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Abstract

This paper outlines the new caches-as-fil ters framework for the analysis of caching systems, describing the func-
tional filter model in detail . This model is more general than those introduced previously, allowing designers and 
compiler writers to understand why a cache exhibits a particular behavior, and in some cases indicating what com-
piler or hardware techniques must be employed to improve a cache hierarchy’s performance. Three components of 
the framework, the trace-specification notation, equivalence class concept, and new measures of cache perfor-
mance, are described in previous publications. This paper extends the framework with a formal definition of the 
functional filter model and augments the trace-specification notation with additional constructs to describe condi-
tionals and the effects of cache filtering. We then give detailed examples demonstrating the application of the 
model to a set of examples of a copy kernel, where each example represents a different equivalence class of traces.

1.  Introduction

As the processor-memory performance gap grows, the work of today’s cache designer becomes increasingly difficult: 

with each jump in microprocessor speed, the cache hierarchy must be redesigned to keep pace. In addition, some 

compiler optimizations must be modified to account for the new hierarchy and its latencies. Numerous research 

efforts investigate improvements in cache performance, yet most take only an ad hoc approach, judging a proposed 

cache modification by running benchmarks through a simulator to determine hit rates or average memory access 

times. While this has yielded successful new designs, such research has reached a domain of diminishing returns, and 

the ad hoc approach typically yields no insight into why a cache behaves as it does or how different components of the 

hierarchy interact. Formal techniques are therefore becoming more important for the analysis and design of high-per-

formance memory hierarchies. 
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The caches-as-filters framework for memory-hierarchy analysis and design takes a new approach to the analysis 

of cache behavior. The standard approach is cache-centric: behavior is a function of the cache organization, and is 

typically characterized by hit rate. Our work instead treats caches as filters, and takes a trace-centric approach: behav-

ior is characterized as a function on the memory-reference sequence, and key aspects of the analysis are invariant 

across cache organizations. 

The chief advantage of this new framework is that it is general: it can be used to describe and analyze any 

sequence or pattern of memory references. It is not limited to loop, array, or other reference patterns with an aff ine 

relationship. This generality necessarily involves some complexity in notation: accommodating general reference 

sequences means that we cannot use simple equations, for example. An important component of the caches-as-filters 

framework is that the analysis techniques can be automated. The framework is therefore practical, even with complex 

sequences. 

The next section describes our approach. Section 3 provides an overview of TSpec notation, and Section 4 

describes equivalence classes. Section 5 then uses several examples to demonstrate the application or our approach 

and to ill ustrate its benefits. Section 6 describes related work, and Section 7 puts this work in perspective with respect 

to the larger caches-as-fil ters research effort.

2. Approach

The caches-as-filters framework includes four components. First, the TSpec notation is a formal means by which 

researchers can communicate with clarity about memory reference sequences and how they behave in different cache-

hierarchy organizations. This notation describes not just a trace of references generated by a processor, but also 

describes traces that have been “ filtered” by an arbitrary sequence of caches [new TSpec reference]. Second, the con-

cept of an equivalence class of memory reference traces provides an abstraction away from random address-place-

ment effects due to declarations, compiler and linker decisions, and heap allocation. Third, the functional cache fil ter 

model uses the TSpec notation and equivalence classes to help designers more clearly understand the interactions 

among the components of a cache hierarchy and the effects of cache systems on traces and memory reference pat-

terns. Fourth, new metrics provide more insight into cache design than current measures such as hit rate or average 

memory access time. Two such metrics—instantaneous locality and instantaneous hit rate—are introduced elsewhere 

[Wei98], and have been incorporated them into an interactive tool for rapid visualization of performance traces 

[Pag99]. 

This framework takes a trace-centric approach: a cache filters out trace references that hit, changing an input set 

of references into another, hopefully sparser, output set. By composing a series of such caches, as many references as 

possible are fil tered from the request string before it is presented to main memory. To get the best performance, the 

goal of a particular level of cache is not only to filter out the most references, but to filter out those references that the 
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farther levels cannot capture. 

In the following analysis, we define a reference string to be the list of addresses (read or write) presented to the 

memory system, and denote it as a sequence,<a0, a1, a2, a3, a4, …>. The subscript indicates the position in the refer-

ence string, and is only loosely related to wall -clock time. In this paper the terms reference string, reference sequence, 

and trace are used interchangeably, and are denoted by the capital letter “T” . We use the symbol λ to indicate the 

position of a reference removed by a cache filter. This allows correlation between the input and output reference 

strings. For instance, the input <a, a, a> generates the output <a, λ, λ> for most caches. We view the cache as a filter 

function, f, on the input of the reference string, T, and the state of the cache, S. The output of a filter function f(T;S) 

consists of an output trace, T’ , and an output state, S’  (represented as the pair T’ ;S’ ). Figure 1 illustrates this relation-

ship. The trace-only portion of the output of a filter function is denoted fT(T;S), and the state-only portion is denoted 

fS(T;S). 

Application of the functional fil ter model consists of:

1) Transforming a trace or segment of source code into TSpec (Section 3),
2) Determining the equivalence class (Section 4) applicable for this analysis, and
3) Applying the filter functions (Section 5) to the TSpec description in stages, which includes:

a) Applying a linesize function, fLS(T), that converts all references to the same line to the same address,
b) Applying a “ number of sets function” , P(T), that partitions trace T into separate traces for each set,
c) Applying a combination set size and replacement algorithm function, fSizeRe(T; S), to each set trace, and

d) Recombining set answers for final results.

3. TSpec Basics

 Figure 2 shows an example of the TSpec for a simple for an inner loop that copies one vector to another. The 

code has been simpli fied to allow the pattern to be easily seen in the reference string. The following paragraphs 

explain this example in detail , and a glossary of TSpec notation appears at the end of this paper for the reader’s con-

venience.  

The most basic TSpec element is a trace atom, a single address or reference in the trace. It can be represented by 

T = <a0, a1, a2, a3, …> T’  = <a0’ , λ, a1’ , …>cache
filter

f(T;S)S = initial cache state S’  = final cache state

Figure 1: The Cache Filter Model

Pseudocode: for i := 1 to 3 t[i] := f[i];

TSpec: c(100, 4); f(200, 4); t(300, 4);
<!#f, !#t, (!#c, c+, f+, c+, t+, c+)*3>

Reference
String: 100, 200, 104, 300, 108,

100, 204, 104, 304, 108,
100, 208, 104, 308, 108

Figure 2: Copy example
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either a li teral, by λ, or by a variable. A literal is an explicit (constant) numerical address, (e.g., 100 in the reference 

string above). A variable represents a regular sequence of addresses, and is specified by a base address and an incre-

ment (stride). In the copy example, c, f, and t are all variables. c represents the code references, and has a base address 

of 100 and an increment of four. f represents the source vector from which data is being copied in the example, and t 

represents the destination vector into which the data is being stored. A variable can be initialized (denoted #x) to set 

its current value to its base address. (Note in the example above, all the initializations are preceded by !, which simply 

suppresses the generation of an address.) A variable can also be post-incremented (e.g., c+) so that after its current 

value is used, the value is updated to be the sum of itself and the increment specified in its definition.  In the example 

above, the first c+  in the specification represents the address 100 and increments the value of c to 104, so that the next 

occurrence of c+  represents the address 104. The TSpec notation also allows variables to have multiple increments, 

which is useful for representing arrays. For example, in x(400; 8, 128), x has two increments or iterators. For conve-

nience, when only the first iterator affects the variable value, we place the manipulation symbol (#, + , -) on the same 

level as the variable (e.g., x+ ). The examples in later sections demonstrate the util ity of this notational shorthand. 

When multiple iterators are used, the symbols are subscripted in an order corresponding to the iterators they manipu-

late, and we use ~ to indicate that the corresponding iterator is unchanged. For example, x#,+ clears the changes made 

to the first iterator and post-increments the base address by the second iterator, which in this case represents the cur-

rent value of x and then sets it to 528. x~,+ would then represent the value 528 and increment it to 656.

A trace is represented by a concatenation of atoms separated by commas. A variable or a concatenation of vari-

ables can then be repeated with the iteration operator, * . So in the example above, the *3 after the parentheses causes 

the trace within the parentheses to be used three times. Notice that since the initialization for c is within the parenthe-

ses, the address represented by c for each iteration are the same, but since the initializations for f and t are not within 

the parentheses, the addresses represented by f+  and t+  change in each iteration. A *  with no explicit iteration count 

simply means “zero or more repetitions” , by analogy to the Kleene star in regular expressions.

The last TSpec operator required here is merge, denoted T1 &  T2. It is easiest to visualize this operation by lining 

the traces up one above the other as if they were going to be “added” , and merging each set in the same position in the 

reference string. The merge of multiple traces is formed one atom at a time. The merge of a single atom with any 

number of λs is defined to be the atom. The merge of any number of λs is defined to be λ. The merge of multiple non-

λ atoms is undefined. For example, < a1, λ, a3, λ> & < λ, a2, λ, a3> = < a1, a2, a3, a4>. 

4. Equivalence Classes

When analyzing a memory system, cache designers traditionally work with specific traces for which the address bind-

ings and the input data, and hence the path through each program, is known, much as in the example trace from Fig-

ure 2 . Sometimes it may be beneficial to abstract away artifacts due to chance address bindings or specific inputs, or 

to consider the set of all possible traces from a certain piece of source code. To address these issues, we introduce the 

concept of equivalence classes. We divide the set of traces that can be generated by any specific piece of source code 
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into four sets, depending on whether or not the address bindings and input data are known. The relationship among 

these groups is shown in Figure 3. 

In the figure, T represents a trace for which addresses and input values are bound. The set of traces that would be 

generated with the same source code and the same set of address bindings as T, but with different input data, is 

denoted { Td} , and is referred to as the equivalence class of traces under varying data input. Similarly, { Tb} repre-

sents the equivalence class of traces under varying address bindings. (Note that {Tb} is essentially a generalization of 

the translation group for arrays described by Harper et al. [Har99].) The sections that follow apply our analysis tech-

niques to expanded versions of the copy example from Section 3, and in the process, they extend the notation to per-

mit descriptions of other members of the equivalence classes { Tb} and { Td} .

 

5. Analysis Examples

The following examples ill ustrate the kinds of analyses that can be performed on individual traces and sets of traces 

from the equivalence classes. For clarity, all examples are expansions of the copy function shown above. Each starts 

with C code and the corresponding assembly language generated by gcc.1 We then show the translation into TSpec 

and the subsequent analyses for fully associative and direct-mapped caches. Since the examples are small, we choose 

small cache sizes to highlight situations where unsuspected behavior may occur. Our intent here is to explain the 

caches-as-filters framework and to demonstrate its application to easily grasped examples, and thus we simpli fy the 

explanations by using only virtual addresses. An ideal analysis for multi-level cache systems would use physical 

addresses for appropriate levels; we reserve incorporating effects of virtual-to-physical translation for future work. 

Except for pathological cases where small -sized data hit page boundaries, the analyses for the equivalence class under 

varying address bindings applies to either virtual or physical addresses for the examples in this paper.

5.1. Unconditional Copy C Code, Assembly Language and TSpec

We generated the C code for the more extensive version of the vector copy in Figure 4 with gcc -O2 -fno-

dela y-slots .  Figure 5 shows the assembler output, excluding error- and operand-checking code. TSpec for this 

1. We use SPARC assembly language, but we abstract away the delay slot and delete extraneous code produced by gcc. 

{ Tbd}

{ Tb} { Td}
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Figure 3: The relationship between traces generated by a specific source program
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assembly language appears below the figures. For easy verification, the assembly instructions corresponding to the 

TSpec code references are presented under the TSpec notation. Since we use source code instead of a trace, the num-

ber of loop iterations is unknown in this example. For readabil ity, TSpec constructs that do not generate trace atoms 

(i.e., that are preceded by !) are lighter in color.

/* The assem bly code below is for this copy() function */
void copy(in t *f, int *t, int N)
{
  int i;
  for (i=0; i <N; i++)
    t[i] = f [ i];
}
/* This main ( ) is simply to illustrate the calling of copy() * /
main(int arg c, char **argv)
{
  int i;
  int t[3] =  {0, 0, 0};
  int f[3] =  {10, 11, 12};
  copy(f, t,  3);
  return 0;
}

Figure 4: C code for copy example

// o0 = f's base address
// o1 = t's base address
// o2 = N
// o3 = i (l ocal)
// The argum ents appear in the "o" registers because this is a leaf
// procedure  and so the compiler chooses not to allocate a ne w register
// window
disassembly f or a.out

section .text
copy()

10b64:  96 1 0 20 00        clr     %o3            // i = 0
10b68:  87 2 a e0 02        sll     %o3, 2, %g3    // compute o f fset
10b6c:  96 0 2 e0 01        add     %o3, 1, %o3    // increment  i
10b70:  c4 0 2 00 03        ld      [%o0 + %g3], %g2
10b74:  80 a 2 c0 0a        cmp     %o3, %o2
10b78:  c4 2 2 40 03        st      %g2, [%o1 + %g3]
10b7c:  06 b f ff fb        bl      0x10b68
10b80:  81 c 3 e0 08        jmp     %o7 + 8

Figure 5: Disassembler output for copy example

c(10b64; 4, 8);
f(%o0; 4);
t(%o1; 4);
<!#c, !#f, !#t, c+, (!c#,+, c+, c+, c+, f+, c+, c+, t+, c+)* , c>

                      clr             sll  add ld      cmp st         bl    jmp
// Simpli fying this trace yields:
<!#c, !#f, !#t, c+, (!c#,+, c+*3, f+, c+*2, t+, c+)* , c>
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5.2. Unconditional Copy Analyses

The first step of the analysis procedure from Section 2 transforms the trace or source code into TSpec, as we did 

above. The second step determines the equivalence class for which to perform the analysis. The simplest example 

uses the equivalence class of a specific trace T. To this end, we arbitrarily set the number of iterations at three, and 

assume values for %o0 and %o1. Setting the number of iterations assumes a particular set of input data, and assuming 

values for %o0 and %o1 assigns base addresses for the arrays f and t. For simplicity, we focus only on the loop. The 

modified TSpec description is. 

The next analysis step applies the functional filter model in stages. For this we must represent both the trace and 

the state for the cache input and output streams. Both may be represented in TSpec, but we must first introduce addi-

tional notation for the state. Initially, it might seem that the state could be viewed as an unordered set, yet replace-

ments must occur in order. Having the state description represent that order simpli fies the determination of what to 

replace. The examples below use LRU replacement. To write TSpec with LRU order, it is useful to start from the end 

of a TSpec construct, rather than the beginning. By analogy with !#c, we define !c# to initialize a variable to its last 

value in the trace.

For our first analysis, we use a fully associative, infinite (or any size greater than seven), LRU, write-through 

cache with a line size of one word. For such a configuration, steps 3a and 3b above (applying the linesize function 

fLS(T) and the set partitioning function P(T)) have no effect on T. Step 3c, applying a set size and replacement algo-

rithm function, fSizeRe(T;S), where T is the copy example and S=S0 (an empty cache), yields: 

Representing the state and trace in the same notation makes relationships between them clearer. Here, S’  is sim-

ply T in reverse without the repetition of the code references. Experience working with this notation has shown that 

this notion of the reverse of T without duplicates is useful, since this string contains the list of trace items that can be 

in the state for any LRU cache. We formalize this function as U(T), called the unique of T, which is formed by taking 

the items from T, beginning at the end and working backwards, and replacing duplicate items with λd. This extends 

the definition of λ to include a place-holder for duplicate trace atoms. The subscript lets us differentiate between λs 

that hold places for duplicates (trace items that would be filtered by a cache) and those removed for any other pur-

pose. We define a function D(T) to remove λs of any type from the trace T, or Dd(T) to remove only λds. Now we can 

write the state as:  

c(10b68; 4); 
f(FSTART, 4);  
t(TSTART, 4);
<!#f, !#t, (!#c, c+*3, f+, c+*2, t+, c+)*3>

fFaILru(T; S0) = T’ ; S’  
         = <!#f, !#t, (!#c, c+*3, f+, c+*2, t+, c+), (f+, t+)*2>;  S’
             where S’  = { !c#, !t#, !f#, c-, t-, c-*2, f-, c-*3, (t-, f-)*2}

 fFaILru
S(T; S0) = S’ = D(U(T)) 

= Dd({ !c#, !t#, !f#, c-, t-, c-*2, f-, c-*3, (λd, t-, λd*2, f-, λd*3)*2} )

       = { !c#, !t#, !f#, c-, t-, c-*2, f-, c-*3, (t-, f-)*2}
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 This notation extends easily to fully-associative caches of finite size. Consider the result of a fully associative LRU 

cache of size seven2, again with a line size of one word. Notice that the trace output would be the same for any cache 

of size seven or smaller. The TSpec for this is: 

Because the cache is too small for this example, every reference misses. As a result, T’  = T, and it is more ill uminat-

ing to write:

Now we can specify the state in a more general way. Let S be an ordered set of <value, index>  pairs to represent 

the state of the cache (i.e., S = { <v, i> } where v = the address value of the trace atom, and i = its index in D(U(T)). 

The state, S’ , of the cache after the copy example would be S’  = {<v,i>  ε D(U(copy)) | i <= sz} , where sz is the size 

of the cache. Expanding the functions gives:

This example illustrates that the state of a fully-associative LRU cache of any size is the first sz elements in D(U(T)). 

 Now consider the same copy example output from a size-eight, direct-mapped cache. For set associative caches, 

the mapping of addresses into the cache, and subsequent hits, is more diff icult to predict. Each set performs exactly 

like a fully-associative cache that is the size of the set, and thus we can first partition the trace into a vector of traces 

(step 3b above), one element of which will correspond to each set, and then we can analyze this vector of traces in the 

same manner as for the fully-associative cache. By retaining λs for the final step, where we merge the vector of traces 

back into a single trace, we can see our results as a single trace, too.

Let P(T) = the vector of traces formed by splitti ng T into the different traces for each set. To split a TSpec 

description, we introduce notation to specify a precise reference in such a description. <fix me>  We use the instance 

name (which would be the variable name or the constant value of the reference), but if there are multiple uses of the 

instance name, more information is needed. For example, the copy example has six uses of the c variable in each iter-

ation. To specify a particular instance, a dot and number after the variable name are used. The number indicates the 

position of the instance in the TSpec string. Additional dots may be used to specify the iteration number of that vari-

able (or constant), if it is inside a loop. For example, the last instance of the c reference from the last iteration in the 

copy example above is denoted c.6.3. This is the sixth instance of the variable c in the third iteration (the last iteration 

here). The last t is specified as t.1.3. This notation is extended to multiple loops by subscripting the variable name 

with a loop label.

For our example above, the code starts in set two, assuming a one-word line (32 bits), because 0x10b68 / four 

2. We use a very small cache size here to demonstrate the two different behaviors possible for a fully associative cache on this 
example. One is that every reference misses for caches of size seven or smaller, and the other is only compulsory misses occur 
for caches of size eight or larger.

fFa7Lru(T; S0) = T’ ; S’  
= <!#f, !#t, (!#c, c+*3, f+, c+*2, t+, c+)*3>; S’
where S’  = { !c#, !t#, !f#, c-, t, c-*2, f, c-*2}

fFa7Lru(T; S0) = T’ ; S’
     = T; S’   where S’= { !c#, !t#, !f#, c-, t, c-*2, f, c-*2}

S’  = { <v,i> ε D(!t#, !f#, !c#, c-, t-, c-*2, f-, c-*3, (λ, t-, λ∗2, f-, λ∗3)*3) | i <= sz}
     = { <v,i> ε    !t#, !f#, !c#, c-, t-, c-*2, f-, c-*3, (t-, f-)*3)                         | i <= sz}
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bytes = 0x42da, and 0x42da / eight lines has remainder two. Arrays f and t can end up at different addresses depend-

ing on the particular arrays used to call copy(). Here we assume that f starts in set four and t in set five, in order to 

show the analysis for a specific T.

 Below is P0-7(T) for the copy example. Note that the second iteration is underlined to distinguish it from the oth-

ers. In addition, conflict misses are in bold (but compulsory misses are not). Again, λ is used as a place-holder for 

trace atoms. In this case, the lambdas are subscripted with s to show they result from set separation. 

At this point, the analysis nicely illustrates how the references are split among sets of the cache, and thus we see 

how effectively space is being utilized, and how set assignments affect performance. In this example, every code ref-

erence experiences a conflict miss two out of every eight iterations, as f and t march through the cache. On the other 

hand, if variables f and t could always be assigned to sets zero and one through some compiler technique like padding, 

the code would never suffer conflict misses. We could also eliminate conflict misses with a two-entry victim cache 

[Jou90].

At this point, we can easily see where not to map variables that have temporal locality, namely sets two through 

seven. For example, if we repeatedly consulted f[0] , or had some scalar in the loop that for some reason did not fit in 

the registers, mapping f[0]  or the scalar to any of sets two through seven would cause that code reference to miss on 

every iteration.  Note also that insights of this type are not limited to a unified cache.

Step 3c applies the set size and replacement algorithm function, fdm(T;S), to each set trace. In this example, this 

replaces repeated addresses with λds. Since this is a direct-mapped cache (i.e., with a set size of one), only addresses 

that are repeated immediately (without intervening references) are replaced. If this were a cache with set size greater 

than one, addresses repeated within the number of unique references equal to the size of the sets would be replaced.   

Removing the λs that result from set separation makes it easier to see what happens in each set, and leaving the 

P0(T) = λs,    λs,     λs,     λs,    λs,    λs,    λs,     λs,    λs*8,                              λs*8

P1(T) = λs,    λs,     λs,     λs,    λs,    λs,    λs,     λs,    λs*8,                              λs*8

P2(T) = c.1.1,λs,     λs,     λs,    λs,    λs,    λs,     λs,    c.1.2, λs*7,                    c.1.3, λs*7

P3(T) = λs,     c.2.1, λs,    λs,     λs,    λs,    λs,     λs,   λs, c.2.2, λs*6,              λs, c.2.3, λs*6

P4(T) = λs,     λs,     c.3.1, f.1.1, λs,    λs,    λs,    λs,   λs*2, c.3.2, λ*5,            λs*2, c.3.3, λs*5

P5(T) = λs,     λs,     λs,      c.4.1, λs,    λs,    t.1.1, λs,  λs*3, f.1.2, c.4.2, λs*3, λs*4, c.4.3, λs*3

P6(T) = λs,     λs,    λs,      λs,     c.5.1,  λs,   λs,    λs,  λs*6, t.1.2, c.5.2,             λs*3, f.1.3, λs, c.5.3, λs*2

fTdm(P0(T; S0)) = λs,   λs,    λs,    λs,   λs,   λs,   λs,   λs,           λs*8,                                          λs*8

fTdm(P1(T; S0)) = λs,   λs,    λs,    λs,   λs,   λs,   λs,   λs,           λs*8,                                          λ s*8

fTdm(P2(T; S0)) = c.1.1,λs,    λs,    λs,   λs,   λs,   λs,   λs,          λd, λs*7,                                    λd, λs*7

fTdm(P3(T; S0)) = λs,    c.2.1, λs,   λs,    λs,   λs,   λs,   λs,         λs, λd, λs*6,                              λ s, λd, λs*6

fTdm(P4(T; S0)) = λs,    λs,    c.3.1, f.1.1, λs,   λs,   λs,   λs,       λs*2, c.3.2, λ*5,                        λs*2, λd, λs*5

fTdm(P5(T; S0)) = λs,   λs,    λs,    c.4.1, λs,   λs,  t.1.1, λs,        λs*3, f.1.2, c.4.2, λs*3,             λs*4, λd, λs*3

fTdm(P6(T; S0)) = λs, λs,  λs,  λs,  c.5.1, λs,  λs,  λs,                  λs*6, t.1.2, c.5.2,                       λs*3, f.1.3, λs, c.5.3, λs*2

fTdm(P7(T; S0)) = λs,    λs,    λs,   λs,    λs,     c.6.1, λs,   λs,      λd,λs*7,                                     λ s*6, t.1.3, c.6.3
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λds shows how often we hit in the cache. Here there are a total of seven hits. The ideal performance of this direct-

mapped cache is 12 hits (where all of the repeated addresses are removed), but five hits are lost to conflict rather than 

capacity misses. This TSpec example precisely characterizes the suboptimal cache placement in this example.

 

Remerging the set results gives us the final trace answer:

fTdm(T; S0) = fTdm(P0(T; S0)) & fTdm(P1(T; S0)) & fTdm(P2(T; S0)) & ... & fTdm(P7(T; S0))

           = !#f, !#t, !#c, c+*3, f+, c+*2, t+, c, !#c, !c+*2, λd*2, c+, f+, c+*2, t+, c+, !#c, !c+*4, λd*3, f+, c+, t,  c+ 

The state analysis is performed separately. We again apply the set separation, P(T), and then we find U(P(T)). 

Since we have a direct-mapped cache, our final state for each set will be the first non-λ element in each:

 U(Pj(T)). S’  = { <v, i> ε D(U(P(T))) | i <= 1}
                      = { c.1, c.2, c.3, c.4, c.5, c.6} = {!#c, c+*6}

5.3. Unconditional Copy Analyses with Varying Base Addresses

Now consider not just the specific trace generated by the copy example above, but rather the equivalence class of 

traces under address binding. This class can be described by the TSpec description above without specific base 

addresses for the variables. 

c(CSTART; 4);
f(FSTART, 4);
t(TSTART, 4);
<!#f, !#t, (!#c, c+*3, f+, c+*2, t+, c)*3>

When analyzing this set of traces, we must first perform a case analysis of potential conflicts between variables. 

It is not necessary to perform a systematic analysis of every possible combination of set assignments for each vari-

able, since several of these cases are equivalent. For example, the end result of every variable’s being assigned to set 

zero is the same as the end result of every variable’s being assigned to any other set. The general set of cases for this 

problem can be thought of as a range of cases, spanning a spectrum as the number of conflict misses goes from zero 

Ds(f
T

dm(P0(T), S0)) = 

Ds(
Tfdm(P1(T), S0)) = 

Ds(f
T

dm(P2(T), S0)) = c.1.1, λd,  λd

Ds(
Tfdm(P3(T), S0)) = c.2.1, λd,  λd

Ds(f
T

dm(P4(T), S0)) = c.3.1, f.1.1, c.3.2, λd

Ds(f
T

dm(P5(T), S0)) = c.4.1, t.1.1, f.1.2, c.4.2, λd

Ds(f
T

dm(P6(T), S0)) = c.5.1, t.1.2, c.5.2, f.1.3, c.5.3

Ds(f
T

dm(P7(T), S0)) = c.6.1, λd, t.1.3, c.6.3

U(P0(T)) =  λs*24

U(P1(T)) =  λs*24

U(P2(T)) = λs*7, c.1, λs*7, λd, λs*7, λd

U(P3(T)) = λs*6, c.2, λs*7, λd, λs*7, λd, λs

U(P4(T)) = λs*5, c.3, λs*7, λd, λs*6, f.1.1, λd

U(P5(T))= λs*3, c.4, λs*7, λd, f.1.2, λs*4, t.1.1, λs*2, λd, λs*3

U(P6(T)) = λs*2, c.5, λs, f.1.3, λs*3, λd, t.1.2, λs*9, λd, λs*4

U(P7(T)) = c.6, t.1.3, λs*13, λd, λs*2, λd, λs*5
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to six. The “minimum” case happens when none of the stream references evict a code reference before it is repeated. 

The “maximum” case happens when every stream reference evicts some code reference before it can be repeated.

Consider the minimum case more closely. Zero conflicts may seem impossible in a direct-mapped cache, as there 

are only eight sets and 12 individual references. Yet consider the situation where variable c is assigned to set two, and 

variables t and f are both assigned to set zero. (Remember, this is one representative of a group of assignments that 

achieve the same result. The important point is that t and f are both assigned to the same starting set, which is two sets 

“before” the starting set for c.) The second iteration is underlined.

Replacing immediate repeats with λd (which amounts to performing fdm here) gives:

Remerging the set traces produces:

               T’  = <!#f, !#t, (!#c, c+*3, f+, c+*2, t+, c), (λ*3, f+, λ*2, t+, λ)*2>
and         S’  = { t.1.1, t.1.2, t.1.3, c.2, c.3, c.4, c.5, c.6} = { !#t, t+*3, !#c, !c+*2, c+*5}

This simple reassignment of addresses results in different starting-set assignments, bringing the performance of 

the direct-mapped cache up to the performance of a fully-associative cache of the same size. In the case where the 

number of unique addresses in the loop exceeds the number of lines available in the cache (here cache size seven or 

smaller), a direct-mapped cache will actually outperform a fully associative cache. In every situation, the fully asso-

ciative cache evicts code before it can be used again, and thus there are no hits. The direct-mapped cache, on the other 

hand, hits for some code references because the two intervening stream references cannot evict all code references 

before they are reused. Finally, note that these examples point to the usefulness of stream buffers and victim caches 

[Jou90], methods for writing around caches for references that are not reused [Jou93], and techniques such as data 

padding by the compiler to achieve the minimal number of conflict misses [Leb94]. This analysis also shows how 

cache-conscious data placement [Cal98] can improve cache performance, and how our framework might work in con-

junction with such techniques.

P0(T) = λs,    λs,    λs,     f.1.1, λs,    λs,  t.1.1,  λs,      λs*8,                                                   λs*8

P1(T) = λs,    λs,    λs,    λs,     λs,    λs,    λs,    λs,       λs*3, f.1.2, λs*2, t.1.2, λs,                   λs*8

P2(T) = c.1.1,λs,    λs,     λs,     λs,    λs,     λs,     λs,    c.1.2, λs*7,                                          c.1.3, λs∗2, f.1.3, λs*2, t.1.3, λs

P3(T) = λs,    c.2.1,λs,    λs,     λs,    λs,    λs,    λs,       λs, c.2.2, λs*6,                                     λs, c.2.3, λs*6

P4(T) = λs,     λs,    c.3.1,λs,     λs,    λs,    λs,    λs,      λs*2, c.3.2, λs*5,                                 λ s*2, c.3.3, λs∗5

P5(T) = λs,     λs,    λs,     λs,     c.4.1,λs,   λs,    λs,      λs*4, c.4.2, λs*3,                                 λ s*4, c.4.3, λs*3

P6(T) = λs,     λs,    λs,     λs,     λs,    c.5.1,λs,    λs,     λs*6, c.5.2, λs,                                     λ s*6, c.5.3, λs

P7(T) = λs,     λs,    λs,     λs,     λs,     λs,    λs,   c.6.1, λs*7, c.6.2,                                          λs*7, c.6.3

fTdm(P0(T); S0) = λs,    λs,    λs,   f.1.1, λs,    λs,  t.1.1,  λs,      λs*8,                                           λs*8

fTdm(P1(T); S0) = λs,    λs,    λs,   λs,     λs,    λs,    λs,    λs,      λs*3, f.1.2, λs*2, t.1.2, λs,         λs*8

fTdm(P2(T); S0) = c.1.1,λs,    λs,    λs,    λs    λs,    λs,  λs,         λd, λs*7,                                    λd, λs∗2, f.1.3, λs*2,t.1.3, λs

fTdm(P3(T); S0) = λs,   c.2.1,λs,    λs,     λs,    λs,    λs,    λs,      λs, λd, λs*6,                               λs, λd, λs*6

fTdm(P4(T); S0) = λs,    λs,    c.3.1,λs,     λs,    λs,    λs,    λs,     λs*2, λd, λs*5,                           λs*2, λd, λs∗5

fTdm(P5(T); S0) = λs,    λs,    λs,     λs,     c.4.1,λs,   λs,    λs,     λs*4, λd, λs*3,                           λs*4, λd, λs*3

fTdm(P6(T); S0) = λs,    λs,    λs,     λs,     λs,    c.5.1,λs,    λs,    λs*6, λd, λs,                               λs*6, λd, λs

fTdm(P7(T); S0) = λs,     λs,    λs,     λs,     λs,     λs,   λs,   c.6.1, λs*7, λd,                                    λs*7, λd
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5.4. Conditional Copy

With the introduction of conditionals, it is useful to be able to increment a variable without generating an address. 

This allows the same variable to represent the code or a stream throughout a loop, regardless of whether internal con-

ditional code is executed. For example, “ !” before an atom is used on the “not taken” part of the TSpec to represent 

skipping over the body of an if statement. 

A conditional is represented by placing the taken and not-taken paths inside parentheses and separating them by 

the symbol “ |” . The parentheses and the “|” are subscripted with the same label to prevent confusion in nested condi-

tionals. For example, an if statement with four instructions within a piece of sequential code might look like <!#c, 

c+*3, (Ic+*4 |I (!c+)*4)I, c+*5> . Loop branches do not use this construct, but rather the “* ” after parentheses.

As an example, the C code in Figure 6 has been modified from Figure 4 to include a conditional. The example is 

artificial in the interest of clarity. The corresponding assembly code follows in Figure 7.    

void copy(in t *f, int *t, int N)
{
  int i;
  for (i=0; i <N; i++)
    if (i !=  1)
      t[i] =  f[i];
}

main(int arg c, char **argv)
{
  int i;
  int t[3] =  {0, 0, 0};
  int f[3] =  {10, 11, 12};

  copy(f, t,  3);
  return 0;
}

Figure 6: C code for copy with embedded conditional

// o0 = f's base address
// o1 = t's base address
// o2 = N
// o3 = i (l ocal)
// The argum ents appear in the "o" registers because this is a leaf
// procedure  and so the compiler chooses not to allocate a ne w register
// window
section .tex t
copy()
        10b6 4:  96 10 20 00        clr          %o3            // i = 0
        10b6 8:  80 a2 e0 01        cmp          %o3, 1
        10b6 c:  02 80 00 05        be           0x10b7c
        10b7 0:  87 2a e0 02        sll          %o3, 2, %g3    // compute offset
        10b7 4:  c4 02 00 03        ld           [%o0 + %g3], %g2
        10b7 8:  c4 22 40 03        st           %g2, [%o1 + % g3]
        10b7 c:  96 02 e0 01        add          %o3, 1, %o3    // increment i
        10b8 0:  80 a2 c0 0a        cmp          %o3, %o2
        10b8 4:  06 bf ff fb        bl           0x10b68
        10b8 8:  81 c3 e0 08        jmp          %o7 + 8        // return

Figure 7: Disassembler output for conditional copy
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The TSpec for this new example appears below: 

c(10b64; 4);
f(o0; 4);
t(o1; 4);
<!#c, !#f, !#t, c+, (L!#c+, c+, c+, (I c+, c+, f+, c+, t+ |I (!c+)*3)I, c+, c+, c+)L* , c+>

                      clr             cmp be     sll   ld        st                           add cmp bl     jmp

We again focus on analyzing the loop, and initially on the effects of the conditional. Assume that we know the base 

addresses of the vectors and the number of loop iterations. This yields the following simpli fied TSpec:

c(10b68; 4);
f(o0; 4);
t(o1; 4);
<!#f, !#t, (L!c#,+, c+*2, (I c+*2, f+, c+, t+ |I (!c+)*3)I, c+*3)L*3>

Let us start with the simplest cache situation: a fully-associative LRU cache of size 13 or larger.

fFALRU(T; S0) = <!#f, !#t, (L!c#,+, c+*2, (I c+*2, f+, c+, t+ |I (!c+)*3)I, c+*3)L*3> ; S’
where S’  = !c#, !t#, !f#, c-*3, t-, c-, f-, c-*4, (t-, f-)*2 OR - case where the if is always taken
                  !c#, !t#, !f#, c-*3, t-, c-, f-, c-*4, (t-, f-) OR - case where the if is taken twice
                  !c#, !t#, !f#, c-*3, t-, c-, f-, c-*4 OR - case where the if is taken once
                  !c#, !t#, !f#, c-*3, (!c-)*3, c-*2 - case where if is never taken

This notation is useful for analyzing all possibili ties, but it is cumbersome: the number of cases grows with the 

number of loop iterations. A simpler approach expresses the state in terms of the MIN and MAX possible cache states 

after execution of the trace. For the above example:

where MIN =  !c#, !t#, !f#, c-*3, (!c-)*3, c-*2   and
MAX = !c#, !t#, !f#, c-*3, t-, c-, f-, c-*4, (t-, f-)*2

This second method would be useful for a compiler: the MIN indicates which items will always be available in 

the cache, and the MAX, which additional items may be in the cache. Software prefetching and other techniques 

should be applied first to items that are known not be in the cache.

6. Related Work

Other researchers have also explored better ways to design and analyze caches through new models or measures. 

Voldman and Hoevel [Vol81] describe an adaptation of standard Fourier analysis techniques to the study of cache sys-

tems. The cache is viewed as a “black box” boolean signal generator, where “ones” correspond to cache misses and 

“zeroes” to cache hits. The spectrum of this time sequence is used to identify tight loops accessing regular data struc-

tures and the general structure of instruction localiti es. Thiebaut [Thi89] models programs as one-dimensional fractal 

random-walks and uses the model to predict the behavior of the miss ratio curve for fully-associative caches of vary-

ing sizes. Thiebaut and Stone [Thi87] develop an analytic model for cache-reload transients—footprints in the 

cache—to describe the effects of context switches. Lebeck and Wood [Leb94] describe a cache profili ng system and 

show how it can guide code modifications that reduce cache misses. 

McKinley and Temam [McK96] take a step towards more detailed analysis by quantifying the locality character-

istics of numerical loop nests. Their locali ty measurements reveal important differences between loop nests and 

MIN S' MAX⊆ ⊆
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whole programs and refute some popular assertions. They present results as histograms of the locality distributions 

for the parts of programs in question, whereas our approach provides much more than summary information. 

Two recent frameworks share many of the same goals as ours. Ghosh and Martonosi’s Cache Miss Equations 

(CMEs) [Gho98] perform compile-time analysis of loops to generate a system of linear Diophantine equations 

describing the program’s memory behavior such that solutions to these equations represent potential misses in the 

code. CMEs allow for precise, mathematical, compile-time analysis of cache misses in cache memories of arbitrary 

associativity, but are currently limited to analysis of loops without interior control-flow like if-then-else structures.  

Harper, Kerbyson, and Nudd [Har99] extend the cache footprints concept [Thi89] and develop a mathematical frame-

work that permits the determination of cache miss ratios as well as conflicts within loops. They abstract away chance 

address bindings using equivalence classes (which they call “ translation groups”), as do we. Unfortunately, as with 

CMEs, the analysis is limited to nested loops without internal control-flow constructs. In this respect, our caches-as-

filters model is more general: we provide a general framework in which any program behavior can be examined.

7. Conclusions and Future Work

We have described a new analytical framework for studying the behavior of different cache organizations. The frame-

work consists of four components: the TSpec notation, equivalence classes of memory references, the functional 

cache fil ter model, and new metrics. This paper demonstrates the use of the first three components on variations of a 

simple kernel. The examples demonstrate how code sequences (including those with conditional constructs) can be 

described with TSpec, and they introduce several functions that permit the description of cache effects for arbitrary 

code sequences and arbitrary cache associativity. More generally, the examples demonstrate how this framework can 

be used to understand cache behavior—for instance, why direct-mapped caches can outperform caches of higher 

associativity—and how the framework can be used to guide cache-conscious data placement and other optimizations.

The framework is precise in that it can exactly describe the cache behavior of a particular program or memory-

reference trace, as opposed to approximating it with equations. In addition, the framework can be made practical, for 

the required tasks can largely be automated (e.g., the functional filter model steps can each be automated, as these 

steps are similar to aspects of cache simulation). The benefit of this approach over simulation is that the designer and 

compiler writer can see the intermediate steps that point to why a particular cache behavior occurs. In addition, we 

have a preliminary tool that computes the new measures, displays them in a way that contributes to the user’s under-

standing of the reference string and cache behavior, and allows the user to navigate through the trace [Wei98], and we 

have experimental tools to automate pattern matching to translate a trace into TSpec. We will soon have a tool to 

translate a compiler intermediate language to TSpec. Our framework is general in that it is not limited to specific code 

structures such as loops, for it can accommodate control-flow structures, even conditionals. Most importantly, it is 

useful in that it can point to potential solutions and clearly ill ustrate why a particular cache behavior occurs.

This work suggests a number of avenues for future exploration. Prior work has described two new cache-locali ty 

measures [Wei98], but the complementary analytical measures on TSpec examples have yet to be fully developed. We 

intend to use the framework to completely analyze a range of reference kernels, including transaction processing, 
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mpeg and jpeg kernels, and we wil l use these analyses to study the impact of compiler optimizations on these kernels. 

TSpec includes faciliti es for arbitrary annotation of trace elements [new TSpec reference], and these can be used to 

track producer-consumer delays, thereby identifying the latency-tolerance of memory references and—in conjunction 

with the caches-as-filters analysis—guiding the decision of which data to promote into the nearest caches. TSpec is 

also an excellent environment in which to analyze the behavior of writes and the impact of structures like coalescing 

write buffers, new write-buffer retirement policies, and write caches, extending the work in [Jou93] and [Ska97].  

Finally, many of these analyses will be simpli fied by future software tools.
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Appendix A: Glossary 

!#c sets the variable c to its base address as in its definition; does not generate an address.
!c# sets the variable c to the last address used in the TSpec description; does not generate an address.
!#c#,+ sets the variable c to its base address plus its second increment value from its definition; does not gener-
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ate an address.
c+ generates the address corresponding to the current value of c; post-increments the value of the variable c 

by its first increment or iterator.
c- generates the address corresponding to the current value of c; post-decrements the value of the variable 

c by its first increment or iterator.
c(400; 4, 8) defines the variable c with base address 400, first increment four, and second increment eight.
c*n generates an address corresponding to the current value of c n times, e.g., c*4 is the same as c, c, c, c.
!c+*n increments the c variable by its first increment n times; does not generate any addresses in the trace.
(c+*n | (!c+*n))represents an if statement: only one of the two clauses separated by “ |” is executed.  For clauses of 

any visual complexity, subscripts on the parentheses and the “|” separator should be used for clarity.
T1& T2 merges two traces, T1 and T2, one element at a time. λ merged with a trace atom is the trace atom, the 

merge of two λs is λ, the merge of two trace atoms is undefined.
λ functions as a placeholder for removed trace atoms in a trace.
λd functions as a placeholder for duplicate items removed from a state representation.


