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SUMMARY

Often an architecture is designed and implemented without determining if a compiler can actually use all of
the architecture’s. features. A more effective machine may result when the interactions between an architec-
ture and & compiler are addressed. This paper presents an environment that Integrates the tasks of transiat-
ing a source program to machine instructions for a proposed architecture, imitating the execution of these
instructions, and collecting measurements. The environment cah be easily retargeted, collects measurements
quickly, produces detailed reports, and facilitates experimentation.

KEY WORDS: Computer Architecture  Architectural Design Dynamic Analysis

INTRODUCTION

Several factors have caused architzctures 0 be desighed and implemented without determining if a
compilér can make effective use of the architecture’s features. First, many compilers require several
months of effort to retarget. In the rapidly changing computer industry, manufacturers may not wish to
delay the implementation of the initia} design for such a time period. Even once a compiler has been
retargeted, it is not obvious how to provide a mechanism to execute instructions and gather ﬁeasuremenw
on a machine that does not yet exist. Because of the large execution time penalties with some of these
mechanisms,- experimentation is discouraged. Despite these difficulties, better computer systems
(hardware and software) are possible if the architecture is designed to operate synergistically with the
compiler. As exaréples we point to the IBM 801 {Rad82} and the MIPS processor [HIBS2]. Their
designs were influenced to a large degree by the decision 1o make pervasive use of high-fcvel languages

and powerful compilers.

To evalunate a pmposed architecture effectivély, one must analyze measurements from typical pro-
grams that are to be executed by the machine. Three tasks must be accomplished to be able o obtain
these program measurements. The first task is to generate the machine instructions for the pr(;posed
architecture that correspond to each of the test programs. The second task is to provide the ability to imi-

tate the execution of these machine instructions since the proposed architecture does not exist. The third

-1-



task is to establish a method for the extraction of measurements from the execution of the programs.

This paper presems- an environment called ease (Environment for Architecture Study and Experi-
mentation) that integrates the tasks of producing instructions for the proposed machine, imitating the exe-
cution of these instructions, and collecting measurements. Tntegration of these tasks results in a substan-
tial reduction in effort as compared to trad'iaionai methods. By using program-flow analysis calculated by

the compiler, detailed measurements can also be obtained with very little overhead.

PRODUCING CODE FOR THE PROPOSED MACHINE

Each of the test programs must be translated to machine instructions for the proposed architecture.
If a set of small test programs are used, the inétructions for each of the test programs can be generated by
hand. The measurements extracted from these programs would proﬁabiy not produce represemétive
results since the size o_f the programs would not be realistic and the quality of the code would depend on
the skili éf the writer of the programs. If a realistic test set is used, this would typically require the con-,
struction of a compiler. The problem is further complicated as most machines require *‘‘optimizing’’

compilers in order for their capabilities to be exploited [HeP90].

The compiler technology used in this environment is known as vpo [BeD88, DaF84, Dav86]. It has
been used to build C, Pascal, and Ada compilers. The optimizer, vpo, replaces the rraditional code gen-
erator used in many (_:ompilers-. vpo is retargeted by supplying 2 description of the target machine. Using
the diagrammatic notation of Wulf [WIW75), Figure 1 shows the overall structure of a set of compilers
constructed using vpo. Vertical columns within a box represent logical phases which operate serially.

. Columns divided horizontally into rows indicate that the éubphases of the column may be executed in an
arbitrary order. IL is the Intermediate Language. Register transfers or register transfer lists (RTLs)
describé the effect of machine instructions and have the form of conventional expressions anﬁ assign-

ments over the hardware’s storage cells, For example, the RTL
#[1] = £{l] + rl[21; cc = rll] + x{2] 2 O;
represents a register-to-register integer add on many machines. While any particular RTL is machine-

* specific, the form of the RTL is machine-independent. All phases of the comp{ler manipulate RTLs.
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Figure }: Compiler Structure

There are a number of advantages to using RTLs as the basis of the imermédiate representation.
Because the form is machine-independent, programs can be constructed that manipulate RTLs in
machine-independent ways, For exarﬁplc, the phase that performs data-flow analysis on RTLs is largely
machine-independent. Because RTLs represent actual machine instructions, specifics of the target
machine are exposed to the various 6ptimization phases resulting in more complete and thorough optimi-

- zation. For instance, by performing the optimizations after code generation, all of the instructions that
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are invariant are candidates for ‘being. moved out. of loops when code motion is applied. Finally, because
R’E’Ls are well-defined, it is possible to construct recognizers that can determine whether an RTL
represents a legal target machine instruction. The ability to determine, at any time, whether an RTL
represents a legal instruction is key to our optimization strategy. For example, an RTL that is created
during instruction selection from combining two or three RTLs wgethér is verified to be legal before the

original RTLs are vreplaced.

To retarget vpo to handle a new architecture, a description of the architecture’s instruction set must
be written. This machine description consists of a grammar and semantic actions. The grammar is used
to produce a parser that checks the syntax of an RTL. The semantic actions check context-sensitive con-
straints imposed by a particuiér architecture. Currently, the RTL parsers are constructed using the Unix
parser geﬁerator yacc [Jon78]. There is a ceriain appeal to the symmetry of using the tool that was used

to construct the front end to help consiruct the back end.

Machine description grammars are relatively easy to write [Dav85]. The goal is to compose a
grammar and semantic actions that produce a parser that accepts all legal RTLs (instructions) and rejects
all illegal RTLs. Our experience is that it is easier o write a machine description for an instruction set
than it is to write a grammar for a programming language. The task is further simplified by the similarity
of RTLs across machines, This pemiits a grammar for one machine 0 be used as the model for a
desclri'ption of another machine. We have used this technique to descriﬁe the instruction sets of the fol-
lowing machines: VAX-11, Motorola 68020/68881, National Semiconductor 32016, Concurrent Com-
puter Corporation 3230, Western Electric 32100; Intel 80386/80387, Harris HCX-9, IBM PC/RT, Inter-
graph Clipper, SUN SPARC, AT&T DSP32, Hewlett-Packard 800, and Motorola 88100. The C compiler

has been ported to new architectures in as litle time as two weeks by one experienced with the technol-

ogy.

IMITATING THE EXECUTION OF CODE FOR THE PROPOSED MACHINE

To be able to evaluate an architecture, one must obtain the effect of executing instructions for the

architecture from representative test programs. If the architecture has not yet been implemenied, then
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one must imitate this execution by other means. The use of a simulator is one solution to providing the
ability to execute the machine instructions on the proposed architecture. A simulator imitates a machine
by interpreting the machine instructions [AIW75,BSG77]. Since a simulator can be written in a high-
level language, it can be executed on any machine that supports that language. Another solution is ©
produce a program that translates the assembly instructions for the proposed architecture into assembly
instructions for a machine that already exists. Once these programs have been translated they can then be

executed on the host machine.

There are problems when using either of these schemes. The effort to construct a simulator is com-
parable to the effort of constructing a compiler. The effort to produce a translator to map assembly
instructions from one machine to another, though not as difficult as constructing a simulator, is nontrivial,
The translator must parse and identify the maemonic of each instruction and the addressing mode of each
field in the instruction. The additional timé required to implement these schemes may discourage one
from coiiecting measurements. Furthermore, the total execution time of a simulated program is typically
handreds of times slower than if the program is executed directly [HLT87]. A large execution time
penalty can lead to extraction of measurements from a small number of simulated instructions and thas

less meaningful results.

The last step in the vpo compilation process is the conversion of an RTL to assembly language for
the target machine and emitting it 1o a file thai will be processed by the system’s assembier. In the ease
énvironment, an instruction for the proposed machine can be generated as an assembly instruction for the
prqposed architecture or ohe or more equivalent assembly instructions for an existing architecture. As an
RTL representing an instruction is parsed, characteristics of the instruction are collected. This semantic
record can then be used to produce assembly code tha; corresponds to the RTL. Which assembly code is
produced depends upon a switch set when invoking the compiler. The assembly code for tﬁe existing
architecture can then._‘be‘ assembled, linked, and executed. Figure 2 contains the code that aliows the

VAX-11 increment instruction to be produced in equivalent SPARC assembly instructions.



/‘t
* binst - check semantics of binary operation
*/

void pinst (il}

struct sem_rec *1i:

{

/* ©mit an inc inst 4Lf an add and the increment is 1 */
if {t-rop w= f+0 &4 stremp{t->sem.binsti, right->asmb, "$1%) == 03
$£ {vaxassem}
printf (*\tinckc\tis\n®, vypech2(t), ji->sem,.blnsti. dest~->asmb);
elge 1f (sparcassem)
1f (MEM{t->sem.binsti.dsv)) { /* g7 extra reglster */
printf{"\cld\t¥s, $sg7\n", j11->sem.binstl.dst->asmb) ¢
printf ("\tadd\tssg7?, 1, ¥¥g?\n"};
printf {"\tstiekig?, ¥s\n", 11~->sem.blnstl, dst->asmb);
4
else
printf{*\tadditks, 1, ks\n", i1-»>gem.binsti.dst->asmb);

Figure 2: Code to Generate an Increment Instruction

The ease environment can also be used to emulate architectural features that are not directly
equivalent to features on an existing architecture. For instance, the number of available registers on a
proposed amﬂizecture may exceed the number of registers available on the host machine. Translation of
an RTL in this situation to assémbly code on a host machirie is accomplished in the folowing manner.
First a set of currently available registers, equal to in number to the maximum number of unique registers
that could be used in one instruction, are reserved. Any refefenceé {o the reserved or nonexistent regis-
ters are replaced by corresponding memory references, If one of these registers cannot be replaced
directly by'-a memory reference in the instruction (e.g. in an addressing mode), then the value for the
register is loaded from memory into a reserved register previous to the instruction. The reserved register,
instead of the merﬁory reference, is then used in the instruction. If one of these registers is updated as a
side effect of using the addressing mode, then the new value for the register is stored after the instraction.
Updating a vpo compiler for the VAX-11 to emulate its execution with twice the number of available

registers was accomplished in half an hour by adding less than 5O lines of code. An exampie of
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translating Vv AX-11 RTLs referencing additional registers is shown in Figure 3.

Tpfagy = 1301 * 1 —— add | to register 30

=>

incl R304Ip) o increment ¥ [30] memory reference
Lia{ri{3cp++il 7 0 - storcOinmenwryalr{:iO}

-~ andadd4 to r{30]}

=>

novl 230 (fp} . L6 e lpad r{30] into available register
clrl $3:184 -~ clear memory and add 4 w register
oVl £6, R30{fp) - store updated value of r130!}

Figure 3: Translating Additional Registers

EXTRACTING MEASUREMENTS FOR THE PROPOSED MACHINE

To be able to evaluate an architecture effectively, oné must examing its behavior when executing
real programs. To be able to extract this behavior, one must collect measurements froi the program’s
execution. Collecting these measurements with a simulator is ‘straightforward since the simluiator must
already recognize the characteristics of each instruction in order to imitate the instruction’s effects
correctly. As each instruction is interpreted gietailed measurements can be updated. Extracting measure-
" ments for a proposed architeciure can also be accomplished when the technique of translating target
assembly instructions to assembly instructions on a host machine is used. As each assembly instruction is
translated, characteristics of the instruction canlbe recorded. A technique, called program instrumenta-
tion, can be used t© modify the translated program with instructions 1o increment frequency counters or
record other-events. The final frequency counts, incremented during the execution of the program, can be
correlated with instruction infomation that was recorded during the translation to produce accurate meas-

urements.
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Mapﬁing of assembly instructions is not required when there is a one-to-one mapping between the
control flow of the basic blocks on the proposed and existing machine [HLTR7]. Frequency counts can
be gathered from the program executed on the existing machine and correlated with instrﬁction informa-

tion gathered from the assembly program on the proposed machine.

The previously mentioned problems with using simulation or assembly translation for imitating the
execution of instructions on a proposed machine also apply when extracting measurements. Both a simu-
lator and an assembly translator require a significant amount of effort to construct. Also a simulated pro-

gram execuies much more stowly than if the program were execuled directly on the target machine.

Another problem is that these schemes record information on instructions after assembly code has
been produced. Thus, many types of measurements related to the source code are not easily extracted.
For instance, determining the average number of arguments allocated to registers requires information
not readily available in the assembly code. Déta—ﬁow and control-flow information can be used to
minimize the overhead of instructions that are inserted from program instrumentation. This information,
accessible in an optimizing compiler, would have to be recalculated if a separate program was used 1o

insgrument the assembly program,

A direct mapping'bemeen the basic block structure of assembly programs on the proposed archi-
tecture and. the existing architecture cannot be assured Wwhen an optimizing compiler is uﬁed‘ For
instance, there is a greater chance that a RISC instruction within a loop will be invariant since it requires
more RIISC instructions than CISC instructions to accomplish the same set of operations. Therefore, code
motion can typiéally be more extensively applied to loops containing RISC instructions. Applying code
motion will result in the introduction of a new basic block as a preheader of a loop if no suitable basic
block that is a predecessor of the header of the loop could be found. Different code generation strategies,

such as calling sequence conventions, can also affect the basic block structure of a program.

If an optimizing compiler is not used and there are few differences between a proposed architecture
and an existing architecture, then it is possible that there would be a direct mapping between the basic
block structures of programs compiled on each machine. Even if a one-to-one mapping exists, then the

assembly program for the proposed architecture must still be processed to extract the instruction
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information required to collect detailed measurements.

The method used by edse to collect measurements is 10 modify the back end of the compiier o
store the characteristics of the instructions to be executed and to instrument the assembly code with
instructions that will either count the number of times that each instruction is executed or invoke a routine
10 record events that are dependent on the order of the instructions executed. These modifications have

been implemented in the vpo compiler system and are described in subsequent sections. This method is

illustrated in Figure 4.

instrumented

) by code
S

Source Front intermediate VIO optimized VPO
File End code system rls Updates
s e
instruction
characteristics

Figure 4: Method for (Gathering Data

Instruction Characteristics

The first modification to vpo to produce code for collecting measurements is o have the optimizer

_ save the characteristics of the instructions that will be executed. As an instruction is parsed, information
about the characteristics of the instruction is éoilected and used for several purposes. One use is 10 pro-
vide information to translate the RTL o the corresponding assembly instruction of the target machine or
equivglem assembly instructions on a host machine. As each assembly instruction is produced, the
characteristics of the instruction are also written to a file by invoking a machine-independent routine.
The routine is only invoked if the option for c§liecting frequency measurements is set and the optimizer
had been compiled to allow the collection of measurements. The routine receives the instruction type and
the semantic record containing the fields of the instruction. It writes the instruction type and the address-
ing mode and data type for each field within the instruction to a file. Thus, very little extra code and no
extra parsing of RTLs are required to cotlect this information. These instruction characteristics are emit-
ted as if the target architecture existed.. Therefore, the measurements are collected on the RTLs, which

represent the target architecture instructions. The transtation from RTLs to assembly instructions does
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not affect the measurements that are obtained. An example of a routine that stores information about a

Motorola 68020 call instruction is shown in Figure 5.

./x
* call « check semantics of call
./'
vold call{tly
struct sem_rec *ilp
{
/% if generating assembly code */
if (dassem || vaxassem) {
if {dassem)
printf{"scibsrit¥sine, {1->sem,call.addr-rasmb};
else
printf("\tcalls\tse, $s\n*, 11-»zem.call,addr->asmb};
#ifdef MEASURE
L {swe)}
stinstinfo (JSBRI, il);
#endlf

/* else perform semantic checks */

else |

}

Figure 5: Storing Instruction Information

Program Instrumentation

The second modification is to have the compiler instrument the assembly code toleither increment
counters or invoke routines. This instrumentation is performed after all optimizations have occurred.
Incrementingr counters is used to obtain information that is independent of the order in which the instruc-
tions are executed, such as the number of times each type of instruction is execated. Invoking routines is
used to record 0rder~dependént events, which inciuc}és trace generation and analysis of memory refer-

£nces.
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a. Collecting Order-Independent Data

To collect order-independent information, ease must determine the number of times that each
instruction was executed. Within each function there are groups of instructions, basic blocks, that are
always executed the same number of times. There are also groups or classes of basic blocks that are exe-
cuted the same number of times and are denoted as execution classes. Using control-flow information,
ease only generates an instruction to increment a counter for each execution c!as'é rather than each basic

block.

An example illustrating how control-flow analysis is used to reduce the overhead for collecting fre-
quency measurements is given in Figures 6—9. Figure 6 containsa C function that returns the sum of the
elements of an array. Figure 7 gives the Motorola 68020 assembly code produced by vpo for that C func-
tion. Figure 8 shows the same assembly code broken into basic blocks. Note that although there are five
basic Blocks there are four execution classes ({1}, (2,4}, {3}, {5)). Figure 9 shows the modified 68020
assembly code with three instructions inserted to ‘increment counters. The name of the file being com-

piled, sum in this case, is used to distinguish counters from other files in the same executable.

int sum{a, nj
int-af{l, n;
{

int L, total:

1f (n > 0) |
total = Q7
i = 0;
do

rotal += alfi};

while {++i < n)?
returnitotal) }
}

return {~1);

1

Figure 6: C function

Apart from using execution classes, there are additional methods to reduce the number of times that

counters need to be incremented. An instruction 0 increment a counter is not inserted if the execution
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.globl _sum
sum:
n.wl2

a.=8
iink a6, #~8 ~~ setup frame and stack pirs
moveml d2/¢3,a’8% -- savedlanddd
movl a6% (n.},d3 -~ load argument k into d3
jle Li4 - ifd} <= 0 goto LI4
cirl di -~ clear di
clrl d2 - clear d&2
movl 268 {a.),al =~ load argumenr a into al
lea alg, a0 ~- move al to af

L17: addi a0@+,dl ww load mem at a0 to dl ;add 4 to a0
addgl  #1,d2 oo add I to &2
cmpl d3,d2 ww compare d3 and d2
jlt L17 we i dd < d3 gote LI7
movl - di, do ~— move di to d0 as return valie
moveml al@,d2/d3 -~ restore d2 and d3
unlk a6 ~= pestore frame and stack ptrs
res - refrn

L14: movl ¥-1,40 ww move -l to d0 as return value
moveml a7@,d2/d3 ~- restore d2 and dl
unlk a6 -~ restore frame and stack pirs
res -— relrn

Figure 7: Motorola 68020 Assembly Code for Function in Figure 6

* class count can be inferred from the counts of other execution claéses. As shown in Figure 8 basic Biock
1 has two successors, blocks 2 and 5. Both successors have only one predecessor, block 1. The number
of times that block 1 is executed is equal to the sum of the times that blocks 2 and 5 are executed. There-
fore, it is not necessary to increment a counter associated with the execution class represemin'g blocks 2
and 4. The number of iterations of the loop containing block 3 can be determined at compile’tj'me to be
equal to the value in the register d3 at the point that the loop is entered. Thus, the counter associated

with that loop is incremented by the value in the register in the preheader of the loop.

Another type of frequency measurement collected by ease is the number of times that each type of
conditional branch is taken. These values can be obtained by inserting an instruction to increment &
counter after each conditional branch. The counts can then be subtracted from the number of times that

each type of conditional branch is executed to produce the desired measurements. The insertion of such
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link a6 #-8

moveml d2/d3.a7@ i

movk ab@(n.),d3

fleLl4

T F
ced dl
cirld2
movl ab@{a.),al 2
lea al@ a0
\
addl a0@+,d1 .
T | addql #1,42
crpt d3,d2 ?
L8
F
3

movi d1,80
movem] a7@ ,d2/d3 4
unlk a6
s

movl #-1,d0

moveml a7@ ,d2/d3 p

“untk ab

s

Figure 8: Assembly Code of Figure 6 in Basic Blocks

instructions, however, is usually unnecessary. There is a conditional branch in blocks 1 and 3 in the
example shown in Fighre 8. In both sitations the block that is executed if the conditional branch is not
taken (2 and 4) has only one predecessor. Therefore, the number of times that each type of conditional
branch is not taken is equivaient to the number of times that blocks 2 and 4 are executed. Occasionally,
the block that is executed if the conditional branch is not taken has more than one predecessor. An
instruction to insert a counter is still unnecessary if the block at the target of the conditional branch has
only one predecessor. In this case the number of times that the conditional branch is not taken is equal to '
the execution count for the block containing the conditional branch minus the execution count for the tar-

get block,



.globl _sum

_sum:
n,=12
a.=8
addgl #1, sum_counts
ilnk a6, ¥-8
moveml d2/d3,a7@
movl a6@(n.),d3
ile 14
clrl di
cirl d2
movl ab@{a.),al
iega al@,al
addql' d3, _sum_counts+s
Li7: addl a0+, 4l
addqgl ¥1,d2
empl 43,42
jic L17
movl di,do
moveml a7@,d2/d3
unlk ab
res .
Lid: addgl 41, sum_counts#l2
movl #-1,d0
moveml a7@,d2/d3
unlk -1
rts

Figure 9: 68020 Assembly Code with Frequency Counters

Instrumenting code naively would result in an instruction being inserted for each basic block and
following each conditional jump. Assumingthat n > 0 in the-example' given in Figure 6, naive instru-
mentation would result in n+5 increments of counters for each execution of the function. Only 2 incre-

ments for each execution of the function would be required when control-flow analysis is used.

Determining whether a block belongs to an execution class is done in three steps. First, the set of
blocks that dominate the current block must be calculated. This information is already available in vpo
since domi_nator information is needed to detect loops in a program. The second‘ stép determines if the
current block is always a successor to the bfocks within an execution class. This is accomplished by

determining if all paths from one block eventually lead to the current block. The third step checks if the
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current block is in the same set of loops as the blocks in the execution class. Tﬁg information for this step
is also already available in vpo. Execution class information has been used in vpe to help find instruc-
tions that are not in the cﬁrrem block or an immediately adjacent block that can be placed behind a
delayed branch. Figure 10 shows the dominators (DOM), always successors {AS8), and execution classes

(EC) for the set of blocks in Figure 8.

EC=(DOM ~AS)-DIFFLOOPS

DOMIL) = {1} AS{1} = {1} EC(L}) = {1}

DOM(2) = (1,2} AS (2) = {2} EC(2) = (2]

boM(3) » {1,2,31  AS(3) = {2,3}  EC{3) = (3}

pOM(4) = (1,2,3,4] AS(4) = (2,3,4] EC{(4) = (2,4}
= {5) EC(8) = {5)

- DpOoM(By = (1,5} AS (5}

Figure 10: Execution Classes for Blocks in Figure 8

b. Collecting Order-Dependent Data

Instructions can also be inserted to invoke routines to record the occurrence of order-dependent
events, This strategy has been used to simulate instruction, data, or unified caches. The calls that are
inserted interface with a cache 'simulamr. Not oﬁly does this avoid lengthy trace files, but it also speeds
up the execution. 'Scratch registers ‘can potentially be alive at the point that instructions are inserted to
invqke a trace routine, Using data-flow information calculated by the compiler, ease determines which
scratch registers are live at the point where each cail is inserted and thus avoids unnecessary saves and

restores around the inserted cails,

ease inserts instructions to invoke a trace routine at thé beginning of each I;asic block for instruc- |
tion cache simulation. The instruction addresses are calculated priof to the execution by determining the
size of each inslmg:tion. By obtaining size information, the addresses of instructions passed to the cacﬁe
simulator are unaffected by the code that is inserted for capturing measurements. Instruction size infor-
mation for existing machinés is determined by placing a label before and after each instruction. The size

of an instruction, calculated by the assembler, is the difference between the two labels. To obtain instruc-
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tion cache measurements for a proposed architecture, the size of each instruction must be determined byl
the compiler since an assembler would not be available. A unique basic block number is paésed to the
trace routine which uses this number to access information associated with that block. The trace routine -
in turn invokes the cache simulator passing the beginning address of the basic block and thé basic block
size to the cache simulator. The number of cache hits are then adjus{cd to reflect the actual number of
instructions in the basic block. If it is determined that & periodic context switch is to occur during the
execution of the block, then the address of each individual instruction within the block is passed to the

cache simulator.

For data cache simulation, ease invokes the cache simulator directly before each data memory
reference. ease can easily extract memory references from an RTL and pass them to a cache simulator.

For instance, the RTL below describes the effect of a memory to memory move on the 68020.
L{A[ b]] = LIA[_all;
ease first examines the src from the dst = src; of the RTL. If it finds a memory reference, it

strips off the memory type character and the outer brackets and uses the resulting string to push it onto

the stack. For the previous RTL a pea instruction, represented by the following RTL, is inserted.
L{a({--al7}]] = Al[_al;

Other instructions are inserted to invoke the cache simulator. A similar process then occurs for the dst

portion of the RTL.

All data declarations used for bbtaining measurements are placed in a separate file which is
specified 10 be linked after all the compiled files being measured. Thus, the‘actulal address of each data
reference can be passed to the cache simulator since the data declarations for collécting measurements do
not perturb addresses of other data references in the program. Of course, there may be differences in the
addresses of the data references produced when a ﬁrogram is executed on a host machine instead of the

actual target machine since the organization of the executable file may differ.

To accurately intermix instruction and data references in a unified cache requires some additional

-work, Instructions are inserted 1o store the address for each data memory reference in a buffer immedi-
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ately before the instruction containing the memoryr address is executed. The frace routine invoked at the '
beginning of each basic block will store the basic block number and process the last éxecuted basic
block. The number of data memory references associated with each RTL is determined at compile-time.
Rather than processing each instruction individually to intermix instructions and data references, the
cache simulator is invoked for groups of consecutive instructions w:thm the block. Oniy the last instruc-
tiont within a group can contain data memory references. After invoking the cache simulator for a group
of instructions, the cache simulator will be invoked for each of the daéa references associated with the last
instruction in the order they were stored. The actual point when the cache simulator should be invoked to

process a data reference is machine-dependent since it depends on the pipeline structure of the machine.

Other Modifications

In the past, some instructions were generated by the code expander in assembly language if optimi-
zations could not affect it. An instruction must be represented as an RTL, however, if its execution
characteristics are to be collected. Every type of instruction that is executed must now be represented in

the machine description,

Depending upon the‘t‘ype of measurements required, special cases may be necessary. For instance, |
the VAX-11 movc instruction moves a variable number of bytes of memory depending upon a value in
an operand. This instruction, though it’s effects could not be acéumtely described in a single RTL, is still
represented by an RTL in é functional notation as shown below.

addr = CM{expr, addxr};

To be able 10 accurately count the number of memory references made by the execution of the instruc-

tion, the value of the count operand was stored with the other characteristics of the instruction.

Processing the Collected Data

At the end of the execution of the program a routine is invoked that will cause the collected meas-
urements, either the frequency counts or the results of a cache simulation, to be written to a file, Thisis

accomplished by inserting the call before return instructions in the main function and before calls to the
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library routine, exit, in any function.

The exedu;ion counts and the characteristics of the instructions are both used to produce dynamic
frequency measurements. The characteristics of the instructions can also be used to produce static meas-

urements. Figureil shows how both static and dynamic frequency measurements can be obtained.

VPO instzucsion static srakic
system characteristics measurer measurements
inswuetion characteristics
YPO dynamic dynamic
system machine execution measurer INEESUEETEHLS
instructions exccutable counts

program

Figure 11: Producing Reports

The cotlected frequency information can be stored and analyzed at a later time, Separating the col-
lection and analysis of measurements has a number of advantages. If different evaluations of the data are
required then collection of the data is only required once. If analysis of the execution of several different
programs is needed then the data can be collected from each program’s execution separately. The
analysis program can then accumulate the data cotlecied frorh each of the executed programs and gen-
erate a single report. Finally, the analysis of the data is separated from the generation of the data and thus

requires less modification to the back end of the compiler.

The generation of reports from the frequency measurements is also largely machine-independent.
Most of the code from a 500 line C program that produces several different detailed reports has remained

" unchanged when implemented on different machines. These reports involve:
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instruction path length

instruction path size

instruction type distribution

addressing mode distribution

memory reference size distribution

memory reference addressing mode distribution
register usage

condition code usage

conditional branches taken

average number of instructions executed between branches
data type distribution

.

b

—~ 200N W N

™

The cache simulator invoked during the program’s execution contains no machine-dependent code.
Information about a reference is passed through arguments each time the cache simulator is invoked. The
characteristics of the sitﬁulated caéhe is determined by reading a conﬁghration file at the beginning of the
program’s execution and a cache performance report is generated at the end of the execution of the pro-
gram. To acquire a cache performance report with different cach.e characteristics simply requires

modification of the configuration file and executing the program again.

Overhead of Collecting Measurements

Table I shows the execution overhead for coIIectiﬁg measurements for a set of programs on the
Motorola 68020/68881." The execution overhead of ccﬂlecting frequency information and performing
instruction, data, and unified cache evaluations are depicted. For the cache evaluations both the overhead
for only generating the addresses for the trace and the' total overhead including the cache.simulatibn are

given,

The instrumented code to collect frequency information ruﬁs on average 16% slower than code tha_t
was not instrumented. A measurement system, called bkgen, collects frequency_ measurements by inseft-
ing an instruction to incfement a counter at the beginning of each basic block [HLT87]. Using this
approach on five different prografns resulted in an average of 34% overhead. In addition to determining
how often each instruction is executed, ease also collects infoﬁnazion on the freqﬁency that conditional

branches are taken. Yet the overhead was less than half that required by bkgen since control-flow

b All execation times reported in this paper were obtained by calculaing the average of ten executions of each instance of a
programn. All cache simulations were run with a 1K byte direct-mapped cache with 6 byte lines. Periodic context switches were
introduced at every 10,000 units of work where a hit required 1 unit and a miss required 10.
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Cache Evaluation
Frequency
Program Trace Generation Only Cache Simulation Included
Information
inst data | unified inst data unified
compact 1.28 1122 | 1340 | 5045 | 5582 | 6341 | 19557
cpp 1.28 873 | 13.01 | 4950 | 5333 | 64.11 | 19627
diff 1.17 3.68 790 35.84 43.61 31.68 128.98
matmult 1.01 6.71 661 | 2528 | 34.50 | 3099 89.16
od 1.13 4.65 54 1927 | 23.18 | 2391 69.22
puzzie 1.30 19.62 800 | 6055 | 8946 | 3692 192.24
queens 1.08 8.33 8.46 37.10 50.11 39,35 138.77
spline 1.03 1.62 1 1.56 371 405 331 1042
average 1.16 R.70 804 | 3521 4426 | 36,71 127.58

Table [: Ratio to Noirmal Execution Time

analysis was used to reduce the number of instructions that have to be inserted and executed. While col-
lecting frequency measurements has linle effect on the execution time, the order-independent data

obtained, however, can still provide detailed and useful information.

For calculati_ng the overhead of only generating addresses for the trace, addresses were generated
and passed to adufnmy cache simulation routine. Instead of determining whether each reference was a
hit or 2 miss, incrementing counters, and updating the state of the cache, the dummy routine simply
immediately returns. It would seem that unified cache trace generation should require the overhead of the
sum of separate trace generations for instruction and data caches. To accurately intermix instruction and
data references, however, results in many more instruction references being generated since entirc‘:'basic

blocks cannot be passed to the cache simulator.

As shown in Table I, most of the execation overhead for cache performance evaluation was due to
time spent simulating the cache. Cache simulation using the wraditional method of generating a trace to a
file and then reading the trace file during cache simulatilon can require a 1000 times the normal executioﬁ
til_ne [Smi82). Performing instruction, data, and unified cache .simuiatjons during the execution of a pro-

gram with ease results in the program running only about an average of 44, 37, and 128 times slower



respectively. This overhead could be improved if a simulator was used that was tuned for the particular
cache configuration being simulated. Using. such a strategy would require relinking the program each
time the cache configuration was changed. Similar to trace generation the resultsr with cache simulation
included indicate that cache performance evaluation for a unified cache is more time—cohsumiug than
evaluating both instruction and data caches separately, The increased overhead is mainly due to the

increased number of references that have 1o be processed by the cache simulator.

It is interesting t0 observe the variation in overhead: for the different programs. The execution
overhead is affected by a number of factors which include the average execution time for each instruction
in the original program. For instance, the program resulting in the lowest overhead was spline, which is
floating-point intensive. Most floating-point operations on the Motorola 68881 are much more time con-

suming than fixed-point operétions on the Motorola 68020,

APPLICATIONS

The ease environment can be used to evaluate the impact of adding or deleting an architectural
featare on a machine. First, a set of programs are compiled, executed, and measurements are collected.
Next, the machine. description within the compiler is modified to reflect the change in the architecture.
Again, reports are obtained éfter compiling and executinlg the same set of programs. By compéring the
two sets of measurements, thé effect of the change can be evaluated. This approach was used in an
experiment to determine the effect of varying both the number of user-allocable registers and the number
of scratch versus nonscratch registers on a VAX-11 with a callee-save calling sequence [DaW91].2 The
method illustrated in Figure 3 was used when the number of available registers were increased. Table I
shows the effect on the number of memory references with the different combinations. The resulis indi-
cate that the number of user-allocable registers has litile effect on the most effective percentage of

scratch registers (about 40 per cent for the calling sequence used in Table ID).

2 With the defauit calling convention on the VAX-11, there are twelve allocable registers, six c;f which are scratch.



user-ailocable | scrach memory

registers registers | references
4 2 98,458,465

‘ 3 111,117,829
2 78,974,787

8 3 78,846,670

4 79,774,950

4 75,512,463

12 5 75,098,651

6 75,752,791

5 72,855,408

16 6 72,841,124

7 72,924,722

Table 1I: Results of Scratch/Nonscratch Combinations

The ease environment can be used to evaluate the effect of adding new instructions to an architec-
ture. For instance, it was desired to determine the effect of using three different hardware support
mechanisms to save and restore registers. Measurements were collected assuming that 1) saves and
restores are accomplished via the call instruction and a mask that indicates the registers to save and
restore, 2) special instructions are available that can save and restore a specified set of registers én the
run-time stack, and 3) saves and restores are done using primitive load and store instructions. The effect
of these thrée mechanisms with a caller-save approach for a set of programs on the VAX-11 is shown in
Table III. Note that the use of a mask with the calls instruction on the VAX-11is a\}ailable only with
a callee-save convention. Likewise, the special instructions available to save and restore a set of regis-
| ters, the pushr and popr instructions, also adjust the stack pointer. These instructions cannot be used
in a caller-save approach since arguments may hz_we already been pushed on the stack at the point of a
‘call. Although measurements were obtained as if the desired instructions existed, the actual saves and
restores 'were accomplished using individual mov instructions. The results indicate that while the use of
2 mask associated with a call instruction results in the fewest instructions being executed, it causes moré
memory references to be performed since for each call two additional memory references are required to

save and restore the mask, The use of special instructions appear to be a good compromise.
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measurement mask | special inst load/store

instructions | 108,588,162 | 110,954,490 | 113,543,904
memory refs 84,976,490 { 79,017,798 | 79,071,798

Table I1I: Results of Different Save_/Rcstore Mechanisms

The ease-environ.meat can also be used to assist in the design of a new architecture, A new instruc-
tion set was designed to serve as a baseline for comparison to evaluate a new architectural feature
[Dawo0b). The préposed baseline architecture was evaluated using the ease environment with the
VAX-11 architecture sewing asa hqst rachine.- It required less than two weeks to generate a compiler, |
imitate the exccution of a set of test programs, and collect measurements for the proposed mchi&ctm.
'To illustrate the level of detail of measurements that ease can provide for a proposed architecture, various
feports are given from measurements for the baseline architecture obtained by the program compact com-
pacting its own source file. Not only can the total number of executed instructions be determined, but
also the distribution of the different types of instructions that were executed. This informatidh can be
used to determine if the compiler makes use of the different instruction types. Likewise, it is useful for a
‘machine architect to know if the available addressing modes are used. The addressing mode and instruc-

tion type distributions for the program compact are given in Tables IV and V respectively.

inst type mumber executed | per cent
DISP " 568,106 428
IMMED 2,715,704 20.48
INDEX 423,418 319
LABEL 818,555 6.17
REGDFR 776,319 5.85
REGISTER | = 7,959,571 60.02
total 13,261,673 100.00

Table IV: Addressing Mode Distribution for Compact

23



In the past tﬁere have been machines designed with the goal of highly encoding information in the
instruction format. For instance, on the Motorola 68020 there are several instructions that do not allow
specific operands of various instructions to use some addressing modes. If it was desired to design such a
machine, ease can provide this level of detail. Table VI shows for the pfogram compact the different

addressing modes and data type combinations used in the operand fields for load and store instructions.

inst type number executed | per cent
ADD 1,088,762 17.57
AND 314,040 5.07
CALL 28,000 0.45
CMP 735,542 11.87
DIV 5 0.00
IMP 93,071 1.50
JEQ. ‘ . 270,270 4,36
JGE 10,058 0.16
IGT 53,341 0.86
LE 5,994 010
LT 67,642 1.09
INE 318,179 5.14
LOAD 1,226,515 19.80
MOV 174,836 2.82
MUL 3 0.00
NOP 199,300 322
OR 7,716 0.12
RESTORE 20,200 0.33
RET . 28,004 0.45
SAVE 20,200 . 0.33
SETHI 246,193 3.97
SLA 504,748 8.15
SRA 51,808 0.84
STORE 513,319 8.29
SUB . 208,788 337
XOR : 8,760 ‘ 0.14
total 6,195,303 1 100.00

Table V: Instruction Type Distribution for Compact

1t is useful to determine the cache performance for various cache configurations before the proces-
sor is actually implemented. Without requiring recompilation or relinking, cache performance results for
different cache characteristics in the ease environment can be obtained by simply changing parameters in

a configuration file and reexecuting the program. The hit ratios for the program compact with different
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insttype | field | addressing mode | datatype | numberexecuted | percent
LOAD | DST | REGISTER LONG 1226515 100.00
MEM | DISP BYTE 6,481 0.53

WORD 34,071 2,78

LONG 364,105 29.69

INDEX LONG 391,826 31.95

REGDFR BYTE 10,054 0.82

WORD 52,144 4.25

, LONG' 367,834 29.99
STORE | MEM | DISP BYTE 1 0.00
: WORD 10,061 1.96
LONG 125,378 2442

INDEX LONG 31,592 6.15

REGDFR BYTE 6,478 1.26

WORD 15992 | 14.80

LONG 263,817 51.39

SRC | REGISTER LONG 513,319 100.00

Table VI Load and Store Operand Information for Compact

instruction cache sizes and associativity are given in Table VIL

Besides evaluating proposed architectures or new architectural features, ease can be used for other

purposes. The environment has been portéd to ten different machines to compare current architectures.

These machines include three CISCs and three RISCS, Measurements were obtained from executing

nineteen programs on each of the architectures and an analysis performed [Wha90]. Figure 12 shows the

cache associativity
size 1 2 4
1K 9210 | 9213 | 92.24
ZK 9490 | 98.18 | 98.19
4K 96.11 | 98.19 § 98.81
8K 98.81 | 98.81 | 9881

Table VII: Instruction Cache Hit Ratios for Compact



number of daia memory references for each machine. The number of memory references due to
referencing variables and spills of temporaries is shown in solid lines. The additional number of memaory
references due to saving and restoring atlocable registérs is shown in dashed lines. The additional
number of memory references due to handling function linkage (stéck pointer, frame pointer, program
counter, etc.) is shown in dotted lines. Thus, ease not only determines the total number of memory refer-
erices, but also the reason for each memory reference. It is interesting 10 note that about 25% of the
VAX~£1 memory references is due to function linkage. This results in function calls on the VAX-11
being very expensive. The SPARC architecture with its register windows, however, had very few

memory references due to saving and restoring registers or function linkage (spilling and loading register

windows).
100 — 1.18
Number at top of bars is ratio 1o VAX-11, R
millions 80 - 100 0.56 ’ e -
of s e % pryope o
memory O S ,
references 00 s T ;_'?_'Ti
- 1810 e
i ] i 1 ] |
VAX 11 HCX 3}315 68020 32016 80386 3230 RT CLIP SPARC

Figure 12: Number of Memory References

The environment has also been used to analyze different code generation strategies. By recompil-
ing the source files from the C mn-time library, calling sequence conventions can be modified. By
extracting méaSuxemenm before and after each modification, the effect of the change can be easily
analyzed. Six different methods for saving and restoring registers without interprocedural analysis or
special hardware have been examined [DaW91]. Also, the benefits of passing arguments through regis-

ters as a calling sequence convention have been analyzed and the use of primitive call and return instruc-
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tions has been compared with the use of their more complex counterpart instructions [DaW90a].

- RELATED WORK

Traditionally, the methods used for obtaining architectural measurements for a proposed machine
involved the use of a simulator {Bar81]. The awb (Architect’s Workbench) environment uses an
approéch that allows the gat!j;ering of architectural measurements from the execution of a program for
different architectures from a single simuiation [FIW90]. Each high-level source program is translated to
intermediate code and then broken up into basic blocks. The intermediate code operations are executed
by an interpreter written in a high-level language. During the simulation a call is made to a trace routine -
at the beginning of each basic block that will write the basic bloéi( number being executed to a file.
Characteristics of the instructions generated for each basic block with each architecture being studied are
stored. Architectural analysis is based on the in‘tf:rmediane code basic block trace. Adtributes of an archi-
tectare can easily be varied and the effect of each changé can be determined. Unforiunatcly, using this
approach results in no check for the validity of the transiation since the targét instructions for a proposed
architecture are neither simulated nor translated 10 equivalent instructions and executed on a host
machine. Even though several different architectures can be evaluated after obtaining the trace, the over-
head of this approach is large. While actual times were not giv.en, it was stated that the interpretive exe-
cution of each program, whict} exciudeg the wérheéd for producing the trace, would require at least 100
times that of direct execution. A trace of only basic block numbers can still be quite lengthy and require
much disk space. While the interpretive exec;ution of a program need only be performed once, the time
required to read the basic block trace will also slow the analysis programs. Another problem with this'
approach is that it requires that a program translated for different architectures have the same basic block
structure. When all optimizations are performecll'prior to code generation, such an assumption may be
true. Compiler optimizations may be more thoroughly applied to a program, however, whén the charac-

teristics of the target architecture are exposed to the optimizer [BeD88].

There has been much recent work on technigues that replace the use of simulators to collect archi-

tectural measurements. Several systems modify the assembly code of a program produced by a compiler
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10 insert instructi@s to gather measurements. Some packages instrument assembly programs by inserﬁng
instructions to increment counters to capture frequency information [Cme90, MMMOSQ]. There have also
been a variety of methods used to efficiently capture trace data for cache perforfnance evaluations. The
cache simulator can be linked directly with the executing program and trace information passed by the
usé of function calls [StF89]. Altematively, the cache simulator can be a separate process and the pro-

gram being measured writes the trace data 1o trace buffers shared between the tasks [BKW90, EKK901.

The ease envirénment also captures frequency and trace information fof similar measurements.
One difficulty with retargeting some of the previously described systems is that they take as input assem-
bly programs. While ihis does allow capturing measurements on assembly code where the corresponding
source code is not available, retargeting to another machine requires fnore effort since each assembly
instruction néeds to be parsed and analyzed. Program flow information may also need to be recalculated
to avoid having the instructions inserted to obtain measurements changing the value of live registers or

condition codes.

Most systems that capture frequency information process assembly programs. Instructions are
inserted at each basic block to increment counters. The ease environment attempts to minimize the incre-
menting of éounters by using control and data-flow analysis available in vpo. Since the characteristics of
the program are obtained during the compilation, some information not typically available from assembly

code alone can also be measured.

The portion of ease that collects cache performance measurements for unified cache performance
evaluation is similar to the system used in trapeds [StF89]. Both systems link the cache simulator 'wim
the program being traced and simulate the cache as the program being measured is executing. There are,
however, some differences between &apeds and ease. trapeds is a separate program that takes assembly
code as input. Therefore, frapeds would presumably be much more difficult to retarg_et; The trapeds s.ys-
tem also does not use data-flow analysis to minimize the number of registers t0 be saved and restored at
each inserted call. Faster trace generation and analysis times, however, were reported using trapeds. The
trapeds system required 30 times execution overhead for trace generation only and 50 times execution.

overhead when cache simulation was included. Since the techniques used were similar, the lower
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execution overheads reported with the trapeds system were probably__dué; to choosing three floating-point
intensive programs to simuiate, a2 much larger cache simulated resulting in higher hit ratios, and differ-

ences between the cache simulators.>

One measurement system that does not use simulation or have to parse assembly instructions is the
ae environment [Lar90]. ae is designed to trace events ﬁsing a technique called abstract execution, Simi-
lar to the ease environment béing integrated into the vpo compiler system, the ge environment is
integrated into the gcc compiler system.4 Unlike the vpo compiler system, the structure of a gec compiler
causes the task of storing information about a program llo be more complicated. In both corhpiler systems
programs are represented in an intermediéte form called RTLs. An RTL in the vpo éompiler system
corresponds to a single assembly insuucﬁpn. Thus, information about each instruction can be easily
obtained by examining the semantic record representing the RTL. RTLs in a gec compiler can often
correspond to several machine instmctioné which complicates the process of collecting information about
each instruction in the generated program and inserting instructions to collect measurements. The ae
environment must spy upon the code generation phase to count the number of instructions produced for
each RTL. Details concerning the attributes of an instruction, such as the data type and addressing mode
of each field, would presumably be more difﬁéuit to obtain. Both systems attempt to store information
about each instruction in the program when the assembly instructions are prbduced. A vpo compiler per-
forms all optimizations including instruction scheduling before each RTL is transiated to assembly code.
Since there is not one-to-one correspondence between an RTL and an assembly instruction in the gec
compiler system, optimizations such as instruction scheduling must occur after assembly code generation,
This complicates the ae system since the RTLs and assembly code appear in different orders. The ae sys-
tem must recompute the relationship between the assembly code programs before and after instruction
scheduling, Finally, since each RTL in the gcc compiler system may be translated to more than one

instruction, it would be difficult to extend the ae environment {0 imitate the execution and collect meas-

" ® There is less work required for & cache hit as oppoded 1o a cache miss, The cache simulator used in this paper allows the
program to be executed again withi a different cache conftguration by simply changing a parameter in an input fite. Some systems
require relinking with a version of a cache simulator wimed for a panticular cache configuration. Also, periodic context switches were
introduced by ease in the simulations. '

4 gec and vpe are descended from a commeon ancestor, po [DaF80}.

29.



urements for a proposed architecture.

’E‘ﬁe technique of program instrumentation has also been used recently to capture measurements for
a proposed architecture. A system called bkgen [HLT8T] produces a version of a program o be meas-
ured for a proposed machine that can be directly executed on an existing machine. bkgen either requires
a direct mapping between the basic block structures of the assembly programs for the proposed and exist-
ing architectures or requires the construction of an assembly-to-assembly translator. A direct mapping
between the basic block structures of the assembly programs for a proposed and existing architectures
often do not occur when a compiler performs optimizations across basic blocks. The effort required to
construct an assembly-to-assembly translator is nontrivial and can delay the time required to develop a
system for obtzﬁ'ning measurements. As shown in Figures 2 and 3, in the ease environment the transiaﬁon

of an RTL to assembly language of a different machine is quite simple.

CONCLUSIONS

The ease environment has been designed to minimize the effort required to produce instructions for
a proposed machine, to imitate the execution of these instructions, and to collect measurements, The vpo
system accomplishies most optimizations in machine-independent code which facilitates retargeting the
compilef to a new machine. The same semantic record constructed from parsing an RTL to prodace
assembly code for an instruction on a proposed architecture can also be used to produce assembly code
for an existing architecture and to store instruction information for thé collection of measurements. Most
of the code to perform the extraction of measurements has also be.en. accomplished in a machine-
independent fashion. The vpo compiler for ten different machines was modified to collect measurements.
It typicaily took only three or four hours to make the mach'ine—depeﬁderit modifications for the compiler
on each machine. The ease environment collects measurements with littie overhead as compared to more
traditional techniques. Because the information about insmﬁons is collected as a side effect of the com-

piler parsing instructions, ease also only required 15 to 20 percent overhead in compilation time.

The ease environment has been shown to be an efficient tool for architectural evaluation and design

[DaW90b]. Since accurate and detailed reports can be produced for a variety of measurements, the

-30-



impact of each modification can easily be determined. This allows one to use an iterative design method

for evaluation of performance in a quantitative manner.
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