Technical Report CS-2012-04
Guaranteeing Rendezvous of Mobile Agents Despite Noise

Luther A. Tychonievich and James P. Cohoon
Department of Computer Science
University of Virginia
Charlottesville, VA 22903

Abstract

Rendezvous is process of having mutually-
oblivious agents locate one another without
communication in an unknown environment.
Most approaches to rendezvous are either
based on random walks or utilize environ-
mental features like landmarks. We inves-
tigate the question, “can agents experienc-
ing uncertainty in timing and uncertainty in
their own locations be guaranteed to ren-
dezvous in finite time?” We present the-
oretic upper bounds on the level of uncer-
tainty agents in featureless environments can
handle while guaranteeing finite-time ren-
dezvous; we also present algorithms that re-
alize a lower bound on uncertainty. Together,
these bounds help define the impact of uncer-
tainty on rendezvous.

1 Introduction

The objective of rendezvous algorithms is to have
mobile computational agents (robots) locate one an-
other in an unknown or featureless environment. Ren-
dezvous is a foundational problem in cooperative ar-
tificial intelligence: before agents can coordinate their
actions, individual agents must come close enough to
initiate contact.

Since its introduction in 1960 (Schelling, 1960), the
rendezvous problem has received considerable atten-
tion by theoreticians and artificial intelligence re-
searchers. Algorithms have been developed that ren-
dezvous probabilistically, that congregate at common
environmental landmarks, and that guarantee finite-

University of Virginia Department of Computer Science
Technical Report #CS-2012-04.

Copyright (© 2012 Luther A. Tychonievich and James
P. Cohoon.

time rendezvous in noise-free environments. We con-
tinue this investigation by looking at finite-time ren-
dezvous algorithms for agents experiencing noise in
both timing and position information without depen-
dence on particular environmental features.

We present a collection of procedures that cause each
agent in an arbitrarily-large set to find each other
agents in bounded time. The procedures vary in com-
plexity, runtime, and in the assumed capabilities of the
agents. Each procedure is accompanied by a proof that
agents will rendezvous with one another in bounded
time. We also present bounds on the uncertainty that
may be present in any agent participating in bounded-
time rendezvous. These minimal capabilities provide
a lower bound on the rendezvous problem for agents
facing uncertainty.

2 Related Work

Schelling (1960) introduced the rendezvous problem,
and it has been investigated in many settings since
then. In interest of space we mention only determin-
istic algorithms for agents without a priori knowledge
of one another’s location. See (Alpern and Gal, 2002)
for a survey of randomized rendezvous algorithms.

Rendezvous has been investigated in many specialized
environments, such as lines and graphs. On a line or
ring, tight bounds are known and both deterministic
and randomized algorithms are known to achieve them
(Alpern, 1995; Alpern and Gal, 1995; Anderson and
Essegaier, 1995; Marco et al., 2006). A tight O(logn)
space-bound was demonstrated for deterministic ren-
dezvous in a tree in (Fraigniaud and Pelc, 2008).
Rendezvous in a graphs or networks has been exten-
sively studied and deterministic algorithms developed
for partial and full asynchrony, for indistinguishable
agents in visibly-distinct starting locations, and for
agents with distinct identities (Marco et al., 2006;
Kowalski and Malinowski; Czyzowicz et al., 2010a,b;
Dieudonné et al., 2012). None of these algorithms con-

sider positional error.

In a geometric setting, deterministic approaches have
been posed using several approaches. Rendezvous can
be easily reduced to landmarks identification and rank-
ing algorithms (Roy and Dudek, 2001). Stigmergy al-
lows agents to modify the environment and create their
own landmarks (Shiloni et al., 2009). In a noise-free
environment, rational coordinates in euclidean space
can be reduced to a graph (Czyzowicz et al., 2010b),
giving access to a variety of graph.

Although a researchers have investigated rendezvous
with errors in timing information (Marco et al., 2006;
Czyzowicz et al., 2010b), none to our knowledge have
provided rendezvous for agents experiencing uncer-
tainty in position information.

3 Definitions and Notation

We consider the multi-agent bounded-time rendezvous
problem for agents with uncertainty in position and
timing information. We assume agents are initially
oblivious, having no knowledge of the state of other
agents. Given two or more mutually-oblivious mobile
agents with limited-range sensors, bounded-time ren-
dezvous guarantees that all agents sense one another
within a provably finite time. To formalize this prob-
lem, we first present several definitions.

An agent is defined by a state s € S and a set of
achievable behaviors B!. A particular behavior B € B
defines an evolution of the state of the agent, which
we could denote as a differential or difference equation
(e.g., $ = B(s)) or as an evolution function (e.g. s’ =
B(s, At)).

We assume the existence of a distance function de-
fined over agent state, d : S x .S — R. We require d to
be commutative (i.e., d(a,b) = d(b,a)). We speak in-
formally of the position of an agent as the portion of
its state that contributes to the calculation of d. We
do not in general assume that agents are capable of
measuring distances.

The capabilities of an agent are characterized by the
sensors and actuators the agent may access and the
uncertainty of each. We consider the following classes
of capabilities:

e Mobility: Agents have some knowledge of and
control over their own location. We distinguish
between three classes of mobility:

— Exact: No uncertainty in location.
'We use “behavior” to formalize the notion of “what

an agent does;” this is not the same as a “behavior” in a
behavior-based algorithm.

— Noisy: Location error within fixed bounds.
— Drifting: Location error increases as the
agent moves.

e Detection: There is some distance r such that
any two agents whose separation is no more than r
are aware of one another. Agents might be aware
of one another at greater distances as well.

e Clock: Each agent has some notion of the pas-
sage of time. We distinguish between four classes
of clocks:

— Synchronized: Clocks show the same time.

Skewed: Clocks progress at a shared rate.

— Individual: Clocks progresses at different
rates.

Variable: The rate of each clock varies over
time.

We use the term algorithm to refer to a deterministic
behavior selection process.

Definition 1 (Rendezvous). Two algorithms, A; and
Aj;, rendezvous with one another if, for every
arbitrary starting states s;(0) and s;(0), there ex-
ists a non-negative time t*, where t* is bounded by
some fized finite function of d(s;(0),s;(0)), such that
d(si(t*), s;(t*)) <.

The set of algorithms A is said to be a family of
rendezvous algorithms or to have the rendezvous
property if, for any arbitrary pair i # j, A; and A;
rendezvous with one another.

Our definition of rendezvous includes a worst-case time
bound by requiring a bounding function on ¢*. Thus,
by definition, all rendezvous algorithms we discuss
have a finite worst-case time bound for all input con-
figurations.

4 Necessary Capabilities

In this section we prove several lower bounds on agents
and algorithms achieving rendezvous. In particular,
for some but not all environments,

e Rendezvous requires each agent’s algorithm be
unique.

o If |A| > 2, rendezvous requires some kind of clock
or global coordinate system.

e Rendezvous is at least as difficult as finding static
targets.

e Finding static targets implies bounds on mobility
drift.

We address each of these requirements individually.

4.1 Individuality

Theorem 1. It is not possible to provide rendezvous
algorithms for completely indistinguishable agents.

Agents are indistinguishable if each has identical inter-
nal parameters; if each agents actuators react to the
same requests in the same way; and if any stimulus
perceived by one agent is mirrored by an indistinguish-
able stimulus perceived by the other agent at the same
time.

Proof. Suppose we have two indistinguishable agents.
Then either they make decisions stochastically or de-
terministically.

If they make decisions stochastically then we cannot
guarantee bounded-time results.

If they make decisions deterministically then they will
both make the same decisions at the same time, mov-
ing in lock-step. Hence they will never change their
initial separation and never meet. O

Our solutions to the rendezvous problem achieve in-
dividuality by the use of a unique identifier for each
agent.

4.2 Temporality

Theorem 2. It is not possible to provide finite-time
rendezvous algorithms for more than two agents in
multidimensional space without access to some esti-
mate of the passage of time or knowledge of a shared
coordinate system.

Proof. Rendezvous of three or more agents requires
at least two agents to be mobile. Consider two such
mobile agents, ¢ and j. Let p; = {(s;(¢),t)} be the
path through spacetime traveled by agent i. and V; =
{(z,t) : d(z,s;(t)) < r} be the volume of spacetime
guaranteed to be observed by agent j. For rendezvous
to be guaranteed, the path must intersect the volume;
that is p; N'V; # 0. This is illustrated in Figure 1.
Note the choice of labels i and j is arbitrary; p; NV; #
RS p; NV; # 0.

If agents do not have any estimate of the passage
of time then the t coordinate of each agent’s mo-
tion cannot be controlled. in particular, p; might be
{(si(t), f(t))} for any monotonically-increasing func-
tion f. Rendezvous without clocks is guaranteed only
if it is guaranteed for every f. That is,

(f(2)> fly) > 2 >y) = <E|t dd(si(0),s5(F1)) <7

This condition is satisfied only if the first part of each
agent’s trajectory is within r of the reverse of the first

part of the other agent’s trajectory. Reversals of this
sort are only possible with a shared coordinate system.

Hence, rendezvous requires either an estimate of time
or a shared coordinate system. O

Czyzowicz et al. (2010b) present an algorithm guar-
anteeing finite-time rendezvous without a clock using
repeated guessing to try all possible locations and co-
ordinate systems of other agents. As we are interested
in positioning uncertainty, their repeated return and
retry approach is not suitable for our work.

The above proof does not specify the accuracy of
clocks, but does imply that clock must exist in some
form. Our solutions handle some limited clock inac-
curacy, providing a sufficient upper bound. We are
unaware of any lower bound on clock accuracy.

4.3 Search

Before presenting a proof that search is required we
first must define what we mean by search.

Definition 2 (Search). A algorithm, S is a search
algorithm if, for every arbitrary starting state s(0)
and objective location p, there exists a non-negative
time t*, where t* is upper bounded by some fized finite
function of d(s(0),p), such that d(s(t*),p) < r.

Search algorithms can also be characterized as algo-
rithms that rendezvous with stationary agents.

Theorem 3. For some but not all classes of environ-
ments, for any family of rendezvous algorithms A there
exists a search algorithm S that be executed with the
same capabilities as algorithms in A and that requires
asymptotically no more space or time than the most
expensive A; € A.

Theorem 3 implies that search is no harder than ren-
dezvous; we use this to support our building ren-
dezvous algorithms off of search algorithms.

To establish this “some but not all” property, we give
two example environments where rendezvous does im-
ply search and one where it does not.

Lemma 3.1 (Featureless vector spaces). Assume B is
closed under addition and subtraction, d is an induced
norm, and that the agents do not receive environmental
inputs such as GPS signals. Then S = A; — A;, for
any arbitrary A;, A; € A, is a search algorithm.

Proof. S may be computed by simulating A; and A;
with addition and subtraction, as follows. Given
Vs;(0),5;(0) 3t* d(s;(0)+As;(t*), s;(0)+As;(t*)) <r
we have

Vs;(0), s;(0) 3t* d(si(O)—i-Asi(t*)—Asj(t*),sj(O)) <r

+
(a)

—0— —0—

()

Figure 1: Illustration of the proof to Theorem 2. The black line is p;, the green area V;. In (a) and (c) the
heavier red line is p; N V;. The rendezvous in (a) is prevented in (b) by clock error. In (c) no clock error can

cause the agents not to rendezvous.

which is the definition of S being a search algorithm.
O

Lemma 3.2 (Unconstrained graphs). Assume agents
move along edges of a connected graph and can deter-
mane its structure only locally. For any two algorithms
i A, at least one is a search algorithm.

Proof. Assume two agents are executing a rendezvous
algorithm but neither is executing a search algorithm.
Then there exists some graph where each agent has
some node it will not visit. Because the graph struc-
ture is known only locally, neither agent can know how
much of the graph is inaccessible without traversing its
excluded node(s). In particular, the only path between
the two agents might include a subpath of length at
least r accessible only through nodes each agent will
not traverse. But this situation contradicts our as-
sumption of rendezvous. Thus, at least one of agent is
executing a search algorithm. O

Lemma 3.3 (Friendly features). Assume agents can
access a function defined throughout the environment
which contains a single unique mazimum. Then there
is a rendezvous algorithm that requires less space than
any search algorithm.

Globally-defined single-maximum functions are often
found in the real world. For example, altitude has a
single maximum in many areas. Humans install exit
signs which define the gradient of a similar function.

Proof. Searching general environments requires at
least logarithmic space, either to store where the agent
is or how long it has been searching. However, with
the global function, rendezvous requires only a lo-
cal hill-climbing routine, which requires only constant
space. O

4.4 Limited Drift

Theorem 4 (Drift). To search any area of suffi-
cient size in a d-dimensional Fuclidean environment
requires drift to accumulate mo more quickly than
O(/x), where x is the distance travelled.

Proof. The length of every path an agent searching
area R could follow is in O(R). In Euclidean geometry,
R extends at least ©(¥/R) in some direction.

Assume the searching agent has drift in w(z). Then
by the definition of the asymptotic class w, the er-
ror in position e resulting from searching R, for suf-
ficiently large R, is greater than V/R. To overcome
that error would require searching an additional area
extending at least € in all directions of the possibly-
erroneous position. That secondary search area is of
size at least €, which is larger than the initial search
space. Searching that would bring in even more er-
ror, and so on ad infinitum, meaning the search would
never terminate. But nontermination contradicts the
fact that search algorithms terminate in finite time.
Hence, there is no search algorithm for agents whose
drift is in w(s). O

Because drift is limited for search, by Theorem 3 it is
also limited for rendezvous.

5 Parameterized Algorithm Families

In the following section of this paper we present tech-
niques that achieve rendezvous for several different
classes of agents. These algorithms are intended to
create upper bounds on uncertainty and timing in-
formation to compliment the lower bounds proven in
the previous section, and to provide bounds on the
runtime of rendezvous algorithms in various circum-
stances. As such, they are written with only worst-case
performance in mind. Allowing two moving agents to

Listing 1 R, ,: Rendezvous without drift

1. Repeat until rendezvous achieved:

Repeat p times:

3 For each bit = in the key:

4. If x = 1: search and return ¢ times
5

6

N

Otherwise: wait for ¢ time steps
Double the time step

Listing 2 D,: Rendezvous with drift

1. Repeat until rendezvous achieved:
2. For each bit z in the key:
If z = 1: search and return ¢ times
Otherwise: wait for g time steps
Increase the time step to double the search
radius

G

rendezvous, allowing agents to move within a speci-
fied area during the “wait” cycle, and related modifi-
cations to reduce average-case runtime and tailor the
algorithms to particular agent objectives are possible,
but not considered further in this work.

While the correctness and runtime of each technique is
separately addressed, all techniques are instantiations
of two parameterized families of algorithms, which we
present in Listing 1 and Listing 2 as R, 4 and D,. In
addition to the integer parameters p and g, the listings
assume the existence of a search subroutine (see The-
orem 3), a b/-bit binary key, and a modifiable time
step. Each “search and return” lasts one time step
and involves executing the search subroutine to ex-
plore as large an area as possible before returning to
a point as close to the agent’s original location as mo-
bility error allows.

Both R, , and D, involve an interleaved pattern of
searching and waiting, with the ordering of the two
actions dictated by the key. We refer to the period of
time in which an agent is either searching or waiting
as a bit. We refer to the period of time in which an
agent’s time step has a single value as a cycle. Ren-
dezvous between two agents may occur at any time,
but we only prove it occurs when one agent is wait-
ing at the time the other agent searches its waiting
location. Proofs of rendezvous are developed in the
following section. Several of those proofs depend on
various qualities of the key.

We use numeric identifiers to ensure each agent be-
haves individually (see Theorem 1). We assume these
identifiers are pulled from a set of b-bit binary num-
bers for some known b, where 2° is an upper bond on
the number of agents. From that b-bit identifier we
derive each agent’s b’-bit key. We consider two prop-
erties that a key might possess in addition to being

88:20@: ©

Figure 2: Rendezvous of agents without uncertainty
with keys 1101 and 1100 using R; ;. The initial time
step is too small; after doubling the timestep the
agents rendezvous in the first distinct bit of their keys.

unique: having a particular number of leading zeros
or being shift-free.

Definition 3 (Shift-free). Let z, y, k, and b be non-
negative integers, © and y be less than 2°, and k be less
than b. The following are all defined with respect to b:

The k-bit circular shift of © w.r.t. b is
Sh(x) £ (2kz mod b) + |28z].

x and y are shift-similar w.r.t b if Ik : SY(x) = y.
x is shift-minimal w.r.t. b if Vk : S2(z) >z

A set of b-bit numbers is shift-free if no two elements
of the set are shift-similar w.r.t. b.

If all keys belong to a shift-free set, we call them shift-
free keys. Without loss of generality, we assume all
shift-free keys are shift-minimal.

The largest shift-free set with respect to b contains
more than [2° + b| elements. Thus, there is some
mapping from b-bit identifiers to [b + log,(b) + 1]-bit
shift-free keys. As a much simpler mapping, if z is a
b-bit identifier then 2z + 1 is a (2b 4 1)-bit shift-free
key.

We now consider particular algorithm families that
achieve rendezvous for agents with various capabili-
ties.

5.1 Rendezvous without uncertainty

The simplest rendezvous we consider works for syn-
chronized agents with exact mobility. This situation
establishes a baseline off of which our other algorithms
may be understood.

Theorem 5. Consider two agents that begin execut-
ing Ri1 at the same time with the same time step
and unique keys. The agents will rendezvous with each
other in less than 4b' times the time required for one
agent to search the location of the other or within b
times the initial time step, whichever is more.

Proof. Let ty be the initial time step and T be the
time step required for a search by one agent to find
the initial location of the other agent. If the time step
to is not initially at least T', the time step will be in

Figure 3: Illustration of doubling proof. A’s T, cycle
is in red; the 2T} cycles are in blue.

[T,2T") within (to + 2to + 4to + -+ - + S)b < 2’9, for
S<T.

Once the time step is at least T, rendezvous will occur
within 'T. Because each key is unique, the keys must
differ in some bit. Thus, there must be some time
during which one agent is searching (the active bit of
its key is 1) while the other agent is waiting (its active
bit is 0). During bit, the agent with the 1 bit will find
the agent with the 0 bit, resulting in rendezvous.

Final runtime is bounded by 20T to achieve t €
[T,2T) and another 2b't to perform b searches at that
timestep. O

5.2 Rendezvous for skewed clocks

Suppose the agents have skewed clocks, exact mobility,
and a search subroutine that views the same areas at
the same time of each search. Because some distinct
numbers are not distinguishable if not synchronized
(e.g., 01 and 10), we use shift-free keys. We also use
Ro,1, iterating through the key twice per cycle, to en-
sure full-key overlaps. R 1 with shift-free keys results
in rendezvous within 80’ times the time required for
one agent to search the location of the other.

To demonstrate this technique achieves rendezvous we
first present the following lemma.

Lemma 6.1 (Doubling). Consider two agents, A and
B, with cycle durations Ty, < Ty differing by a power
of two at the beginning of B’s cycle. At least half of
their 2Ty cycles overlap.

Proof. Call the start of B’s cycle t = 0. Let o €
[0,1) be the portion of A’s T,-duration cycle that is
completed prior to t = 0. A’s cycle reaches 2T}, at
t=(1—-a)T, +2T, + 4T, + --- + T,. Observe that
T, < t < 2T, so ¢ must fall within the first half of B’s
2Ty, cycle [Ty, 3Tp).

This proof is illustrated in Figure 3. O

Theorem 6. Consider two agents with accurate,
asynchronous clocks and a repeatable search algorithm.
Ra,1 achieves rendezvous within two doublings of the
initially-longer time step or the end of the first cycle
where the search areas are sufficiently large.

Proof. Because the keys are shift-free and because
each agent searches the same location at the same time
within each 1 bit, the agents will rendezvous with each
other if they overlap for at least half a cycle and their
searches are large enough to find one another.

By Lemma 6.1, both agents will have overlapped for
at least half a cycle by the end of the second doubling
of the longer time step. Because they will continue to
overlap for at least half a cycle every cycle thereafter,
if that first overlap didn’t have large enough searches
then the first search that is large enough will result in
rendezvous. O

5.3 Rendezvous for noise or nondeterministic
search

If the search subroutine is non-deterministic and/or
the mobility suffers from noise then we cannot rely on
passing a target’s waiting location at the same time
within each bit. This situation is not a concern if an
entire search is guaranteed to overlap a waiting period,
as in the synchronized case. For skewed clocks and
mobility noise, agents utilize Ry > with shift-free keys
to perform two complete searches per bit. Searching
twice per bit ensures that at least one entire search
occurs within the other agent’s waiting period.

Ro,2 takes twice as long as Ro 1, discussed in the pre-
vious section, meaning rendezvous is achieved within
160’ times the time required to search.

5.4 Rendezvous for drift

If after searching d in all directions the agent’s sense
of location is off by strictly less than %d, rendezvous
is achieved by executing Dy with unique keys. The D
algorithms differ from the R algorithms by doubling
the search radius after every bit instead of doubling
the time step after every cycle. To double the radius
in a n-dimensional Euclidean environment, multiply
the time step by 2™.

Theorem 7. Consider two agents with unique keys
executing Do. If the agents have skewed clocks and mo-
bility drift strictly less than %d, where d is the radius
searched, then the agents are guaranteed to rendezvous
in finite time.

Searching twice per bit ensures that a full search over-
laps a full wait, just as it did for noisy mobility. Dou-
bling the search radius every bit keeps agents from
drifting apart more rapidly than they expand their
search, as demonstrated in the following proof.

Proof. Let the drift be bounded by md, for some
m < %. Let the initial separation be dy and the

initial search explore z in every direction. The first

i

Figure 4: Example of 1D agents rendezvous with drift
and keys 1100 and 1101.

bit can cause each agent to drift 2max, meaning d; <
do + 4mx. The next bit explores 2z and might lead
to do < dy + 4mxz + 8max. After the ith bit we
have searches of radius 2’z and separations of d; <
do+4mz(1 +2+4+ - +1i) < do + 8ma2’. Since
8m < 1, the search radius will eventually overtake the
separation. O

This proof assumes all bits are 1. Somewhat larger
drifts should be permissible because drift does not ac-
cumulate during 0 bits and at least one key has at least
one 0 bit.

The time required for rendezvous with drift is not sim-
ply expressed. The search radius might double as
many as f%} times before the search areas
overlap, and then another b’ times before the keys dif-
fer in a bit. The time required for each doubled search
radius depends on the environment and search algo-
rithm. For some environments, the runtime may be
exponential in o', in the amount of drift, and in the
initial separation.

5.5 Rendezvous for variable clocks

When agents have variable clocks, some time steps
might be briefer than others. If some bits are expanded
while others are contracted in duration it might be pos-
sible to make even shift-free keys never overlap 0 and 1
bits. The worst case pair of keys is 22 —1 and 29+ —1,
where a = L%b’ |, because those keys require the least
stretching to remove overlap.

Consider clocks whose unit of time varies within [z, y].

If = coincides with the longer run of bits and y with

the shorter, then the minimal 1/0 overlap’s duration
a

is (a+1)z —ay. When ¥ > —%5 we can guarantee ren-

dezvous by having each agent search ¢ = L%J
times during each 1 bit, or ¢ = L#‘Z—wﬂ times if the
agents also experience mobility noise. We use this ¢
to define the family of algorithms, Rs 4.

Rendezvous for variable clocks takes at most 8gb’ times
longer than would searching for a static target at the

same separation.

The algorithm for variable clocks does not need to
change to account for noise as it already provides a
full-search overlap. To handle drift less than %qd we
can use D,, doubling the search radius after every bit.

We expect that larger clock variability can be handled
by additional restrictions on keys or by using a pattern
of searches and waits within each bit; developing these
algorithms is a subject of current research.

5.6 Rendezvous for individual clocks

If each agent has a consistent clock, but it runs at a
different pace that other agents—or, equivalently, if
each agents’ initial time step is random—we require
each shift-free key to have at least [b' + 2] leading 0
bits. This restriction on keys arises from the following
lemma and theorem.

Lemma 8.1. For two agents, regardless of initial cy-
cle durations, repeated doublings ensures the cycle du-
rations differ by no more than 1: /2 for at least one
quarter of each agent’s cycle for every cycle after the
nth, for some finite n.

Proof. Label the initial cycle durations x and y and
find real s and integer k such that 1 < s < V2 and
sz = 2Fy.

Assume that agent X finishes its z cycle at 0 < t, < =z
and Y its y cycle at 0 < t, < y. Then X’s cycle lasts
for 2"z in time window t, — 2z + [27, 2" 1]z, Because
y = 27 %sz, Y’s cycle lasts for 2"sz in time window
ty, — 21" Fsx + [27, 27 sz. We wish to show that, for
sufficiently large n, these windows overlap by at least
a quarter.

We define a constant r = (% + 21 — 2). From
the bounds on ¢, and t, we can easily show that |r| <
2lkI+1 " This bound will be used to show that, for n >
|k|+5, each agent must overlap by at least one quarter

of a cycle.

Observe that [27,2"F1] = 273 where 8 € [1,2]. We
find the S for which X lies within Y’s cycle:

r+4 Bs~12m ¢ [27, 2" T,

We consider the X-cycle range 8 € [12, 12]
72\k\+1 2|k|+1 13 1 1
Q j7 j —,1| C [1, 2]
on 87 8| [v2

which is satisfied for n > |k| + 5.

For Y overlapping X we have

—r 4 Bs2™ € [2", 271,

17 21]
)

which, over the i—cycle range (5 € [15, 15

(_2\k|+17 2|k|+1)

2n N [17 21} [1’\/5} C 1,2

16° 16

is satisfied for n > |k| + 5. O

Theorem 8. Let each b'-bit key have f%} leading 0
bits. Then Rg o results in rendezvous for any initial
time steps.

Proof. By Lemma 8.1, each pair of agents will eventu-
ally overlap by two full cycles with relative time step
durations 1 : s, for 1 < s < /2. In particular, the over-
lap must include the low-order bit of each key twice.

If s < % then one pass through the key results in
less than a full bit change in overlap. By the shift-free
property of keys and the fact we search twice per bit,
at least one full search of one agent must lie within a
wait of the other agent.

Conversely, if % < s, the low-order bit of one key

must lie more than half within the run of Os at the high
order of the other key. Because keys are shift-minimal,
at least one agent searches during that bit. O

The maximal time required for rendezvous for variable
clocks is 641’ times the time required for static search
if the cycle durations reach 1 : s difference before the
search areas are large enough to find other agents. If
the cycles starts large enough for agents to find one
another, it can take a lot longer: one of the cycles
doubles [max{Z, £}] + 5 times before time step syn-
chronization suf%cient to guarantee rendezvous.

6 Cooperative Rendezvous

Rendezvous is significantly easier when groups of
agents cooperate to locate other groups of agents.
Cooperation allows one agent to wait while the oth-
ers search, removing the need for keys and repeated
searching of the same area. The division of labor can
be performed without communication utilizing emer-
gent formation algorithms (Dieudonné et al., 2008;
Défago and Konagaya, 2002; Moshtagh et al., 2009).
The group initially forms a circle around a single cen-
tral agent; each agent then searches only its Voronoi
region (plus any padding necessary to counter noise
and drift). Rendezvous then reduces to the problem
of searching for a static objective in an unknown en-
vironment and sharing the results of searching with
other agents in the group.

7 Conclusion

We investigated rendezvous: the problem of having
agents find one another in an unknown, unbounded en-
vironment with neither prior knowledge of one another
nor any form of communication. We demonstrated
lower bounds on the capabilities required to perform
rendezvous: agents must be able to exhaustively search
the environment, must possess position information
and/or mobility with sub-linear drift, must have some
means of tracking the passage of time, and must each
execute a unique algorithm or possesses unique param-
eters or input.

We also demonstrated upper bounds in the form of
algorithms proven to achieve rendezvous under a va-
riety of circumstances. Our algorithms that handle
mobility drift can handle up to a constant factor of
the upper bound on allowable uncertainty. While we
have no upper bound on clock uncertainty, our al-
gorithms demonstrate that clocks need not be syn-
chronized, need not progress at the same pace, and
can vary in pace without preventing rendezvous. We
also showed that agents with noisy but drift-free mo-
bility, such as GPS, and approximately-correct un-
synchronized clocks can locate one another in time
O(Tlogy 1), where n is the number of agents and T
is the time it would take to search out a static objec-
tive in the same area.

While we have made significant strides in placing
bounds on the time complexity and sensitivity to un-
certainty in the rendezvous with other agents, there
is significant room for tighter bounds. We observe in-
formally that achieving rendezvous with less precise
sensors appears to require more time; the mathemat-
ical bounds on this trade-off remain open. In addi-
tion to these open problems, there are several exten-
sions that might be considered, such as how groups
of mutually-aware agents can achieve rendezvous with
other groups more rapidly than can individual agents,
how agents can benefit from long-distance communi-
cation, and how agents, having located one another,
can co-locate into hives without the need to trust the
other agents.

We anticipate our results can be extended in variety
of other areas. For example, the theoretic benefit of a
particular sensor technology might be demonstrated
by demonstrating algorithms that utilize it to out-
perform our lower bounds. An approach similar to
ours might be used to provide guaranteed bounds for
agents with limited capabilities performing tasks other
than rendezvous. We look forward to many future ex-
plorations of guaranteed algorithms for mobile agents
experiencing uncertainty.

References

S. Alpern. The rendezvous search problem.
SIAM Journal of Control and Optimization, 33(3):
673-683, 1995.

S. Alpern and S. Gal. Rendezvous search on the line
with distinguishable players. SIAM Journal on Con-
trol and Optimization, 33:1270-1276, 1995.

S. Alpern and S. Gal. The theory of search games
and rendezvous. International Series in Operations
Research and Management Science. 2002.

E. J. Anderson and S. Essegaier. Rendezvous search on
the line with indistinguishable players. STAM Jour-
nal on Control and Optimization, 33:1637-1642,
1995.

J. Czyzowicz, A. Kosowski, and A. Pelc. How to meet
when you forget: Log-space rendezvous in arbitrary
graphs. In Proceedings of the 29th Annual ACM
Symposium on Principles of Distributed Computing
(PODC 2010), pages 450-459, 2010a.

J. Czyzowicz, A. Labourel, and A. Pelc. How to meet
asynchronously (almost) everywhere. In Proceedings
of the 21st Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA 2010), pages 22-30, 2010b.

X. Défago and A. Konagaya. Circle formation for
oblivious anonymous mobile robots with no common
sense of orientation. In POMC' °02: Proceedings of
the second ACM international workshop on Princi-
ples of mobile computing, pages 97-104, New York,
NY, USA, 2002. ACM.

Y. Dieudonné, O. Labbani-Igbida, and F. Petit. Cir-
cle formation of weak mobile robots. ACM Trans.
Auton. Adapt. Syst., 3(4):1-20, 2008.

Y. Dieudonné, A. Pelc, and D. Peleg. Gather-
ing despite mischief. In Proceedings of the 23rd
Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA 2012), pages 527534, 2012.

P. Fraigniaud and A. Pelc. Deterministic rendezvous in
trees with little memory. In Proceedings of the 22nd
International Symposium on Distributed Computing
(DISC 2008), volume 5218 of Springer Lecture Notes
in Computer Science, pages 242-256, 2008.

D. Kowalski and A. Malinowski. How to meet in
anonymous network. In 13th International Collo-
quium on Structural Information and Communica-
tion Complexity (SIROCCO 2006), volume 4056 of
Springer Lecture Notes in Computer Science, pages
44-58.

G. D. Marco, L. Gargano, E. Kranakis, D. Krizanc,
A. Pelc, and U. Vaccaro. Asynchronous determin-
istic rendezvous in graphs. Theoretical Computer
Science, (335):315-326, 2006.

N. Moshtagh, N. Michael, A. Jadbabaie, and K. Dani-
ilidis. Vision-based, distributed control laws for mo-
tion coordination of nonholonomic robots. Robotics,
IEEE Transactions on, 25(4):851 —860, aug. 2009.
ISSN 1552-3098.

N. Roy and G. Dudek. Collaborative exploration and
rendezvous: Algorithms, performance bounds and
observations. Autonomous Robots, 11(2):117-136,
September 2001.

T. Schelling. The strategy of conflict. Oxford Univer-
sity Press, Oxford, England, UK, 1960.

A. Shiloni, N. Agmon, and G. A. Kaminka. Of robot
ants and elephants. In AAMAS ’09: Proceedings of
The 8th International Conference on Autonomous
Agents and Multiagent Systems, pages 81-88, Rich-
land, SC, 2009. International Foundation for Au-
tonomous Agents and Multiagent Systems.

