offspring, CO,; produces an offspring having the overall nature of the slicing same as

that of the first parent.

Parentl 1 45 6 % + + 8 7 % 3 2 % 4 %

Parent 2 2 6 8 * * 7 * 5 + 4 *x 1 3 4 +

Offspring 1 4 5 6 * * * 8 7 + 3 2 * + +
{a)COl

Parent1 1 456 % + + 8 7 * 3 2 % 4 %

Parent2 2 6 8 * * 7 % 5 4+ 4 % 1 3 4 +

Offspring 2 6 8 7 * + + 5 4 * 1 3 * + *
(b) CO,

Parent 1 1 45 6 * + + 8 7 % 3 2 % 4 %

Parent 2 2 6 8 * * 7 * 5 4+ 4 *x 1 3 +

Offspring 6 5 4 1 * + + 8 7 * 3 2 % 4 *

(C) COg

Figure 4 — Illustration of the crossover operators: CO,, CO,, and CO3




The third crossover operator, COg first copies the operators from a parent into the
corresponding positions in the offspring (as in CO,). Then an operator is randomly selected
from the first parent. The operands in the Polish subexpression associated with that operator,
i.e., the operands in the subtree rooted at that operator in the slicing tree, are copied
unchanged info the corresponding positions in the offspring. The Polish subexpression
associated with any operator can easily be found by making a leftward scan starting from the
operator, with a counter initialized to -1, incrementing the counter by one whenever an
operand is encountered, decrementing the counter by one whenever an operator is
encountered, till the counter becomes 1. The remaining operands required to complete the
offspring are brought in from the second parent by making a left to right scan. The operation
of COj; is illustrated in Figure 4{c), with the randomly selected operator being the rightmost +
from Parent 1. The crossover operator COz propagates a sub-slicing structure {with the
operands in it unchanged) along with the overall nature of the slicing from the first parent into

the offspring.

‘The crossover operator CQO, is the most complicated of all. It attempts to exchange two
equal-sized Polish subexpressions between two parents. Recall that a Polish subexpression
corresponds to a slicing subtree. Let the number of operands in a subtree (of a slicing tree)
rooted at an operator be defined as the shadow number of that operator. By definition, shadow
number of an operand is 1. The operator at the root of a slicing tree has the shadow number
equal to the total number of given operands, m. CO, starts out by computing shadow
numbers of all the operators from Parents 1 and 2. The computation of shadow numbers is
carried out by a stack-based algorithm. A left to right scan of a parent is made; whenever an
operand is encountered ifs shadow number is pushed onto the stack; whenever an operator is
encountered two items are removed from the stack, added together, and put back onto the
stack, with the result being the shadow number of the examined operator. Note that this
procedure is similar to evaluation of an arithmetic expression expressed in Polish notation. Let
DSN; and DSN, be the set of distinet shadow numbers (other than 1) in Parents 1 and 2,

respectively, Let COMMON = DSNNDSN,. If COMMON = @ the crossover fails as no subtrees

~10-



of the same size exist. Otherwise, a shadow number, 2 < k < n is randomly selected from
COMMON. The restriction on k is imposed because the effect of exchanging subtrees with
k = 2 can be easily achieved by mutation operators {described later), and the case k = n results
in exchanging the entire tree thus creating no new solutions. Let OP, (k) and OP, (k) be the set
of operators, identified by their positions in the Polish expressions, with shadow number k in
Parents 1 and 2, respectively. Let u and v be the operators selected randomly from OP, (k) and
OP, k), respectively. Let PS{u) and PS{v) be the Polish subexpressions associated with the
operators u and v, respectively. They both have the same size, of (2xk — 1}, because the
operators u and v have the same shadow numbers. The first offspring is partially created by
copying PS{v) inio the positions of PS{u); the second offspring by copying PS{u) into the
positions of PS(v). The creation of first [second) offspring is completed by copying remaining
operands and operators from Parent 1 (2) by making a left to right scan. Figure 5 illustrates

the operation of CO,.

Positions i1 2 3 4 5 & 7 8 910 11 12 13 14 1i5
Parent 1 1 4 5 6 * + + 8 7 * 3 2 * 4+ %
Parent 2 2 6 8 * ¥ 7 % 5 + 4 *x 1 3 4+ 4+

DSN, = {2,3,4,8}
DSN, =1{2,3,4,5,6,8}
COMMON =1{2,3,4,8}

fo=4

Oplik} = {7, 14}

OP,{k} = {7}

u=14

v=7

PSlu})= 87 *3 2 * +

PSi=268 * * 7 #

Offspring 1 1 4 5 3 * + + 2 6 8 * % T *x %
Offspring 2 g8 7 * 3 * + 6 + 5 % 4 1 +

Figure 5 — lustration of the crossover operator, CO,
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We belleve that crossover operators COz and CO, are more effective in manipulating
building blocks compared to CO; and CO,. In a series of experiments, one using the set
{CO,,CO,} of crossover operators, another using the set {CO,,CO,,COg}, and the third using
the set {C0O;,C04,C03,C0,4), all randomly selecting a crossover operator from the
corresponding set whenever a crossover operation is to be done, the third combination (of
{C0O,,C04,C03,C0.) performed better compared to other two combinations. This suggests the
possibility of using some crossover operators more frequently than others. Currently, we are
investigating that possibility. All the experiments in this study select randomly a crossover
operator from the combination {CO;,CQO3,C035,C0,4} whenever a crossover operation is to be

performed.

Mutations are randomn, diversity-increasing operators, preventing a genetic algorithm from
reaching a homogeneous, single-solution state of a population. We use the moves specified by
Wong and Liu [WonG86] as our mutation operators. They are: swapping two adjacent
operands, switching a sequence of adjacent operators, and swapping an operator and a
neighboring operand. Since we are not restricting Polish expressions to be normalized, we do

not check for that property while mutating a solution.

The computation of area and wire length of a floorplan is carried out according to the
scheme suggested by Wong and Liu [WonG86]. Since our crossover operators can produce an
offspring that is drastically different from both the parents, no simple incremental method is
readily available to compute the area and wire length; they are computed starting from the

bounding curves of the given modules.

With any minimization problem, such as the floorplan design problem, the scores of the
solutions should decrease over time. The score is the value of the objective function, Equation
{4). Two simple fitness functions suggest themselves, First, the fitness could be inversely
related to the score; this could cause excessive compression of the range of fitnesses. Second,
the fitness could be a constant minus the score. The constant must be large enough to ensure
all fithesses are positive (since they are used in the selection process) and not toco large

{effectively causing compression). If such a constant were optimal initially, it would become a
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poor choice near equilibria. For these reasons we use a time-varying “normalized” fitness.

We choose our fitness to be a function of all the scores in the current subpopulation. We
have empirically found that randomly generated solutions fo the floorplan design problem have
scores that are “normally distributed,” i.e., have a bell-shaped curve. Figure 6 shows the
distribution of scores of 10,000 randomly generated solutions for a problem of size 25 to be
discussed in the subsequent sections. For the data of Figure 6, 95.74% of the sclutions live
within two standard deviations (s.d.} of the mean, and 99.93% within four s.d.’s. (Related
evidence on normal distribution of scores can be found in [CoOHO88a, WHIT84],) Therefore, we

use

(ns ~ score{x)) + o,

fitness{x) = (5)

200,

where |1, is the mean of the scores, o, is s.d., and « is a small constant parameter. We use
clipping, i.e., setting the fitness to a very small positive value if it is negative, to ensure that

fitness of a solution is positive.,

400 —

300 —

Frequency 200 -]

106 —

0 -

I I I
4000 5000 6000 7000
Score

Figure 6 — Distribution of scores of 10,000 random solutions
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Our current implementation, GAPE, is a sequential simulation of the distributed genetic
algorithm with punctuated equilibria. The systern has been developed in C in a UNIX
environment on a VAX 11/780. We are in the process of porting our system to a hyper-cube
machine recently made available to us by the University of Virginia’s Institute for Parallel
Computation. To make a comparative study, we also implemented a simulated annealing

approach (SA) of Wong and Liu [WoNG86] in C in a UNIX environment on a VAX 11/780.

5. Empirical Studies

We have performed several experiments to determine if GAPE is an effective approach. We
have also made a comparative study of the efficacy of GAPE and that of SA. In one set of
experiments, we have used the data for which an optimal floorplan is knowt:. In ancther set of
experiments, randomly generated data has been used. The methods used by Wong and Liu

[WonG86] have been used to generate random data for the experiments using them.

For GAPE, the initial mix of subpopulations is created by producing n random sohztions.
For SA, the inilial solution is a randomly generated normalized Polish expression. We did not
use non-normalized Polish expressions in SA as it has been reported to slow down the

convergence rate [WoNG886].

1 2 3 4
8 9
5 6
7 11 12
16
15 16
13 | 14
17
18 | 19 20

Figure 7 — Optimal floorplan for a problem instance with 20 modules




Results for the Structured Data: We have examined two problem instances, one with 16
modules and another with 20 modules. For the instance with 16 modules, all the modules are
rigid (we set r, = s; = 1), have fixed orientations, and are of unit area. Therefore, the bounding
curves of all the modules have a single “corner” at {1,1). The lower and upper bounds on the
aspect ratio of the final chip (p and g) are 0.5 and 2.0, respectively. The optimal floorplan, with
four modules in each row and colummn, has unit-cost wires connecting the neighboring
modules, The optimal area is 16.0, and the wire length is 48.0. So, with A = 1, the optimal
floorplan has a total cost of 64.0. The second problem instance also has all rigid modules with
fixed orientations, but the bounding curves of all the modules do not look alike. The lower and
upper bounds on the aspect ratio of the final chip (p and g) are 0.01 and 20.0, respectively.
The optimal floorplan is shown in Figure 7. The cost matrix still consists of 0/1 entries, but a
module now need not be connected to all the neighboring modules (in the optimal floorplan),
e.g., module 6 is connected only to module 7 although modules 2, 5, and 14 are also adjacent
to it. The optimal floorplan has an area of 42.0 and wire length of 83.0, resulting in a total
cost of 125.0 for A= 1.

Distributed genetic algorithms used a mesh configuration with N=4, le., each
subpcpulation being able to “cormrnunicate” during the inter-epoch transition with two other
subpopulaticns. Since the behavior of any genetic algorithm is intricately dependent on
various parameter settings, we conducted some preliminary experiments to determine the

following working set of parameters: n=80,E=16,G=50,5=15,C=05, M=03and o= 1.

For the parameter settings used by GAPE, in all NXExG = 4x16x50 = 3,200 generations
are created. If we assume, in the most optimistic sense, that each crossover creates a new
solution not seen before, Cxn = 0.5x80 = 40 new solutions are seen per generation. Adding the
solutions produced due to mutations {i.e., Mxn = 0.3x80 = 24) to the above number, we come
at a figure of 64 solutions per generation, resulting in 64x3,200 = 204,800 as the total number
of soclutions seen by the distributed genetic algorithm. (However, due o the phenomenon of
stasis, not all crossovers result in new solutions, reducing the total number of distinct strings

seen.,)
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We exarnined the performance of SA on the above two problem instances. To be fair in
our comparisons, we allowed the SA to run for 175 temperature changes with 1200 moves
allowed in each temperature regime. (This would result in 175x1200 = 210,000 solutions
seen, and almost all of them would be distinct due to the “mutative” nature of the moves.} The
annealing schedule of Ty, = & *7;, with 8§=0.973 (for the instance with 16 modules) and
5= 0.970 {for the instance with 20 modules] produced good solutions among the other
schedules tried. The initial temperature was determined by making 1000 moves starting from
a randomly generated solution, computing the average uphill cost, and setting the acceptance

probability to 0.95 for that average uphill cost.

GAPE and SA were both run ten times on the problem instances with 16 and 20 modules,
respectively. The value of A used is 1. The average cost of solutions found by GAPE and SA for
the 16 module instance are 87.6 and 103.9, respectively. The overall best solutiont found by
GAPE for this instance has a cost of 72.0, and that found by SA has a cost of 84.0. For the 20
module problem instance, GAPE found solutions with an average cost of 183.3, while SA found
solutions with an average cost of 183.5. The overall best solution found by GAPE for this
instance has a cost of 150.0 while that of SA has a cost of 154.0, We see that GAPE is better
than SA in terms of the best-found solution in both the cases. In terms of the average cost of
the solutions found, GAPE is better than SA for the problem instance with 16 modules, and the

performance of GAPE and SA on the problem: instance with 20 modules is essentially the same.

Results for the Randomly Generated Data: We have examined three problem instances, all with
25 modules. In all the instances, all the modules are flexible (we chose r; = 5;7%), and have free
orientations. Areas of the modules are selected randomly from a uniform distribution over
[1,20]. The cost matrices have random entries selected from a uniform distribution over [0,1].
In the first two instances s; is 3 for all the modules. In the third instance s; is randomly
selected from a uniform distribution over [1.4]. In all the instances, bounding curves have

"

been approximated by two “corners.” The value of A used is 1 throughout. The lower and
upper bounds on the aspect ratio of the final chip (p and ¢ are 0.5 and 2.0, respectively.

Since the data is random, we do not know the optimal costs.
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GAPE used a hyper-cube configuration with N =8, i.e., a regular cube. All the other
parameters used by GAPE are the same as in the previous section. While making comparative
studies, we allowed SA to run for 350 temperature changes with 1200 moves allowed in each
temperature regime. We found 6 = 0.9847, 0.9840 and 0.9827 to produce good results in the

three instances, respectively.

For each of the three random data instances, GAPE and SA were again respectively run
ten times. The average cost of solutions found by GAPE and SA for the first random data
instance is 2964.6 and 3144.3, respectively. The overall best solution found by GAPE for this
instance is 2880.0, and it is 3083.0 for SA. For the second random data instance, GAPE and
SA found solutions with an average cost of 3452.2 and 38652.0, respectively. GAPE found an
overall best solution for this instance with a cost of 3371.9 while SA found one with a cost of
3563.2. For the third random data instance, GAPE and SA found solutions with an average
cost of 3063.7 and 3186.9, respectively. The overall best solution found by GAPE for this
instance is 2956.8 and it is 3129.6 for SA. We note that GAPE again performed consistently

better than SA.

Figure 8 is a plot depicting the average and the best performance of one subpopulation of
the hyper-cube. The average computed is the average score of the solutions forming a
subpopulation after a generation has been completed. The best score is the score of the best
solution produced in a generation. We note a steep fall in the first four epochs, and a local
search in the later epochs. Also of interest is the fact that the curves are not monotonically
decreasing. The often found increase in the average score and the best score is the result oft
catastrophic mixing during the communication phase of GAPE, and the generation and
survival of solutions with relatively “bad” scores. This is necessary to avoid getting trapped in
local minima. The key parameter affecting the steepness of the curves is o. We have more to

say about o in the next section,

We also ran experiments simulating GAPE on a 5-dimensional hyper-cube {i.e., N = 32).
The problem instances are the three 25-module, random instances described above. The

average solution costs found by GAPE for the three instances were respectively 2912.7, 3388.4,
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Figure 8 — Behavior of one subpopulation of an 8-node hyper-cube

and 3037.7. The overall best solution costs found by GAPE were 2851.7, 3349.3, and 2911.4.

The average and the best-found solutions are superior to those determined with a 3-

dimensional cube (consisting of 8 nodes). The average solution cost was on average 1.5%

better and the best solution cost was on average 1.1% better. This result points out the
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advantage of using more subpopulations; the result is not surprising because more

subpopulations imply a more diverse exploration of the solution space.

6. Concliusions and Extensions

We have shown how distributed genetic algorithms can be used to solve the floorplan design
problem. We have also empirically demonstrated the efficacy of our method, and compared it
with the SA approach. Given approximately the same number of strings to be examined, our
method performed consistently better than the SA approach in almost all the problem
instances tried, both in terms of the average cost of the solutions found and the best-found
solution. Our method can be easily implemented on a local-memory, message-passing

distributed computer.

GAPE is characterized by many parameters. We are currently studying the detailed
dynamics of GAPE to understand the specific effects of these parameters. The scaling factor, o,
of Equation (5) determines the importance of relative differences in the scores of members
forming a subpopulation. In some of our preliminary experiments we have observed that lower
values of o produce solutions (of relatively inferior quality) faster. We conjecture that o« plays a
role equivalent to that of temperature in simulated annealing [Kirg83]. Therefore various

schedules can be tried on o. Similarly, the mutation rate can be varied over time.

The objective function in Equation (4) has two distinct components — area and wirel
length — to be minimized which can be tackled by two separate sets of communicating
subpopulations, one set emphasizing the area term and another emphasizing the wire length
term {by using different values of A). Similarly, the area and the wire length terms can be

given dynamically changing relative importance over different epochs.
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