
A Formal Model for Procedure Calling Conventions

Mark W. Bailey
Jack W. Davidson

Computer Science Report No. CS-94-27
July 22, 1994

Page 2 of 14

Abstract

Mark W. Bailey Jack W. Davidson
mark@virginia.edu jwd@virginia.edu

(804) 982-2296 (804) 982-2209

Department of Computer Science
University of Virginia

Charlottesville, VA 22903

1 Introduction
Procedures, or functions, in programming languages work in concert to implement the intended
function of programs. To facilitate this cooperation between procedures, we must accurately spec-
ify the procedure-call interface. This interface must define how to pass actual parameters, how to
return values, and define which machine resources, such as registers, the called procedure must

preserve. This understanding between the caller1 and the callee2 is known as the procedure calling
convention.

Any application that must process or generate assembly language code is likely to need to
know about the procedure calling convention. Examples of such applications include compilers,
debuggers, and evaluation tools such as profilers. The code in such applications that concerns itself
with the calling convention is complicated with details, is frequently riddled with errors, and often
only covers a subset of the possible cases. By introducing a formal model of the procedure calling
convention, we can simplify the specification, scrutinize the convention to identify common
errors, and produce more robust implementations.

1The calling procedure is termed the caller.
2The procedure that is called is termed the callee.

A Formal Model of Procedure Calling Conventions

Procedure calling conventions are used to provide uniform procedure-call interfaces.
Applications, such as compilers and debuggers, which generate, or process procedures at
the machine-language abstraction level require knowledge of the calling convention. In
this paper, we develop a formal model for procedure calling conventions called P-FSA’s.
Using this model, we are able to ensure a number of completeness and consistency prop-
erties of calling conventions. Currently, applications that manipulate procedures imple-
ment conventions in an ad-hoc manner. The resulting code is complicated with details,
difficult to maintain, and often riddled with errors. To alleviate the situation, we introduce
a calling convention specification language, called CCL. The combination of CCL and P-
FSA’s facilitates the accurate specification of conventions that can be shown to be both
consistent and complete.

Page 3 of 14

Currently, information about a particular calling convention can be found by looking in
the programmer’s reference manual for the given machine, or reverse-engineering the code gener-
ated by the compiler. Reverse-engineering the compiler has many obvious shortcomings. Using
the programmer’s reference manual may be equally problematical. As with much of the informa-
tion in the programmer’s manual, the description is likely to be written in English and is liable to
be ambiguous, or inaccurate. For example, in a MIPS programmer’s manual [KH92] the English
description is so difficult to understand that the authors provide fifteen examples, several of which
are contradictory [Fra93] —and this is the second edition. Furthermore, the convention, once
understood, is difficult to implement. For example, the GNU ANSI C compiler fails on an example
listed in the manual. Digital, in recognizing the problem, has published a calling standard docu-
ment for their new Alpha series processors [DEC93] that exceeds 100 pages1. Thus, it should be
clear that there is a need for an accurate, concise description of procedure calling conventions, and
a supporting model for their evaluation.

This paper makes several contributions. It provides a formal model for procedure calling
conventions that are used in a variety of system software. The paper shows that by modeling a
convention in this manner, several desirable properties about calling conventions can be estab-
lished. It shows how conventions that are not complete, or are internally inconsistent can be iden-
tified. Further, the paper shows how this formalism can be used to provide an implementation that
also satisfies these properties. Finally, the paper presents a specification language that, when used
in conjunction with the formalism, can be used to provide accurate convention information to an
application.

2 The Model
When one first tries to model the procedure call interface, one undoubtedly would consider—as
we did—modeling the calling sequence. However, after some thought, it becomes clear the calling
convention is what is important. The convention is an agreement between the caller and the callee
about where information is found and how to manage machine resources. Choosing which regis-
ters retain their values across a procedure call, or the order and location of procedure arguments, or
where the return address is found, are all decisions that one makes when defining a procedure call-
ing convention. The calling sequence is simply one of many possible implementations of the call-
ing convention.

To illustrate our method, we will focus on one aspect of the procedure calling convention:
determining transmission locations for a procedure’s parameters. Although we will only present
the argument placement, the return value placement can also be modeled in this manner. Other fea-
tures of the calling convention, including frame layout, stack allocation and register windows are
not addressed in this paper.

2.1 A Simple Calling Convention

The calling convention is just a set of rules that the caller and callee must conform to. Figure 1
contains the calling convention rules for a hypothetical machine. Consider the following ANSI C
prototype for a function foo:

int foo (char parm1, int parm2, int parm3, double parm4);

For the purpose of transmitting procedure arguments for our simple convention, we are only inter-
ested in the signature of the procedure. We define a procedure’s signature to be the procedure’s
name, the order and types of its arguments, and its return type. This is analogous to ANSI C’s
abstract declarator, which for the above function prototype would be:

1This document also includes information on exception handling and information pertinent to mul-
tithreaded execution environments.

Page 4 of 14

int foo(char, int, int, double);

which defines a function that takes three arguments (a char, an int, and a double), and returns
an int.

With foo’ s signature, we can apply the calling convention in Figure 1 to determine how
to call foo. foo’ s arguments would be placed in the following locations:

• parm1 in register a1

• parm2 in register a2

• parm3 in register a3

• parm4 on the stack in M[sp:sp + 7]

Notice that although register a4 is available, parm4 is placed on the stack since it cannot be
placed completely in the remaining register (rule 4). Such restrictions are common in actual call-
ing conventions.

Now that we have seen how arguments are transmitted for a simple example, we can
describe the objects in our model. The primary objects of interest are machine resources. A
machine resource is simply any location that can store a value. Examples include registers and
memory locations, such as the stack. Defining where required values are located is accomplished
by specifying a mapping from one resource to another. We call such a mapping a placement.
Although a procedure’ s arguments and its return value are not technically machine resources by
the above definition, we consider them as special resources in our model.

We partition a machine’s resources into two categories: finite and infinite. Resources such
as register sets that can easily be enumerated are considered finite. Resources that are conceptually
“unbounded” such as the stack are considered infinite. Although the stack is finite for any particu-
lar implementation of a machine, we model it as infinite since the programmer considers it, for all
intents and purposes, to be infinite. This distinction is important since we must treat infinite
resources in a special way.

2.2 P-FSA Representation
We use finite state automata to model each placement in the calling convention. One such FSA is
shown in Figure 2. This FSA models the placement of procedure arguments for our simple calling
convention. The placement FSA (P-FSA) takes a procedure’ s signature as input and produces
locations for the procedure’ s arguments as output. The machine works by moving from state to
state as the location of an argument is determined. On each transition, information about the cur-
rent parameter is read from the input, and the resulting placement is written to the output.

The states of the machine represent that state of allocation for the machine resources. For

example, the state labeled q2 represents the fact that register a1 and a2 have been allocated, but that

a3, a4 and stack locations have not been allocated. The transitions between states represent the

1. Registers a1, a2, a3, a4 are 32-bit argument-transmitting registers.
2. Arguments may be passed on the stack in increasing memory locations starting at the

stack pointer (M[sp]).
3. An argument may have type char (1 byte), int (4 bytes), or double (8 bytes).
4. An argument is passed in registers (if enough are available to hold the entire argument),

and then on the stack.
5. Arguments of type int are 4-byte aligned on the stack.
6. Arguments of type double are 8-byte aligned on the stack.
7. Stack elements that are skipped over cannot be allocated later.

Figure 1: Rules for a simple calling convention.

Page 5 of 14

placement of a single argument. Since arguments of different types and sizes impose different
demands on the machine’s resources, we may find more than one transition leaving a particular
state. In our example, q8 has three transitions even though two of them (int and double) have

the same target state (q4). This duplication is required since the output from mapping an int is

different from the output of mapping a double.
Modeling the allocation of an infinite resource, such as the stack, using an FSA poses a

problem, however. As stated above, the state indicates which resources have been allocated. For
finite resources, this is easily accomplished by maintaining a bit vector. When a resource no longer
may be used, the associated bit is set to indicate this. For an infinite resource this scheme cannot
work if we hope to use an FSA, since this would require a bit vector of infinite length. To simplify
the problem, we impose a restriction on infinite resources: their allocation must be contiguous.
Thus, for an infinite resource I = {i1, i2, ...}, we can store the allocation state by maintaining an
index p whose value corresponds to the index of the first available resource in I. Because the allo-
cation of I must be contiguous, p partitions the resources, since a resource ij is unavailable if j < p
or available if j ≤ p. For instance, if the stack is the infinite resource, p can be considered to be the
stack pointer.

Nevertheless, we still have a problem. Although for a particular machine, the value of p
must be finite, the resulting FSA could have as many as 232 stack allocation states for a 32-bit
machine. Nevertheless, we can significantly reduce this number by observing that the decision of
where to place a parameter in memory is not based on p, but rather on alignment restrictions. For
our example, we care only if the next available memory location is one-, four-, or eight-byte
aligned. Consequently, we can capture the allocation state of the machine with three bits that dis-
tinguish the memory allocation states. We call these the distinguishing bits for infinite resource
allocation.

Figure 2: P-FSA for a transmission of parameters for a simple calling convention.

q3 =
1110
000

q8 =
1111
100

q6 =
1111
010

q10=
1111
110

q4 =
1111
000

q5 =
1111
001

q7 =
1111
011

q11=
1111
111

q9 =
1111
101

q0 =
0000
000

q1 =
1000
000

q2 =
1100
000

d d d d d

d

d
d

d

d

d

d

c,i c,i c,i
c,i

c c

c

c

c
c

c

c

i
i i

i

i

i

i
i

Page 6 of 14

2.3 P-FSA Definition
To generalize our approach, we have the set of finite machine resources R = {r1,r2, ..., rn}, infinite

resource I = {i1, i2, ...}1, and selection criteria C = {c1, c2, ..., cm}. The selection criteria corre-

spond to characteristics about arguments (such as their type and size) that the calling convention
uses to select the appropriate placement for an argument. We encode the signature of a procedure

with a string w ∈C*. Each state q in the automaton is labeled according to the allocation state that
it represents. The label includes a bit vector v of size n that encodes the allocation of each of the
finite resources in R. Additionally, to express the state of allocation for an infinite resource, we
include d, the distinguishing bits of index p. So, a state label is a string vd that indicates the
resource allocation state. In our example, n = 4, and ||d|| = 3. So, each state is labeled by a string

from the language {0, 1}4{0, 1}3. The output of M is a string s ∈ P, where P = R ∪ {0, 1}||d||,
which contains the placement information. So, from our example in Figure 2, state q8 is labeled

1111 100 to indicate that each of the argument registers has been used, and that the first available
stack location is four-byte aligned.

From the above discussion, we have the following values that are pertinent to defining a
finite state machine:

• a set of finite resources R = {r1,r2, ..., rn}.
• an infinite resource I = {i1, i2, ...}.
• d, the distinguishing bits of p.
• selection criteria C = {c1, c2, ..., cm}.
• bit vector v = {b1, b2, ... bn}, where bi is set if resource ri is used.
• the set of placement strings P = R ∪ {0, 1}||d||.

We now formalize our definition of a P-FSA for modeling placement. Since the P-FSA
produces output on transitions, we have a Mealy machine [Mea55]. We define the P-FSA as a six-
tuple2 M = (Q , Σ, ∆, δ, λ, q0), where:

• Q is the set of states with labels {0, 1}n{0, 1}||d|| representing the allocation state of machine
resources,

• the input alphabet Σ = C, is the set of selection criteria,
• the output alphabet ∆ = P, is the set of placement strings,
• the transition function δ:Q × Σ → Q,
• the output function λ:Q × Σ → ∆+,
• q0 is the state labeled by 0nw where ||w|| = ||d|| is the initial state of d.

We also define :Q × Σ∗ → Q and :Q × Σ∗ → ∆* which are just string versions (defined by
Hopcroft and Ullman [HU79]) of δ and λ, respectively. So, for our example, we have M = (Q,
{char, int, double}, {a1, a2, a3, a4}∪{0, 1}3, δ, λ, q0), where Q and δ are pictured in Figure 2
and λ is defined in Table I. Note that we have modified the traditional definition of λ to allow mul-
tiple symbols to be output on a single transition. This reflects the fact that arguments can be
located in more than one resource. For example, in state q5 on an int, Table I indicates that M
produces the string of four symbols 100 101 110 111 that indicates four bytes that are four-byte
aligned, but are not eight-byte aligned.

The signature:

int goo(double, double, char, int);

1This can easily be extended to model more than one infinite resource.
2In this paper, we use the notation of Hopcroft and Ullman for finite state automata and regular
expressions [HU79]. We use letters early in the alphabet (a, b, c) to denote single symbols. Letters
late in the alphabet (w, x, y, z) will denote strings of symbols.

δ̂ λ̂

Page 7 of 14

will take the P-FSA in Figure 2 from state q0 to q4 producing the string (a1 a2) (a3 a4) (000) (100
101 110 111) along the way. The parentheses in the output string are required to determine where
the placement of one argument ends and the next argument’s placement begins. Although these are
necessary, we have omitted them from our automaton definition to simplify its presentation. From
the string, we can derive the placement of the goo’ s arguments. The first double is placed in reg-
isters a1 and a2, the second in registers a3 and a4, the char at the first stack location and the int
starting in the fifth stack location. The padding on the stack between the char and the int is
indicated by the omission of locations 001, 010 and 011 that correspond to the pad locations.

3 Automatic P-FSA Construction
In this section, we present an algorithm for automatically constructing automata to model place-
ment computations. For the moment, we assume the existence of a function f:Σ* → ∆∗. f computes
the same value as M. Since f and M are equivalent, why construct M at all? The answer is that f
may have undesirable properties. For instance, M may be used in a context, such as a compiler,
where performance is an issue. If f is implemented as an interpreter, the time it takes to compute a
placement may not satisfy the performance constants. Additionally, by using a P-FSA, there are a
number of properties (such as an upper bound on M’ s execution time) we can prove about the P-
FSA that we cannot prove about f. We present such properties in Section 4.

We define the algorithm BUILD-P-FSA in Figure 3. The algorithm starts with the initial
state q0 as the only element of Q. Since there are no transitions yet, λ and δ have no rules. A call to
BUILD-P-FSA takes three parameters, q, w, and x. q represents the state for BUILD-P-FSA to visit,
while w represents the input string such that (q0, w) yields (q, ε), and x is output string upon reach-
ing q. From this definition, the initial call to BUILD-P-FSA must be BUILD-P-FSA(q0, ε, ε).

We construct the P-FSA by performing a depth-first-traversal of the states in Q to deter-
mine the set of reachable states from q0. At each state q, the states that are reachable from q in one
step are determined by using each element of {wc | c ∈ C} as input to f. Each newly reachable state
q’ is added to Q and is subsequently visited by BUILD-P-FSA. Finally, the appropriate additions to
δ and λ are made for q’ . BUILD-P-FSA also uses an auxiliary function STATE-LABEL:P → Q.
STATE-LABEL takes an output string from M and computes the label for the state that M was in
when the input was exhausted.

The algorithm for STATE-LABEL is simple. We start with state q0. As STATE-LABEL reads
each symbol from the string, it encounters either the name of a finite resource, or a symbol repre-
senting the distinguishing bits of p. In the finite case, the bit corresponding to the resource is set in
the finite resource vector. In the infinite case, the distinguishing bits of the state are set to the input
symbol that was read. At the end of the input, all finite resources that have been read have their bits
set to indicate they are unavailable, and the distinguishing bits indicate the last set of distinguish-
ing bits read. To complete the computation, we need to move the infinite resource index to the next
available resource (it currently points to the last unavailable one).1 The result of this computation

†mem1 = 000 001 010 011
‡mem2 = 100 101 110 111
††mem3 = 000 001 010 011 100 101 110 111

λ q0 q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11

char a1 a2 a3 a4 000 001 010 011 100 101 110 111

int a1 a2 a3 a4 mem1
† mem2

‡ mem2 mem2 mem2 mem1 mem1 mem1

double a1a2 a2a3 a3a4 mem3
†† mem3 mem3 mem3 mem3 mem3 mem3 mem3 mem3

Table I: Definition of λ for example P-FSA.

Page 8 of 14

is precisely the label for the final state of M for output w since it indicates which resources are
available for allocation. The complete algorithm is shown in Figure 4.

Our construction is now complete, except for the definition of the function f. We supply f ’ s
definition using an interpreter. We have designed and implemented a language for specifying pro-
cedure calling conventions. The language has an interpreter that takes as input a calling conven-
tion specification, information about a procedure’s signature and some additional information
about the target machine, and produces the necessary mapping information to properly call the
given procedure. Thus, this interpreter can be used to implement f in our algorithm above. In Sec-
tion 5, we present the language and its interpreter.

1An ordered list of values for p’ s distinguishing bits is known so that we can perform this
calculation, although this is usually just an increment.

function BUILD-P-FSA(q, w, x) // q ∈ Q, w ∈ Σ*, x ∈ ∆* | (w) = x
for each criterion c ∈C do

y ← f(wc); // compute placement for signature wc
q’ ← STATE-LABEL(y); // compute state label from placement
if q’ ∉ Q then

Q ← Q ∪ {q’};
BUILD-P-FSA(q’ , wc, y);

end if
a ← b | xb = y; // set a as the suffix of y not in x
add λ(q, c) = q’ ;
add δ(q, c) = a;

end for
end function

Figure 3: Algorithm to build the P-FSA

function STATE-LABEL(w) // w ∈ ∆*

z ← 0n; // z is the finite resource vector
while w ≠ ε do

define a and x such that ax = w; // extract the first symbol from w
w ← x; // set w to the rest of w
if a ∈R then // for finite resources:

set a’ s corresponding bit in z; // mark it as used
else // for infinite resources:

d ← a; // keep the last one encountered
end if

end while
d ← d + 1; // set d to the next resource (first available)
return zd; // return the state label made up of z and d

end function

Figure 4: Definition of STATE-LABEL

λ̂

Page 9 of 14

4 Completeness and Consistency in P-FSA’s
In this section, we consider a number of different properties of procedure calling conventions. But
first we identify several implementation difficulties that one might encounter when dealing with a
calling convention.

4.1 Common Difficulties
Applications, such as compilers and debuggers, which generate, or process procedures at the
machine-language level require knowledge of the calling convention. Until now, the portion of
such an application’ s implementation that concerned itself with the procedure call interface was
constructed in an ad-hoc manner. The resulting code is complicated with details, difficult to main-
tain, and often incorrect. In our experience, we have encountered a number of recurring difficulties
in the calling convention portion of a retargetable compiler. There are three sources for these prob-
lems: the convention specification, the convention implementation, and the implementation pro-
cess. We address each of these in the following paragraphs.

Many problems arise from the method of convention specification. In many cases, no
specification exists at all. Instead the native compiler uses a convention that must be extracted by
reverse-engineering it. In the cases where a specification exists, it typically takes the form of writ-
ten prose, or a few general rules (e.g. our example description in Figure 1). Such methods of spec-
ification have obvious deficiencies. Furthermore, even if we have an accurate method for
specifying a convention, it still may be possible to describe conventions that are internally incon-
sistent, or incomplete. For example, the convention may require that more than one procedure
argument be placed in a particular resource. Another possibility is that the specification may omit
rules for a particular data type, or combination of data types.

Those problems that do not stem from the specification result from incorrect implementa-
tion of the convention. Many of the same problems in the specification process also plague the
implementation. Many conventions have numerous rules, and exceptions that must be reflected in
the implementation. Another difficulty is that the implementation may require the use of the con-
vention in several different locations. Maintaining a correspondence between the various imple-
mentations can itself be a great source of errors. Finally, this problem is exacerbated by the fact
that the implementation frequently undergoes incremental development. Rather than taking on the
chore of implementing the entire convention at once, a single aspect of the convention, such as
providing support for a single data type, is tackled. After successfully implementing this subset,
the next increment is tackled. In doing so, some aspect of the first stage may break due to the inter-
actions between the two pieces.

The result of these observations is that there are a number of properties that we would like
to ensure about a specification and implementation. The above discussion motivates the following
categories of questions:

1. Completeness:
a. Does the specified convention handle any number of arguments?
b. Does the convention handle any combination of argument types?

2. Consistency:
a. Does the convention map more than one argument to a single machine resource?
b. Do the caller and callee’s implementations agree on the convention?

Many questions like these can be answered using P-FSA’s. The following sections show how we
can prove certain properties about conventions that ensure desirable responses to the above ques-
tions.

4.2 Completeness
The completeness properties address how well the convention covers the possible input cases. A
convention must handle any procedure signature. If we could guarantee that the convention was

Page 10 of 14

complete, or covered the input set, then we could answer the completeness questions posed in the
previous section. We can determine if a convention is complete by looking at the resulting P-FSA.
For example, will the convention work for any combination of argument types? The answer lies in
the P-FSA transitions. For the convention to be complete, each state q ∈ Q must have δ(q,c)
defined for all c ∈C.

Using P-FSA’s, we can guarantee that no incomplete convention will go undetected. For
an incomplete convention K to not be detected, it would first have to be constructed using our
algorithm. Assume such a P-FSA M exists for K. Then there must be some state qk that is reach-
able from q0 but does not have δ(qk, a) defined for some a ∈ C. Let Wk denote the set of all strings
x such that (q0, x) = qk. That is, Wk is the set of strings that take M from state q0 to qk. Thus, for
all strings x such that x e Wk, xa represents a signature that K does not cover. However, during con-
struction, BUILD-P-FSA visited state qk with some string w such that (q0, w) = qk. Thus, w must
be in Wk and must not be covered by K. Since BUILD-P-FSA calls f(wc) for all c ∈ C, f will be
called using f(wa). Since wa is not covered by K, f(wa) will be undefined. At this point the con-
struction process will signal that K is incomplete.

4.3 Consistency
The consistency properties address whether the convention is internally and externally consistent.
A convention is internally consistent if there is no machine resource can be assigned to more than
one argument. A convention is externally consistent if the caller and callee agree on the locations
of transmitted values. In our model, we detect internal inconstancy, and prevent external incon-
stancy.

To detect internal inconsistencies, we again turn to the P-FSA. If the convention only used
finite resources, detecting a cycle in the P-FSA would be sufficient to detect the error. However,
when infinite resources are introduced, so are cycles. We cannot have an internal inconsistency for
an infinite resource since p is defined to be monotonically increasing. We detect finite resource
inconsistencies in the following manner. An inconsistency can occur when there is a transition
from some state qj to qk where bit i in the finite bit vector is 1 in qj, but 0 in qk. At this point, M has
lost the information that resource ri was already allocated. We can detect this change by comparing
all pairs of bit vectors v1, v2 such that v1 labels qj, v2 labels qk and δ(qj,c) = qk for some c ∈C. To
do the comparison, we compute v3 = (v1 ⊕ v2) ∧ v1. v1 ⊕ v2 selects all bits that differ between v1
and v2. We logically and this with v1 to determine if any set bits change value. Thus, if v3 has any
bit set, we have an inconsistency.

Our convention specification language prevents external inconsistencies in the calling
convention. A convention specification only defines the argument transmission locations once.
Although both the caller and the callee must make use of this information, the specification does
not duplicate the information. Since we only have a single definition of argument locations, we
only construct a single P-FSA to model the placement mapping. This single P-FSA is used in both
the caller and callee. In doing so, we prevent external inconsistencies by requiring that the caller
and callee use the same implementation for the placement mapping.

5 CCL
After reading the previous sections, one my ask: why not use a finite state automaton to specify the
placement of procedure arguments? Although it is true that by using finite automata for specifica-
tion one reaps benefits from everything discussed in Section 4, it would exhibit many of the same
shortcomings that using a procedural language, like C, does. Such a method of specification would
suffer in an incremental development environment. Referring again to our simple example, the P-
FSA has twelve states and three data types, resulting in a 36 entry table for both δ and λ. Some
convention rules, such as alignment requirements, that are overlooked, or subsequently modified
can cause changes to most entries in the δ and λ tables. Further, although the P-FSA is a powerful

δ̂

δ̂

Page 11 of 14

tool for modeling the placement functions, it is not an intuitive method of specification. It is for
these reasons that we have chosen to provide our Calling Convention Language (CCL). In this sec-
tion, we briefly1 present CCL, and its interpreter.

5.1 The Language
Figure 5 shows the excerpt of a CCL specification that corresponds to the placement rules from
our running example. The first thing to notice about CCL descriptions is the prevalent use of typo-
graphical extensions. In contrast to simple ASCII text, the typographical extensions prove to be a
more natural way to describe many of the data types used in CCL.

The procedure call interfaces are defined in terms of two concepts: data placement and the
view change. Data placement defines where information should be placed/found and who is to
place it there. The view change defines when and how the view of the machine’s resources
changes. We have found that these two concepts are enough to define most common calling con-
ventions.

Figure 5 contains a data placement definition for the caller prologue. A data placement
definition must contain a resource declaration and a placement operation. The resources statement
defines the set of machine resources where values may be placed. We use the ordered set expres-
sion <a1:4, M[sp:∞]> in the resources statement to indicate that all of the machine resources must
be allocated in order (a2 cannot be used after a3 has been allocated). The other statement in the
data placement definition contains two notable operators, the universal quantifier (∀) and the
placement operator (→). The universal quantifier iterates over the set <ARG1:ARG_TOTAL>, each
time binding the variable argument to an element of the set. Here the set is ordered, ensuring that
argument will take values of the set in order. The resource ARG is a special resource that is pro-
vided to convey information about the signature. The placement operator is invoked for each value
argument is assigned. It takes a value (in this case an argument) and a list of classes. A class
defines a list of machine resources that may be used as starting locations for placing values.
Figure 5 contains four classes: machine registers, memory locations, four-byte aligned memory
locations, and eight-byte aligned memory locations. The selection operator (⊥) is used to select
one of the three class lists based on argument’ s type field. The resulting classes are searched, in
order, for an available resource to place the given value.

The example P-FSA implements the data placement that has been defined in Figure 5. It is
not necessary to duplicate this definition in the callee prologue section of the CCL description.

1A more complete description of CCL is available in [BD93].

caller prologue
data transfer (asymmetric)

resources {<a1:4, M[sp:∞]>}

∀argument ∈ <ARG1:ARG_TOTAL>

map argument → argument.type ⊥ {

char: <<<a1:4>>, <<M[sp:∞]>>>,

int:<<<a1:4>>, <<M[addr] | addr ∈ <sp:∞> ∧ addr mod 4 = 0>>>,

double: <<<a1:4>>, <<M[addr] | addr ∈ <sp:∞> ∧ addr mod 8 = 0>>>

}

end data transfer
end caller prologue

Figure 5: Excerpt from a simple specification.

Page 12 of 14

Since this data placement defines where the procedure arguments are to be placed, it also defines
where they are to be found. It is precisely this kind of symmetry that we use to provide externally
consistent descriptions.

The view change declaration indicates something has happened that causes locations to
appear to move. The register window mechanism on the SPARC microprocessor is an example.
When the register window slides, the contents of the registers appear to move because the names
of the registers have changes. We wish to indicate this change without causing the move to actu-
ally occur. The change of view declaration indicates how the names of locations have changed.
This declaration is used more commonly when describing that a frame has been pushed on the
stack. When a push occurs, all locations referenced by the stack pointer appear to shift.

Although CCL is used to capture all information about a calling convention, a CCL
description does not contain all necessary information to produce a calling sequence. Indeed, CCL
descriptions are not complete by themselves. CCL descriptions require information from the outer
environment to complete the descriptions. Information about the machine and language, such as
the size of registers, the base data types and local procedure information, such as the amount of
space needed for temporary variables, and which registers are used, must be provided by the outer
environment.

A CCL description is typically language dependent as well. This is, in part, because the
language definition influences the calling convention. For example, the C language defines a
slightly different calling convention than its successor ANSI C. One difference is that C always
promotes arguments of type float to type double. ANSI C does not. These differences are part of
the calling convention, and are, therefore, present in the resulting CCL descriptions.

5.2 The Interpreter

We have implemented an interpreter for the CCL specification language. The interpreter’s source
is approximately 2500 lines of Icon code [GG90]. The interpreter takes as input the CCL descrip-
tion of a procedure calling convention, a procedure’ s signature, and some additional information
about the target architecture, and produces locations of the values to be transmitted, in terms of
both the callee and the caller’s frame of reference.

We have developed CCL specifications for the following machines: MIPS R2000,
SPARC, DEC VAX-11, Motorola M68020, and Motorola M88100. Each of these CCL specifica-
tions is approximately one page in length. Using the specification for the MIPS, and the CCL inter-
preter, we constructed a P-FSA that implements the MIPS calling convention. The MIPS P-FSA
uses only 16 out of a possible 512 states (the state label has 9 bits), but requires nine transitions for
each state to implement the selection criteria for the C programming language. Since the MIPS
convention has more machine resource classes and alignment requirements than any of the other
machines, it represents the most complicated convention we have. Therefore, we would expect P-
FSA’s for the other architectures to be significantly smaller. For machines that pass procedure
arguments on the stack with no alignment restrictions, such as the VAX-11, would only be a few
states.

For comparison purposes, we have examined the calling convention specific code for a
retargetable compiler. The MIPS implementation requires 781 lines of C code, while the SPARC
implementation is 618 lines. This code is one of the most complex sections of the machine-depen-
dent code. This code is replaced by the P-FSA tables and a simple automaton interpreter.

6 Related Work
What little work there has been in calling sequences has been ad-hoc. For example, Johnson and
Richie discuss some rules of thumb for designing and implementing a calling sequence for the C
programming language [JR]. Davidson and Whalley experimentally evaluated several different C

Page 13 of 14

calling conventions [DW91]. No attempts have been made to formally analyze calling conven-
tions.

On the other hand, the use of FSA for modeling parts of a compiler, and as an implemen-
tation tool has a long and successful history. For example, Johnson et al. [JPA68] describes the use
of FSA’s to implement lexical analyzers. More recently, Proebsting and Fraser [PF94], and Muller
[Mul93] have used finite state automata to model and detect structural hazards in pipelines for
instruction scheduling.

7 Summary
Current methods of procedure call specification are frequently imprecise, incomplete, contradic-
tory or inconsistent. This comes from the lack of a formal model, or specification language that
guarantee these properties. We have presented a formal model, called P-FSA’s, for procedure call-
ing conventions that can ensure these properties. Furthermore, we have developed a language and
interpreter for the specification of procedure calling conventions. With the interpreter, a P-FSA
that models a convention can be automatically constructed from the convention’ s specification.
During construction, the convention can be analyzed to determine if it is complete and consistent.
The resulting P-FSA can then be directly used as an implementation of the convention in an appli-
cation.

8 References

[BD93] Bailey, M.W. and Davidson, J.W. A Formal Specification for Procedure Calling
Conventions. Technical Report CS-93-59. University of Virginia, 1993.

[DW91] Davidson, J.W. and Whalley, D.B. Methods for Saving and Restoring Register Val-
ues across Function Calls. Software—Practice and Experience 21(2):149–165 Feb-
ruary 1991.

[DEC93] Digital Equipment Corporation. Calling Standard for AXP Systems. Digital Equip-
ment Corporation, July 1993.

[Fra93] Fraser, C.W. Personal Communication, November, 1993.

[GG90] Griswold, R.E. and Griswold, M.T. The Icon Programming Language, 2nd edition,
Prentice-Hall, 1990.

[HU79] Hopcroft, J.E. and Ullman, J.D. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 1979.

[JR] Johnson, S.C. and Ritchie, D.M. The C Language Calling Sequence. Bell Labs.

[JPA68] Johnson, W.L., J.H. Porter, S.I. Ackley, and D.T. Ross. Automatic generation of effi-
cient lexical processors using finite state techniques, Communications of the ACM,
11:(12), 805-813.

[KH92] Kane, G. and Heinrich, J. MIPS RISC Architecture. Prentice Hall, 1992.

[KR88] Kernighan, B.W. and Ritchie, D.M. The C Programming Language, 2nd edition.
Prentice-Hall, 1988.

[Mea55] Mealy, G.H. A method for synthesizing sequential circuits, Bell System Technical
Journal, 34(5):1045–1079, 1955.

[Mul93] Muller, T. Employing Finite Automata for Resource Scheduling. In Proceedings of
the 26th Annual International Symposium on Microarchitecture, 1993, 12-20.

Page 14 of 14

[PF94] Proebsting, T.A. and Fraser, C.W. Detecting Pipeline Structural Hazards Quickly. In
Proceedings 21st ACM SIGPLAN-SIGACT Symposium on the Principles of Pro-
gramming Languages, 1994, 280-286.

