
Learning to Rank Results in Relational Keyword Search
University of Virginia

Department of Computer Science

Technical Report CS-2011-06∗

Joel Coffman
Department of Computer Science

University of Virginia
Charlottesville, VA

jcoffman@cs.virginia.edu

Alfred C. Weaver
Department of Computer Science

University of Virginia
Charlottesville, VA

weaver@cs.virginia.edu

ABSTRACT
Keyword search within databases has become a hot topic
within the research community as databases store increasing
amounts of information. Users require an effective method
to retrieve information from these databases without learn-
ing complex query languages (viz. SQL). Despite the recent
research interest, performance and search effectiveness have
not received equal attention, and scoring functions in par-
ticular have become increasingly complex while providing
only modest benefits with regards to the quality of search
results. An analysis of the factors appearing in existing scor-
ing functions suggests that some factors previously deemed
critical to search effectiveness are at best loosely correlated
with relevance. We consider a number of these different
scoring factors and use machine learning to create a new
scoring function that provides significantly better results
than existing approaches. We simplify our scoring function
by systematically removing the factors with the lowest weight
and show that this version still outperforms the previous
state-of-the-art in this area.

1. INTRODUCTION
The success of web search engines has made keyword search

the preferred method for individuals to discover and to re-
trieve information [14] as evidenced by the 4 billion keyword
searches performed daily [16]. Given the ubiquity of the
search text box, it is natural to extend the keyword search
paradigm to support other sources of information, includ-
ing semi-structured data (e.g., XML) and relational data.1

Many data-driven websites store information in relational
databases; periodically crawling their content inevitably re-
sults in outdated information appearing in search results.
While websites commonly provide a means to search their
content, such facilities often are inferior to Internet search
engines or constrain searches by supporting only the simplest
queries (e.g., find articles whose titles are like . . .). Hence, a
market exists for systems that search databases like Internet
search engines search the web.

A decade of academic research has led to a number of sys-
tems that extend the keyword search paradigm to relational

∗An abridged version of this paper appeared at CIKM ’11 [9].
1In this paper, we focus on keyword search within relational
databases, and we do not discuss the numerous techniques
for searching semi-structured data.

data, but we are not aware of any of these systems that are
actively used outside the academic community. We posit that
this transition has not occurred due to a host of challenges
that plague research in this field. First, the evaluation of
many systems remains ad hoc, and results do not seem to
generalize to other datasets and query workloads. Second,
many systems propose algorithms to improve performance
while also adopting new functions for scoring results, and ex-
isting evaluations tend to focus on the former while ignoring
the latter. Third, extant literature has not dealt with the
numerous issues that surround different ranking functions.
For example, although one ranking function might be shown
empirically to provide higher quality search results, studies
have not investigated which factors in the scoring function
are responsible for the improvement.
In this paper, we focus on this last issue by examining

existing ranking methods and by investigating the impor-
tance of different factors in these scoring functions. Our work
is timely because many researchers to date have relied on
intuition to create new scoring functions. For example, many
systems assume that the relevance of a search result is nega-
tively correlated with the total edge weight of a result. That
is, a result with a larger sum of edge weights is less relevant
than a result with a smaller sum of edge weights. However,
the literature contains little evidence for this relationship,
and in this paper, we show that total edge weight is actually
positively correlated with relevance. We couple our analysis
of existing scoring functions with machine learning to create
a new ranking scheme.
Machine learning is preferable to deriving a new scoring

function by hand due to machine learning’s ability to consider
many potential factors and to provide confidence measures
for its results. Moreover, scoring functions typically include
a number of parameters that have previously been tuned by
researchers using a small number of test queries. It is reason-
able to believe that significant improvement is possible simply
by applying better tuning methodologies (e.g., via machine
learning). In our evaluation using a diverse set of datasets
and queries, we show that our scoring function, which in-
cludes many factors identified in existing work, significantly
improves upon the retrieval effectiveness of state-of-the-art
systems.

Postings

actor → 14
ark → 18
composer → 17
connery → 11
crusade → 19
director → 16
ford → 10
harrison → 10
indiana → 7, 19
jones → 7, 9, 19
last → 19
raiders → 18
sean → 11
. . .

Figure 1: Example of an IMDb data graph (left) and
a portion of its inverted index (right).

1.1 Example of Relational Keyword Search
As an example of relational keyword search, consider the

data graph and the portion of its associated inverted index
shown in Figure 1. Furthermore, assume that the user wants
to identify the relationship between “Harrison Ford” and
“Sean Connery” (e.g., to determine if they have appeared
together in any films). To start, the inverted index must be
scanned to identify nodes (tuples) that contain the search
terms. In our example, nodes 10 and 11 both match disjoint
subsets of the search terms. Hence, it is not appropriate to
return each individual node as a search result because each
node by itself does not address the relationship between the
search terms. Search heuristics are typically used to identify
these relationships. In this case, nodes 10 and 11 are related
by the path 10–3–14–4–11 and by the path 10–3–19–4–11.
These two relationships can be described loosely as “both
are actors” (10–3–14–4–11) and “both appeared in the film
Indiana Jones and the Last Crusade” (10–3–19–4–11).

The aforementioned steps cover the enumeration of search
results. Enumeration is distinct from ranking, where the
list of results is ordered by each result’s estimated relevance
to the user’s information need. In our example, the latter
result (both appeared in the film Indiana Jones and the Last
Crusade) should appear before the former (both are actors).
The existing literature includes a host of different ranking
strategies, but little analysis of why particular strategies
perform better than others. Because the number of possible
results for a query is bound only by the size of the database,
achieving an acceptable response time demands that systems
enumerate search results in an order that is highly correlated
with the final ranking of the results. The literature is re-
plete with enumeration algorithms so we focus exclusively on
ranking search results in this paper. It is straightforward to
combine our work with an existing enumeration algorithm,
for the two tasks are largely orthogonal.

1.2 Contributions and Outline
In this paper, we use machine learning to investigate the

importance of different factors when ranking search results.
The major contributions of this work are as follows.

• We review existing scoring functions and show that they
have become increasingly complex over the past decade.

More recent scoring functions introduce additional fea-
tures that increase the number of free parameters, but
previous work does not address issues related to tuning
these parameters.

• We use ordinal regression to learn a linear function for
scoring search results. Our scoring function significantly
outperforms existing systems at high recall levels.

• We simplify our scoring function by reducing the to-
tal number of factors that are included and show that
many factors can be eliminated without significantly
sacrificing search quality. Several of these factors pre-
viously had been deemed critical although we have not
been able to find much more than anecdotal evidence
for their importance.

• We compare our simplified scoring function against
more conventional alternatives. Even though the alter-
natives are computationally more expensive, they do
not improve search quality.

The remainder of this paper is organized as follows. In
Section 2, we present background material—existing scoring
functions and how to use machine learning to weight the
features of a scoring function. Section 3 describes the cre-
ation of our scoring function. In Section 4, we evaluate our
scoring function against an established benchmark for rela-
tional keyword search and show that it outperforms existing
systems. Section 5 analyzes our scoring function, compares it
to alternatives, and discusses the limitations of our approach.
In Section 6, we review related work. Finally, we conclude
and describe future work in Section 7.

2. BACKGROUND
This section starts by examining existing functions for

scoring search results. Our objective is to underscore the
variety of schemes that have been proposed and to illustrate
the complexity of existing scoring functions. We also present
machine learning as a technique to derive appropriate weights
for the features in a scoring function.

2.1 Relational Keyword Search
A dichotomy exists within relational keyword search sys-

tems. Proximity search endeavors to minimize the distance
between search terms within a data graph. While minimiz-
ing the total edge weight is NP-hard [43] (it is equivalent
to the group Steiner tree problem [13]), different semantics
allow more efficient enumeration of results. Schema-based ap-
proaches identify search results by executing queries against
the relational database, and many of these systems have
adopted information retrieval (IR) weighting functions to
rank the search results. We adopt a common notation to
compare the various scoring functions and elide some details
in the interest of presentation clarity; for a complete expla-
nation of particular approaches, we refer the reader to the
original papers.
The major focus for much of this previous work is the

enumeration of search results although a variety of different
scoring functions have also been proposed. One issue that
plagues these systems is limited evaluations of search effec-
tiveness (see Webber [55] and Coffman and Weaver [7]). In
particular, no existing evaluation addresses the importance
of different factors in their scoring function. The significant
amount of previous work on enumeration algorithms comple-
ments our own work, for our scoring function can be used to

re-rank results following their enumeration (as proposed by
Golenberg et al. [18]).

One issue that has been largely ignored by both proximity
search systems and the schema-based approaches is different
semantics for identifying results. With the exception of
Golenberg et al.’s work [18], proximity search implies strict
AND semantics—a result is not valid unless it contains all
the search terms. In contrast, IR-style ranking schemes use
OR semantics, and their scoring functions reward results
that contain more search terms. However, the question of
semantics goes still deeper—some systems [33, 34, 41] define
results to be subgraphs instead of trees. To the best of our
knowledge, no user studies have been conducted to determine
how users perceive this difference and which approach they
prefer although previous work in multimedia retrieval [11]
indicates that the amount of irrelevant information should be
minimized. Hence, query semantics are another area where
significant additional research is required. In this paper, we
follow the traditional definition of a query result: a result is
a tree T that is reduced with respect to Q′ ⊆ Q where Q is
the set of query keywords (i.e., T contains all the keywords
in Q′ but no proper subtree that also contains all of them).
This definition attempts to minimize the total amount of
irrelevant information in search results.
The following paragraphs illustrate the complexity and

number of factors present in existing scoring functions. This
information is summarized in Tables 1 and 2 and also after
the presentation of proximity and IR-style scoring.

2.1.1 Proximity Scoring
All proximity search systems attempt to minimize the total

edge weight of results. Many also include a prestige (i.e.,
node weight) factor to prefer results that contain more highly-
referenced database tuples. Ranking results for proximity
search systems could be viewed as more of an art—specific to
each new dataset—than a well-understood science where the
most important aspects have been well-established through
extensive experimentation. Consider the variation in the
following list of scoring functions that have been proposed
in the literature and note the number of differences, few of
which are justified in the literature.

An early system, BANKS [2], proposed the following func-
tion to score results:

(1− λ)

(
1

1 +
∑

e weight(e)

)
+ λ

(∑
n weight(n)

|N |
)

where e is an edge and n a node in the result tree, N is
the set of all nodes in the result tree, and λ is a tuning
parameter. DISCOVER [21] minimizes the total number of
edges in results—i.e.,

1

|N |
where |N | is the number of nodes in a result. BANKS-II [24]
proposed

(∑
p

weight(p)

)(∑
n

weight(n)

)λ

where p is the path from the root of the result tree to a
leaf and n is taken from the root and leaves of the result
tree. DPBF [12], Golenberg et al. [18], and STAR [25] score

Table 1: Summary of scoring functions used by prox-
imity search systems. Systems that do not pro-
pose an alternative scoring function are omitted (i.e.,
each row contains at least one unique definition •).

|N
|

w
ei
gh
t(
e)

w
ei
gh
t(
n)

∑ e
w
ei
gh
t(
e)

∑ n
w
ei
gh
t(
n)

System Features Factors Pa
ra
m
et
er
s

BANKS [2] ◦ • • • • 1
DISCOVER [21] ◦ 0
BANKS-II [24] • • • • 1

DPBF [12] ◦ • 0
BLINKS [19] • ◦ • • 3

EASE [34] ◦ • 0
Golenberg et al. [18] • ◦ 2

Legend
• unique definition
◦ uses existing definition

n ∈ N nodes in result
e edge in result

results solely based on their total edge weight:(∑
e

weight(e)

)−1

where e is an edge of the result tree. BLINKS [19] proposed
the following scoring function with multiple parameters:

αweight(r) + β
∑
t

weight(l) + γ
∑
p

weight(p)

where r is the root of the result tree, l is the leaf that contains
the search term t, p is the path from r to l, and α, β, and γ
are all tuning parameters. EASE’s structural compactness
factor [34] is∑

1≤i≤j≤|Q|

1

|Nti ∪Ntj |
∑

ni,j∈Nti,j

∑
e

1

(weight(e) + 1)2

where ti, tj are query terms, Nt is the set of all nodes in
the result that contain the term t, ni and nj are nodes that
contain query terms, and e is an edge along a path from ni

to nj .
As previously stated, one of the major assumptions un-

dergirding these scoring functions is that the relevance of
a result is negatively correlated with its total edge weight.
Although intuitive, little work supports this claim. The wide
variation in the scoring functions suggests that different ap-
proaches work better for different datasets or particular types
of queries. Of particular interest is the distinction that more
recent work gives to the root, leaves, and path between each
search term and the root of the result tree. The simplicity
of BANKS’s egalitarian treatment of nodes and edges has
disappeared as systems use alternative semantics to improve
performance. With the distinction comes additional parame-
ters as typified by BLINKS’s scoring function, which contains
3 free parameters. Unfortunately, the existing literature does
not identify the tradeoffs with regards to search effectiveness
among the various scoring functions. Other differences such
as how to assign edge weights in the data graph have been
almost completely ignored. Although different schemes exist,
no existing evaluation has considered what effect this decision
might have on its results.

2.1.2 IR-style Scoring
Unlike the proximity search systems, IR-style scoring tends

to favor documents that contain rarer search terms in the
database and more more instances of search terms. Like the
proximity search systems, there is practically no justification
for why particular scoring functions outperform others on
specific datasets.
Most IR-style scoring functions are derived from pivoted

normalization scoring [50], which is a state-of-the-art scoring
function:

score(D,Q) =
∑

t∈Q∩D

1 + ln(1 + ln(tf))

(1− s) + s
(

dl
avgdl

) · ln(N + 1

df

)
(1)

where D is a document, Q is the user’s query, tf is the
frequency of the term t in D, dl is the length of D, avgdl
is the average length of all documents in the collection, N
is the number of documents in the collection, and df is the
number of documents in the collection that also contain the
term t. One major difference among the derivatives is the
combination of scores from multiple attributes. Hristidis et
al. [20] sum all the attribute scores:∑

a

score(a,Q)

where a is an attribute’s text stored in the database. Liu et
al. [35] suggest a more complex function

max
a

score(a,Q)

(
1 + ln

(
1 + ln

(∑
a score(a,Q)

maxa score(a,Q)

)))

but fail to present a compelling argument or empirical evi-
dence for its superiority.2 In adherence with previous work
in IR, SPARK [36] and EASE [34] score the entire result as a
single document—i.e., D in Equation 1 refers to the set of all
attributes present in the result and collection statistics are
adjusted accordingly. In a departure from all these systems,
structured cover density ranking [8] considers the positions
of terms within documents and the relationships between
different fields that contain query terms.
Similar to the ranking schemes advocated by the various

proximity search systems, the host of deviations between
these systems has not been well-studied. As an example, con-
sider SPARK’s virtual document abstraction. Robertson et
al. [45] had previously established the theoretical superiority
of this approach, but in the context of relational keyword
search, efficient enumeration dictates the estimation of sev-
eral factors including avgdl, idf , and N . A small study of
the approximation error [37] suggested acceptable accuracy
(usually within 30% relative error) but also found instances
where the error was substantial (e.g., 700% relative error).
Whether or not the approximation error negates the theoret-
ical advantage proffered by the approach was not addressed,
which is a significant shortcoming. Other differences such
as calculating collection statistics from a single table or the
entire database [35] are not investigated individually in eval-
uations. Hence, it is difficult to ascertain which changes to
the scoring function account for reported improvements in
search effectiveness. Again, previous work supplies a vari-
ety of options but provides little insight into why particular

2Although their scoring function does outperform
DISCOVER-II’s [20] on a lyrics database, Liu et al. alter
multiple components of the scoring function and do not show
what affect the combination function has on their results.

Table 2: Summary of IR-style scoring functions used
for relational keyword search. The factors ntf , ndl,
and idf are components of pivoted normalization
scoring; ⊕ indicates the combination of attribute
scores.

|N
|

|N
|

|N
′ |

ns
iz
e

L
2 no

rm

nt
f

nd
l

id
f ⊕

System Features Factors P
a
ra
m
et
er
s

DISCOVER-II [20] ◦ ◦ ◦ ◦ ◦ • 1
Liu et al. [35] ◦ ◦ • ◦ • • • 2a

SPARK [36] ◦ ◦ • • ◦ • • ◦ 4
EASE [34] • ◦ • ◦ 1

aWe assume that the two occurrences of s need not have identical
values although this issue is not addressed in the original paper.

Legend
• unique definition
◦ uses existing definition

⊕ attribute combination

N nodes in result

|N | average result size
N ′ non-leaf nodes

ranking schemes outperform others in the evaluation of these
systems.

2.1.3 Summary
Tables 1 and 2 summarize the features advocated by sys-

tems that propose a novel scoring scheme. Many relational
keyword search systems are omitted from these tables be-
cause they address performance issues (i.e., enumeration)
rather than ranking. Distinctions between systems are in-
dicated in the tables where a unique definition (•) differs
from previous work instead of using an existing technique
(◦) to score results. Each row of the table contains at least
one unique element. As an example from Table 1, although
Golenberg et al. [18] reuse DPBF’s scoring function [12], they
propose an alternative method to assign edge weights.
The number of “features” (that is, atomic values from a

search result, user’s query, or database) has increased steadily
as the various scoring functions distinguish between a search
result’s root, leaves, interior nodes, etc. Accompanying this
increase is a rise in the number of “factors” (that is, values
derived from one or more features). As the number of factors
increases so does the total number of free parameters, which
are used to weight the importance of each factor in the
final scoring function. This is problematic because tuning
these parameters is expensive, requiring exploration of a low-
dimensional grid of possible parameter values or heuristics
that partially explore many dimensions [53]. Unfortunately,
the existing literature does not suggest that these experiments
are being conducted by researchers.

2.2 Machine Learning
Traditionally, scoring functions developed by the IR com-

munity include only a small number of features (e.g., term
frequency, document frequency, and document length), which
allowed the parameters of these functions to be tuned em-
pirically [47]. In different contexts, many other features
have proven useful for predicting the relevance and impor-
tance of results. For example, PageRank [3] is a well-known
algorithm for determining the prestige of web pages. Incor-
porating these features into existing or even new scoring

functions is non-trivial, for increasing the number of features
increases the number of parameters, which makes empirical
tuning of scoring functions prohibitively expensive.

Machine learning offers an alternative to creating scoring
functions by hand and also may be used to determine the
relative weights of different factors. In this case, the goal of
machine learning is to determine the weight of each feature
that maximizes the relevance of results. Some features are
more important than others when estimating the relevance
of results. The prcoess of assigning weights to features is
described as ordinal regression, which predicts the ranking of
search results. Ordinal regression falls between classification—
that is, predicting a categorical variable (e.g., relevant or non-
relevant)—and regression—that is, predicting a real number
as a function of inputs. Although researchers can tune scoring
functions by hand, we prefer to use machine learning due to
its ability to consider many factors and to provide confidence
measures for its results.
Given a document collection C = {d1, d2, . . . , dn} and

query Q, the objective of an IR system is to provide a
ranking σ that optimally orders the documents according
to their relevance to Q. Achieving this optimal ranking is
difficult, and IR systems provide an approximation, σ′, of
the optimal. An IR system is evaluated based on how closely
its ranking approximates the optimal ranking.

We use a ranking support vector machine (SVM) to perform
our ordinal regression. A SVM is a type of large-margin
classifier, which attempts to maximize the decision boundary
between classes. In simple terms, the larger the margin of
a classifier, the more certainty is provided in the predicted
decision. The goal of a ranking (or ordinal regression) SVM
is to learn a function f such that for any di, dj

f(φ(q, di)) > f(φ(q, dj))⇒ σ(di) > σ(dj)

where φ(q, d) is the feature vector of the query and a doc-
ument d and σ(d) is the position of d in the optimal rank-
ing. The feature vector, φ(q, d), is an n-dimensional vector
of features that represents inportant characteristics of the
query and document—for example, term frequency, docu-
ment length, and (in hyperlinked environments) PageRank.
Let P be the set of pairs (i, j) where σ(di) > σ(dj). Formally,
a ranking SVM optimizes

min
�w,ξij≥0

1

2
�wT �w +

C

P

∑
(i,j)∈P

ξij

subject to

∀(i, j) ∈ P, �wT f(φ(q, di)) ≥ �wT f(φ(q, dj)) + 1− ξij

where �w is the decision hyperplane that separates different
classes (ranks) and ξ is a slack variable that allows for training
errors. The function f identifies the ideal weights for each
feature by minimizing the number of pairs that are swapped
(with regard to the optimal ranking) when training the SVM.
The output of the SVM is a vector of weights that provides
the best performance for the training instances—i.e., the
SVM maximizes the relevance of the results.

3. MODEL
This section describes the creation and evaluation of our

model for scoring relational keyword search results.

3.1 Features
The features included in any scoring function should be

efficient to compute and highly correlated with the ideal
ranking of the search results [18]. From our review of exist-
ing scoring functions, we identified 10 different features that
are used in 8 different factors. Some features included in
previous work cannot be computed efficiently. For example,
calculating the average number of nodes in the set of results
(|N |) requires enumerating all results for each query. Includ-
ing this feature in a scoring function immediately precludes
top-k query processing schemes. Although we do not consider
query processing in this paper, these schemes are critical to
achieving acceptable performance.
We derive 12 different factors from the features present

in existing scoring functions. Our additional factors revolve
around simple ways to combine multi-valued features (e.g.,
averaging the edge weights). Table 3 lists all our factors.
Note that some of our factors subsume the features shown
in Tables 1 and 2. For example, pivoted normalization
weighting [50] includes ntf , ndl, and idf factors. Rather
than considering these factors in isolation, we only use their
combination in pivoted normalization weighting, which is a
state-of-the-art scoring function [49]. By no means is our
selection exhaustive—we could derive many more features
and factors—but we refrain to limit the time required to
train our model.
Our factors are generally a superset of those included in

previous work, but we do not explore all the variations of
these factors that appear in the literature because doing so
would greatly expand the search space. For example, there
are nearly 100 different formulations of pivoted normalization
weighting alone if all the proposed factors are considered
independently. In addition, several factors have been created
to improve the tractability of enumerating search results
(e.g., distinct root semantics [19, 24]), and these factors are
typically compared to more traditional methods for scoring
results (in this case, minimizing the total edge weight), which
we do include.

Given the variety of existing techniques to calculate the
value of each factor, we chose one instead of exploring all
the alternatives. We use BLINKS’s formula for deriving the
weights of edges in the data graph:

weight(e) = ln(1 + out(u)) (2)

where e is an edge from u to v and out(u) is the outdegree of u.
Node weights are computed using the PageRank algorithm [3],
which is the most common method in the literature. Pivoted
normalization’s document-related factors are computed over
an entire search result and collection statistics are taken from
the entire database. Unlike traditional IR, the collection (and
consequently its statistics) is not well-defined when searching
semi-structured and relational data (see Vittaut [54], Mass
and Mandelbrod [38], and Clarke [6]).3 Our decision to
use statistics from a complete search result and the entire
database follows Robertson et al.’s previous work [45] and
techniques from XML retrieval [6].

3It is straightforward to show that calculating exact collec-
tion statistics in the context of relational keyword search
requires violating desirable properties of the original IR scor-
ing function [20, 35], estimation [36], or enumeration of all
possible search results a priori [34].

Table 3: Correlations between factors and the rel-
evance of results (p < 0.01). Larger absolute values
indicate stronger correlations.

Factor r ρ τ

|N | -0.007 -0.041 -0.045
|E| -0.007 -0.041 -0.045

minweight(e) -0.096 -0.039 -0.036
maxweight(e) 0.149 0.243 0.215∑

weight(e) 0.048 0.142 0.123

weight(e) 0.113 0.172 0.154

minweight(n) 0.043 0.008 0.005
maxweight(n) -0.097 -0.009 -0.010∑

weight(n) -0.095 0.035 0.026

weight(n) -0.095 0.031 0.024

pivoted normalization 0.264 0.389 0.310
Euclidean (L2) distance -0.132 -0.219 -0.207

Correlating Scoring Factors with Relevance
Before we present the creation of our learned scoring function,
we present the correlation between each factor and the rele-
vance of search results. We consider three different measures
of the correlation between each factor and relevance: Pear-
son’s r, which measures the degree of linear relationship [46];
Spearman’s p, which measures the degree of dependence
with any monotonic function [51]; and Kendall’s τ , which
is the number of bubble-sort swaps required to transform
one list into another [28]. Kendall’s τ is perhaps the best
metric for comparing ordinal correlations [22], but we also
report Pearson’s r and Spearman’s p because they are more
common. In general, the trends are similar regardless of the
measurement used.
Table 3 summarizes our findings. Note that none of the

correlations are particularly strong although all the values are
significant at the 0.01 level. Pivoted normalization weighting
is moderately correlated with relevance. The Euclidean
distance (which is 0 if the result contains all terms present in
the query Q and 1 if the result does not contain any query
terms) has one of the most negative correlations. These
two results are not altogether unsurprising because pivoted
normalization is a state-of-the-art scoring function and the
Euclidean distance is a very coarse measure of relevance.
While most relevant results will contain all the query terms,
the converse is not true: a result is not relevant just because
it contains the query terms—it must address the query’s
underlying information need.
The correlations for our different edge weight factors is

extremely surprising. Note that the table simply uses the raw
values of each factor. In contrast, proximity search systems
minimize the weight of results. Hence, we expect a larger
total edge weight (

∑
weight(e)) to be negatively correlated

with relevance or—stated conversely—a smaller sum should
be positively correlated with relevance. Our results indicate
the exact opposite: results with higher weights are more
likely to be relevant than results with smaller weights! This
result differs substantially from the conventional wisdom in
this field, and we will return to it in our discussion of our
scoring function in Section 5 and in the appendix.

3.2 Creation
Because our evaluation benchmark does not provide both

training and testing data, we use 10-fold cross validation [29]
to mitigate the threat of overfitting our scoring function. In
10-fold cross validation, the data is randomly partitioned
into 10 different folds (subsets). Training uses 9 of the folds
(that is, 90% of the original data), and the model is tested
against the final fold. This process is repeated so each fold
is used exactly once to test the model.

We use SVMrank [23] to learn the weight for each factor in
our scoring function. SVMrank is designed to efficiently solve
ordinal regression problems and operates on a set of training
instances. The training instances are derived from potential
query results, and each instance consists of a feature vector
of all the factors that we include in our scoring function and
the ideal rank of the result.

Because different enumeration algorithms have been shown
to omit results [18], we pool the top-1000 results returned
by 9 different systems [2, 8, 12, 19, 20, 21, 24, 35, 36] to
create the set of training instances. Pooling ensures that
we consider as many different query and result semantics as
possible and increases the generality of our scoring function.
It also decouples the challenges of enumeration and ranking
although we note that our training instances only include
results that have been deemed relevant by at least one existing
system.

Binary relevance judgments are distributed as part of the
test collection. While these judgments would be sufficient to
train a classifier, they are not suitable for ordinal regression,
and the limited number potentially could diminish training
effectiveness. We augment the binary relevance judgments
with marginal relevance judgments of the results returned by
each system. Given a large number of factors and available
training instances (see Table 4), a SVM may fail to termi-
nate within a timely fashion. We give the SVM 1% of the
available training instances and ignore the remainder. This
subset always includes all the ideal (completely relevant) re-
sults and—if possible—at least as many marginally relevant
and irrelevant results as the number of ideal results to en-
sure the training set covers the gamut of available relevance
judgments.

4. EXPERIMENTS
We use a publicly available evaluation benchmark in our

experiments. We briefly describe the datasets and queries but
refer the reader to its original description [7] for additional
details.
The evaluation workload includes three datasets: Mon-

dial, the Internet Movie Database (IMDb), and Wikipedia.
Two datasets (IMDb and Wikipedia) are derived from popu-
lar websites. The Mondial database [39] contains geograph-
ical, political, and demographic information extracted from
the CIA World Factbook, International Atlas, and TERRA
Database. The IMDb database, which is a subset of the orig-
inal, was constructed from the IMDb’s plain text files using
IMDbPY 4.1. The Wikipedia database is drawn from the
English Wikipedia and includes all the articles chosen for the
2008–2009 Wikipedia schools DVD, which contains roughly
the same content as a 20-volume encyclopedia. Table 4
summarizes the characteristics of the datasets.

The query workload distributed with the benchmark com-
prises 50 synthetic information needs for each dataset. While

Table 4: Characteristics of the evaluation datasets
and number of training instances available.

Evaluation Training

Dataset Tuples Size (MB) Instances

Mondial 17K 10 33500
IMDb 1.7M 427 132175

Wikipedia 200K 378 119969

these information needs are not sampled from search engine
query logs, they are designed to be representative of the
types of queries users submit to search engines. In particular,
the statistics of the supplied queries are similar to those
encountered by web search engines (see Table 5).
Examining the existing binary relevance judgments sug-

gests that they should be viewed as the ideal recall-base for
each query. The ideal recall-base includes all non-overlapping
results [31]. In recent years, evaluation forums have moved
toward marginal relevance judgments, and systems should
return results in decreasing order of their estimated marginal
relevance. Hence, we extend the supplied relevance judg-
ments by creating the full recall-base, which includes all
results that have any relevance to the query. We construct
the full recall-base by pooling the results returned by each
system, and any result that completely overlaps an ideal
result is judged marginally relevant.4 We adopt the practice
used at the Initiative for the Evaluation of XML retrieval
(INEX) workshop for assigning relevance scores: the marginal
relevance of a result is the ratio of relevant information to
the total information [31, 32]. Issues related to overlap have
been investigated in the context of XML retrieval [27] so we
do not explore them further in this paper.

4.1 Metrics
We use a variety of metrics to evaluate our work. Precision

is the ratio of the number of relevant documents retrieved to
the total number of documents retrieved. When computing
precision, we define the set of relevant results to include

4Unlike XML, which is tree-structured, relational keyword
search systems create result trees from a data graph. We
define two results as overlapping when one is a subset of the
other and not when they merely share tuples in common.

Table 5: Query workload and result statistics. The
AOL query log [40] is used for comparison.

Search log [40] Synthesized Results

Dataset �q� |Q| �q� �q� �R� �R�

Mondial 50 1–5 2.04 1–35 5.90
IMDb 2.71 50 1–26 3.88 1–35 4.32
Wikipedia 2.87 50 1–6 2.66 1–13 3.26

Overall 2.37 150 1–26 2.86 1–35 4.49

Legend
|Q| total number of queries
�q� range in number of query terms

�q� average number of terms per query

�R� range in number of relevant results per query

�R� average number of relevant results per query

all results that have any relevance—i.e., they may only be
marginally relevant to the query.

Precision @ k (P@k) is the mean precision value at a fixed
retrieval depth (e.g., the first 10 results returned by a sys-
tem). Mean reciprocal rank (MRR) is the reciprocal of the
rank of the first relevant result retrieved by a system (e.g.,
1.0 if the first result is relevant, 0.5 if the second result is
relevant, . . .). Although neither of these metrics is robust,
we report them to enable more direct comparison with pre-
vious evaluations. Average precision (AP) is the mean of
the precision values calculated after each relevant result is
returned. Any relevant result not retrieved receives a score of
0. Mean average precision (MAP) averages this value across
all queries to compute a single-valued measurement of re-
trieval effectiveness. Normalized discounted cumulative gain
(nDCG) was designed for evaluations with non-binary (i.e.,
marginal) relevance assessments. The family of cumulative
gain metrics rewards systems that return results in the order
of their relevance to the query.
Because our focus is ranking search results, we do not

address the runtime performance or efficiency of any system.
As stated previously, result enumeration is largely orthogonal
to ranking, and our objective in this paper is to investigate
scoring results.5

4.2 Systems
We compare our learned scoring function, SVM rank, to

10 other relational keyword search systems. We implemented
6 systems (BANKS [2], DISCOVER [21], DISCOVER-II [20],
Liu et al. [35], SPARK [36], and cover density ranking
(CD) [8]) ourselves and obtained implementations of the
other 4 systems (BANKS-II [24], DPBF [12], BLINKS [19],
and STAR [25]). While we would like to compare our scoring
function against all other systems described in the literature,
little sharing of their source code hampers this objective.

The systems adhere to their original description6 although
we did correct a number of minor deficiencies that we found
in their specification or implementation. For each system,
we set all tuning parameters to the values suggested by the
authors. If a system failed due to exhausting virtual memory
(≈ 3 GB), our results include anything output prior to the
error. A system’s omission from a table or figure indicates
that no query returned even a single result on that particular
dataset.

4.3 Results
Table 6 presents our results for P@k. Our results are

similar to those previously reported [7]; the minor deviations
are due to our full recall-base, which increases the total
number of relevant results. On Mondial and Wikipedia,
SVM rank lags slightly behind the best systems for P@1,
but it scores best for P@10. However, SVM rank falters
on the IMDb dataset, scoring only half as well as the best
systems, which is likely due to their slight variations on our
scoring factors. For example, BANKS uses a different edge
weighting scheme than SVM rank. We note that SVM rank
outperforms the systems that share exactly the same factors.

5In some instances, combining enumeration and ranking (i.e.,
enumerating the top-k results in the order their final ranking)
improves performance; we leave this task for future work due
to the intricacies involved in their integration.
6The implementation of Liu et al.’s work [35] does not include
phrase-based ranking.

Table 6: P@k (∈ [0, 1], higher is better) for the sys-
tems on each dataset; the best score for each dataset
is bolded. Omitted values indicate that the system
failed to retrieve any results for any query.

k = 1

System Mondial IMDb Wikipedia

BANKS [2] 0.420 0.540 0.500
DISCOVER [21] 0.620 0.140 0.120

DISCOVER-II [20] 0.580 0.120 0.180
BANKS-II [24] 0.720 0.500
Liu et al. [35] 0.660 0.400 0.640

DPBF [12] 0.740 0.020
BLINKS [19] 0.720
SPARK [36] 0.560 0.100 0.280
STAR [25] 0.720

Cover Density [8] 0.780 0.380 0.540

SVM rank 0.753 0.220 0.540

k = 10

System Mondial IMDb Wikipedia

BANKS [2] 0.132 0.206 0.094
DISCOVER [21] 0.385 0.120 0.140

DISCOVER-II [20] 0.417 0.166 0.173
BANKS-II [24] 0.442 0.190
Liu et al. [35] 0.429 0.440 0.227

DPBF [12] 0.438 0.048
BLINKS [19] 0.594
SPARK [36] 0.375 0.114 0.216
STAR [25] 0.091

Cover Density [8] 0.588 0.388 0.452

SVM rank 0.744 0.221 0.540

The results for MRR (Table 7) are very similar to the
results of P@k. In fact, the relative performance of each
system compared to the others is largely unchanged from
P@1. SVM rank continues to provide excellent performance
on the Mondial and Wikipedia datasets but is only average
for IMDb.

Table 7: MRR (∈ [0, 1], higher is better) for the sys-
tems on each dataset; the best score for each dataset
is bolded. Omitted values indicate that the system
failed to retrieve any results for any query.

System Mondial IMDb Wikipedia

BANKS [2] 0.488 0.608 0.558
DISCOVER [21] 0.676 0.196 0.241

DISCOVER-II [20] 0.647 0.202 0.394
BANKS-II [24] 0.781 0.591
Liu et al. [35] 0.683 0.446 0.748

DPBF [12] 0.825 0.111
BLINKS [19] 0.771
SPARK [36] 0.627 0.171 0.492
STAR [25] 0.761

Cover Density [8] 0.849 0.456 0.619

SVM rank 0.834 0.332 0.613

In Figure 2, we present MAP (left) for each system and
dataset. SVM rank nearly doubles the performance of any
previous system on the Mondial dataset and also outscores
the other systems for Wikipedia queries. On the IMDb
dataset, SVM rank is edged out by cover density ranking.
Cover density ranking uses a unique scoring scheme that
differs dramatically from other systems and includes features
not considered in our model. The results for MAP are
considerably lower than those of P@k and MRR due to many
systems failing to enumerate all the relevant results (e.g., due
to different search semantics). Unlike P@k and MRR, these
results differ dramatically from those previously reported [7],
which again is attributable to using our full recall-base in
lieu of the ideal recall-base supplied with the evaluation
framework.
Figure 2 also shows nDCG (right) for each system and

dataset. In terms of the relative rank of each system, these
results are similar to MAP. However, nDCG is designed to
reward systems that rank more relevant results ahead of
less relevant results. We see several examples of systems
that significantly improve under nDCG; indeed every system
improves at least slightly compared to MAP. SVM rank
shows a moderate boost in its measured effectiveness; this
improvement is sufficient for SVM rank to edge cover density
ranking as the best system on the IMDb dataset, which
indicates that SVM rank is more likely than cover density
ranking to rank more relevant results ahead of less relevant
results.

5. DISCUSSION
In this section, we analyze the linear function that we used

to score search results. We show that many features may
be eliminated without having a significant impact on search
quality. We also discuss the limitations of our approach.

5.1 Analysis of Model
Using machine learning to create our scoring function po-

tentially introduces several sources of error in our results. We
consider these sources to show that their effect is negligible
before moving on to feature selection.

5.1.1 Sensitivity
As mentioned previously, we use cross validation to train

and to test our scoring function. Because cross validation
requires randomly partitioning the query workload, it is pos-
sible that the partitions bias the results. To investigate this
possibility, we compare retrieval effectiveness across 10 dif-
ferent random partitions (i.e., we repeat the cross validation
10 times). The results are shown in Table 8. As evidenced
by the table, different cross folds do not significantly impact
our results.

Table 8: Comparison (nDCG) of SVM rank trained
using different cross folds. The“baseline” is graphed
in Figure 2.

nDCG

Dataset baseline μ σ

Mondial 0.849 0.862 0.006
IMDb 0.527 0.525 0.002

Wikipedia 0.618 0.621 0.007

Mondial IMDb Wikipedia

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

MAP

Mondial IMDb Wikipedia

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

nDCG

BANKS
DISCOVER
DISCOVER−II
BANKS−II
Liu et al.
DPBF
BLINKS
SPARK
STAR
CD
SVM rank

Figure 2: MAP (∈ [0, 1], higher is better) and NDCG (∈ [0, 1], higher is better) for each system and dataset.
Systems are ordered by date of publication, top to bottom in the legend and left to right in the graphs.
Omitted bars indicate that the system failed to retrieve any results for any query. The error bars provide
95% confidence intervals for the mean.

A second source of possible error in our results stems from
using a fraction of the available training instances. Table 9
provides the search effectiveness from different percentages
of training instances where we randomize the set of training
instances included at each level. Because we ensure that all
the ideal results are retained for each query, doubling the
percentage does not exactly double the number of training
instances. The table also shows that increasing the number
of training instances increases the time required to train the
model, from approximately 5 minutes (per fold) for 0.5% to
almost 20 minutes for 3.0%. However, the impact that the
training percentage has on search effectiveness is negligible.
MAP sees moderate improvement when moving from 0.5%
to 3.0%, but the impact on nDCG is much smaller.

5.1.2 Feature Selection
Feature selection tries to reduce the number of factors in

the scoring function without significantly impacting search
effectiveness. We start with our baseline scoring function
that includes 12 different factors and then identify the factor
with the lowest weight (that is, it contributes least to the
final ranking) and train a new model without that factor.
This process is then repeated.

While greedy backward selection is non-optimal—finding
the optimal requires searching all possible combinations of

Table 9: Average number of training instances and
average training time across all cross-folds for dif-
ferent percentages of training instances. MAP and
nDCG improve only slightly with more training in-
stances.

Training Effectiveness

% Instances Time (s) MAP nDCG

0.5 2279 298 0.457 0.657
1.0 3430 321 0.489 0.663
2.0 5909 550 0.509 0.664
3.0 8453 1024 0.516 0.667

factors [30]—it does provide a simple measure of the impor-
tance of each factor. We note that there is overlap among
our factors: a principal component analysis shows that 98%
of the variability can be attributed to 6 different components.
Hence, we should be able to remove a number of factors
without significantly impacting search quality.

Table 10 shows nDCG as we remove factors from our
scoring function. Note that the number of factors removed
is cumulative—i.e., the first variation is SVM rank without
maxweight(n) and the second variation is SVM rank without
maxweight(n) and without

∑
weight(n). The final varia-

tion, SVM rank (minimal), includes the factors not appearing
in the table: minweight(n) and pivoted normalization. As
evidenced by the table, retrieval effectiveness remains largely
unchanged as several factors are removed. However, per-
formance drops precipitously when the fourth factor (the
Euclidean distance between a result and the query) is re-
moved. This impact is most noticeable for the Mondial
dataset. We posit that this factor is very noisy, having almost
no impact for many queries but is very important for a few.
We remove all but two factors from our scoring function

without seriously impacting search effectiveness. Retrieval
effectiveness actually improves on the Wikipedia dataset as
we eliminate additional features. This trend is not completely
surprising given that pivoted normalization weighting was
developed by the IR community to score lengthy text doc-
uments and the Wikipedia articles are most similar to this
use case.

5.2 Comparison with Alternative Functions
If we take the order in which we remove features (see

Table 10) to be indicative of their importance, we would con-
clude that node weights (with the exception of the minimum
node weight, which is included in SVM rank (minimal)) are
relatively unimportant when ranking search results. Simi-
larly, the total sum of edge weights is the first edge-based
factor to be dropped. This result clashes sharply with con-
ventional wisdom in this field. In particular, all proximity
search systems attempt to rank search results in order of
their total edge weight. Strangely enough, we find that other

Table 10: Comparison of retrieval effectiveness when removing factors (listed in Table 3) from the scoring
function. The factors that have been removed are cumulative—i.e., the second variation of SVM rank (third
row of the table) does not include maxweight(n) or

∑
weight(n). SVM rank (minimal) includes the 2 factors

that were not removed: minweight(n) and pivoted normalization. It is the same as the next-to-last row of the
table (but is duplicated for clarity). The best score for each dataset is bolded.

Mondial IMDb Wikipedia

Removal Improvement Improvement Improvement

Order Factor NDCG Δ % NDCG Δ % NDCG Δ %

SVM rank 0.849 — — 0.527 — — 0.618 — —

1 maxweight(n) 0.854 0.005 0.6 0.525 -0.002 -0.4 0.627 0.009 1.5
2

∑
weight(n) 0.866 0.017 2.0 0.515 -0.012 -2.3 0.630 0.012 1.9

3 weight(n) 0.855 0.006 0.7 0.518 -0.009 -1.7 0.616 -0.002 -0.3
4 Euclidean (L2) distance 0.673 -0.177 -20.8 0.454 -0.073 -13.6 0.560 -0.058 -7.7
5

∑
weight(e) 0.681 -0.169 -19.9 0.464 -0.063 -12.0 0.576 -0.042 -6.8

6 |N | 0.679 -0.170 -20.0 0.446 -0.081 -15.4 0.580 -0.038 -6.1
7 maxweight(e) 0.676 -0.173 -20.4 0.456 -0.071 -13.5 0.573 -0.045 -7.3

8 weight(e) 0.691 -0.158 -18.6 0.469 -0.058 -9.4 0.634 0.016 2.8
9 |E| 0.711 -0.139 -16.4 0.494 -0.033 -6.3 0.619 0.001 0.2
10 minweight(e) 0.772 -0.077 -9.1 0.495 -0.032 -6.1 0.623 0.005 0.8

SVM rank (minimal) 0.772 -0.077 -9.1 0.495 -0.032 -6.1 0.623 0.005 0.8

factors (e.g., the minimum edge weight) are more indicative
of relevance as evidenced by its stronger correlation with
relevance (see Table 3) and by its longer retention in feature
selection. We hope that this opens the door for future debate
regarding the design of new scoring functions.

In Figure 3, we consider our two versions of SVM rank and
two alternatives that score search results more conventionally.
We compare SVM rank (minimal), which includes only 2
factors (minweight(n) and pivoted normalization), to one
using pivoted normalization and

∑
weight(e) and to one

using
∑

weight(n) and
∑

weight(e). Both of these scoring
functions are more similar to those proposed in previous work.
The weights for the various factors are determined using
SVMrank; hence, the alternatives may be viewed as a rough
upper bound of the search effectiveness of existing techniques.

Mondial IMDb Wikipedia

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

nDCG

SVM rank
SVM rank (minimal)
Pivoted normalization and SUM edges
SUM nodes and SUM edges

Figure 3: Comparison of retrieval effectiveness
among SVM rank and traditional scoring functions
proposed in the literature.

As evidenced in the figure, both SVM rank and SVM rank
(minimal) always outperform the more conventional scoring
functions. We conclude—contrary to the established norm
in this area—that ranking results by their total edge weight
is not an ideal ranking scheme. This conclusion overturns
general intuition for these scoring functions and questions
the importance of algorithms that attempt to enumerate
results in the order of their total edge weight. We refer the
interested reader to the appendix for further discussion of
this result.

5.3 Threats to Validity
There are several issues that may have impacted our eval-

uation. First, our results are dependent on our evaluation
datasets. As mentioned previously, our evaluation includes 3
diverse datasets with a large query workload for each so the
likelihood that our results generalize to other databases is
high. Second, we do not address the enumeration of results in
this work. A variety of enumeration algorithms has already
been proposed; it would be straightforward to marry our
scoring function with any one of these algorithms. Third, we
did not consider all possible feature and factor combinations
that have been previously proposed. In particular, using a
different edge weighting scheme might have produced differ-
ent results, particularly with regards to the importance of
minimizing the total edge weight of results. Unfortunately,
there is no existing work that indicates which edge weighting
scheme is best.
Our work uses a linear SVM to fit a linear function for

scoring results. This decision follows naturally from most
existing relational keyword search scoring functions, which
are linear. In contrast, most scoring functions used by the
IR community are non-linear and include—for example—
logarithmic damping of term frequency and inverse document
frequency. Although our edge weighting scheme is non-linear,
we combine all our factors linearly, and it is certainly possible
for a different combination function to provide even better
results.

Although our methodology for assessing relevance follows
from the methodology of the XML retrieval community, it
is possible that this process partially explains our results.
We judge a result to be relevant if it completely overlaps
with a result in the ideal recall base, and the relevance
of a result is the ratio of its relevant information to total
information (e.g., when a single tuple is relevant to the query).
Hence, larger results are more likely to be judged relevant
than smaller results because larger results are more likely to
contain relevant information. This technique may explain
why the sum of edge weights is not indicative of relevance—
results with more nodes and edges are actually more likely
to be marginally relevant. Relevance judgments in previous
evaluations differ markedly—the relevant result(s) must be
minimal, a practice without precedent in traditional IR.
Applying SVM rank to the set of results enumerated by

other systems may also account for its superior performance.
Different systems have different semantics for considering a
result to be valid—for example, some systems allow results
to contain only a subset of the search terms while other
systems require all search terms to be present in a result. If
some results judged relevant were not enumerated by a par-
ticular system, then enumeration and ranking are no longer
orthogonal tasks and should be addressed separately in the
evaluation of these systems. That is, a system’s failure to
enumerate a relevant result precludes it from ranking that re-
sult and—depending on the metric—diminishes its measured
effectiveness. Using each system’s scoring function to rank
the set of results enumerated by any system would completely
disassociate enumeration and ranking in an evaluation.

6. RELATED WORK
In Section 2, we presented an overview of the various

ranking schemes proposed in the literature for relational key-
word search. In this section, we review other contributions—
particularly performance—of relational keyword search sys-
tems. We start with proximity search techniques before
moving on to schema-based approaches. For additional de-
tails, Yu et al. [56] provide an excellent survey of relational
keyword search. Finally, we conclude this section with an
overview of using machine learning in IR.

BANKS [2] proposed the backward expanding search heuris-
tic to enumerate search results. BANKS-II [24] uses the bidi-
rectional search heuristic to alleviate performance problems.
DPBF [12] finds the optimal group Steiner tree via a dynamic
programming algorithm. BLINKS [19] creates a two-level
index to improve enumeration performance. EASE [34] pre-
computes all r-radius Steiner graphs within a data graph
and ranks search results with both structural compactness
and IR-style scoring factors. Golenberg et al. [18] enumerate
search results in approximate order by height rather than
weight. Dalvi et al. [10] investigate keyword search on data
graphs that do not fit within main memory. STAR [25] pro-
vides a pseudo-polynomial time algorithm to identify search
results. CSTree [33] approximates solutions to the Steiner
tree problem to allow top-k query processing.
DISCOVER [21] was an early system that executed SQL

queries to identify potential search results. DISCOVER-
II [20] adopted pivoted normalization weighting for ranking
search results and also provided efficient query processing
algorithms. Liu et al. [35] proposed a variety of modifications
and additional factors for pivoted normalization weighting.
SPARK [36] proposed new query processing techniques to

handle its non-monotonic scoring function. Qin et al. [42]
address query processing techniques under different query
semantics. Baid et al. [1] examine performance problems
endemic to existing approaches and suggest a partial explo-
ration of the search space and forms to guide further explo-
ration. Structured cover density ranking [8] ranks search
results in decreasing order of their coordination with the
query terms.

The major focus for much of this previous work is the enu-
meration of search results although many also propose new
scoring functions (see Section 2). The significant amount of
work on enumeration algorithms complements our work, for
our scoring function can be used to re-rank results following
their enumeration (as proposed by Golenberg et al. [18]). We
note that further improvements in enumeration algorithms
are likely when the scoring function need not minimize the
total edge weight of results. Coffman and Weaver [7] analyze
the various ranking schemes for relational keyword search.
SVM rank outperforms all the ranking schemes included in
our evaluation. Little sharing of source code and significant
reimplementation effort precluded us from comparing against
the remaining scoring functions described in the literature.
Using machine learning to explore how to weight differ-

ent factors when scoring search results has not been pre-
viously investigated in the context of relational keyword
search. Machine learning in IR is a well-studied topic. Sebas-
tiani [48] provides an overview of automated text categoriza-
tion. Joachims [22] applies ordinal regression to clickstream
data and shows that the learned function outperforms ex-
isting search engines. Burges et al. [4] and Richardson et
al. [44] also apply learning to rank to web search. Cao et
al. [5] address how to adapt ranking SVMs to document
retrieval. Geng et al. [15] consider the problem of feature
selection and propose an approach based on the importance
and similarity of the various features. Joachims [22] and
Richardson et al.’s [44] work is closest to our own, but our
context and the features that we consider both differ. Incor-
porating Cao et al.’s work [5] on ranking SVMs would have
undoubtedly improved our search effectiveness for P@k and
MRR, the instances where SVM rank was only comparable
to existing systems.

7. CONCLUSION AND FUTURE WORK
Although many scoring functions for relational keyword

search have been proposed in the literature, relatively little
work has considered their effectiveness when ranking results.
Instead, researchers have relied on intuition and anecdotal
evidence without extensive experiments to determine whether
or not various factors are indicative of relevance. In this work,
we consider factors that have been previously proposed in the
literature, and we show that many existing scoring functions—
indeed complete systems—have been constructed around
factors that are not highly correlated with relevance. The
best example is identifying group Steiner trees, which is the
goal of many systems. We use machine learning to create a
new scoring function, which outperforms existing approaches
on a diverse query workload that spans 3 different datasets.
Finally, we simplify our scoring function by eliminating all
the features except minweight(n) and pivoted normalization
weighting and show that it continues to outperform existing
approaches.

In the future, we would like to investigate the variation in
search effectiveness from different formulations of the same

feature. For example, different methods for assigning edge
weights in the data graph could alter our results; we note
that this question has not been addressed by any previous
work in this field. We would also like to investigate non-linear
scoring functions.
As a challenge to the research community, differentiat-

ing the separate steps of enumeration and ranking would
lend clarity to these largely orthogonal issues. In particular,
research focused on enumeration algorithms should reuse
existing scoring functions (to the greatest extent possible) so
as not to merge evaluations of performance with search effec-
tiveness. Likewise, new ranking schemes should not only be
compared to existing systems, but an analysis of the various
factors (i.e., their impact on search effectiveness) should also
be provided.

8. ACKNOWLEDGMENTS
Ray Buse provided insight on how to conduct this study

and helpful comments regarding drafts of this paper. We
thank Ding et al. and He et al. for sharing implementations
of systems that we included in our evaluation. SVMrank is
available for non-commercial use from Joachims.

References
[1] A. Baid, I. Rae, J. Li, A. Doan, and J. Naughton. Toward

Scalable Keyword Search over Relational Data. Proceedings
of the VLDB Endowment, 3(1):140–149, 2010.

[2] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and
S. Sudarshan. Keyword Searching and Browsing in Data-
bases using BANKS. In Proceedings of the 18th Interna-
tional Conference on Data Engineering, ICDE ’02, pages
431–440, February 2002.

[3] S. Brin and L. Page. The anatomy of a large-scale hyper-
textual Web search engine. Computer Networks and ISDN
Systems, 30(1-7):107–117, 1998.

[4] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds,
N. Hamilton, and G. Hullender. Learning to Rank using
Gradient Descent. In Proceedings of the 22nd International
Conference on Machine Learning, ICML ’05, pages 89–96,
2005.

[5] Y. Cao, J. Xu, T.-Y. Liu, H. Li, Y. Huang, and H.-W.
Hon. Adapting Ranking SVM to Document Retrieval. In
Proceedings of the 29th Annual International ACM SIGIR
Conference on Research and Development in Information
Retrieval, SIGIR ’06, pages 186–193, 2006.

[6] C. L. A. Clarke. Controlling Overlap in Content-Oriented
XML Retrieval. In Proceedings of the 28th Annual Interna-
tional ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, SIGIR ’05, pages 314–321,
2005.

[7] J. Coffman and A. C. Weaver. A Framework for Evaluating
Database Keyword Search Strategies. In Proceedings of
the 19th ACM International Conference on Information
and Knowledge Management, CIKM ’10, pages 729–738,
October 2010.

[8] J. Coffman and A. C. Weaver. Structured Data Retrieval
using Cover Density Ranking. In KEYS ’10: Proceedings
of the 2nd International Workshop on Keyword Search on
Structured Data, pages 1–6, June 2010.

[9] J. Coffman and A. C. Weaver. Learning to Rank Results in
Relational Keyword Search. In Proceedings of the 20th ACM
International Conference on Information and Knowledge
Management, CIKM ’11, October 2011.

[10] B. B. Dalvi, M. Kshirsagar, and S. Sudarshan. Keyword
Search on External Memory Data Graphs. Proceedings of
the VLDB Endowment, 1(1):1189–1204, 2008.

[11] A. P. de Vries, G. Kazai, and M. Lalmas. Tolerance to
Irrelevance: A user-effort oriented evaluation of retrieval

systems without predefined retrieval unit. In Recherche
d’Informations Assisteee par Ordinateur, RAIO ’04, April
2004.

[12] B. Ding, J. X. Yu, S. Wang, L. Qin, X. Zhang, and X. Lin.
Finding Top-k Min-Cost Connected Trees in Databases. In
ICDE ’07: Proceedings of the 23rd International Confer-
ence on Data Engineering, pages 836–845, April 2007.

[13] S. E. Dreyfus and R. A. Wagner. The Steiner Problem in
Graphs. Networks, 1(3):195–207, 1971.

[14] S. Fox. Search engines. Technical report, Pew Internet and
American Life Project, July 2002. http://www.pewinternet.
org/Reports/2002/Search-Engines.aspx.

[15] X. Geng, T.-Y. Liu, T. Qin, and H. Li. Feature Selection for
Ranking. In Proceedings of the 30th Annual International
ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’07, pages 407–414, 2007.

[16] Global Search Market Grows 46 Percent in 2009. http:
//www.comscore.com/Press_Events/Press_Releases/2010/
1/Global_Search_Market_Grows_46_Percent_in_2009, Jan-
uary 2010.

[17] R. Goldman, N. Shivakumar, S. Venkatasubramanian, and
H. Garcia-Molina. Proximity Search in Databases. In VLDB
’98: Proceedings of the 24rd International Conference on
Very Large Data Bases, pages 26–37, August 1998.

[18] K. Golenberg, B. Kimelfeld, and Y. Sagiv. Keyword Prox-
imity Search in Complex Data Graphs. In Proceedings
of the 2008 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’08, pages 927–940, June
2008.

[19] H. He, H. Wang, J. Yang, and P. S. Yu. BLINKS: Ranked
Keyword Searches on Graphs. In Proceedings of the 2007
ACM SIGMOD International Conference on Management
of Data, SIGMOD ’07, pages 305–316, June 2007.

[20] V. Hristidis, L. Gravano, and Y. Papakonstantinou. Efficient
IR-style Keyword Search over Relational Databases. In
Proceedings of the 29th International Conference on Very
Large Data Bases, VLDB ’03, pages 850–861, September
2003.

[21] V. Hristidis and Y. Papakonstantinou. DISCOVER: Key-
word Search in Relational Databases. In Proceedings of the
29th International Conference on Very Large Data Bases,
VLDB ’02, pages 670–681. VLDB Endowment, August
2002.

[22] T. Joachims. Optimizing Search Engines using Clickthrough
Data. In Proceedings of the 8th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data
Mining, KDD ’02, pages 133–142, 2002.

[23] T. Joachims. Training linear SVMs in linear time. In
Proceedings of the 12th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, KDD
’06, pages 217–226, August 2006.

[24] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan,
R. Desai, and H. Karambelkar. Bidirectional Expansion For
Keyword Search on Graph Databases. In Proceedings of the
31st International Conference on Very Large Data Bases,
VLDB ’05, pages 505–516, August 2005.

[25] G. Kasneci, M. Ramanath, M. Sozio, F. M. Suchanek, and
G. Weikum. STAR: Steiner-Tree Approximation in Rela-
tionship Graphs. In Proceedings of the 25th International
Conference on Data Engineering, ICDE ’09, pages 868–879,
March 2009.

[26] G. Kasneci, F. M. Suchanek, G. Ifrim, M. Ramanath, and
G. Weikum. NAGA: Searching and Ranking Knowledge.
In ICDE ’08: Proceedings of the 2008 IEEE 24th Inter-
national Conference on Data Engineering, pages 953–962,
April 2008.

[27] J. Kekäläinen, M. Junkkari, P. Arvola, and T. Aalto. TRIX
2004 – Struggling with the Overlap. In N. Fuhr, M. Lal-
mas, S. Malik, and Z. Szlávik, editors, Advances in XML
Information Retrieval, volume 3493 of Lecture Notes in
Computer Science, pages 145–162. Springer Berlin / Heidel-
berg, 2005.

[28] M. Kendall. A New Measure of Rank Correlation.
Biometrika, 30(1/2):81–93, June 1938.

[29] R. Kohavi. A Study of Cross-Validation and Bootstrap for
Accuracy Estimation and Model Selection. In Proceedings
of the 14th International Joint Conference on Artificial
Intelligence, volume 2, pages 1137–1143, San Francisco,
CA, 1995. Morgan Kaufmann Publishers Inc.

[30] R. Kohavi and G. H. John. Wrappers for feature subset
selection. Artificial Intelligence, 97(1–2):273–324, 1997.

[31] M. Lalmas, G. Kazai, J. Kamps, J. Pehcevski, B. Pi-
wowarski, and S. Robertson. INEX 2006 Evaluation Mea-
sures. In N. Fuhr, M. Lalmas, and A. Trotman, editors,
Comparative Evaluation of XML Information Retrieval
Systems, volume 4518 of Lecture Notes in Computer Sci-
ence, pages 20–34. Springer Berlin / Heidelberg, 2007.

[32] M. Lalmas and A. Tombros. INEX 2002 - 2006: Under-
standing XML Retrieval Evaluation. In C. Thanos, F. Borri,
and L. Candela, editors, Digital Libraries: Research and
Development, volume 4877 of Lecture Notes in Computer
Science, pages 187–196. Springer Berlin / Heidelberg, 2007.

[33] G. Li, J. Feng, X. Zhou, and J. Wang. Providing built-in
keyword search capabilities in RDBMS. The VLDB Journal,
20:1–19, February 2011.

[34] G. Li, B. C. Ooi, J. Feng, J. Wang, and L. Zhou. EASE: An
Effective 3-in-1 Keyword Search Method for Unstructured,
Semi-structured and Structured Data. In Proceedings of
the 2008 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’08, pages 903–914, June
2008.

[35] F. Liu, C. Yu, W. Meng, and A. Chowdhury. Effective
Keyword Search in Relational Databases. In Proceedings
of the 2006 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’06, pages 563–574, June
2006.

[36] Y. Luo, X. Lin, W. Wang, and X. Zhou. SPARK: Top-k
Keyword Query in Relational Databases. In Proceedings
of the 2007 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’07, pages 115–126, June
2007.

[37] Y. Luo, X. Lin, W. Wang, and X. Zhou. SPARK: Top-k
Keyword Query in Relational Databases. Technical Report
UNSW-CSE-TR-0708, The University of New South Wales,
March 2007.

[38] Y. Mass and M. Mandelbrod. Component Ranking and Au-
tomatic Query Refinement for XML Retrieval. In N. Fuhr,
M. Lalmas, S. Malik, and Z. Szlávik, editors, Advances
in XML Information Retrieval, volume 3493 of Lecture
Notes in Computer Science, pages 1–18. Springer Berlin /
Heidelberg, 2005.

[39] W. May. Information Extraction and Integration with
Florid: The Mondial Case Study. Technical Report
131, Universität Freiburg, Institut für Informatik, 1999.
Available from http://dbis.informatik.uni-goettingen.
de/Mondial.

[40] G. Pass, A. Chowdhury, and C. Torgeson. A Picture of
Search. In InfoScale ’06: Proceedings of the 1st Interna-
tional Conference on Scalable Information Systems, May
2006.

[41] L. Qin, J. Yu, L. Chang, and Y. Tao. Querying Commu-
nities in Relational Databases. In Proceedings of the 25th
International Conference on Data Engineering, ICDE ’09,
pages 724–735, March 2009.

[42] L. Qin, J. X. Yu, and L. Chang. Keyword Search in Data-
bases: The Power of RDBMS. In Proceedings of the 2009
ACM SIGMOD International Conference on Management
of Data, SIGMOD ’09, pages 681–694, June 2009.

[43] G. Reich and P. Widmayer. Beyond Steiner’s problem: A
VLSI oriented generalization. In M. Nagl, editor, Graph-
Theoretic Concepts in Computer Science, volume 411
of Lecture Notes in Computer Science, pages 196–210.
Springer, 1990.

[44] M. Richardson, A. Prakash, and E. Brill. Beyond PageRank:
Machine Learning for Static Ranking. In Proceedings of
the 15th International Conference on World Wide Web,
WWW ’06, pages 707–715, 2006.

[45] S. Robertson, H. Zaragoza, and M. Taylor. Simple BM25
Extension to Multiple Weighted Fields. In CIKM ’04:

Proceedings of the 13th ACM International Conference on
Information and Knowledge Management, pages 42–49,
November 2004.

[46] J. L. Rodgers and W. A. Nicewander. Thirteen Ways
to Look at the Correlation Coefficient. The American
Statistician, 42(1):59–66, February 1988.

[47] G. Salton. The SMART Retrieval System—Experiments in
Automatic Document Processing. Prentice-Hall, Inc., 1971.

[48] F. Sebastiani. Machine Learning in Automated Text Cat-
egorization. ACM Computing Surveys, 34:1–47, March
2002.

[49] A. Singhal. Modern Information Retrieval: A Brief
Overview. Bulletin of the IEEE Computer Society Technical
Committee on Data Engineering, 24(4):35–43, December
2001.

[50] A. Singhal, J. Choi, D. Hindle, D. Lewis, and F. Pereira.
AT&T at TREC-7. In Proceedings of the Seventh Text
REtrieval Conference (TREC-7), pages 239–252, November
1999.

[51] C. Spearman. The Proof and Measurement of Association
between Two Things. The American Journal of Psychology,
15(1):72–101, January 1904.

[52] F. M. Suchanek, G. Kasneci, and G. Weikum. YAGO: A
Core of Semantic Knowledge. In Proceedings of the 16th
International Conference on World Wide Web, WWW ’07,
pages 697–706, 2007.

[53] M. Taylor, H. Zaragoza, N. Craswell, S. Robertson, and
C. Burges. Optimisation Methods for Ranking Functions
with Multiple Parameters. In Proceedings of the 15th ACM
International Conference on Information and Knowledge
Management, CIKM ’06, pages 585–593, November 2006.

[54] J.-N. Vittaut, B. Piwowarski, and P. Gallinari. An Algebra
for Structured Queries inăBayesianăNetworks. In N. Fuhr,
M. Lalmas, S. Malik, and Z. Szlávik, editors, Advances
in XML Information Retrieval, volume 3493 of Lecture
Notes in Computer Science, pages 91–106. Springer Berlin
/ Heidelberg, 2005.

[55] W. Webber. Evaluating the Effectiveness of Keyword Search.
IEEE Data Engineering Bulletin, 33(1):54–59, 2010.

[56] J. X. Yu, L. Qin, and L. Chang. Keyword Search in Data-
bases. Morgan and Claypool Publishers, 1st edition, 2010.

APPENDIX
Justification for Minimizing Total Edge Weight
To the best of our knowledge, Goldman et al. [17] first pro-
posed proximity search in databases. Intuitively, users want
results that are more closely related to be ranked ahead of
results that are less closely related. For example, if two
nodes are connected by a single edge, this relationship is
stronger than one that requires multiple edges and inter-
mediary nodes. Goldman et al. [17] do not consider search
effectiveness in their evaluation, but BANKS [2] provides
anecdotal evidence that total edge weight is correlated with
relevance. In NAGA [26] and STAR [25], Kasneci et al. claim
that a Steiner-tree-based scoring function is correlated with
relevance.

We cannot immediately reconcile these claims with our re-
sults, but we have identified three possible factors that might
account for this discrepancy. First, Kasneci et al. search
the YAGO knowledge base [52], which includes millions of
facts connected by predefined relationships. Its structure is
considerably different from the graphs created from a rela-
tional database, and NAGA’s evaluation [26] did not include
graphs created from relational data. Second, NAGA [26]
does indicate that its weighting of graph edges (based on the
strength of its beliefs regarding each relationship) outper-
forms BANKS’s scoring function [2], which cannot capture

the informativeness of different relationships. Hence, alterna-
tive edge weighting schemes might produce different results.
BANKS significantly outperforms SVM rank on the IMDb
dataset for the highest ranked results (see the P@1 and MRR
results), and one possible reason is its different method for
assigning edge weights. A formal examination of these differ-
ent edge weighting schemes would undoubtedly be useful for

future work in this area. Third, the general intuition—results
should be composed of closely related tuples—seems valid,
particularly for identifying the most relevant result, but it
may not be as good at identifying marginally relevant results,
which would cause it to perform worse at higher recall levels
(e.g., on MAP and nDCG). Again, a formal study of this
phenomenon seems prudent for future work in this area.

