
Isotach Networks

Paul F. Reynolds, Jr.
Craig Williams
Raymond R. Wagner, Jr.

� �������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Abstract — We introduce a class of networks called isotach networks designed to reduce the
cost of concurrency control in asynchronous computations. Isotach networks support several
properties important to the correct execution of parallel and distributed computations: atomi-
city, causal message delivery, sequential consistency, and memory coherence in systems in
which shared data can replicate and migrate. They allow processes to execute atomic actions
without locks and to pipeline memory accesses without sacrificing sequential consistency. Iso-
tach networks can be implemented in a wide variety of configurations, including NUMA (non-
uniform memory access) multiprocessors and distributed as well as parallel systems. Networks
that implement isotach time systems are characterized not by their topology, but by the guaran-
tees they make about the relative order in which messages appear to be delivered. These
guarantees are expressed in logical time, not physical time. Physical time guarantees would be
prohibitively expensive, whereas logical time guarantees can be enforced cheaply, using purely
local knowledge, and yet are powerful enough to support efficient techniques for coordinating
asynchronously executing processes. Empirical and analytic studies of isotach systems show
that they outperform conventional systems under realistic workloads, in some cases by an order
of magnitude or more.
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1. INTRODUCTION

Isotach networks are a new class of networks designed to support concurrency control. The

term concurrency control is from the database literature, but the problem to which it refers —

the problem of coordinating access to shared objects — is fundamental to asynchronous compu-

tation. Concurrency control is required for message-based model (MBM) computations in which

processes communicate by sending messages as well as for shared-memory model (SMM) com-

putations in which processes communicate by accessing shared variables, and for distributed

computations in which processes communicate over local or wide area networks as well as for

parallel computations on tightly-coupled multiprocessors. In its simplest form, concurrency con-

trol concerns enforcing atomicity and sequential consistency, i.e. ensuring that each atomic

action appears to be executed indivisibly and that each process’s accesses appear to be executed



in the order specified by its program. In systems in which objects may migrate or replicate, as in

systems with caches or a distributed shared memory, concurrency control also encompasses the

problem of maintaining memory consistency. Existing concurrency control techniques are

costly in execution time and frequently also in programming effort.

Concurrency control is hard because existing interconnection networks offer such weak

guarantees about the relative order in which they deliver messages. Few networks offer guaran-

tees any stronger than FIFO delivery order among messages with both the same source and desti-

nation. As a result, a process can neither predict nor control the order in which its messages are

received relative to concurrently issued messages and must use delays and higher-level syn-

chronization mechanisms such as locks to ensure that execution is consistent with the program’s

constraints. Isotach networks offer built-in support for concurrency control in the form of a

guarantee called the velocity invariant that relates a message’s logical communication time to its

logical communication distance. The invariant is expressed in logical time because a physical

time guarantee would be prohibitively expensive, whereas the logical time guarantee can be

enforced cheaply, using purely local knowledge, and yet is powerful enough to provide a

sufficient basis for concurrency control. Isotach networks are characterized by this invariant, not

by any particular topology or programming model. They can be implemented in a wide variety

of configurations, including NUMA (non-uniform memory access) multiprocessors. They are

suited to both distributed as well as parallel systems and SMM as well as MBM computations.

We are well aware of the recent controversy ([5, 7, 27]) over implementing synchronization

services at a low level in end-to-end systems [29]. We believe isotach networks are justifiable

on a cost/benefit basis — the guarantee they offer can be implemented cheaply and is useful to a

wide class of computations in enforcing basic synchronization constraints. A process in an iso-
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tach system can execute atomic actions with little or no synchronization, without acquiring locks

or otherwise obtaining exclusive access rights to the objects accessed, and can pipeline memory

accesses without sacrificing sequential consistency. Isotach systems also permit highly con-

current access to replicated data, a capability that is important to achieving low-latency access to

shared data. Our studies of isotach systems, described in section 5, show order of magnitude per-

formance improvement under realistic workloads. In extreme cases of high contention for

shared objects, conventional systems cease to perform acceptably, but isotach systems continue

to perform well.

Section 2 of this paper defines isotach logical time, the logical time system in which the

velocity invariant is expressed. Section 3 motivates isotach logical time by demonstrating the

power of the velocity invariant in enforcing atomicity and sequential consistency. Section 4

gives an efficient distributed algorithm for maintaining isotach logical time. Section 5 describes

empirical and analytic studies of isotach networks. Section 6 is a summary and discussion.

2. ISOTACH LOGICAL TIME

A logical time system is a set of constraints on the way in which events of interest are

ordered, i.e., assigned logical times. Isotach logical time is an extension of the logical time sys-

tem defined by Lamport in his classic paper on ordering events in distributed systems [16]. In

Lamport’s system, the events of interest are the sending and receiving of messages. Times

assigned to these events are required to be consistent with the happened before relation, a rela-

tion over send and receive events that captures the notion of potential causality: event a hap-

pened before event b, denoted a → b, if 1) a and b occur at the same process and a occurs before

b; 2) a is the event of sending message m and b is the event of receiving the same message m; or

3) there exists some event c such that a → c and c → b. In Lamport’s system a → b ⇒ t(a) <
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t(b), where for any event x, t(x) denotes the logical time assigned to x. A logical time system

that extends Lamport’s by requiring a → b ⇔ t(a) < t(b) has been used as the basis for a pack-

age of communication primitives for distributed computation [4].

After defining his logical time system, Lamport gives a simple distributed algorithm that

implements it. Each process has its own logical clock, a variable that records the time assigned

to the last local event. When it sends a message, a process increments its clock and timestamps

the message with the new time. When it receives a message, a process sets its clock to one more

than the maximum of its current time and the timestamp of the incoming message. This algo-

rithm ensures a → b ⇒ t(a) < t(b), as required.

In an isotach logical time system, times are lexicographically ordered n-tuples of integers

of which the first and most significant component is the pulse. The number and interpretation of

the remaining components can vary. In this paper, each isotach logical time is a 3-tuple of the

form (pulse,pid(m),rank(m)), where pid(m) is the identifier of the process that issued message

m and rank(m) is the issue rank of the message, i.e., rank(m) = i if m is the ith message issued

by pid(m). In an isotach logical time system, logical times must be consistent with both the →

relation and with the velocity invariant. For any message m, let d(m) denote the logical distance

m travels, ts(m) the logical time at which m is sent, and tr(m) the logical time at which m is

received. The velocity invariant states that each message m is received exactly d(m) pulses after

it is sent. Thus ts(m) = (i, j,k) implies tr(m) = (i +d (m), j,k).* Isotach logical time is so named

because all messages travel at the same velocity in logical time — one unit of logical distance

per pulse. In this paper, unless otherwise stated, logical distance is routing distance, i.e., the

number of switches through which m is routed.
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For any message m for which d(m) = 0, e.g., a cache hit or a message between collocated processes, the velocity invariant requires t
s(m) =

t
r(m). For this reason, we relax Lamport’s requirement that a → b ⇒ t(a) < t(b). In isotach logical time, a → b ⇒ t (a) ≤ t(b).
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3. APPLICATIONS OF ISOTACH LOGICAL TIME

Before showing how to build a system that implements isotach logical time (section 4), we

show why. We motivate isotach logical time by showing the ease with which isotach systems

can enforce atomicity and sequential consistency. Our discussion of atomicity and sequential

consistency is in SMM terms. We refer to messages as operations and to data objects as vari-

ables. Note however that atomicity and sequential consistency are also relevant to MBM compu-

tations. We end the section with a brief description of other applications of isotach systems.

An atomic action is a group of operations on shared variables that appears to be executed

indivisibly, i.e., without interleaving with other operations [19, 20]. In many contexts the atomic

action is also a unit of recovery from hardware failure. We assume a system that is fault-free or

that appears at the application level to be fault-free. Conventional systems enforce atomicity

with some form of locking. Drawbacks of locking include overhead for lock maintenance in

space, time, and communication bandwidth, unnecessarily restricted access to shared variables,

and the care that must be taken when using locks to avoid deadlock and livelock. In an isotach

system, a process can execute flat atomic actions, (atomic actions containing no internal data

dependences among shared variables) without synchronizing with other processes and can exe-

cute structured atomic actions (atomic actions with such dependences) without acquiring locks

or otherwise obtaining exclusive access rights to the variables accessed.

An execution is sequentially consistent if operations are executed in an order consistent

with the order specified by each individual process’s sequential program [17]. This property is

so basic it is easily taken for granted, but it is expensive to enforce in non-bus-based systems

because stochastic delays within the network can cause operations to be received in an order dif-

ferent from the order in which they were sent. The conventional solution is to prohibit pipelin-
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ing of operations, i.e., each process delays issuing each operation until it receives an ack-

nowledgement for its previous operation. Since pipelining is an important way to decrease

effective memory latency, this solution is expensive. The high cost of enforcing sequential con-

sistency has led to extensive exploration of weaker memory consistency models, e.g., [9, 30].

These weaker models are harder to reason about and still impose significant restrictions on pipe-

lining, but make sense given the cost of maintaining sequential consistency in a conventional

system. In an isotach system, processes can pipeline memory operations without violating

sequential consistency.

The key to enforcing atomicity and sequential consistency in an isotach system is the velo-

city invariant. Given the velocity invariant, a PE that knows d (m) for each operation m it sends

can control the logical time at which its operations are received by controlling the logical time at

which the operations are sent. Assuming each MM executes operations in the order in which

they are received, PE’s can ensure atomicity and sequential consistency as follows:

ATOMICITY. Send operations from the same flat atomic action so they are received in the
same pulse.

SEQUENTIAL CONSISTENCY. Send each operation so it is received in a pulse no earlier than
that of the operation issued before it.

These rules, the send order rules, are applicable to any topology. In a system with an equidis-

tant network, i.e., a network in which every message travels the same logical distance, they call

for each PE to send operations in the order in which they were issued and to send all operations

from the same flat atomic action in the same pulse. In a system with a non-equidistant topology,

the send order rules may require that a PE send operations in an order that differs from the order

in which they were issued. Note the distinction between issuing and sending. A message is

issued when control over the message passes from the process to the kernel or messaging system

and is sent when control passes to the network.
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Fig. 1. Executing atomic actions. (a) Network topology. (b) Operation send and receive times.

Example. Assume process P 1 is required to read and P 2 is required to write shared vari-

ables A and B and that each process’s accesses must be executed as an atomic action. In a con-

ventional system, P 1 and P 2 must obtain locks, either on individual variables or on the section

of code through which the variables are accessed. In an isotach system, P 1 and P 2 can execute

their accesses without locks. Consider an isotach system with the non-equidistant topology

shown in Fig. 1(a). Each circle in Fig. 1(a) represents a switch and each rectangle an MM or PE.

Fig. 1(b) shows one of many possible correct executions of P 1 and P 2’s accesses on this net-

work. In accordance with the first send order rule, each process sends its operations so that they

both arrive in the same pulse, e.g., P 1 sends the operation on A one pulse after the operation on

B since the routing distance from P 1 to A is one less than to B. If, as in the execution shown,

all four operations happen to be received in the same pulse, operations on each shared variable

will be received and executed in order by pid. As a result, each atomic action will appear to be

executed without interleaving with other operations.

The correctness proof for the send order rules is similar to serializability proofs of database

schedulers, see e.g. [21]. We show that for any execution on an isotach system that conforms to

the send order rules there is an equivalent serial execution that is atomic and sequentially con-

sistent. In this context, we say an execution is atomic if every flat atomic action is executed

atomically. To establish that two executions of the same program are equivalent it is sufficient to
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show that each shared variable is accessed by the same operations and that operations on the

same variable are executed in the same order in both executions.

THEOREM 1. Any isotach system execution E that satisfies the send order rules is atomic

and sequentially consistent.

PROOF. Let Es be the serial execution in which the operations in E are executed in order by

their logical receive times in E. Consider two operations opi and opj on the same shared variable

V. Without loss of generality, assume opi is received in E before opj . Since isotach logical times

are consistent with the → relation and no two operations have the same logical receive time,

tr(opi) < tr(opj). Thus opi is executed before opj in Es . Since operations on the same variable

are executed in E in the order in which they are received, the operations are executed in the same

order in E. Thus E and Es are equivalent executions. Since, for any flat atomic action A, all

operations in A are received in the same pulse (first send order rule), issued by the same process,

and have consecutive issue ranks, the logical receive time of any operation not in A is outside

the interval of logical time delimited by the receive events for operations in A. Thus the opera-

tions from each atomic action are executed in Es without interleaving with other operations. For

any pair of operations opi and opj issued by the same process where rank(opi) < rank(opj), opi

and opj are either received in the same pulse or opi is received in an earlier pulse than opj

(second send order rule). In either case, opi is executed before opj in Es . Since E is equivalent

to Es and Es is sequentially consistent and atomic, E is sequentially consistent and atomic.
�

Example. Consider again the execution shown in Fig. 1. The space-time diagram in Fig.

2(a) shows one of the many possible ways in which this execution can occur in physical time.

Note that events must occur in logical time in the order in which they occur in physical time

only if they are causally connected. Fig. 2(b) shows the serial execution in which operations are
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Fig. 2. Space-time diagrams of equivalent executions.

executed in order by their logical receive times. Each dotted vertical line represents a shared

variable and each circle the execution of an operation. A solid line connecting circles means the

associated operations are from the same atomic action. Since each variable is accessed by the

same operations in the same order in both executions, the executions are equivalent. In discuss-

ing a similar pair of diagrams, Lamport provides an alternative way to view the equivalence

among the executions in the figure [16]:

Without introducing the concept of time into the system (which would require introducing
physical clocks), there is no way to decide which of these pictures is the better representation.

Intuitively, any vertical line in the diagram can be stretched or compressed in any way that

preserves the relative order of the points on the line and the result will be equivalent to the origi-

nal execution. Without memory-mapped peripherals or other special instrumentation, the execu-

tions are indistinguishable. Since the second of the equivalent executions in Fig. 2 is atomic, so

is the first, even though it interleaves execution of atomic actions in physical time.

Structured atomic actions cannot be executed in the same way as flat atomic actions

because data dependences among operations prevent issuing all the operations in a batch, but the

techniques for executing flat atomic actions together with a class of operations called split

operations support execution of structured atomic actions [34]. Isotach based techniques for
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executing structured atomic actions require synchronization only in the case of a true data

dependence, otherwise known as a flow or write/read dependence.

Other applications for isotach logical time include the following:

� Cache Coherence — Isotach based techniques for enforcing atomicity and sequential con-

sistency extend to systems with caches. The resulting cache coherence protocols [33, 34], are

more concurrent than existing protocols for non-bus-based systems in that they support multiple

concurrent reads and writes of the same block; allow processes to pipeline memory accesses

without sacrificing sequential consistency; and allow processes to read and write multiple shared

cache blocks atomically without invalidating the copies held by other processes or otherwise

obtaining exclusive rights to the accessed blocks.

� Combining — Combining is a technique for maintaining good performance in the pres-

ence of multiple concurrent accesses to the same variable [14]. An isotach network need not

implement combining, but if it does, it can combine operations not combinable in other net-

works, resulting in improved concurrency in accessing shared memory [35].

� Causal Message Delivery — Message delivery is causal if messages are delivered in an

order consistent with the order in which they were sent. Causal ordering can be obtained by the

network or by reordering messages at the destination before delivery to the application process.

For any message m, let s (m) denote the event of sending and r (m) of receiving message m. A

network implements causal message delivery, if for any two messages m ′ and m″, s (m ′) →

s (m″) ⇒ ¬(r (m″) → r(m ′)). Any isotach network in which logical distance is consistent with

the triangle inequality implements causal message delivery [34]. The networks previously

shown to implement causal message delivery — shared buses and a class of tree-structured net-

works called race-free networks [18] — are not applicable to as wide a range of topologies.
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The causally ordered multicast is a generalization of causal message delivery to multicasts

that has been found to be useful in distributed MBM programming applications [4, 26]. Existing

causal multicast protocols for non-bus-based systems [3, 4, 22, 31] require multiple message

rounds. Isotach networks support a single round multicast [34].

� Totally Ordered Multicasts — A totally ordered multicast is a multicast that is received in

a consistent order at all processes in the system. Total ordering is useful in MBM computations

for a variety of purposes including maintaining consistency of replicated data. Most implemen-

tations of totally ordered multicasts obtain the ordering using a serialization point, either in the

network itself or in a communication pattern superimposed on the computation, and therefore do

not scale well. In an isotach system, totally ordered multicasts in MBM computations are imple-

mented in the same distributed way as flat atomic actions in SMM computations.

Other applications include support for migration mechanisms, checkpointing, wait-free

communication primitives, and highly concurrent access to linked data structures. Important

special applications include parallel and distributed databases and production systems [34].

Whether the applications of isotach logical time described in this section are practical

depends, of course, on the efficiency with which isotach logical time can be implemented. We

have identified several very different approaches to implementing isotach logical time. In the

next section we describe a distributed algorithm for maintaining isotach logical time that is

designed to be implemented in hardware within the network switches and interfaces. In Section

5, we describe the performance of this network.

4. ISOTACH NETWORKS

One way to implement isotach logical time is with an isotach network — a network that

delivers messages in an order that allows send and receive events to be assigned times that are
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consistent with both the → relation and the velocity invariant. Several networks have been pro-

posed that can in retrospect be classified as isotach networks. The alpha-synchronizer network

proposed by Awerbuch to execute SIMD graph algorithms on asynchronous networks [1] and a

network proposed to support barrier synchronization [2, 10] can be viewed as isotach networks

that maintain a logical time system in which each logical time consists of the pulse component

only. A network described by Ranade [23, 24] as the basis for an efficient concurrent-read,

concurrent-write (CRCW) PRAM emulation can be viewed as realizing the more general and

powerful n-tuple isotach logical time system.

In this section, we give an algorithm for implementing isotach networks on arbitrary topo-

logies. We begin by describing the model network, an isotach network that is easy to reason

about but hard to build and then show how to change the network to make it practical.

4.1. Model Network

We consider a network of interconnected nodes in which each node is either a switch or an

element. For simplicity we assume each element is either a PE or an MM, though isotach sys-

tems can be implemented on wrap-around topologies that pair each PE with an MM. Each ele-

ment contains a switch interface unit (SIU) that connects it to a switch. We require that adjacent

nodes communicate over reliable FIFO links. To postpone considering the issue of communica-

tion deadlock, we begin by assuming each switch has infinite buffers.

The work of maintaining isotach logical time is done by the switches and the SIUs. The

SIUs are also responsible for applying the send order rules. Processes in an isotach system exe-

cute asynchronously and need not be aware of the progression of logical time within the SIUs

and network. An isotach system requires only a few, easily realized assumptions about the ele-

ments: 1) each element signals the end of each flat atomic action; 2) each flat atomic action is
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issued atomically (this requirement can be met by atomically passing a pointer from the element

to the SIU assuming the atomic action is assembled before the pointer is passed); 3) each ele-

ment communicates with the associated SIU over a reliable FIFO link; and 4) each element han-

dles messages in the order in which they are delivered. Some applications of isotach networks

(e.g., cache coherence) also require that each MM issue responses to operations in the order in

which the operations were executed. We assume each message is issued as part of an atomic

action. This assumption does not introduce any new or artificial constraints. An atomic action

can consist of a single message. We give the model network algorithm in two parts: the first

describing the interchange of tokens and the second the routing of messages.

Tokens. A token in an isotach system is a signal sent to mark the end of one pulse of logi-

cal time and the beginning of the next. Each switch stays loosely synchronized with each adja-

cent switch and SIU by exchanging tokens. Initially each switch sends a token wave, i.e., it

sends a token on each output, including the outputs to adjacent SIUs, if any. Thereafter, each

switch sends token wave i +1 upon receiving the ith token on each input, including the inputs

from adjacent SIUs. Each SIU processes the token it periodically receives from the adjacent

switch by returning the token to the switch. The token waves can be viewed as the timing

mechanism for a distributed logical clock. The pulse component of the local logical time at an

SIU is the number of tokens processed and at a switch is the number of token waves sent.

Messages. As each atomic action is issued, for each message m in the atomic action, the

SIU 1) timestamps m with a route-tag consisting of the pid of the issuing process followed by

m’s rank; 2) determines ts(m) by computing the earliest pulse in which m can be sent in confor-

mance with the send order rules; and 3) adds m to the list of messages already scheduled to be

sent in ts(m), maintaining the list in route-tag order, i.e, in increasing order first by the pid of the
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source process and second by rank. Determining ts(m) is trivial in the case of equidistant net-

works and requires a small constant number of steps per operation otherwise. Note that if a sin-

gle process is running on the element, m can simply be appended to the list for ts(m).

Each time it processes a token, the SIU sends the messages scheduled to be sent in the new

pulse and receives the messages delivered in the pulse, i.e., all messages up to the next token.

The SIU interleaves sending with receiving so as to handle the messages in route-tag order. We

will show that the messages delivered by the network to each SIU in each pulse arrive in route-

tag order. Since the messages to be sent are also in route-tag order, the SIU can decide which

message to handle next by comparing the route-tags of the next messages to be sent and

received. If its network input holds neither a message nor a token, the SIU does not know the

route-tag of the next message to be received and must wait. If the network input holds a token,

the SIU sends all the messages remaining to be sent in the pulse before processing the token.

The switches in an isotach network also handle messages in route-tag order within each

pulse. Each switch routes messages in the same way as a switch in a conventional network

except that it merges the streams of messages arriving on its inputs in each pulse by route-tag so

that the messages it sends on each output in each pulse are sent in route-tag order. As in the case

of an SIU, a switch must wait if one of its inputs holds neither a token nor a message.

To show that the model network is an isotach network we 1) give a rule for assigning logi-

cal times to send and receive events and 2) prove that this assignment is consistent with the velo-

city invariant and the → relation. Let s_pulse(m) denote the pulse component of the logical time

at the sending SIU when it sends m and r_pulse(m) the pulse of time at the receiving SIU when

it receives m. Time assignment rule: for each message m, ts(m) = (s_pulse(m),pid (m),rank (m))

and tr(m) = (r_pulse(m), pid (m),rank (m)).
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THEOREM 2. The model network maintains isotach logical time.

PROOF. Since a message routed by a switch in pulse i is routed at the next switch in pulse

i +1, for any message m, r_pulse(m) - s_pulse(m) = d (m). Since ts(m) and tr(m) differ only in

the pulse component, the velocity invariant holds. Showing that the logical time assignment is

consistent with the → relation requires showing 1) for each message m, tr(m) ≥ ts(m); and 2) for

each SIU, the times assigned to local events are non-decreasing, i.e., local logical time doesn’t

move backwards. The first part follows directly from the velocity invariant. Since for any mes-

sage m, d (m) ≥ 0, tr(m) ≥ ts(m) by the velocity invariant. Since each SIU sends messages in

route-tag order, and each switch merges the streams of messages arriving on its inputs so that it

maintains route-tag on each output, a simple inductive proof over the number of switches

through which a message travels shows that messages received at an SIU within each pulse are

received in route-tag order. Thus the logical times assigned to receive events at each SIU are

non-decreasing. Since an SIU interleaves processing sends and receives so as to handle the

events in route-tag order, the times assigned to these events at each SIU are non-decreasing.
�

4.2. Implementation Issues

Although the model network algorithm given above is practical in some ways, e.g., the SIU

algorithm requires a small constant number of steps per message, it is impractical in others. In

this section we discuss decreasing bandwidth overhead, preventing deadlock without assuming

infinite buffers, improving latency and throughput, and providing fault-tolerance.

Bandwidth. The route-tags pose a problem in relation to bandwidth overhead because the

rank component of the route-tags is an unbounded value. The rank component can however be

eliminated or reduced to a single bit. Note that the rank component is used in the model network

only to ensure routing in route-tag order. (Rank is also used in assigning logical times, but the
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time assignment is a preliminary to the proof, not part of the algorithm.) In a network with a sin-

gle routable path for each source/destination pair, the rank component is unnecessary since the

relative rank of messages from the same process is implicit in the order in which they arrive at a

switch. In a network with multiple routable paths between source/destination pairs, the rank

component can be represented as one bit if each process is limited to no more than two messages

per pulse per variable (SMM) or destination process (MBM). An alternative approach is to place

no limit on the processes, but require that the SIUs send a single large message in place of multi-

ple small messages that would otherwise require a rank tag to ensure that they are received in

sequence. The bandwidth required for the pid component of route-tags is not a cost of maintain-

ing isotach time because messages are typically required to carry the identity of the issuing pro-

cess for reasons unrelated to maintaining isotach time. Tokens can be piggybacked on messages

at a cost in bandwidth of one bit per message. Thus the bandwidth overhead attributable to

maintaining isotach time is one or two bits per message.

Latency and Throughput. The principal cost of implementing isotach logical time by

means of the model network algorithm is the additional waiting implied by the requirement that

switches route messages in route-tag order. One way to reduce this waiting is by using ghosts.

A ghost [23] or null message [6] is a copy of a message with a control bit set to indicate it is not

a real message. When a switch sends an operation on one output it sends a ghost with the same

route-tag on each of its other output(s). A switch receiving a ghost knows all further operations

it receives on the same input will have a larger route-tag than the ghost and this knowledge may

allow it to route the operation on its other input(s). Ghosts improve isotach network performance

by allowing information about logical time to spread more quickly and are needed in some net-

works to avoid deadlock. Since a ghost can always be overwritten by a newer message, ghosts

take up only unused bandwidth and buffers.
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Fig. 3. Switch Designs. (a) Simple switch. (b) Switch with internal buffers.

Another way to reduce waiting in the switches is to change the placement of buffers within

the switch. In a switch with input queueing only, such as the switch shown in Fig. 3(a), a

blocked message at the head of an input queue blocks subsequent messages arriving on the same

input, a phenomenon known as head of line (HOL) blocking. Buffers placed internally, as

shown in Fig. 3(b), reduce HOL blocking [12, 15]. Unless the internal buffers are full, a mes-

sage in a switch with internal buffers blocks other messages only if they are contending for the

same output. The internal buffer design adapts easily to isotach networks and not only reduces

HOL blocking but also makes it possible for a switch to route an operation on every output every

switch cycle. By contrast, an isotach switch with the design shown in Fig. 3(a), can route at

most one operation per switch cycle. Our simulation study of isotach networks shows that inter-

nal buffers are of significantly more benefit in isotach networks than in conventional networks.

Deadlock. The requirement that switches route messages in route-tag order makes

deadlock freedom a harder problem in isotach networks than in conventional networks. The

model network uses infinite buffers at the switches to prevent deadlock. One way to bound the

number of buffers is to limit the number of messages sent per PE per pulse. Although such
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bounds may be useful for other reasons, the number of buffers required to ensure deadlock free-

dom using this approach is very large. A better approach is to find routing schemes that ensure

deadlock freedom. We have proven deadlock free routing schemes for equidistant networks

using one buffer per physical channel and for arbitrary topologies using O(d) buffers and virtual

channels per physical channel, where d is the network diameter [32].

Fault tolerance. One way to tolerate faults in a computer system is to provide extra nodes

and connections which may be put to use in the event of a fault. Most applications of isotach

systems require that each SIU know the logical distance to each node to which it sends mes-

sages. Although this requirement implies that the distance between each pair of nodes is static,

the path itself need not be. An isotach system can use any adaptive routing algorithm that finds a

path of a predeterminable length, a family of algorithms that includes minimal adaptive routing

algorithms, i.e. adaptive routing algorithms that always find a minimum length path. Discussion

of other issues relating to fault tolerance in isotach networks can be found in [32].

We are currently exploring alternative isotach network algorithms with the goal of finding

ways to support gigabit/second data rates. We have identified and are now exploring a number of

feasible alternative designs for isotach networks that are consistent with switching techniques

such as wormhole routing and virtual channels. Some of these designs push all or most of the

work of maintaining isotach logical time onto the SIUs and would allow isotach systems to use

off-the-shelf networks.

5. PERFORMANCE

We have studied the performance of equidistant isotach networks using both simulation

[28] and analytic modelling [32].
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5.1. Simulation Study

Isotach networks do more work than conventional networks — they route messages and

deliver them in an order consistent with the velocity invariant and the → relation. Thus isotach

networks can be expected to have less raw power than comparable conventional networks. Raw

power, as determined by network throughput and latency, measures the ability of a network to

deliver a workload of generic messages without atomicity or sequencing constraints to their des-

tinations. The simulation study is designed to answer the following questions:

(1) How do the raw power of an isotach network and a conventional network relate?

(2) Under what conditions, if any, does an isotach network make up for an expected loss in raw

power through more efficient support of synchronization?

The simulation compares isotach systems to more conventional systems that enforce atomicity

with two-phase locking (2PL) [8] and that enforce sequential consistency by restricting pipelin-

ing. We ran the simulations under a variety of synthetic workloads to capture different atomicity,

sequencing, and data dependence constraints among operations.

We simulated four networks: two conventional (C1, C2) and two isotach (I1, I2). Each is

composed of 2x2 switches interconnected in a reverse baseline topology. The message transmis-

sion protocol is store-and-forward using send-acknowledge [25]. We assumed the network

switches operated synchronously but our results are applicable to self-timed networks as well.

The networks differ only in the design of the individual switches and the algorithms the switches

execute. C1 and I1 use switches with the simple design shown in Fig. 3(a); C2 and I2 use the

internal buffer design shown in Fig. 3(b). Each isotach switch uses the same algorithm as the

corresponding conventional switch except it selects operations for routing in route-tag order and

it sends tokens (piggybacked on operations) and ghosts.
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Parameter Base Case Value Other Values TestedComment

aa_mean 3 1-10, 16average atomic action size

uniform hot spot, warm spotdistribution of accesses

aa_cap - 1,3,6,12,16,20,24
unlimited

cap on # outstanding
atomic actions per PE

read_prob .75 0,.25,.5,.9,1probability that an
access is a read

net_size 5 (32 PE’s/MM’s) 4,6,8,10# network stages

traffic_model

Table 1. Simulation Parameters.

All latency results are reported in cycle units, which represent physical time. Cycle unit

duration depends on low-level switch design and technology. We assume switches in C1 and I1

have the same best case time — the time required for an operation to move through a switch

assuming no waiting — of one cycle unit, and switches in C2 and I2 have best case times of two

cycle units. This assumption does not imply that average switch latency is the same in conven-

tional and isotach networks of comparable design. Average switch latency tends to be longer in

isotach switches because operations must be routed in route-tag order. Throughout the study,

throughput is the average number of operations arriving at memory, per MM, per cycle.

The simulated workloads ranged from one with no constraints on operation execution order

to one with atomicity, sequencing, and data dependence constraints. Parameters and their default

(base case) values are shown in Table 1. Atomic action sizes are exponentially distributed with

mean, aa_mean, truncated at 10 * aa_mean. A more detailed report of the study appears in [28].

5.1.1. Raw Power Series: Series A

We measured the raw power of each of the networks, i.e., throughput and delay under a

workload of operations with no atomicity (aa_mean = 1) or sequencing constraints. In this

series, workload consists of generic operations — reads and writes are not distinguished. Only

20



the forward, i.e., PE→MM, network is simulated. Each MM is a sink for operations. We assume

memory cycle time is the same as switch cycle time — each MM can consume one operation per

cycle. Each process is independent, executing on its own PE. Although the workload has no

sequencing constraints, there is no way to relax enforcement of sequential consistency in I1 and

I2. Thus series A actually compares isotach networks that enforce sequential consistency with

conventional networks that do not.

We simulated each network with a workload in which a PE generates a new operation each

cycle with probability r. Fig. 4 shows throughput and delay as a function of the offered load r.

Delay as reported in this graph includes source queueing. Delay is measured from the time an

operation is generated until it is delivered to the MM. As can be seen in Fig. 4, C1 and C2 can

handle a higher load with less delay than I1 and I2, respectively. Conventional networks have

more raw power because isotach network switches are subject to the additional constraint that

they must route operations in order by pulse and route-tag. For workloads in which a PE gen-

erates an operation whenever its output buffer is empty, the results were the same: per stage

delay was consistently lower and throughput consistently higher for C1 and C2, independent of
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Fig. 4. Series A — Varying offered load. � - C1, — - C2, � - I1, ◊ - I2
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the number of stages in the network. Finally, note the throughput/latency tradeoff offered by the

switch designs depicted in Fig 3. C2 and I2 offer higher throughput at the cost of higher latency

than C1 and I1.

In the remaining series, we report results only for C1, I1, and I2: in all remaining series C1

provides more throughput with less delay than C2. C2 performs poorly relative to C1 because C2

retains its high latency but cannot take advantage of its high throughput. Both C1 and C2 are

under-utilized in the remaining series because the workload’s synchronization constraints

prevent processes from issuing operations fast enough to saturate the network.

5.1.2. Sequential Consistency Only Data: Series B

Series B compares the networks under a workload model requiring sequential consistency

but not atomicity. In this series, as in subsequent series, traffic in both the forward (PE→MM)

and reverse (MM→PE) directions is simulated. The reverse networks are all conventional net-

works. I2 uses C2 as the reverse network. I1 and C1 use C1. In each cycle, each MM (PE) can

receive one operation (response) from the network and issue one response (operation).

Initially we assume that no data dependences constrain the issuing of operations. In I1 and

I2, operations can be pipelined without risk of violating sequential consistency. Each PE issues

a new operation whenever its output buffer is empty (aa_cap = unlimited). C1 enforces sequen-

tial consistency by limiting each PE to one outstanding operation at a time. Note the isotach net-

work simulations in series A and B are the same except that the reverse network is simulated.

Scalability — Fig. 5 shows the effect of varying the network size. Delay is round-trip delay nor-

malized for network size, i.e., the number of cycles between the time an operation is placed in

the PE’s output buffer and the time the PE receives the response to the operation, divided by the

number of stages (one-way) in the network. Delay for each network is higher in this series than
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Fig. 5. Series B — Varying the number of network stages. � - C1, � - I1, ◊ - I2

in series A because delay is round trip latency. In the base case (stages = 5), throughput for C1 is

about 15% of its series A throughput, reflecting the high cost of enforcing sequential consistency

in a conventional network. For I1 and I2, performance is the same as in series A, since the iso-

tach networks enforce sequential consistency in both series. Because they permit pipelining, the

isotach networks outperform C1 in terms of throughput, but their delay is longer than C1’s,

partly because pipelining causes the isotach networks to be more heavily loaded than C1. As net-

work size increases, throughput slowly decreases and delay per stage remains roughly constant.

Data Dependences — Data dependences among operations issued by the same process tend to

diminish throughput in isotach networks because they prevent the networks from taking full

advantage of pipelining. Fig. 6 shows the effect of changes in data dependence distance

(modelled by changes in the aa_cap). When the data dependence distance is 1 (aa_cap=1), mean-

ing each process needs the result of its current operation before it can issue its next operation, the

throughput of the isotach networks is low. As the data dependence distance increases, the

throughput of I1 and I2 climbs sharply until network saturation. The delay (shown here as total

roundtrip delay, not normalized for network size) also increases as the networks become more
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heavily loaded. Because its latency is longer and its saturation point higher, I2 requires a larger

data dependence distance than I1 to take full advantage of its ability to pipeline. I2 performs

less well than I1 at small dependence distances because I2 cannot take advantage of its higher

throughput and is hurt by a higher response time due to higher latency. Since C1 cannot pipeline

regardless of the data dependence distance, throughput and delay for C1 do not vary with the

aa_cap. C1’s throughput is 0.6 and delay is 14.75. Thus, although their delay is worse, the

throughputs of I1 and I2 begin to exceed C1’s at a data dependence distance of only 2.

5.1.3. Atomic Action Data: Series C

Series C compares the performance of isotach and conventional systems under a workload

with atomicity and sequencing constraints. Atomic actions are assumed to be flat and indepen-

dent, i.e., there are no data dependences among or within atomic actions. Isotach systems

enforce atomicity by issuing all operations from the same atomic action in the same pulse. The

conventional system we simulate enforces atomicity using 2PL. A lock is associated with each

variable and a process acquires a lock for each variable accessed by the atomic action before

releasing any of the atomic action’s locks. To avoid deadlock, each process acquires the locks it
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needs for each atomic action in a predetermined linear order.

Our lock algorithms are more efficient than those used in most systems. Instead of spinning,

lock requests queue at memory. We distinguish read locks from write locks and only the latter

are exclusive. Instead of sending a lock request for an operation, a process sends the operation

itself. Each operation implicitly carries a request for a lock of the type indicated by the opera-

tion. When it receives an operation, the MM enqueues it. If no conflicting operation is enqueued

ahead of it, the operation is executed and a response returned to the source PE. A PE knows it

has acquired a lock when it receives the response. Eliminating explicit lock requesting and grant-

ing messages reduces traffic and eliminates the roundtrip delay from memory to the process and

back when a lock is granted. When the PE has acquired all the locks for the atomic action, it

sends a lock release for each lock it holds.

Execution in this series is required to be sequentially consistent. C1 enforces sequential

consistency by limiting the number of outstanding atomic actions per PE to one (aa_cap = 1). In

I1 and I2 a PE may have any number of active atomic actions without sacrificing sequential con-

sistency (aa_cap = unlimited).
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Atomic Action Size — Fig. 7 shows the effect of varying the average size (aa_mean) of atomic

actions. Delay is delay per operation, i.e., the average number of cycles from the time an atomic

action is generated until it is completed, divided by aa_mean. For C1, the time required to

release locks is not included in delay. A process in C1 generates a new atomic action as soon as

it has received all the responses due in its current atomic action. In I1 and I2 a process generates

a new atomic action whenever its output buffer is empty. The graphs show C1 performs poorly

for large atomic actions. As the atomic action mean size increases, C1’s throughput drops and its

delay rises steeply. In I1 and I2, by contrast, the delay per operation actually decreases as the

size of atomic actions increases, since increasing size means more concurrency. For large

atomic actions, the isotach systems perform markedly better than the conventional systems.

When the average atomic action size is 16, the delay and throughput are both better in isotach

systems by an order of magnitude. The steep rise in delay in the conventional systems is attribut-

able to the use of locks. As atomic actions grow larger, not only does the number of operations

contending for access grow, but also the length of time each lock is held.

Series C shows that isotach systems perform well in relation to conventional systems under

a workload with atomicity and sequencing constraints. Conventional systems cannot take full

advantage of the greater raw power of their networks because the rate at which operations can be

issued is limited by locks and the restriction on pipelining. The performance of isotach systems,

by contrast, is limited only by the raw power of the networks. Though the raw power of the iso-

tach networks is somewhat lower than that of the conventional networks, the synchronization

support the isotach networks provide allows the isotach systems to outperform the conventional

systems by a wide margin.
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We also compared the performance of conventional and isotach systems for a workload of

structured atomic actions in which data dependences exist both within and among atomic actions

[28]. The isotach networks continued to outperform C1, though by a smaller margin since the

data dependences prevent the isotach networks from taking advantage of their ability to pipeline

operations.

5.1.4. Non-Uniform Traffic Model Data: Series D

Series D compares performance of the networks under the flat atomic action workload

model from series C using a warm-spot traffic model. A warm-spot traffic model has several

warm variables instead of a single hot variable and is more realistic than either the uniform or

hot-spot traffic models. The warm-traffic model we use is based on the standard 80/20 rule (see

e.g. [13]), modified to lessen contention for the warmest variables [28].

Fig. 8 shows the effect of varying atomic action size under a warm-traffic model. Delay is

reported in the same way as in series C. The performance of I1 and I2 is similar to their series C

performance. The performance of C1, in contrast, is considerably worse in this series than in the
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previous series. When the probability of conflicting operations is higher, locks have more impact

on performance. The use of locks to enforce atomicity means C1’s performance suffers when

accesses are not uniformly distributed. When atomic actions are large and traffic is non-uniform,

C1’s performance is very poor relative to I1 and I2. For large atomic actions (aa_size = 16),

throughput for I2 is about 78 times higher than C1’s and its delay about 24 times lower. Hot

spot traffic results show the same pattern.

Series D shows that isotach systems outperform conventional systems by a wider margin

when accesses are not uniformly distributed, particularly when atomic actions are large.

5.1.5. Simulation Study Summary

Our study shows conventional networks have higher raw power than isotach networks, but

with atomicity and sequencing constraints, isotach networks outperform conventional networks,

in some cases by a factor of ten or more. Conventional systems perform relatively poorly in

spite of their greater raw power because the means by which they enforce atomicity and

sequencing constraints work by restricting throughput and imposing delays. Isotach networks

perform best in relation to conventional networks when the distance between data dependent

operations within the same process’s program is large enough to permit pipelining; atomic

actions are large; and contention for shared variables is high. When the workload has two or

more of these characteristics, an isotach network performs markedly better than a conventional

network. These results indicate that isotach based synchronization techniques are worthy of

further study. We intend to extend our simulation to include isotach based cache coherence pro-

tocols [33].
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5.2. Analytic Model

Analytic models were developed for the four simulated networks (C1, C2, I1, I2). That

work led to the discovery of novel modelling methods that will be presented in a future paper.

We outline the approach and results we obtained here. Interested readers are referred to [32] for

a more detailed presentation.

We extended a mean value analysis technique first presented by Jenq [11] for banyon-like

MIN’s. Our extensions enabled the modelling of 1) routing dependencies, 2) a measure of

bandwidth we have called information flow, and 3) message types. Routing dependencies exist

in isotach networks in the form of constraints requiring routing in route-tag order (Jenq did not

include this kind of dependence). Information flow is a measure of the bandwidth of a given

stage of a MIN. Including information flow allowed us to introduce independence among net-

work stages, gaining tractability with little sacrifice in accuracy. Finally, certain optimizations

that would be made in an implementation of an isotach network, for example, piggy-backing of

tokens on messages of content and ghost messages, needed to be reflected in the analytic model.

We succeeded in capturing the effects of these message types.

For networks I1 and I2 the analytic model predicted throughput with no worse than 12%

deviation from the simulation results presented earlier. The model tended to be optimistic,

which we expected because it didn’t account for delays that variations in uniform distribution of

messages would create in the network. Those delays were captured in the simulation. Predic-

tion of delay was even better with a maximum error of 5%. In both cases the results were for

networks ranging in depth from two to ten stages.
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6. CONCLUSION

We have proposed a new class of networks called isotach networks for the purpose of sup-

porting concurrency control. Isotach networks implement isotach logical time, a system of logi-

cal time that assigns times to send and receive events that are consistent with Lamport’s → rela-

tion and with the velocity invariant, an invariant that relates communication time to communica-

tion distance. This invariant provides a powerful coordinating mechanism that allows processes

to execute atomic actions without locks and to pipeline operations without sacrificing sequential

consistency. We described a distributed algorithm for implementing isotach logical time

designed to be implemented in hardware within the network switches and interfaces and reported

the results of analytic and empirical studies of this algorithm that show that isotach systems out-

perform conventional systems under realistic workloads.

The approach to concurrency control presented in this paper reduces the problems of

enforcing each of several basic correctness properties — e.g. atomicity, sequential consistency,

memory coherence — to the problem of implementing isotach logical time. We have described

a practical design for an isotach network and shown that it performs well in relation to conven-

tional systems, but the network described is just one of many ways to implement isotach logical

time. We are currently studying alternative implementations of this promising new approach to

concurrency control.
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