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ABSTRACT

As microprocessor speeds increase, memory bandwidth is
increasingly the performance bottleneck for microprocessors. This
has occurred because innovation and technological improvements
in processor design have outpaced advances in memory design.
Most attempts at addressing this problem have involved hardware
solutions. Unfortunately, these solutions do little to help the
situation with respect to current microprocessors. In previous work,
we developed, implemented, and evaluated an algorithm that
exploited the ability of newer machines with wide-buses to load/
store multiple floating-point operands in a single memory
reference. This paper describes a general code improvement
algorithm that transforms code to better exploit the available
memory bandwidth on existing microprocessors as well as wide-
bus machines. Where possible and advantageous, the algorithm
coalesces narrow memory references into wide ones. An interesting
characteristic of the algorithm is that some decisions about the
applicability of the transformation are made at run time. This
dynamic analysis significantly increases the probability of the
transformation being applied. The code improvement
transformation was implemented and added to the repertoire of
code improvements of an existing retargetable optimizing back
end. Using three current architectures as evaluation platforms, the
effectiveness of the transformation was measured on a set of
compute- and memory-intensive programs. Interestingly, the
effectiveness of the transformation varied significantly with respect
to the instruction-set architecture of the tested platform. For one of
the tested architectures, improvements in execution speed ranging
from 5 to 40 percent were observed. For another, the improvements
in execution speed ranged from 5 to 20 percent, while for yet
another, the transformation resulted in slower code for all
programs.

1 INTRODUCTION

Processor speeds are increasing much faster than memory
speeds. For example, microprocessor performance has increased by
50 to 100 percent in the last decade, while memory performance has
increased by only 10 to 15 percent. Additional hardware support
such as larger, faster caches [Joup90], software-assisted caches
[Call91], speculative loads [Roge92], stream memory controllers

[McKe94], and machines with wider memory buses, helps, but the
problem is serious enough that performance gains by any approach,
including software, are worth pursuing. Furthermore, even with
additional hardware, processors often do not obtain anywhere near
their peak performance with respect to their memory systems.

This paper describes a code improvement transformation
that attempts to utilize a processor’s memory system more
effectively by coalescingnarrow loads and stores of width  bits

into more efficientwide loads and stores of width where is

a multiple of two and the processor can fetch bits efficiently.
The terms narrow and wide are relative to the target architecture.
On a 16-bit architecture, for example, two narrow loads of bytes (8-
bits) that are in consecutive memory locations might be coalesced
into a single wide load of 16 bits. Similarly, on a 64-bit architecture,
four narrow stores of words (16-bits) that are in consecutive
memory locations and properly aligned might be coalesced into a
single wide store of 64-bits.

As the paper shows, the analysis to perform such
transformations is difficult but doable, and in many cases well
worth the effort. The two questions that the analysis must answer
are: Is the transformation safe and is the transformation profitable?
Safety analysis determines whether the transformation can be done
without changing the semantics of the program. The two key
components of the safety analysis address aliasing and data
alignment issues. Alias analysis, in particular, is extremely difficult
when the source language contains unrestricted pointers [Land92,
Land93]. The problem is further compounded because for many
codes where this transformation would be beneficial, the code is
structured so that aliasing and data alignment hazards cannot
precisely be determined via interprocedural, compile-time analysis.
The paper describes a new technique, called run-time alias and
alignment analysis, that neatly solves this problem.

Profitability analysis determines whether the transformation
will result in code that runs faster. This is perhaps the most difficult
part of the analysis because memory coalescing interacts with other
code improvements. For example, to expose more narrow,
consecutive memory references for possible coalescing, loops are
sometimes unrolled by the optimizer. However, naive loop
unrolling may cause the size of a loop to grow larger than the
instruction cache, and any gains in performance by memory
coalescing may be more than offset by degraded cache
performance. Similarly, memory coalescing collects memory
accesses that are distributed throughout the loop into a single
reference. This gathering of dependencies into a single instruction
can adversely affect instruction scheduling. The paper discusses
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how these and other issues are resolved so that the memory
coalescing yields code that runs faster, not slower.

The following section briefly discusses work related to
reducing memory bandwidth requirements of programs. Section 2
describes the algorithm with emphasis on the analyses required to
apply the transformation safely and profitably. Section 3 describes
the implementation of the algorithm in an existing retargetable back
end calledvpo [Beni89, Beni94]. Using a C front end andvpo, the
effectiveness of the transformation was evaluated on three
processors: DEC’s Alpha [Digi92], Motorola’s 88100 [Moto91],
and Motorola’s 68030 [Moto85]. Section 4 contains a summary.

1.1 RELATED WORK

Software approaches to the memory bandwidth problem
focus on reducing the memory bandwidth requirements of
programs. For example, there is a plethora of research describing
algorithms for register allocation, a fundamental transformation for
reducing a program’s memory bandwidth requirements. Register
allocation identifies variables that can be held in registers. By
allocating the variable to a register, memory loads and stores
previously necessary to access the variable are eliminated. An
evaluation of the register coloring approach to register allocation
showed that up to 75 percent of the scalar memory references can
be removed using these techniques [Chow90].

Cache blocking and register blocking are code
transformations that also reduce a program’s memory bandwidth
requirement. These transformations can profitably be applied to
codes that process large sets of data held in arrays. For example,
consider the multiplication of two large arrays. By large, we mean
that the arrays are much larger than the size of the machine’s data
cache.

Because the arrays are larger than the cache, processing the
entire array results in data being read from memory to the cache
many times. Cache blocking, however, transforms the code so that
a block of the array that will fit in the cache is read in once, used
many times, and then replaced by the next block. The performance
benefits from this transformation can be quite good. Lam,
Rothberg, and Wolf [Lam91] show that for multiplication of large,
floating-point arrays, cache blocking can easily triple the
performance of a cache-based system.

Register blocking is similar in concept to cache blocking,
but instead of transforming code to reduce the number of redundant
loads of array elements into the cache, it transforms code so that
unnecessary loads of array elements are eliminated. Register
blocking can be considered a specific application of scalar
replacement of subscripted variables [Call90, Dues93] and loop
unrolling. Scalar replacement identifies reuse of subscripted
variables and replaces them by references to temporary scalar
variables. Unrolling the loop exposes a block of these subscripted
variables to which scalar replacement can be applied. Register
blocking and cache blocking can be used in combination to reduce
the number of memory references and cache misses.

Another program transformation that reduces a program’s
memory bandwidth requirements is called recurrence detection and
optimization [Beni91]. Knuth defines a recurrence relation as a rule
that defines each element of a sequence in terms of the preceding
elements [Knut73]. Recurrence relations appear in the solutions to
many compute- and memory-intensive problems. Interestingly,
codes containing recurrences often cannot be vectorized. Consider
the following C code:

for (i = 2; i < n; i++)
   x[i] = z[i]* (y[i] - x[i-1]);

This is the fifth Livermore loop, which is a tri-diagonal
elimination below the diagonal. It contains a recurrence sincex[i]
is defined in terms ofx[i-1]. By detecting the fact that a
recurrence is being evaluated, code can be generated so that the
x[i] computed on one iteration of loop is held in a register and is
obtained from that register on the next iteration of the loop. For this
loop, the transformation yields code that saves one memory
reference per loop iteration.

For machines with wide-buses (the size of the bus is greater
than the size of a single-precision floating-point value), it is
possible to compact some number of floating-point loads into a
single reference [Alex93]. Indeed, the work reported here is a
generalization and extension of this technique applied to data of any
size. We call this technique memory access coalescing. This
technique can be used with the techniques mentioned previously.

2 MEMORY ACCESS COALESCING

2.1 MOTIVATION

To describe memory access coalescing and highlight the
potential hazards that must be handled by an optimizer, consider the
C code in Figure 1a. The code computes the dot product of two
vectors containing 16-bit integers. The code is taken from a signal
processing application, and 16-bits was sufficient to represent the
dynamic range of the sampled signal.

Figure 1b contains the DEC Alpha machine code in register
transfer lists (RTLs) generated by our compiler. Because the DEC
Alpha is a relatively new architecture, and because it has some
interesting characteristics that affect code generation, a few
relevant details of the architecture are described. There are 32 64-
bit fixed point registers, and all operations are performed on 64-bit
registers. The load and store instructions can move 32-bit
(longword) or 64-bit (quadword) quantities from and to memory.

Memory addresses must benaturally aligned. Data that is  bytes
in size is naturally aligned if it is stored at an address that is a

multiple of . To accommodate loading and storing of data that is
unaligned, the architecture contains unaligned loads and stores of
64-bits. These instructions fetch the aligned quadword that contains
the unaligned data. There is a full complement of arithmetic and
logical instructions that manipulate 64-bit values. In addition, there
are three instructions, add, subtract, and multiply, that operate on
32-bit data. In a departure from other RISC architectures, the Alpha
does not include instructions for loading and storing bytes or
shortwords (16-bits). Instead, architectural support is provided for
extracting 8-bit (byte) and 16-bit (shortword) quantities from 64-bit
registers. For example, there are instructions for efficiently
extracting and inserting bytes or shortwords from/to a register. The
rationales for these design decisions are outlined in the Alpha
architecture handbook [Dec92].

With this information in mind, the code in Figure 1b can be
explained. In the RTL code,q[n] andr[n] refer to fixed-point
registers.r[n] is used when the operation is 32-bit. In the code,
Q[addr] refers to quadword memory. The unaligned load
instruction at line 12 fetches the aligned quadword that contains
a[i].It is necessary to use an unaligned load because the base
addresses ofa andb are not guaranteed to be aligned on a quadword
boundary, but they are guaranteed to be aligned on a shortword
boundary. The instructions at lines 14 through 16 extract the
shortword from the quadword. Line 14 computes the offset of the
shortword within the register.
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int dotproduct(short a[], short b[], int n) {
int c, i;

c = 0;
for (i = 0; i < n; i++)

c += a[i] * b[i];
return c;
}

Figure 1a. Dot-product loop.

1. r[4] = 0;
2. // test n for zero-trip loop
3. r[0] = r[31] - r[18];
4. PC = r[0] >= 0 -> L15;
5. // compute address of a+n*2
6. q[6] = r[18] << 32;
7. q[6] = q[6] >> 32;
8. q[6] = q[6] << 1;
9. q[6] = q[16] + r[6];
10. L17
11. // load quad containing a[i]
12. q[2] = Q[(q[16])&~7];
13. // extract and sign extend a[i]
14. q[8] = q[16] + 2;
15. q[1] = EQH[q[2],q[8]];
16. r[1] = q[1] >> 48;
17. // load quad containing b[i]
18. q[3] = Q[(q[17])&~7];
19. // extract and sign extend b[i]
20. q[8] = q[17] + 2;
21. q[2] = EQH[q[3],q[8]];
22. r[2] = q[2] >> 48;
23. // compute product and accumulate
24. r[1] = r[1] * r[2];
25. r[4] = r[4] + r[1];
26. / advance to next array elements
27. q[17] = q[17] + 2;
28. q[16] = q[16] + 2;
29. // test for loop termination
30. q[0] = q[16] - q[6];
31. PC = q[0] < 0 -> L17;
32. L15
33. r[0]=r[4];

1. r[4] = 0;
2. // test for zero-trip loop
3. r[0] = r[31] - r[18];
4. PC = r[0] >= 0 -> L15;
5. // compute loop termination
6. q[6] = r[18] << 32;
7. q[6] = q[6] >> 32;
8. q[6] = q[6] << 1;
9. q[6] = q[16] + q[6];
10. L17
11. // load quad containing a[i]
12. q[21] = Q[[16]];
13. // extract a[i] (two bytes)
14. q[8] = q[16] + 2;
15. q[1] = EQH[q[21],q[8]];
16. r[1] = q[1] >> 48;
17. // load quad containing b[i]
18. q[20] = Q[q[17]];
19. // extract b[i] (two bytes)
20. q[8] = q[17] + 2;
21. q[2] = EQH[q[20],q[8]];
22. r[2] = q[2] >> 48;
23. // compute dot product
24. r[1] = r[1] * r[2];
25. r[4] = r[4] + r[1];
26. // extract a[i+1]
27. q[8] = q[16] + 4;
28. q[1] = EQH[q[21],q[8]];
29. r[1] = q[1] >> 48;
30. // extract b[i+1]
31. q[8] = q[17] + 4;
32. q[2] = EQH[q[20],q[8]];
33. r[2] = q[2] >> 48;
34. // compute dot product
35. r[1] = r[1] * r[2];
36. r[4] = r[4] + r[1];
37. ...
38. ...
39. // adv to next a[i] & b[i]
40. q[16] = q[16] + 8;
41. q[17] = q[17] + 8;
42. // test for loop termination
43. q[0] = q[16] - q[6];
44. PC = q[0] < 0 -> L17;
45. L15
46. r[0]=r[4];

Figure 1b. Original code for loop.

Figure 1c. Unrolled loop with coalesced
memory references.

Figure 1: DEC Alpha code for dot-product.



1 // Main routine to coalesce memory accesses
2 proc CoalesceMemoryAccesses(CurrFunction)is
3 // Consider each loop in the current function.
4 ∀LOOP∈ CurrFunction.Loopdo
5 LOOP.InductionVars ← FindInductionVars(LOOP)
6 // Unroll the loop. If it fits in the cache, use it, else use the rolled loop.
7 CurrFunction.Loop← {UnRollLoopIfProfitable(LOOP)} ∪ CurrFunction.Loop
8 // Classifies memory references into different partitions if a unique identifier is found to distinguish
9 // a set of such references. Thus, all references to an array A passed as a parameter will have a loop
10 // invariant register (most probably the register containing the start address of A) as their partition
11 // identifier.
12 ClassifyMemoryReferencesIntoPartitions(LOOP)
13 // Calculate relative offsets of the memory references belonging to same partition from the induction variable.
14 // If a constant offset is not found, it is not safe to do memory coalescing. Sort the offsets.
15 CalculateRelativeOffsets(LOOP)
16 EliminateInductionVariables(LOOP)
17 // Attempt Wide reference optimization
18 WideRefOptimization(LOOP, CurrFunction)
19 enddo
20 endproc

Figure 2:  Memory access coalescing algorithm main loop.

The RTL

q[1] = EQH[q[2],q[8]]

shifts registerq[2] left by the number of bytes specified by the low
three bits ofq[8], inserts zeros into the vacated bit positions, and
then extracts 8 bytes into registerq[1]. Line 16 sign extends the
shortword. Lines 18 through 22 perform a similar operation for
b[i].

The code in Figure 1b, as it stands, is fairly tight. However,
the loop fetches the same quadwords for the respective arrays every
four iterations. Thus, for every four iterations six redundant loads
are executed. It is these redundant memory accesses that memory
coalescing eliminates. By unrolling the loop four times, and
applying the memory coalescing algorithm, the optimizer produces
the code in Figure 1c. Notice that there are still two loads in the loop
(lines 12 and 18), but the modified loop iterates one-fourth as many
times as the loop of Figure 1b. Thus, the original loop performs

 memory references, while the coalesced loop performs

memory references for a savings of 75 percent.

At this point, the transformation may seem rather
straightforward. However, there are subtle details that must be
addressed. First, the code in Figure 1c assumes that the starting
address of the vectorsa andb are aligned on a quadword boundary.
This may, or may not be true. If it is not true, the first memory
reference to an unaligned address will trap. Second, the code also
assumes that the length of the vectors is divisible by four. This too
may, or may not be true. If it is not true, the loop will fetch data
outside the arrays and possibly fault (we’d be lucky if it did), but is
more likely that silently an incorrect result will be computed. Third,
the loop body has gotten larger, and the assumption is that any
potential negative effects due to increasing the size of the loop will
be offset by the gains resulting from reducing the number of
memory references. This may or may not be a reasonable
assumption.
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2.2 MEMORY ACCESS COALESCING ALGORITHM

These safety and profitability issues mentioned above, and
others, must be handled by the memory access coalescing
algorithm. The C code in Figure 1a highlights the difficulty of this
analysis. For this routine, standard intraprocedural analysis cannot
gather the necessary information to safely coalesce memory
references. The vectors andn, the number of elements in the arrays,
are parameters. Interprocedural analysis would help, but often the
routines of interest are part of a library and are not accessible until
link time. One could limit the applicability of the algorithm to
routines where static, compile-time analysis is sufficient, but our
experience shows that this would eliminate most opportunities for
applying the algorithm. The approach taken here attempts to do the
analysis at compile time, if possible, but if it is not possible code is
generated to check the safety issues at run time. Our evaluations
show that it is generally possible to do this in a way that the impact
of the extra code for checking is negligible.

Figure 2contains the high-level portion of the algorithm.
Due to space limitations, the entire algorithm cannot be presented.
The focus here is the profitability and safety analysis. Line 7
determines if it is profitable to unroll the loop. Our heuristic is that
if the original loop will fit in the instruction cache, then the
algorithm must ensure that the unrolled loop will fit as well. In
addition, this routine, if necessary, produces code to execute the
loop body enough times so that the number of iterations of the main
loop is a multiple of the unrolling factor. Line 12 analyzes the
memory reference of the loop and partitions them into disjoint sets
for later analysis [Beni91]. The memory access coalescing is done
by WideRefOptimization. After identifying candidate memory
references for coalescing, DoProfitabilityAnalysisAndModify is
called. The algorithm is in Figure 3.

The algorithm makes a copy of the loop and performs
memory coalescing on it. This involves not only coalescing the
memory accesses, but inserting code to extract the required
information from the coalesced memory reference. After doing this,
it calls the scheduler to schedule both loops and does a comparison.
If it appears advantageous to use the coalesced loop, then various



1 // Do Cost/Benefit analysis before doing memory coalescing
2 proc DoProfitabilityAnalysisAndModify(LOOP, S, T, WideSize, CurrFunction) is
3 Inst ← ∅
4 // Do data hazard analysis for possible aligned and unaligned wide references
5 AlignedWideType← DoHazardAnalysis(LOOP, S, ALIGNED, LOOP.PossibleAliases, Inst, WideSize

 AlignedWideReferencePosition, AlignedWideReferenceAddress)
6 UnAlignedWideType ← DoHazardAnalysis(LOOP, S,¬ALIGNED, LOOP.PossibleAliases, Inst,

WideSize, UnalignedWideReferencePosition, UnAlignedWideReferenceAddress)
7 // Chack if a valid Wide memory reference which can replace the narrow references is found
8 if IsValidType(AlignedWideType) ∨ IsValidType(UnAlignedWideType) then
9 // Make a copy of the loop. Schedule the instructions in the original loop and find the number of cycles necessary.
10 // Then insert appropriate wide references in the copy of the loop and schedule it too. If the latter requires
11 // less cycles, then go ahead.
12 LCOPY ← DoReplication(LOOP)
13 // Calculate the cycles required by the original loop by static scheduling
14 CyclesforOriginalLoop ← Schedule(LOOP)
15 if IsValidType(AlignedWideType) then
16 InsertWideReferences(LCOPY, S, AlignedWideReferencePosition,

 AlignedWideReferenceAddress)
17 endif
18 if IsValidType(UnAlignedWideType) then
19 InsertWideReferences(LCOPY, T, UnAlignedWideReferencePosition,

UnAlignedWideReferenceAddress)
20 endif
21 // Calculate the cycles required by the loop after replacing the narrow references by wide ones.
22 CyclesforCopiedLoop ← Schedule(LCOPY)
23 if CyclesforCopiedLoop< CyclesforOriginalLoopthen
24 // If the alignment checking for the aligned wide address under consideration is not there,
25 // then insert a check that will allow the execution of the LCOPY if the address is actually aligned
26 // at runtime
27 if ¬AlignmentCheckExists(LOOP, WideType, WideReferenceAddress) then
28 InsertAlignmentCheckInPreheader(LOOP.Preheader, LOOP.Label, LCOPY.Label

WideReferenceAddress, WideType)
29 InsertAliasingChecksInPreheader(LOOP.Preheader, LOOP.Label, LCOPY.Label, Inst)
30 else
31 // Else just use the LCOPY instead of the original one, since this is better
32 Target← FindTargetOfUnalignedAddress(LOOP.Preheader)
33 InsertAliasingChecksInPreheader(LOOP.Preheader, LCOPY.Label, Target.Label, Inst)
34 ChangeATargetOfAlignmentCheck(LOOP.Preheader, LOOP.Label, LCOPY.Label)
35 CurrFunction.Loop← CurrFunction.Loop− {LOOP}
36 endif
37 CurrFunction.Loop← CurrFunction.Loop ∪ {LCOPY}
38 endif
39 if LOOP∈ Curr.Function then
40 ∀Z ∈ S∪ T do
41 Z.Modify ← TRUE
42 enddo
43 endif
44 return TRUE
45 endif
46 return FALSE
47 endproc

Figure 3: Profitability analysis algorithm.



1 // Check if there are any data hazards
2 proc IsHazard(S, WideReferencePosition, ReferenceType, C, Inst)is
3 ∀M ∈ S do
4 // A wide load is inserted before the dominating loads of all the narrow loads. So the narrow load reference is
5 // called the BottomInst. A wide store is inserted after the dominated store of all the narrow stores. So the
6 // narrow store is called the TopInst.
7 if ReferenceType= LOAD then
8 BottomInst ← M
9 TopInst ← WideReferencePosition
10 else
11 TopInst ← M
12 BottomInst ← WideReferencePosition
13 endif
14 // The narrow and the wide reference have to lie in the same basic block
15 if BottomInst.BasicBlock≠ TopInst.BasicBlockthen
16 Return(TRUE)
17 endif
18 CurrInst← BottomInst
19 // Check all the instructions between the BottomInst and TopInst
20 while CurrInst ← CurrInst.PrevInst ∧ CurrInst≠ TopInst do
21 // We cannot allow a load between two stores, all belonging to same partition. If they do not lie in same
22 // partition, there is a possibility of aliasing, which can probably be detected only at run time.
23 if IsStore(M.Reference) ∧ IsLoad(CurrInst.Reference) then
24 if (M.Paritition= CurrInst.Partition) then
25 if ReferenceSameLocation(M.Reference, CurrInst.Reference)∧

¬IsNeededTodoNarrowStoreOnly(M.Reference, CurrInst.Reference) then
26 Return(TRUE)
27 endif
28 else
29 Inst ← Inst ∪ DoAliasDetection(CurrInst.Partition.Load, M.Partition.Store, C)
30 endif
31 // We cannot allow a store between two load or store references.
32 elseif IsStore(CurrInst.Reference) then
33 if (M.Paritition= CurrInst.Partition) then
34 if ReferenceSameLocation(M.Reference, CurrInst.Reference)
35 Return(TRUE)
36 endif
37 elseif IsLoad(M.Reference) then
38 Inst ← Inst ∪ DoAliasDetection(CurrInst.Partition.Store, M.Partition.Load, C)
39 else
40 Inst ← Inst ∪ DoAliasDetection(CurrInst.Partition.Store, M.Partition.Store, C)
41 endif
42 endif
43 FindBaseAndDisplacementOfAddress(CurrInst.Reference, Base, Displacement)
44 // If the base register has been modified, then the coalescing may not be safe.
45 if IsModifiedBase(CurrInst.Reference, Base) then
46 Return(TRUE)
47 endif
48 endwhile
49 endfor
50 // No data hazards were found
51 Return(FALSE)
52 endproc

Figure 4:  Hazard analysis algorithm.
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Figure 5: Flow graph showing alignment and alias checks.

checks are done to see if it is necessary to put alignment checks in
the preheader of the loop. Additionally, if it is not possible to do
static alias detection (for example, do the memory references
overlap), then code is inserted in the preheader to do the checks at
run time.

A second key algorithm is IsHazard that does the safety
analysis. This routine is contained in Figure 4. Most of the analysis
here is straightforward. The routine assures that coalesced memory
references are in the same basic block and that sequential
consistency is preserved. In addition if aliasing cannot be resolved
statically, the routine DoAliasDetection is called which generates
code that will be inserted in the loop preheader to check for
potential aliasing problems (e.g., two arrays overlap in memory). If
at run time, an alias condition is detected, the original safe loop is
executed.

The result is code represented by the flow graph in Figure 5.
For the example in Figure 1, this results in additional code being
added to the loop preheader for each possible alias pair <a,b>. In
particular, the following instructions are added:

The code appearing before L16 checks to make sure the
arrays do not overlap, while the code after L16 checks for the ability
to unroll and that the arrays are properly aligned.

// q[16]: address of a;
// q[17]: address of b; q[18]: n

q[1] = q[17] + q[18];
q[0] = q[16] < q[1];
PC = q[0] <= 0 -> L16;
q[1] = q[16] + q[18];
q[0] = q[17] < q[1];
PC = q[0] > 0 -> L13;

L16
q[0] = q[18] % 4;
PC = q[0] != 0 -> L13;
q[0] = q[16] & 7;
PC = q[0] != 0 -> L13;
q[0] = q[17] & 7;
PC = q[0] != 0 -> L13;

// do memory coalesced unrolled loop
...
...

L13
// do original “safe” loop

3 IMPLEMENTATION AND RESULTS

A prototype implementation of the memory access
coalescing algorithm has been implemented in an existing
retargetable compiler, and tested on platforms containing the
following processors: DEC Alpha, Motorola 88100, and Motorola
68020. Using a set of compute- and memory-intensive kernel loops
listed in Table I, the effectiveness of the algorithm was evaluated.
These benchmarks were chosen because they represent realistic
code, and they contain loops that are memory-intensive and contain
memory references that are candidates for memory access
coalescing. Memory access coalescing, unlike register allocation,
code motion, induction variable elimination, etc., is not a code
improvement that applies to code in general. However, like cache
blocking, register blocking, iteration space tiling, software
pipelining, and recurrence detection and optimization, it does apply
to a small set of important codes, and as the results show, it provides
high payoff when it does apply.

The results for the DEC Alpha are presented in Table II. All
timings were gathered by running each program ten times on a
single-user machine. The two highest execution times and the two
lowest were discarded, and an average of the remaining six times
was taken. Column 2 (labeled cc -O) is the execution time taken by
code produced by the native compiler with the loop unrolled.
Column 3 is the execution time taken by the code produced by our
compiler again with the loop unrolled. The loops were unrolled so
that the effect of memory access coalescing could be isolated and
observed. Column 4 contains the average execution time for the
benchmark when loads were coalesced, and column 5 contains the
average execution time when both loads and stores were coalesced.
Column 6 contains the percentage speedup. The first thing to notice
is that the optimizing compiler in which the memory access
coalescing algorithm is embedded is comparable to the native
compiler. This indicates that the speedups in column 6 are not
artifacts of embedding the algorithm in a poor compiler. The second
thing to notice is that, in general, the percentage speedup is quite
good.

Table III contains similar timing information for the
Motorola 88100-based platform. It is interesting to note that the
code with both loads and stores coalesced runs slower than the code
with just loads coalesced. The reason is that the Motorola 88100 has
efficient instructions for extracting bytes and words from a 32-bit



Program Description Lines of Code

Convolution Gradient Directional Edge Convolution of a 500 by 500 black and white
Image [Lind91]

154

Image Add Image addition of two 500 by 500 black and white frames 48

Image xor Image addition of two 500 by 500 black and white frames 48

Translate Translate 500 by 500 black and white image image to a new position 48

Eqntott Part of the SPEC 89 benchmark suite 146

Mirror Generate mirror image of 500 by 500 black and white image 50

Table I: Compute- and memory-intensive benchmarks.

register, but there are no instructions for inserting bytes and words
into a register without affecting the other bytes or words in the
register. Thus, code must be generated using logical instructions to
place the word into the proper position in the register. These
sequences outweigh the gains of coalescing stores. However,
coalescing loads was profitable exhibiting speedups of up to 25
percent.

We also implemented the algorithm in a compiler for the
Motorola 68030. Unfortunately, in all cases the code ran slower.
Inspection of the code revealed that while the Motorola 68030 has
instructions for extracting bytes and words, these are much more

expensive than simply loading the bytes and words directly. This
again highlights how most optimizations are machine dependent.

4 SUMMARY

We have described an algorithm for coalescing redundant
memory accesses in loops. If possible, static analysis is used to
resolve safety and profitability issues. However, in most interesting
cases, it is necessary to rely on runtime tests to handle aliasing and
alignment issues. Such code is relatively easy to generate.
Typically, 10 to 15 instructions must be added in the loop preheader
to check for possible hazards. The results on two machines show
that the technique can result in substantial speedups. For the DEC

Program cc -O vpcc/vpo -O
vpcc/vpo -O

(coalesce loads)

vpcc/vpo -O
(coalesce loads

and stores)

Percent Savings

Convolution 16.67 17.76 15.62 15.76 11.26

Image add 17.41 17.71 11.48 10.44 41.05

Image add (16-
bit)

12.03 12.02 8.97 8.13 32.36

Image xor 17.43 17.49 11.48 10.48 40.08

Translate 11.46 10.52 8.45 7.04 33.11

Eqntott 19.17 21.55 20.72 20.72 3.86

Mirror 15.62 14.49 12.63 9.84 32.09

Col3 Col5–( )
Col2

------------------------------------ 100×

Table II: DEC Alpha execution times (in seconds) and percent improvement.



Program cc -O vpcc/vpo -O
vpcc/vpo -O

(coalesce loads)

vpcc/vpo -O
(coalesce loads

and stores)

Percent Savings

Convolution 22.86 22.82 18.87 22.64 17.3

Image add 15.33 25.74 12.97 13.45 15.39

Image xor 15.34 15.34 12.94 13.7 15.64

Translate 16.32 17.52 13.49 16.91 24.46

Eqntott 130.3 145.0 143.2 143.2 1.3

Mirror 20.52 19.23 16.03 16.89 16.64

Col3 Col4–( )
Col2

------------------------------------ 100×

 Table III: Motorola 88100 execution times (in seconds) and percent improvement.

Alpha, we observed speed ups ranging from 3 percent up to 40
percent. For the Motorola 88100, we observed speed ups of a few
percent up to 25 percent, while for the Motorola 68030 the
technique resulted in slower code.
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