CachesasFilters:
A Unifying Model for M emory Hierarchy Analysis

University of Virginia Department of Computer Science
Technical Report CS-200016
June 2000

"DeeA. B. Weikle, TKevin Skadron, “Sally A. McKee Twilliam A. Wulf

TDepartment of Computer Science
University of Virginia,
151 Engineer's Way, PO Box 400740
Charlottesville, VA 229044740
{daw4q | skadron@cs.virginia.edu, wwulf @nae.edu}

" Department of Computer Science
University of Utah
50 S. Central Campus Dr., #3190
Salt Lake City, UT 841129205
{ sam@cs.utah.edu}

Abstract

This paper outlinesthe new caches-as-filtersframework for the analysis of caching systems, describing the func-
tional filter model in detail. Thismodel is more general than those introduced previously, allowing designers and
compil er writersto understand why a cache exhibits a particular behavior, and in some asesindicating what com-
piler or hardware techniques must be enployed to improve a cache hierarchy's performance Three @mponents of
the framework, the trace-spedfication notation, equivalence dass concept, and new measures of cache perfor-
mance, are described in previous publications. This paper extends the framework with a formal definition of the
functional filter model and augments the trace-spedfication notation with additional constructsto describe andi-
tionals and the dfeds of cachefiltering. We then give detail ed examples demonstrating the appli cation of the
model to a set of examples of a copy kernel, where each example represents a different equivalence dass of traces.

1. Introduction

Asthe procesr-memory performancegap grows, the work of today’s cache designer becomes increasingly difficult:
with ead jump in microprocessor speed, the cate hierarchy must be redesigned to keep pace In addition, some
compil er optimizations must be modified to acount for the new hierarchy and its latencies. Numerous reseacch
efforts investigate improvements in cace performance, yet most take only an ad ha: approadh, judging a proposed
cace modification by running kenchmarks through a simulator to determine hit rates or average memory acaess
times. While this has yielded successful new designs, such research has readied adomain of diminishing returns, and
the ad hoc approach typicdly yields noinsight into why a cate behaves asit does or how different components of the
hierarchy interad. Formal techniques are therefore becoming more important for the analysis and design of high-per-

formance memory hierarchies.

The caches-asilters framework for memory-hierarchy analysis and design takes a new approach to the analysis
of cadhe behavior. The standard approach is cache-centric: behavior is afunction of the cate organization, and is
typicdly charaderized by hit rate. Our work instead treas cades asfilters, andtakes atrace-centric approach: behav-
ior is charaderized as a function on the memory-reference sequence, and key aspeds of the analysis are invariant

aaoss cade organizaions.

The dief advantage of this new framework is that it is general: it can be used to describe and analyze ay
seguence or pattern of memory references. It is not limited to loop, array, or other reference patterns with an affine
relationship. This generality necessarily involves some cmmplexity in notation: acammodating general reference
seguences means that we cannot use simple equations, for example. An important component of the cates-as-filters
framework isthat the analysistedhniques can be auitomated. The framework istherefore practical, even with complex

Ssequences.

The next sedion describes our approach. Sedion 3 provides an overview of TSpecnotation, and Sedion 4
describes equivalence dasses. Sedion 5 then uses sveral examples to demonstrate the goplication or our approach
and to ill ustrate its benefits. Sedion 6 describes related work, and Sedion 7 puts thiswork in perspedive with resped

to the larger cathes-asfilters reseach effort.

2. Approach

The cades-asilters framework includes four components. First, the TSpecnotation is aformal means by which
researchers can communicate with clarity about memory reference sequences and how they behavein dfferent cate-
hierarchy organizations. This notation describes nat just atrace of references generated by a processor, but also
describes traces that have been “filtered” by an arbitrary sequence of cades [new TSpecreference]. Seaond, the @mn-
cept of an equivalence dass of memory referencetraces provides an abstradion away from random addressplace
ment effedas due to dedarations, compiler and linker dedsions, and heg alocaion. Third, the functional cache filter
model uses the TSpecnotation and equivalence dasses to help designers more dealy understand the interadions
among the cmponents of a cate hierarchy and the dfeds of cade systems on traces and memory reference pat-
terns. Fourth, new metrics provide more insight into cache design than current measures such as hit rate or average
memory accesstime. Two such metrics—instantaneous locality and instantaneous hit rate—are introduced elsewhere
[Wei98], and have been incorporated them into an interadive toal for rapid visualization of performancetraces
[Pag99].

This framework takes a tracecentric gpproach: a catde filters out tracereferences that hit, changing an input set
of referencesinto another, hopefully sparser, output set. By composing a series of such cades, as many references as
possible ae filtered from the request string before it is presented to main memory. To get the best performance, the

goal of aparticular level of cadheisnat only to filter out the most references, but to filter out those references that the

farther levels cannot capture.

T =<ay, &, ay, as, ...> cache T =<ag, \ a,..>
> filter >
S=initia cadestate| f(T;S) S =fina cade state

Figure 1: The Cache Filter Model

In the foll owing analysis, we define areferencestringto be the list of addresses (read or write) presented to the
memory system, and denote it as a sequence<ag, &, &, ag, 84, ...>. The subscript indicates the position in the refer-
encestring, and isonly loosely related to wall -clock time. In this paper the terms referencestring, reference sequence,
and trace are used interchangeably, and are denoted by the capital letter “T”. We use the symbol A to indicate the
position of areferenceremoved by a cate filter. This allows correlation between the input and output reference
strings. For instance, the input <a, a, & generates the output <a, A, A> for most cades. We view the cate s afilter
function, f, onthe input of the reference string, T, and the state of the cate, S. The output of afilter function f(T;S)
consists of an output trace T', and an output state, S’ (represented asthe pair T';S'). Figure 1 illustrates this relation-

ship. Thetraceonly portion of the output of afilter functionis denoted fT(T;S), and the state-only portionis denoted
(T;9).
Application of the functional filter model consists of:

1) Transforming a traceor segment of source @de into TSpec(Sedion 3),
2) Determining the equivalence dass(Sedion 4) applicable for thisanaysis, and
3) Applyingthefilter functions (Sedion 5) to the TSpecdescription in stages, which includes:
a) Applying alinesize function, f| g(T), that convertsall references to the same line to the same aldress,

b) Applying a“ number of setsfunction” , P(T), that partitions trace T into separate traces for ead set,
c) Applyinga combination set size and replacement algorithm function, fg,R«(T; S), to ead set trace and
d) Remmbining set answers for final results.

3. TSpecBasics

Figure 2 shows an example of the TSpecfor asimple for an inner loop that copies one vedor to another. The
code has been simplified to allow the pattern to be eaily seen in the reference string. The following peragraphs
explain this example in detail, and a glossary of TSpecnotation appeas at the end d this paper for the reader’s con-
venience

Pseudocode: for i := 1 to 3 t[i] := f[i];

TSpec: c(100, 4); (200, 4); t(300, 4);
<I#f, 1#, (1#c, c+, f+, c+, t+, c+)*3>

Reference

String: 100, 200, 104, 300, 108,
100, 204, 104, 304, 108,
100, 208, 104, 308, 108

Figure 2: Copy example

The most basic TSpec dement isatraceatom, asingle aldress or referencein the trace It can be represented by

either aliteral, by A, or by avariable. A literal isan explicit (constant) numericd address, (e.g., 100 in the reference
string above). A variable represents aregular sequence of addresses, and is spedfied by a base aldressand an incre-
ment (stride). In the copy example, ¢, f, and t are dl variables. ¢ representsthe code references, and has abase aldress
of 100 and an increment of four. f represents the source vedor from which datais being copied in the example, and t
represents the destination vedor into which the datais being stored. A variable can be initiali zed (denoted #Xx) to set
its current valueto its base aldress. (Note in the example éove, all theinitiali zaions are precaled by !, which smply
suppresses the generation of an address.) A variable ca also be post-incremented (e.g., c+) so that after its current
valueis used, the value is updated to be the sum of itself and the increment spedfied in its definition. In the example
above, thefirst c+ in the spedficaionrepresents the aldress100 and increments the value of ¢ to 104, so that the next
occurrence of c+ represents the aldress 104. The TSpecnatation also allows variables to have multiple increments,
which is useful for representing arrays. For example, in x(400; 8, 128), x has two increments or iterators. For conve-
nience, when only the first iterator affeds the variable value, we placethe manipulation symbol (#, +, -) on the same
level asthe variable (e.g., x+). The examplesin later sedions demonstrate the utility of this notational shorthand.
When multiple iterators are used, the symbols are subscripted in an order corresponding to the iterators they manipu-
late, and we use ~ to indicate that the corresponding iterator is unchanged. For example, x4 .. cleasthe danges made
to the first iterator and post-increments the base aldress by the second iterator, which in this case represents the aur-

rent value of x and then setsit to 528. x_ , would then represent the value 528 and increment it to 656.

A traceis represented by a concatenation of atoms sparated by commas. A variable or a mncaenation of vari-
ables can then be repeaed with the iteration operator, *. So in the example dove, the * 3 after the parentheses causes
the tracewithin the parentheses to be used threetimes. Noticethat sincethe initialization for ¢ iswithin the parenthe-
ses, the aldress represented by c¢ for ead iteration are the same, but sincethe initiali zations for f and t are not within
the parentheses, the addresses represented by f+ and t+ change in ead iteration. A * with noexplicit iteration count

simply means “zero or more repetitions’, by analogy to the Kleene star in regular expressions.
Thelast TSpecoperator required hereismerge, denoted T, & T»,. Itiseasiest to visuali zethis operation by lining

the traces up one aove the other asif they were going to be “added”, and merging ead set in the same position in the
reference string. The merge of multiple tracesis formed one @om at atime. The merge of asingle @om with any
number of Asisdefined to be the gom. The merge of any number of Asisdefined to be A. The merge of multi ple non-

A atomsis undefined. For example, <&, A, ag, A> & <A, 8, A, 8> =< &y, &, ag, as>.

4. EquivalenceClasss

When analyzing amemory system, cade designers traditionally work with spedfic traces for which the aldress bind-
ings and the input data, and hencethe path through ead program, is known, much as in the example tracefrom Fig-

ure 2. Sometimesit may be beneficial to abstrad away artifads due to chance aldress bindings or spedfic inputs, or
to consider the set of all possibletracesfrom a cetain pieceof source mde. To address these issues, we introducethe

concept of equivalence dasses. We divide the set of traces that can be generated by any spedfic pieceof source mde

into four sets, depending on whether or not the aldress bindings and input data ae known. The relationship among
these groupsis shown in Figure 3.

Inthefigure, T represents atracefor which addresses and input values are bound. The set of traces that would be
generated with the same source @de and the same set of address bindingsas T, but with different input data, is
denoted { T4}, andisreferred to as the eguivalence dass of traces under varying data input. Similarly, { T} repre-
sentsthe equivalence dass of tracesunder varying address bindings. (Notethat { Ty} isessentially ageneralization of
the trandation group for arrays described by Harper et al. [Har99].) The sedions that foll ow apply our analysistech-
niques to expanded versions of the apy example from Sedion 3, andin the process they extend the notation to per-

mit descriptions of other members of the equivalence dasses{T,} and {Tg}.

Same data {Toa}

Y N
Y T | {Tg}

N| {Tp}|{Toa} ’

Figure 3: The relationship between traces generated by a specific source program

Same bindings

5. Analysis Examples

The following examplesiill ustrate the kinds of analyses that can be performed onindividual traces and sets of traces

from the equivalence dasses. For clarity, all examples are expansions of the wpy function shown above. Each starts

with C code and the @rresponding assembly language generated by gcc.! We then show the translation into TSpec
and the subsequent analyses for fully associative and dired-mapped caches. Sincethe examples are small, we choose
small cadhe sizesto highlight situations where unsuspeded behavior may occur. Our intent hereis to explain the
cadtes-asfilters framework and to demonstrate its application to easily grasped examples, and thus we simplify the
explanations by using only virtual addresses. An ided analysis for multi-level cache systems would use physicd
addresses for appropriate levels;, we reserve incorporating effeds of virtual-to-physicd trandation for future work.
Except for pathologicd cases where small -sized data hit page boundaries, the analysesfor the equivalence dassunder

varying address bindings appliesto either virtual or physicd addresses for the examplesin this paper.

5.1. Unconditional Copy C Code, Assembly L anguage and TSpec

We generated the C code for the more extensive version of the vedor copy in Figure 4 with gcc -O2 -fno-

dela y-slots . Figure5 showsthe assmbler output, excluding error- and operand-cheding code. TSpecfor this

1. Weuse SPARC aseembly language, but we aostract away the delay slot and delete extraneous code produced by gcc.

assembly language gpeas below the figures. For easy verificaion, the asembly instructions corresponding to the
TSpec ®@de references are presented under the TSpec notation. Sincewe use source @de insteal of atrace the num-
ber of loop iterationsis unknown in this example. For readability, TSpec @nstructs that do not generate trace #oms

(i.e., that are precaded by !) are lighter in color.

/* The assem bly code below is for this copy() function */
void copy(in t *f, int *t, int N)

{

inti;

for (i=0; i <Nj i++)

ti]=f [

}
/* This main () is simply to illustrate the calling of copy() */
main(int arg c, char **argv)
{

inti;

int t[3] = {0, 0, 0};

int f[3] = {10, 11, 12};

copy(f, t, 3);

return O;
}

Figure 4: C code for copy example

/100 =fs base address
/lol=ts base address
/l02=N
1o3=i(l ocal)
/I The argum ents appear in the "0" registers because this is a leaf
/I procedure and so the compiler chooses not to allocate a ne w register
I/ window

disassembly for a.out

section .text

copy()
10b64: 961 0 2000 clr %03 IIi=0
10b68: 872 a e002 sll %03, 2, %g3 // compute o f fset
10b6c: 960 2 e001 add %03, 1, %03 // increment i
10b70: c40 2 0003 Id [%600 + %g3], %g2
10b74: 80a 2 cO00a cmp %03, %02
10b78: c42 2 4003 st %g2, [%01 + %g3]
10b7c: 06b f fffb bl 0x10b68
10b80: 81c 3 e008 jmp %07 + 8
Figure 5: Disassembler output for copy example
c(10b64; 4, 8);
f(%00; 4);
t(%01; 4);
<l#c, |4, 14, c+, (Icy 4, C+, C+, CH, T+, CF, CH, t+, CcH)*, C>
clr dl addld cmpst bl jmp

/I Simplifying this traceyields:
<l#c, 1#f, 1#, c+, (ICy 4, C+*3, f+, C+*2, t+, cH)*, c>

5.2. Unconditional Copy Analyses

Thefirst step of the analysis procedure from Sedion 2 transforms the traceor source @de into TSpec, aswe did
above. The seaond step determines the equivalence dass for which to perform the analysis. The smplest example
uses the equivalence dass of a spedfic traceT. To this end, we abitrarily set the number of iterations at threg and
assume values for %00 and %01. Setting the number of iterations assumes a particular set of input data, and assuming
values for %00 and %01 assigns base aldresses for the araysf and t. For simplicity, we focus only on the loop. The

modified TSpecdescriptionis.

c(10b68; 4);

f(FSTART, 4);

t(TSTART, 4);

<I#f, 1#, (1#c, C+* 3, T+, C+* 2, t+, C+)*3>

The next analysis gep applies the functional filter model in stages. For this we must represent both the trace ad
the state for the cate input and output streams. Both may be represented in TSpec but we must first introduce aldi-
tional notation for the state. Initially, it might seam that the state culd be viewed as an unordered set, yet replace
ments must occur in order. Having the state description represent that order simplifies the determination of what to
replace The examples below use LRU replacement. To write TSpecwith LRU order, it isuseful to start from the end
of aTSpec @nstruct, rather than the beginning. By analogy with !#c, we define !c# to initialize avariableto its last
valuein the trace

For our first analysis, we use afully associative, infinite (or any size greaer than seven), LRU, write-through
cade with aline size of one word. For such a mnfiguration, steps 3a and 3b above (applying the linesize function

f_5(T) and the set partiti oning function P(T)) have no effect on T. Step 3, applying aset size and replaceament algo-

rithm function, fg,ere(T;S), where T is the mpy example and S$=50 (an empty cache), yields:

fraLr(T; S)=T";S
= <I#f, 1#t, (MHc, c+* 3, T+, c+*2, t+, c4), (f+, t+)*2>; S
where S ={!c#, It#, If#, c-, t-, c-*2, f-, c-*3, (t-, f-)* 2}

Representing the state and tracein the same notation makes rel ationships between them cleaer. Here, S’ is sm-
ply T in reverse without the repetition of the mde references. Experience working with this notation has sown that
thisnation o the reverse of T without duplicaesisuseful, sincethis string containsthe list of traceitemsthat can be
in the state for any LRU cade. We formali ze this function as U(T), cdl ed the unique of T, which is formed by taking

theitems from T, beginning at the end and working badkwards, and repladng duplicate items with Ay. This extends
the definition of A to include aplaceholder for duplicate trace &oms. The subscript lets us differentiate between As
that hold places for duplicates (trace items that would be filtered by a cate) and those removed for any other pur-
pose. We define afunction D(T) to remove As of any type from the traceT, or Dy4(T) to remove only Ag4s. Now we can

write the state &s:

fraLn(T; SO) =S =D(U(T))
=Dy({!cH, It 1i#, e, t-, ¢-* 2, f-, ¢-*3, (Mg, t-, Ag* 2, f-, Ag*3)*2})
={Ic#, It#, If#, c-, t-, c-*2, f-, c-* 3, (t-, -)*2}

This notation extends easily to fully-associative cates of finite size Consider the result of afully associative LRU

cache of sizeseven?, again with aline size of one word. Noticethat the traceoutput would be the same for any cace

of size seven or smaller. The TSpecfor thisis:

franr(T:) =T; S
= <I#f, 1#, (M, c+*3, f+, ¢+ 2, t+, c+)*3>; S
where S’ ={!c#, |t#, If#, c-, t, c-*2,f, c-*2}

Because the cateistoo small for this example, every referencemisses. Asaresult, T' = T, and it ismore ill uminat-
ing to write:
frann(T: S) =T3S
=T,;S whereS={!c#, t#, If# c, t, c-*2,f, c-*2}

Now we can spedfy the statein amore general way. Let Sbe an ordered set of <value, index> pairs to represent
the state of the cade (i.e,, S={<v, i>} where v = the address value of the traceatom, and i = itsindex in D(U(T)).
The state, S, of the cade dter the mpy examplewould be S’ = {<v,i> € D(U(copy)) | i <= sz}, whereszisthe size
of the cate. Expanding the functions gives:

S ={<v,i>e D(It#, If#, IcH, c-, t-, ¢-*2, f-, c¢-*3, (A, t-, AR, f-, ACB)*3) | i <= 57}

={<v,i>e lt# If# IcH c-, t-, c-*2, -, c-*3, (t-, -)*J) i|<=sz}

This exampleillustrates that the state of afull y-associative LRU cade of any sizeisthefirst szelementsin D(U(T)).

Now consider the same mpy example output from asize-eight, dired-mapped cace. For set associative cadies,
the mapping of addressesinto the cade, and subsequent hits, is more difficult to predict. Each set performs exadly
like afully-associative cate that is the size of the set, and thus we can first partition the traceinto avedor of traces
(step 3b above), one element of which will correspond to ead set, and then we can analyzethisvedor of tracesin the
same manner asfor the fully-associative cade. By retaining Asfor the final step, where we merge the vedor of traces

bad into asingle trace we can seeour results as a single trace too.

Let P(T) = the vedor of traces formed by splitting T into the different traces for ead set. To split a TSpec
description, we introduce notation to spedfy a predse referencein such a description. <fix me> We use the instance
name (which would be the variable name or the constant value of the reference), but if there ae multi ple uses of the
instance name, more information is needed. For example, the copy example has $x uses of the ¢ variable in ead iter-
ation. To spedfy aparticular instance, adot and number after the variable name ae used. The number indicates the
position of the instancein the TSpecstring. Additional dots may be used to specify theiteration number of that vari-
able (or constant), if it isinside aloop. For example, the last instance of the ¢ referencefrom the last iteration in the
copy example aoveis denoted ¢.6.3. Thisisthe sixth instance of the variable ¢ in the third iteration (the last iteration
here). The last t is spedfied ast.1.3. This notation is extended to multi ple loops by subscripting the variable name
with alooplabel.

For our example aove, the mde startsin set two, assuming a one-word line (32 hits), becaise 0x10068/ four

2. Weuse avery small cade size hereto demonstrate the two different behaviors posdgble for afully associative ache on this
example. Oneisthat every reference misses for caches of size seven o smaller, and the other is only compul sory misses occur
for caches of size aght or larger.

bytes = 0x42da, and 0x42da/ eight lines has remainder two. Arraysf and t can end upat different addresses depend-
ing on the particular arrays used to cdl copy(). Here we assume that f startsin set four and t in set five, in order to

show the analysisfor a spedfic T.

Below i35°'7(T) for the apy example. Note that the second iteration is underli ned to distinguish it from the oth-
ers. In addition, conflict misses are in bold (but compulsory misses are not). Again, A isused as a placeholder for

trace dgoms. In this case, the lambdas are subscripted with sto show they result from set separation.

PAT)=As Ae As As As As Ay Ay AZ8, A8
PUT)=As As As As As As Ay Ay A8, A8
PPM=clllg Ay Ay Ay Ay Ay Ay CL2AF7, c.13, A&7
PM=As C2LAs As As As Ag Ag A C22. A6, Ag C.2.3, \g*6
PPM=As Ay C3LELLA, Ay Ay Ay AF2,C32 A*5, A2, €33, A5

PM=As As Ag CALAy Ay tL11Ag AF3.£.12 cA2 AF3.AF4, CA3, A3
PPT)=As As As As C51 Ay Ay Ag A&6.1.12.C52, A3, 1.1.3, Ag €53, A2

At thispaint, the analysis nicdy illustrates how the references are split among sets of the cate, andthuswe see
how effedively spaceis being utilized, and how set assgnments affed performance. In this example, every code ref-
erence experiences a anflict misstwo out of every eight iterations, asf and t march through the cace. On the other
hand, if variablesf andt could always be asigned to sets zero and one through some compil er technique li ke padding,
the code would never suffer conflict misses. We could also eliminate aonflict misses with atwo-entry victim cate
[Jou9q].

At this point, we can easily seewhere not to map variables that have temporal locdity, namely sets two through
seven. For example, if we repeaedly consulted f[0], or had some scdar in the loop that for some reason did not fit in
the registers, mapping f[0] or the scdar to any of sets two through seven would cause that code referenceto miss on

every iteration. Note dso that insights of thistype ae not limited to a unified cace.
Step 3c gpplies the set size and replacement algorithm function, f4,(T;S), to ead set trace In this example, this
replaces repeaed addresses with Ags. Sincethisis adired-mapped cade (i.e., with a set size of one), only addresses

that are repeaed immediately (without intervening references) are replaced. If thiswere a cabe with set sizegreaer

than one, addresses repeaed within the number of unique references equal to the size of the sets would be replaced.

dem(PO(T;SO)):)\Sv As Ag Ag Ag Ag Ay Ag AS8, As*8
TamPHT: SN =As Ay As Ag Ay Ag Ag Ag AS8, A8
FamPAT: SN =cLlirg Ay Ay Ay Ay Ag Ag Ag AT Mg A7
dem(Pg(T;SO)):)\Sv C2LAs Ay Ay Ag Ay Ag AS'AMS—G A s A As*6
fTamPHT; SN =Ag Ay C31LfLL A, Ay Ay Ay A&2.C3.2 A*5, A2, Mgy A5
fTamPYT: SN =Ag Ay Ay CALAg Ag t1L A, AF3.f12.c42 AF3, Ag*4, A, A3
fTamPoT; SM) =Ag Ag Ag Ay C5.1, Ag Ag A, A6, 112, ¢5.2, A3, .13, Ag €5.3,Ag*2
TP (TS =As As Ag As As CBLAg As AgASTZ A &6,1.1.3,¢6.3

Removing the Asthat result from set separation makes it easier to seewhat happensin eat set, and leaving the

Ags $hows how often we hit in the cade. Here there ae atotal of seven hits. Theided performance of this dired-

mapped cadheis 12 hits (where dl of the repeaed addresses are removed), but five hits are lost to conflict rather than

cgpadty misses. This TSpecexample predsely charaderizes the suboptimal cade placanent in this example.

D(fgm(P(T), $%) =

Dy("farm(P(T), S) =

Do(fTam(PA(T), S9) = c1.1, Ay, Ag

Dy grn(PA(T), $9) = 62,1, Ag. Ag
DfTam(PH(T), SY) = €31, £.1.1, €32, Ag
Do(fTam(PX(T), S%) = c4.1,t.1.1, £.1.2, c.4.2, Ag
Do(fTgm(PE(T), S%) = 5.1, 1.1.2.¢5.2.f.1.3, 5.3

Remerging the set results gives us the final trace aswer:

fam(T: $9) = am(POT: $Y) & FTan(PT; SY) & fTn(PAT;) & .. & FTn(PT(T: S9)
= I#f, 1, 1#Hc, c+* 3, f+, ¢+ 2, t+, ¢, I#C, I+ 2, A §* 2, ct, T+, c+*2, t+, c+, I, le+*4, A4*3, f+, c+ t, c+

The state analysisis performed separately. We ayain apply the set separation, P(T), and then we find U(P(T)).

UPY(T)) = Ag24

UPPYT)) = Ag24

UPAT)) =Ag*7, .1 A&7, Ag A&7, Ag

UPY(T)) = As*6, €2, A&7, Ag, As* 7, Ag, As

UPAT)) = A5, €3, A&7, Mg, Ag*6, £.1.1, Ag

UPPY(T))= A3, €4, A&7, Ag, F.1.2, A&t4, t.1.1, A2, Ag, A3

UPY(T)) = A2, €5, A, £.1.3, A&*3, Ag, t.1.2, A9, Ag, A4

U(P'(T)) = c.6, 1.3, Ag*13, Ag, Ag*2, Ag, A5
Sincewe have adired-mapped cade, our final state for ead set will be the first non-A element in ead:

U(PI(T)). S ={<v, i> e DOP(T))) |i <= 1}
={c.1,c2,c3,c4 .5 c.6} ={#c, c+*6}

5.3. Unconditional Copy Analyses with Varying Base Addresses

Now consider not just the spedfic tracegenerated by the copy example aove, but rather the equivalence dass of
traces under address binding. This class can be described by the TSpec description above without spedfic base
addresses for the variables.

C(CSTART,; 4);
f(FSTART, 4);
t(TSTART, 4);
<IH#f, 1#, (I, C+*3, T+, C++2, t+, C)*3>

When analyzing this st of traces, we must first perform a cae analysis of potential conflicts between variables.
Itisnot necessary to perform a systematic analysis of every possible ambination of set assignments for ead vari-
able, since several of these cases are gjuivalent. For example, the end result of every variable's being assigned to set
zeo isthe same asthe end result of every variable’'s being assgned to any other set. The general set of cases for this

problem can be thought of as arange of cases, spanning a spedrum as the number of conflict misses goes from zero

10

to six. The “minimum” case happens when none of the stream references evict a wde referencebeforeit is repeaed.
The “maximum” case happens when every stream reference evicts some @de reference before it can be repeaed.
Consider the minimum case more dosely. Zero conflicts may seem impossblein adired-mapped cade, asthere
are only eight setsand 12 individual references. Yet consider the situation where variable c is assigned to set two, and
variablest and f are both assigned to set zero. (Remember, thisis one representative of a group of assignments that

adhieve the same result. The important point isthat t and f are both assigned to the same starting set, which istwo sets

“before” the starting set for ¢.) The second iteration is underlined.

PAT)=Ag Ay Ae fLL Ay Ag t11, Ay A8, A*8

PT)=As As As As As As As Ae AFB£12AF2.t12 A, A8

PAT)=clllg Ay As As As As Ay CL2 A7, CL3AR, f.1.3, A2, t.1.3, Ag
PYT)=Ay C21As Ay As Ay As Ag AqC22 A6, Ag C.2.3,A\g*6

P T)=As Ay C31As As As As Ag AZ2.C32A5, A ¢2,¢33, A5

PT)=As¢ As Ay As CALAG Ay Ay A&4.CA2 NP3, A &4,c43, 03

PT)=A¢ Ay As As Ag C5LAg Ay AZ6.C52 A A ¢6,C5.3, \g

PM=As As As Ay Ay Ay Ay CB.1,AF7.C62, A*7,c6.3

Repladngimmediate repeas with Ay (which amounts to performing f 4, here) gives:

fTamPoUT);) =g Ay Ay fLL Ay Ag t11, Ag AZS, A8

fTamPHT) =As As Ag A Ag Ay Ay Ay AF3f12AF2.t12A, AS8
fTamP?(M):;) =clllg Ay As As As Ag A Ag A&7, Ao AR, £.1.3, A& 2,13, Ag
TP) =As €21Ag Ay A A Ay Ay Ag A A6, As Mgy As*6
fTamPHT);S) = Ay C31Ag Ag Ag Ay Ay AS2. Mg A5, As*2, Ay, A
fTamP(M):S) =As As As As C4AIAg Ag Ay A4 Ag AF3. A4, A, A3
fTamP8T);S)=Ag Ay Ay Ay Ay C51A, A A6 Ag Ao A6, Ay As
fTanP/(M);S)=Ae As As As As Ag Ay CBLAFZ A4 A&7, Ay

Remerging the set traces produces:

T = <I#f, I#, (e, c+* 3, f+, c+*2, t+, ¢), (A*3, T+, A*2, t+, A)*2>
and S ={t1l1,t12t13 c2 c.3 c4 c5 c6} ={l#, t+*3, I#c, Ic+*2, c+*5}

This simple reassignment of addresses results in different starting-set assignments, bringing the performance of
the dired-mapped cace up to the performance of afull y-associative cade of the same size In the case where the
number of unique aldressesin the loop exceeds the number of lines avail able in the cate (here cate size seven or
smaller), adired-mapped cade will acdually outperform afully associative cade. In every situation, the fully asso-
ciative cade evicts code before it can be used again, and thus there ae no hits. The dired-mapped cade, on the other
hand, hits for some wde references becaise the two intervening stream references cannat evict all code references
before they are reused. Finaly, note that these examples point to the usefulness of strean buffers and victim cades
[Jou90], methods for writing around caches for references that are not reused [Jou93], and techniques such as data
padding by the compiler to achieve the minimal number of conflict misses [Leb94]. This analysis also shows how

cade-conscious data placanent [Cal 98] can improve cate performance and how our framework might work in con-
junction with such techniques.

11

5.4. Conditional Copy

With the introduction of conditionals, it is useful to be &le to increment a variable without generating an address.
This all ows the same variabl e to represent the cde or a stream throughout a loop, regardless of whether internal con-
ditional code is exeauted. For example, “!” before an atom is used on the “nat taken” part of the TSpecto represent
skipping over the body of an if statement.

A conditional is represented by pladng the taken and not-taken paths inside parentheses and separating them by
the symbal “|”. The parentheses and the “|” are subscripted with the same label to prevent confusion in nested condi-
tionals. For example, an if statement with four instructions within a pieceof sequential code might look like <!#c,

c+*3, (jc+*4 |, (ct+)*4),, c+*5>. Loop kranches do not use this construct, but rather the *“*” after parentheses.

Asan example, the C codein Figure 6 has been modified from Figure 4 to include a onditional. The exampleis
artificial in the interest of clarity. The crresponding assembly code followsin Figure 7.
void copy(in t *f, int *t, int N)

inti;

for (i=0; i <Nj; i++)
if (i 1= 1)
ti] = flil;
}
main(int arg ¢, char **argv)
{
inti;
int 3] = {0, 0, 0};
int f[3] = {10, 11, 12}
copy(f, t, 3);
return O;
}
Figure 6: C code for copy with embedded conditional
/100 =f's base address
/lol=ts base address
/l02=N
1o3=i(l ocal)
/I The argum ents appear in the "0" registers because this is a leaf
/I procedure and so the compiler chooses not to allocate a ne w register
/I window
section .tex t
copy()
10b64: 96 10 20 00 clr %03 Ili=0
10b68: 80 a2 e0 01 cmp %03, 1
10b6c: 02 80 00 05 be 0x10b7c
10b70: 87 2ae0 02 sll %03, 2, %g3 /I compute offset
10b7 4: c4 02 00 03 Id [%00 + %g3], %92
10b78: c4 22 40 03 st %g2, [%01 + % 93]
10b7c: 96 02 e0 01 add %03, 1, %03 /l increment i
10b80: 80 a2 c0 0a cmp %03, %02
10b84: 06 bf ff fb bl 0x10b68
10b88: 81 c3 e0 08 jmp %07 + 8 /Il return

Figure 7: Disassembler output for conditional copy

12

The TSpecfor this new example gpeas below:

c(10b64; 4);

f(00; 4);

t(01; 4);

<l#c, 1#f, 1#, c+, (L 1#ct, ¢, ¢+, (| ¢+, ¢+, f+, e+, t+], (IcH)*3),, c+, ct, ct) *, c+>
clr cmpbe dl Id st addcmp bl jmp

We again focus on analyzing the loop, and initially on the dfeds of the conditional. Asaume that we know the base
addresses of the vedors and the number of loop iterations. This yields the foll owing simplified TSpec

c(10b68; 4);

f(00; 4);

t(o1; 4);

<IHf, 1, (Llcy 4, CF2, (2, f+, o, t+ | (IcH)*3)y, e+ 3) * 3>

Let us dart with the simplest cade situation: afully-associative LRU cade of size 13 or larger.

feaLru(T; SO = <, 144, (L!Cy 4, CH2, () CH2, f+, C, t+ || (Ic+)*3);, c+*3) *3>; S

where S’ = Ic#, It#, If#, ¢-*3, t-, ¢, f-, ¢-*4, (t-, f-)*2 OR - case where theif is always taken
IcH, It#, If#, c-*3, t-, ¢, f-, c-*4, (t-, f-) OR - case where theiif istaken twice
Ic#, I1t#, |f#, c-*3, t-, c-, -, c-*4 OR - case where theiif istaken once
IcH, I1t#, If#, ¢-*3, (Ic-)*3, ¢c-*2 - case where if is never taken

This notation is useful for analyzing all possibili ties, but it is cumbersome: the number of cases grows with the
number of loop iterations. A simpler approach expresses the state in terms of the MIN and MAX possible cate states

after exeaution of the trace For the &ove example:

MIN O S O MAX

where MIN = Ic#, It#, If# c*3, (Ic)*3, c-*2 and
MAX = Ic#, It#, If#, ¢-*3, t-, C-, f-, c-*4, (t-, f-)*2

This second method would be useful for a compiler: the MIN indicaes which items will always be avail able in
the cate, and the MA X, which additional items may be in the cade. Software prefetching and other techniques
should be gplied first to items that are known not be in the cade.

6. Related Work

Other researchers have dso explored better waysto design and analyze cabes through new models or measures.
Voldman and Hoevel [Vol81] describe an adaptation of standard Fourier analysis techniques to the study o cade sys-
tems. The cateisviewed as a “black box” boolean signal generator, where “ones’ correspond to cade misses and
“zeroes’ to cade hits. The spedrum of this time sequenceis used to identify tight loops accessing regular data struc-
tures and the general structure of instruction locditi es. Thiebaut [Thi89] models programs as one-dimensiond fradal
random-walks and uses the model to predict the behavior of the missratio curve for fully-associative cades of vary-
ing sizes. Thiebaut and Stone [Thi87] develop an analytic model for cadhe-reload transients—footprintsin the
cache—to describe the dfeds of context switches. Lebedk and Wood [Leb94] describe acacdhe profili ng system and
show how it can guide code modifications that reduce catie misses.

McKinley and Temam [McK96] take astep towards more detail ed analysis by quantifying the locdity charader-

istics of numericd loop nests. Their locdity measurements reved important differences between loop rests and

13

whole programs and refute some popular assertions. They present results as histograms of the locdity distributions

for the parts of programs in question, whereas our approach provides much more than summary information.

Two recant frameworks share many of the same goals as ours. Ghosh and Martonosi’s Cache Miss Equations
(CMEs) [Gho98] perform compile-time analysis of loopsto generate asystem of linear Diophantine equations
describing the program’s memory behavior such that solutions to these eguations represent potential missesin the
code. CMEs alow for predse, mathematicd, compil e-time analysis of cate misses in cache memories of arbitrary
associativity, but are aurrently limited to analysis of loops without interior control-flow like if-then-else structures.
Harper, Kerbyson, and Nudd [Har99] extend the cache footprints concept [Thi89] and develop a mathematical frame-
work that permits the determination of cache miss ratios aswell as conflicts within loops. They abstrad away chance
address bindings using equivalence dasses (which they cdl “trandation groups”), as dowe. Unfortunately, as with
CMEs, the analysisislimited to nested loops without internal control-flow constructs. In this resped, our cates-as-

filters model is more general: we provide ageneral framework in which any program behavior can be examined.

7.Conclusions and Future Work

We have described a new analyticad framework for studying the behavior of different cace organizations. The frame-
work consists of four components: the TSpecnotation, equivalence dasses of memory references, the functional
cade filter model, and new metrics. This paper demonstrates the use of the first three @mponents on variations of a
simple kernel. The examples demonstrate how code sequences (including those with conditional constructs) can be
described with TSpec, and they introduce several functions that permit the description of cade dfedsfor arbitrary
code sequences and arbitrary cache associativity. More generally, the examples demonstrate how this framework can
be used to understand cace behavior—for instance, why dired-mapped caches can outperform cades of higher

associativity—and how the framework can be used to guide cate-conscious data placament and other optimizaions.

The framework is predsein that it can exadly describe the cade behavior of a particular program or memory-
referencetrace as opposed to approximating it with equations. In addition, the framework can be made practical, for
the required tasks can largely be auitomated (e.g., the functiona filter model steps can eat be aitomated, as these
steps are similar to aspeds of cace simulation). The benefit of this approach over simulation is that the designer and
compil er writer can seethe intermediate steps that point to why a particular cace behavior occurs. In addition, we
have apreliminary tool that computes the new measures, displays them in away that contributes to the user’s under-
standing of the reference string and cadhe behavior, and all ows the user to navigate through the trace[Wei 98], and we
have experimental tools to automate pattern matching to trandate atraceinto TSpec We will soon have atool to
translate a ompil er intermediate language to TSpec Our framework isgeneral in that it isnot limited to spedfic code
structures guch asloops, for it can acoommodate control-flow structures, even conditionals. Most importantly, it is

useful in that it can point to potential solutions and clealy ill ustrate why a particular cace behavior occurs.

Thiswork suggests a number of avenues for future exploration. Prior work has described two new cace-locdity
measures [Wei 98], but the mmplementary analyticad measures on TSpecexamples have yet to befully developed. We

intend to use the framework to completely analyze arange of reference kernels, including transadion processing,

14

mpeg and jpeg kernels, and we wil | use these analyses to study the impad of compil er optimizations on these kernels.
TSpecincludes fadliti es for arbitrary annotation of trace éements [new TSpec reference], and these can be used to
tradk producer-consumer delays, thereby identifying the latency-tol erance of memory references and—in conjunction
with the cates-as-filters analysis—guiding the dedsion d which data to promote into the nearest caces. TSpecis
also an excdlent environment in which to analyze the behavior of writes and the impad of structures like calescing
write buffers, new write-buffer retirement poli cies, and write cates, extending the work in [Jou93] and [Ska97].

Finally, many of these analyses will be simplified by future software tools.

References

[Bat76] A.P Batsonand A.W. Madison, “Measurements of Major Locdity Phases In Symbolic Reference Strings’, Proc. Inter-
national Symposium on Computer Performance Modeling, Measurement and Evaluation, Mar.1976.

[Bat77] A.P Batson, D.W.E. Blatt, and J.P. Kearns, “ Structure Within Locdity Intervals’, Proc. Third International Symposium
on Modeling and Performance Evaluation of Computer Systems, 1977.

[Bre96] M. Brehob and R. Enbody, “A Mathematical Model of Locdity and Caching”, Michigan State Univ. Computer Science
Dept. Technicd Report, TR-MSU-CPS96-42, Nov. 1996.

[Cal98] B. Cader, C. Krintz, S. John and T. Austin. "Cache-conscious Data Placement." Proc. ASPLOSVII 1, Oct. 1998.

[Den68] P Denning, “The working set model for program behavior”, Commnunications of the ACM vol. 11 no. 5, May, 1968.

[Gho98] S. Ghosh, M. Martonosi, and S. Malik, “Precise Miss Analysis for Program Transformations with Caches of Arbitrary
Asciativity”, Proc. ASPLOSVIII, Oct., 1998.

[Grigog] K. Grimsrud, J. Archibald, R. Frost, and B. Nelson, “Locdity as a Visualization Tool”, |IEEE Transactions on Comput-
ers, vol. 45 no. 11, Nov. 1996.

[Har99] J. Harper, D. Kerbyson, and G. Nudd, “Analyticd Modeling of Set-Assciative Cache Behavior”, |EEE Transactions on
Computers, vol. 48 no. 10, Oct. 1999.

[Hil87] M.D. Hill, “Aspeds of Cache Memory and Instruction Buffer Performance”, Ph.D. dissertation, Univ. of California &
Berkeley, Nov. 1987.

[Jou90] N. Jouppi, "Improving Direct-Mapped Cache Performance by the Addition of a Small Fully-Associative Cache and
Prefetch Buffers', Proc. ISCA-17, May 1990.

[Jou93] N. Jouppi, "Cache Write Palicies and Performance’, Proc. ISCA-20, May 1993.

[Leb94] A.R.Lebeck and D.A. Wood, “Cache Profiling and the SPEC Benchmarks: A Case Study”, |EEE Computer, Oct. 1994.

[McK96] K. McKinley and O. Temam, “A Quantitative Analysis of Loop Nest Locality”, Proc. ASPLOS-VII, Oct. 1996.

[Pag99] D. Page, J. Irwin, H. Muller, and D. May, GraphNavigator tool, http://www.cs.bris.ac.uk/Reseach/LanguagesArchitec
ture/Predictabl e/performance/demo.graphNavigator.html.

[Ska97] K. Skadron and D.W. Clark. “Design Issues and Tradeoffs for Write Buffers." In Proc. HPCA-3, pp. 144-55, February
1997.

[Sug92] R.A. Sugumar and S.G. Abraham, “Efficient Simulation of Caches under Optimal Replacement with Applicaionsto
MissCharaderization”, Proc. ACM SGMETRICS, pp. 24-35, May 1993.

[Thi89] D. Thiebaut, “On the Fractal Dimension of Computer Programs and its Application to the Prediction of the Cache Miss
Ratio”, |[EEE Transactions on Computers, vol. 38, no. 7, July 1989.

[Thi87] D. Thiebaut and H.S. Stone, “ Footprintsin the Cache”, ACM Transactions on Computer Systems, vol. 5 no. 4, Nov 1987.

[Vol81] J. Voldman and L. Hoevel, “The Software-Cache Connection”, IBM Journal of Research and Devd opment, vol. 25 rp. 6,
Nov. 1981.

[Wei98] DeeA.B.Weikle, Sally A. McKeg Wm. A. Wulf, "Caches As Filters: A NewApproach to Cache Analysis', Sixth Inter-
national Symposium on Modeling, Analysis, and Smulation of Computer and Telecomnunication Systems (MAS-
COTS98), July19-24, 1998, Montreal Canada.

[Wei00] DeeA.B. Weikle, Sally A. McKee, Kevin Skadron, Wm. A. WuIf, “Caches As Filters: A Framework for the Analysis of
Caching Systems’, to appear in Grace Murray Hopper Conference 2000, Sept. 14-16, 2000.

Appendix A: Glossary

I#c sets the variable c to its base aldress asin its definition; does not generate an address.
Ict# sets the variable c to the last address used in the TSpec description; does not generate an address
ey 4 setsthe variable c to its base aldressplusits second increment value from its definition; does not gener-

15

ate an address.

c+ generates the address corresponding to the aurrent value of c; post-increments the value of the variable ¢
by itsfirst increment or iterator.
c- generates the aldress corresponding to the aurrent value of c; post-deaements the value of the variable

¢ by itsfirst increment or iterator.
c(400; 4, 8) definesthe variable c with base aldress 400, first increment four, and second increment eight.
c*n generates an addresscorresponding to the aurrent value of ¢ ntimes, eg., c*4 isthesame &¢, ¢, ¢, C.
Ict*n increments the ¢ variable by its first increment n times; does not generate avy addresses in the trace
(c+*n | (le+*n))represents an if statement: only one of the two clauses separated by “|” is exeauted. For clauses of
any visual complexity, subscripts on the parentheses and the “|” separator should be used for clarity.

T1&T>H merges two traces, T1 and T2, one dement at atime. A merged with atrace #gom isthetrace dom, the
merge of two Asis A, the merge of two trace #omsis undefined.

A functions as a placéhadder for removed trace domsin atrace

Ad functions as a placéhalder for dupli cate items removed from a state representation.

16

