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Abstract
This paper presents a feedback control real-time scheduling (FCS) framework for adaptive real-time

systems. An advantage of the FCS framework is its use of feedback control theory (rather than ad hoc
solutions) as a scientific underpinning. We apply a control theory based design methodology to
systematically design FCS algorithms to satisfy their transient and steady state performance
specifications. In particular, we establish a dynamic model and performance analysis of several feedback
control scheduling algorithms, which is a major challenge and key step for the control design of adaptive
real-time systems. We also generalize a FCS architecture that allows plug-ins of different real-time
scheduling policies and QoS optimization algorithms. Based on our model, we identify different types of
real-time applications where each FCS algorithm can be applied. Performance evaluation results
demonstrate that our analytically tuned FCS algorithms provide robust steady and transient state
performance guarantees for periodic and aperiodic tasks even when the task execution time varied
considerably from the estimation.

1. Motivation and Introduction
Real-time scheduling algorithms fall into two categories: static and dynamic scheduling. In static
scheduling, the scheduling algorithm has complete knowledge of the task set and its constraints, such as
deadlines, computation times, precedence constraints, and future release times. The Rate Monotonic (RM)
algorithm and its extensions [19][23] are static scheduling algorithms and represent one major paradigm
for real-time scheduling. In dynamic scheduling, however, the scheduling algorithm does not have the
complete knowledge of the task set or its timing constraints. For example, new task activations, not
known to the algorithm when it is scheduling the current task set, may arrive at a future unknown time.
Dynamic scheduling can be further divided into two categories: scheduling algorithms that work in
resource sufficient environments and those that work in resource insufficient environments. Resource
sufficient environments are systems where the system resources are sufficient to a priori guarantee that,
even though tasks arrive dynamically, at any given time all the tasks are schedulable. Under certain
conditions, Earliest Deadline First (EDF) [23][36] is an optimal dynamic scheduling algorithm in
resource sufficient environments. EDF is a second major paradigm for real-time scheduling. While real-
time system designers try to design the system with sufficient resources, because of cost and
unpredictable environments, it is sometimes impossible to guarantee that the system resources are
sufficient. In this case, EDF’s performance degrades rapidly in overload situations. The Spring scheduling
algorithm [41] can dynamically guarantee incoming tasks via on-line admission control and planning and
thus is applicable in resource insufficient environments. Many other algorithms [36] have also been
developed to operate in this way. These admission-control-based algorithms represent the third major
paradigm for real-time scheduling. However, despite the significant body of results in these three
paradigms of real-time scheduling, many real world problems are not easily supported. While algorithms
such as EDF, RM and the Spring scheduling algorithm can support sophisticated task set characteristics
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(such as deadlines, precedence constraints, shared resources, jitter, etc.), they are all "open loop"
scheduling algorithms. Open loop refers to the fact that once schedules are created they are not "adjusted"
based on continuous feedback. While open-loop scheduling algorithms can perform well in predictable
environments in which the workloads can be accurately modeled (e.g., traditional process control
systems), they can perform poorly in unpredictable environments, i.e., systems whose workloads cannot
be accurately modeled. For example, the Spring scheduling algorithm assumes complete knowledge of
the task set except for their future release times. Systems with open-loop schedulers such as the Spring
scheduling algorithm are usually designed based on worst-case workload parameters. When accurate
system workload models are not available, such an approach can result in a highly underutilized system
based on extremely pessimistic estimation of workload.

In recent years, a new category of soft real-time applications executing in open and unpredictable
environments is rapidly growing [37]. Examples include open systems on the Internet such as online
trading and e-business servers, and data-driven systems such as smart spaces, agile manufacturing, and
many defense applications such as C4I. For example, in an e-business server, neither the resource
requirements nor the arrival rate of service requests are known a priori. However, performance
guarantees are required in these applications. Failure to meet performance guarantees may result in loss of
customers, financial damage, liability violations, or even mission failures. For these applications, a
system design based on open loop scheduling and estimation of worst-case resource requirements can
result in an extremely expensive and underutilized system.

As a cost-effective approach to achieve performance guarantees in unpredictable environments,
several adaptive scheduling algorithms have been recently developed (e.g., [4][6][7][13][20][22][27]).
While early research on real-time scheduling was concerned with guaranteeing complete avoidance of
undesirable effects such as overload and deadline misses, adaptive real-time systems are designed to
handle such effects dynamically. There remain many open research questions in adaptive real-time
scheduling. In particular, how can a system designer specify the performance requirement of an adaptive
real-time system? And how can he systematically design a scheduling algorithm to satisfy its performance
specifications? The design methodology for automatic adaptive systems has been developed in feedback
control theory [15][16]. However, feedback control theory has been mostly applied in mechanical and
electrical systems. On the other hand, the modeling, analysis and implementation of adaptive real-time
systems lead to significant research challenges to both real-time and control theory community. Recently,
several works applied control theory to computing systems. For example, several papers
[3][9][11][12][14][28][30][33][38][40] presented flexible or adaptive real-time (CPU) scheduling
techniques to improve digital control system performance. These techniques are tailored to the specific
characteristics of digital control systems instead of general adaptive real-time computing systems. Several
other papers [5][10][18][20][30][31][39] presented adaptive CPU scheduling algorithms or QoS
management architectures for computing systems such multimedia and communication systems.
Transient and steady state performance of adaptive real-time systems has received special attention in
recent years. For example, Brandt et. al. [10] evaluated a dynamic QoS manager by measuring the
transient performance of applications in response to QoS adaptations. Rosu et. al. [31] proposed a set of
performance metrics to capture the transient responsiveness of adaptations and its impact on applications.
The paper proposed metrics that is similar to settling time and steady-state error metrics found in control
theory.

However, to the authors’ best knowledge, no unified framework exists to date for designing an
adaptive system from performance specifications of desired dynamic response. In this paper we present
feedback control real-time scheduling (FCS), a unified framework that maps QoS control in adaptive real-
time systems to feedback control theory. Our control theoretical framework includes the following
elements:

• A feedback control scheduling architecture that maps the feedback control structure to adaptive
resource scheduling in real-time systems [26],
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• A set of performance specifications and metrics to characterize both transient and steady state
performance of adaptive real-time systems [25], and

• A control theory based design methodology for resource scheduling algorithms to satisfy their
performance specifications.

In contrast with ad hoc approaches that often rely on laborious design/tuning/testing iterations, our
framework enables system designers to systematically design adaptive real-time systems with established
analytical methods to achieved desired performance guarantees in unpredictable environments. Our
previous work on feedback control real-time scheduling has appeared in [25][26]. The contributions of
the previous work covered the first two elements of the FCS framework listed above. In this paper, we
present recent advances in this framework including the following new major contributions:

• An analytical model and analysis of feedback control scheduling algorithms, which is a major
challenge and key step for the control design of adaptive real-time systems,

• A generalized scheduling architecture that allows plug-ins of different real-time scheduling
policies and QoS optimization algorithms,

• Identification of the applicability of FCS algorithms to different types of real-time applications,
and

• Performance evaluation results that shows that the analytically tuned FCS algorithms can achieve
desired steady and transient state performance for unpredictable periodic and aperiodic tasks.

In the rest of this paper, the feedback control real-time scheduling architecture is described in Section 2.
We describe the performance specifications and metrics in Section 3. The control theory based design
methodology is presented in Section 4. We establish an analytical model for a real-time system in Section
5. Based on the model, we present the design and control analysis of a set of FCS algorithms in Section 6.
We present the performance evaluation results of these scheduling algorithms in Section 7. We then
qualitatively compare FCS algorithms with several existing scheduling paradigms in Section 8. Finally,
we conclude this paper in Section 9.
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Figure 1: Feedback Control Real-Time Scheduling Architecture

2. Feedback Control Real-Time Scheduling Architecture
Our feedback control real-time scheduling (FCS) architecture is composed of four parts: a task model, a
set of control related variables, a feedback control loop that maps a feedback control system structure to
real-time scheduling, and a Basic Scheduler (Figure 1).
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2.1. Task Model
Each task has several QoS levels. In this task model, each task Ti has N QoS levels (N ≥ 2). Each QoS
level j (0 ≤ j ≤ N-1) of Ti is characterized by the following attributes:

Di[j]: the relative Deadline
EEi[j]: the estimated execution time
AEi[j]: the (actual) execution time that can vary considerably from instance to instance and is

unknown to the scheduler
Vi[j]: the value task Ti contributes if it is completed at QoS level j before its deadline Di[j]. The

lowest QoS level 0 represents the rejection of the task and Vi[0] ≤ 0 (when Vi[0] < 0, it is
called the rejection penalty [6]). Every QoS level contributes a value of Vi[0] if it misses its
deadline.

For periodic tasks:
Pi[j]: the invocation period
Bi[j]: the estimated CPU utilization Bi[j] = EEi[j] / Pi[j]
Ai[j]: the (actual) CPU utilization Ai[j] = AEi[j] / Pi[j]

For aperiodic tasks:
EIi[j]: the estimated inter-arrival-time between subsequent invocations
AIi[j]: the average inter-arrival-time that is unknown to the scheduler
Bi[j]: the estimated CPU utilization Bi[j] = EEi[j] / EIi[j]
Ai[j]: the (actual) CPU utilization Ai[j] = AEi[j] / AIi[j]

In this model, a higher QoS level of a task has a higher (both estimated and actual) CPU utilization and
contributes a higher value if it meets its deadline, i.e., Bi[j+1] > Bi[j], Ai[j+1] > Ai[j], and Vi[j+1] > Vi[j]. In
the simplest form, each task only has two QoS levels (corresponding to the admission and the rejection of
the task, respectively). In many applications including web services [4], multimedia [10], embedded
digital control systems [12], and systems that support imprecise computation [23] or flexible security
[35], each task has more than two QoS levels and the scheduler can trade-off the CPU utilization of a task
with the value it contributes to the system at a finer granularity. The QoS levels can differ in term of
execution time and/or period/inter-arrival-time. For example, a web server can dynamically change the
execution time of a HTTP session by changing the complexity of the requested web page [4]. For another
example, several papers have shown that the deadlines and periods of tasks in embedded digital control
systems and multimedia players can be adjusted on-line [10][12][33]. A key feature of our task model is
that it characterizes systems in unpredictable environments where task’s actual CPU utilization is time
varying and unknown to the scheduler. Such systems are amenable to the use of feedback control loops to
dynamically correct the scheduling errors to adapt to load variations at run-time.

2.2. Control Related Variables
An important step in designing the FCS architecture is to decide the following variables of a real-time
system in terms of control theory.

• Controlled variables are the performance metrics controlled by the scheduler in order to achieve
desired system performance. Controlled variables of a real-time system may include the deadline miss
ratio M(k) and the CPU utilization U(k) (also called miss ratio and utilization, respectively), both
defined over a time window ( (k-1)W, kW ), where W is the sampling period and k is called the
sampling instant.



5

o The miss ratio M(k) at the kth sampling instant is defined as the number of deadline misses
divided by the total number of completed and aborted tasks in a sampling window ((k-1)W, kW).
Miss ratio is usually the most important performance metric in a real-time system.

o The utilization U(k) at the kth sampling instant is the percentage of CPU busy time in a sampling
window ((k-1)W, kW). CPU utilization is regarded as a controlled variable for real-time systems
due to cost and throughput considerations. CPU utilization is important also because the its direct
linkage with the deadline miss ratio (see Section 5).

o Another controlled variable might be the total value V(k) delivered by the system in the kth

sampling period. In the remainder of this paper, we do not directly use the total value as a
controlled variable, but rather address the value imparted by tasks via the QoS Actuator (see
Figure 1 and Section 7.1)

• Performance references represent the desired system performance in terms of the controlled
variables, i.e., the desired miss ratio MS and/or the desired CPU utilization US. For example, a
particular system may require deadline miss ratio MS = 0 and CPU utilization US = 90%. The
difference between a performance reference and the current value of the corresponding controlled
variable is called an error, i.e., the miss ratio error EM = MS – M(k) and the utilization error EU = US –
U(k).

• Manipulated variables are system attributes that can be dynamically changed by the scheduler to
affect the values of the controlled variables. In our architecture, the manipulated variable is the total
estimated utilization B(k) = ∑iUi[li(k)] of all tasks in the system, where Ti is a task with a QoS level of
li(k) in the kth sampling window. The rational for choosing the total estimated utilization as a
manipulated variable is that most real-time scheduling policies (such as EDF and Rate/Deadline
Monotonic) can guarantee no deadline misses when the system is not overloaded, and in normal
situations, the miss ratio increases as the system load increases. The other controlled variable, the
utilization U(k), also usually increases as the total estimated utilization increases. However, the
utilization is often different from the total estimated utilization B(k). This is due to the estimation
error of execution times when workload is unpredictable and time varying. Another difference
between U(k) and B(k) is that U(k) can never exceeds 100% while B(k) does not have this boundary.

2.3. Feedback Control Loop
The FCS architecture features a feedback control loop that is invoked at every sampling instant k. It is
composed of a Monitor, a Controller, and a QoS Actuator (Figure 1).

1) The Monitor measures the controlled variables (M(k) and/or U(k)) and feeds the samples back to the
Controller.

2) The Controller compares the performance references with corresponding controlled variables to get
the current errors, and computes a change DB(k) (called the control input) to the total estimated
requested utilization, i.e., B(k+1) = B(k) + DB(k), based on the errors. The Controller uses a control
function to compute the correct manipulated variable value to compensate for the load variations and
keep the controlled variables close to the references. The detailed design of the Controller is
presented in Section 6.

3) The QoS Actuator dynamically changes the total estimated requested utilization at each sampling
instant k according to the control input D(k+1) by adjusting the QoS levels of tasks. The goal of the
QoS Actuator is to enforce the new total estimated requested utilization B(k+1) = B(k) + DB(k).
Under the utilization constraint of B(k), the QoS Actuator calls a QoS optimization algorithm (see
Section 7.1) to maximize the system value. In the simplest form, each task only has only two QoS
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levels and the QoS Actuator is essentially an admission controller. In this paper, we assume the
system has arriving-time QoS control, i.e., the QoS Actuator is also invoked upon the arrival of each
task. The arriving-time admission control isolates disturbances caused by variations in task arrival
rates (see Section 5). Feedback control scheduling in systems without arriving-time QoS control was
previously studied in [25].

2.4. Basic Scheduler
The FCS architecture has a Basic Scheduler that schedules admitted tasks with a scheduling policy (e.g.,
EDF or Rate/Deadline Monotonic). The properties of the scheduling policy can have significant impacts
on the design of the feedback control loop. Our FCS architecture permits plugging in different policies for
this Basic Scheduler and then designing the entire feedback control scheduling system around this choice
(see Section 6.4).

A key difference between our work and the previous work is that while previous work often assumes
the CPU utilization of each task is known a priori, we focus on systems in unpredictable environments
where tasks’ actual CPU utilizations are unknown and time varying. This more challenging problem
necessitates the feedback control loop to dynamically correct the scheduling errors at run-time. Our FCS
architecture establishes a mapping from real-time scheduling to a typical structure of feedback control
systems. This step enables us to treat a real-time system as a feedback control system and utilize feedback
control theory to design the system rather than developing ad hoc algorithms.

3. Performance Specifications and Metrics
We now describe the second element of the FCS framework, the performance specifications and metrics
for adaptive real-time systems. Dynamic (transient and steady state) behavior of adaptive real-time
systems upon load or resource changes has received special attention in recent years. Transient behavior
of an adaptive system represents the responsiveness and efficiency of QoS adaptation in reacting to
changes in run-time conditions, and steady-state behavior describes a system's long-term performance
after its transient response settles.  Traditional metrics such as the average miss-ratio cannot capture the
transient behavior of the system in response to load variations. Recently, a set of metrics [25][31] was
proposed to characterize both transient and steady state behavior of an adaptive system. In this section, we
extend and map the metrics to dynamic responses of control systems. The performance specifications
consist of a set of performance profiles1 in terms of the controlled variables, utilization U(k) and miss
ratio M(k). We also present a set of representative load profiles adapted from control theory [15].

3.1. Performance Profile
The performance profile characterizes important transient and steady state properties of a system in terms
of its controlled variables. Note that when the sampling period W is small, M(k) and U(k) approximates
the instantaneous system performance at the sampling instant k. In contrast, traditional metrics for real-
time systems such as average miss-ratio and average utilization are defined based on a much larger time
window than the sampling period W. The average metrics are often inadequate metric in characterizing
the dynamics of the system performance [25]. From the control theory point of view, a real-time system
transits from the steady state to the transient state when the Controller changes a controlled variable
significantly from its initial value. After a time interval in the transient state, the system may settle down
to a new steady state. For real-time systems, the steady state can be defined as a state when M(k) is within
ε% (e.g., we assume ε% = 2% in this paper) of the reference. The performance profile describes the
system performance in both transient state and steady state as follows.

                                                  
1 The performance profile has been called the miss-ratio profile in [25]. The performance profile can be generalized
to other metrics such as response time, throughput, and value-cognizant metrics.
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�  Stability: A system is (BIBO) stable if its controlled variables, miss ratio M(k) or utilization U(k), are
always bounded for bounded references. Although both miss ratio M(k) and utilization U(k) are
naturally bounded in the range [0, 1], stability is a necessary condition to prevent the controlled
variables from significant divergence from the reference values.

�  Transient-state response represents the responsiveness and efficiency of QoS adaptation in reacting to
changes in run-time conditions.

o Overshoot Mo and Uo: The highest values of controlled variables in transient state. Overshoot
represents the worst-case transient performance of a system in response to the load profile.
Overshoot is often defined as the maximum amount that the system overshoots its reference
divided by its reference, i.e., Mo = (Mmax – MS) / MS, Uo = (Umax – US) / US Overshoot is an
important metric because a high transient miss-ratio or utilization can cause system failure in
many systems such as robots and media streaming [10].

o Settling time Ts: The time it takes the system miss-ratio to enter a steady state after the
Controller is turned on. The settling time represents how fast the system can settle down to
steady state with desired performance. This metric has also been called reaction time or
recovery time [31].

�  Steady-state error ESU and ESU: The difference between the average values of a controlled variable in
steady state and its reference. The steady state error characterizes how precise the system can enforce
the reference (desired performance) in steady state.

�  Sensitivity Sp: Relative change of a controlled variable in steady state with respect to the relative
change of a system parameter p. For example, sensitivity with respect to the task execution time SAE

represents how significantly the change in the task execution time affects the system miss-ratio.
Sensitivity describes the robustness of the system with regard to workload or system variations.

The performance profile establishes a mapping from metrics of adaptive real-time systems to dynamic
response of control systems. This mapping enables system designers to apply established control theory
techniques to achieve stability, and meet transient and steady state specifications.

3.2. Load Profile
Although system load is not known a priori for real-time systems in unpredictable environments, its
performance can be specified under a set of representative load profiles borrowed from control theory;
namely, the step load and the ramp load. Similar types of signals have been widely used to generate
canonical system responses in control theory. In the context of real-time systems, the step load represents
the worst-case load variation, and the ramp load represents a nominal form of load variation. The load
profile L(k) of a system at sampling instant k is defined as the total actual utilization at the highest QoS
level of all the tasks in the system, i.e., L(k) = ∑iAi[N-1](k). The load profiles are defined as follows.

• Step-load SL(Ln, Lm): a load profile that instantaneously jumps from a nominal load Ln to a load Lm

(>Ln) and stays constant after the jump. In real systems, load variations typically occur gradually over
a finite amount of time. Gradual load changes are easier to control and adapt to than sudden load
changes.

• Ramp-load RL(Ln, Lm, TR): a load profile that increases linearly from the nominal load Ln to a load Lm

(>Ln) during a time interval of TR sec. Compared with the step load, the ramp signal represents a less
severe and more realistic load variation scenario.
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In practice the load profiles are application-specific based on the load characteristics and system
requirement. It is usually necessary to specify and test the system performance under a series of load
profiles with different types/parameters. The load profile is an abstraction of the workload, and there can
be many possible instantiations of the same load profile. The instantiation of a load profile should
incorporate the knowledge of the workload, and therefore the load profile should be viewed as an
enhancement to existing benchmarks.

4. Control Theory Based Design Methodology
The third element of our FCS framework is the control theory based design methodology. Based on the
scheduling architecture and the performance specifications, we now establish a design methodology based
on feedback control theory. Using this design methodology, a system designer can systematically design
an adaptive scheduler to satisfy the system’s performance specifications with established analytical
methods. This methodology is in contrast with existing ad hoc approaches that depend on laborious
design/tuning/testing iterations. Our design methodology works as follows.

1) The system designer specifies the desired dynamic behavior with transient and steady state
performance metrics. This step maps from the existing metrics of adaptive real-time systems to
the dynamic responses of control systems in control theory.

2) The system designer establishes a dynamic model of the real-time system for the purposes of
performance control. A dynamic model describes the mathematical relationship between the
control input and the performance (controlled variables) of a system with differential/difference
equations or state matrices. Note that for the purpose of control design, the scheduling policy of
the Basic Scheduler is part of the system model. Modeling is important because it provides a
basis for the analytical design of the Controller. Two different approaches can be used to establish
the dynamic model of a system. In the analytical approach, a system designer describes a system
directly with mathematical equations based on the knowledge of the system dynamics. When
such knowledge is not available, the system identification approach [8] can be used to estimate
the system model based on profiling experiments. In this paper, we adopt the analytical approach
to model a real-time system (Section 5). An example of system identification to model web
servers is presented in [2].

3) Based on the performance specs and system model from step 1) and 2), the system designer
applies existing mathematical techniques (i.e., the Root Locus method, frequency design, or state
based design) of feedback control theory [15] to design the feedback scheduling algorithm with
analytic guarantees on the desired transient and steady-state behavior at run-time. This step is
similar to the process that a control engineer uses to design a Controller for a feedback-control
system to achieve desired dynamic responses.

To demonstrate the strength of our control theory based methodology, we apply this methodology
(Section 6) to design scheduling algorithms to analytically guarantee the satisfaction of a set of
performance specifications in face of workload variations.

5. Modeling the Controlled Real-Time System
Before applying analytical methods to design the Controller, we need to establish a mathematical model
to approximate the controlled system in the FCS architecture (Figure 1). The controlled system includes
the QoS Actuator, the scheduled real-time system, the Basic Scheduler, and the Monitor. The input to the
controlled system is the control input, i.e., the change in the total estimated utilization DB(k). The output
of the controlled system includes the controlled variables, i.e., miss ratio M(k) and utilization U(k).
Although it is difficult to precisely model a nonlinear and time varying system such as a real-time system,
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it is usually adequate to approximate such a system with a linear model for the purpose of control design
because of the robustness of feedback control with regard to nominal system variations. The block
diagram of the controlled system model is illustrated in Figure 2. We now derive the model from the
control input, DB(z), through each block in Figure 2. The goal is to derive the transfer function from the
control input to the output, the controlled variables U(z) and M(z). While the block diagram in Figure 2 is
expressed in the z-domain that is amenable to control design, we describe the equivalent notations and
formula in time domain in the following for clarity of presentation (e.g., DB(k) in the time domain is
equivalent to DB(z) in the z-domain).

DB(z) B(z)
M(z)

A(z)

Controlled 
System

M

AAth

1

U

A

1

1

GA

U(z)

Controller 1/(z-1)

Figure 2: The Model of the Controlled System

Staring from the control input DB(k), the total estimated utilization B(k) is the integration of the
control input DB(k):

B(k+1) = B(k) + DB(k) (1)

Since the precise execution time of each task is unknown and time varying, the total (actual) requested
utilization A(k) may differ from the total estimated requested utilization B(k):

A(k) = Ga(k)B(k) (2)

where Ga(k), called the utilization ratio, is a time-variant ratio that represents the extent of workload
variation in term of total requested utilization. For example, Ga(k) = 2 means that the actual total
requested utilization is twice of the estimated total utilization. Since Ga(k) is time variant, we should use
the maximum possible value GA = max{Ga(k)}, called the worst-case utilization ratio, in control design to
guarantee stability in all cases. Hence Equation (2) can be simplified to:

A(k) = GAB(k) (3)

For systems without arriving-time admission control, the load profile L(k) should be modeled as an
external disturbance to the total requested utilization, i.e., A(k) = GAB(k) + L(k). This is because new
tasks’ requested utilization is not accounted for in the control input if the QoS Actuator is not invoked
upon their arrivals. However, if the QoS Actuator is invoked upon the arrival of each task, the requested
utilization of admitted tasks is part of the control input. The arriving-time admission control thus cancels
the disturbance caused by load profiles. Since we focus on systems with arriving-time admission control
in this paper, the load profile is not part of our model.

The relationship between the total requested utilization A(k) and the controlled variables are nonlinear
due to saturation, i.e., the controlled variables remain constant when the control input DB(k) ≠ 0.
Saturation complicates the control design because the controlled variables become unresponsive to the
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control in their saturation zones. When CPU is underutilized, the utilization U(k) is outside its saturation
zone and stays close to the total requested utilization A(k):

U(k) = A(k) (A(k) ≤ 1) (4)

However, Since utilization can never exceed 100%, U(k) saturates when CPU is overloaded:

U(k) = 1 (A(k) > 1) (5)

In contrast, the miss ratio M(k) saturates at 0 when the CPU is underutilized, i.e., the total requested
utilization is below a threshold Ath(k), called the (schedulable) utilization threshold:

M(k) = 0  (A(k) ≤ Ath(k)) (6)

In existing real-time scheduling theory, schedulable utilization bounds have been derived for various
real-time scheduling policies under different workload assumptions (e.g., [1][19][23][36]). A utilization
bound Ab is typically defined as a fixed lower bound for all possible workloads under certain assumptions,
while we define the utilization threshold Ath(k) as the time varying actual threshold for the system’s
particular workload in the kth sampling period (and hence Ab ≤ Ath(k)). Since it is always true that Ath(k) ≤
1, the saturation zones of CPU utilization (A(k) ≥ 1) and that of Miss Ratio (A(k) ≤ Ath(k)) are guaranteed
to be mutually exclusive. This property means that at any instant of time, at least one of the controlled
variables does not saturate. Note that different scheduling policies in the Basic Scheduler usually lead to
different utilization threshold Ath(k). For example, if EDF is plugged into the FCS architecture and the
workload is composed of independent and periodic tasks, the utilization threshold Ath = 100%. In
comparison, the utilization threshold is usually lower than 100% if RM is plugged into the architecture.
Therefore, the scheduling policy and the workload characteristics affect the choices on the controlled
variable and its reference (see Section 6.4.4).

When A(k) > Ath(k), M(k) usually increases nonlinearly with the total requested utilization A(k). The
relationship between M(k) and A(k) needs to be linearized by taking the derivative at the vicinity of the
operation point (A(k) = Ath(k)).

)7())()((
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)(
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kdA

kdM
G thM ==

In practice, GM, the miss ratio factor, can be estimated experimentally by plotting a M(k) curve as a
function of A(k) based on experimental data and measuring its slope at the vicinity of the point where
M(k) starts to become nonzero (see Section 7.3). At the vicinity of A(k) = Ath(k), we have the following
linearized formula:

M(k) = M(k-1) + GM(A(k) – A(k-1))  (A(k) > Ath(k)) (8)

Note that different scheduling policies in the Basic Scheduler usually have a different miss ratio factor,
and hence the choice of the scheduling policy has a direct impact on the Controller parameters (see
Section 6.4.4).

From formula (1)-(8), we can derive a transfer function for each controlled variable when it is outside
its saturation zone:

Utilization control: Under the condition that A(k) < 1, there exists a transfer function HU(z) from
the control input DB(z) to CPU utilization U(z), i.e., U(z) = PU(z)DB(z) and

PU(z) = GA / (z-1) (A(k) < 1) (9)
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Miss ratio control: Under the condition that A(k) > Ath(k), there exists a transfer function HM(z)
from the control input DB(z) to Miss Ratio M(z), i.e., M(z) = PM(z)DB(z) and

PM(z) = GAGM / (z-1) (A(k) > Ath(k)) (10)

In summary, the controlled system can be modeled as a first order transfer function (Equations
(9)(10)) with a saturation zone (Equations (5)(6)) for each control variable, utilization U(k) and miss ratio
M(k). Note that the saturation properties cause the controlled system to be non-linear and lead to special
challenges for the Controller design.

6. Design of Feedback Control Real-Time Scheduling Algorithms
In this section, we apply control design methods and analysis to the Controller, the key component of
feedback control scheduling algorithms. First, we define the performance specifications for a real-time
system. We then present the control algorithm and the model of the feedback control loop for each
controlled variable. Based on the analytical system models, we apply a control design method called the
Root Locus method to tune the Controller and develop mathematical analysis on the performance
properties of the resultant Controller. We then design several FCS algorithms to handle the saturation
zones in different types of real-time systems.

6.1. Performance Specifications of a Real-Time System
As an example of performance specifications of real-time systems, we assume a specific real-time system
has the performance specifications as listed in Table 1. The sampling period W = 0.5 sec. The transient
and steady state performance requirements include the following. (1) The miss ratio of the system should
remain stable in face of a step load of 200%. (2) The system should settle down to steady state within 15
sec after the beginning of the step load, and the highest miss-ratio during the transient state should be
lower than 15%. (4) The system should have an average miss-ratio of less than 1% in steady state, and
this steady state miss ratio should be achieved regardless of variations in task execution time.

Load Profile SL(0, 200%)

Mmox < 15%

Ts < 30 sec

Ms < 1%

SAE = 0%

W 0.5 sec

Table 1: Performance Specifications of a Real-Time System

6.2. Design of the Controller
At each sampling point, the Controller computes a control input DB(k), the change in the total estimated
requested utilization, based on the miss ratio error EM(k) = MS(k) - M(k) and/or the CPU utilization error
EU(k) = US(k) - U(k). In this section, we focus on a Controller for a single controlled variable (see Figure
3). The goal of a Controller is to satisfy the performance specifications in Table 1. Since a same control
function (with different parameters) can be used for both controlled variables, we use the same symbol
E(k) to represent the miss ratio error EM(k) and the utilization error EM(k) in the rest of this section.

The Controller uses a PI (Proportional-Integral) control function [15] to compute the control input. A
digital form of the PI control function is in Equations (11) and (12). Equations (11) and (12) are
equivalent but Equation (12) is more efficient than Equation (11) at run-time. The transfer function of PI
control C(z) in the z-domain is in Equation (13).
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PI control is a widely used control function that can achieve robust performance in first and second
order systems. The performance of the real-time system depends on the values of the Controller
parameters. An ad hoc approach to design the Controller is to repeat numerous experiments on different
values of the parameters. In our work, we apply established control theory methods to tune the parameters
analytically to guarantee the performance specifications. We first tune the Controller for each of the
controlled variables in Section 6.3 based on the linear models of the controlled system (Equations (14)).
Due to the saturation properties, the performance of the closed loop system may deviate from the linear
case. We address this issue in Section 6.4.

DB(z)
M(z)

+
MS z/(z-1)

-
PM(z)C(z)

EM(z)

DB(z)
U(z)

+
US z/(z-1)

-
PU(z)C(z)

EU(z)

(a) Miss Ratio Feedback Control Loop

(b) CPU Utilization Feedback Control Loop

Figure 3: Models of Feedback Control Loops

6.3. Control Tuning and Analysis
For the purpose of control design, the input of a closed loop system with a single (utilization or miss
ratio) Controller is the performance reference MS or US, and the output is the controlled variable miss ratio
M(k) or utilization U(k). Given the model of the controlled system P(z) (Equations (9)(10)) and the
Controller C(z) (Equation (13)), the transfer function of each feedback control loop can be established:

)14(
)()(1

)()(
)(

)()(1

)()(
)(

zPzC

zPzC
zH

zPzC

zPzC
zH

U

U
U

M

M
M +

=
+

=

)15()(
1

)()(
1

)( zH
z

zU
zUzH

z

zM
zM U

S
M

S

−
=

−
=

Based on the above analytical models, we can apply control theory to tune the Controller parameters and
analyze the properties of the system performance. We now present the tuning and analysis of the
utilization Controller and the miss ratio Controller.

According to control theory, the performance of a system depends on the poles of its closed loop
transfer function. Thus the control design problem can be viewed as a pole placement problem. The Root
Locus method is a graphical technique that plots the traces of poles of a closed-loop system on the z-plane
as its Controller parameters changes. We used the Root Locus tool of MATLAB [17] to tune the
Controller parameters so that the performance specifications can be satisfied. The detailed tuning
procedure can be found in control textbooks such as [15]. Consider the utilization control loop and
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assume the system workload has a worst-case utilization ratio GA = 2, we can place the closed-loop poles
to p0 = 0.89 and p1 = -0.19 with the following Controller parameters:

KP = 0.5, KI = 0.1 (Utilization Controller) (16)

Because the transfer function of the miss ratio control loop has an extra process gain GM (Equation
(9)(10)), the miss ratio Controller should be set to:

KP = 0.5/GM, KI = 0.1 (Miss Ratio Controller) (17)

The miss ratio control loop with the parameters in Equation (17) has the same closed loop poles and same
performance profiles as the utilization control loop with the parameters in Equation (16). We now use
control theory to analyze the performance of the utilization and miss ratio control loops.

6.3.1. Stability
With the Controller parameters in Equations (16)(17), both the utilization control and miss ratio control
can guarantee stability because all their closed-loop poles are in the unit circle of the z-plane, i.e., |pj| < 1
(0 ≤ j ≤ 1).

6.3.2. Settling Time
The settling time decreases as the radius of the closed-loop poles |pj| (0 ≤ j ≤ 1) decreases. Our closed loop
poles lead to a theoretical settling time Ts = 7.5 sec. This result means that with the utilization Controller,
the utilization U(k) can settle down to within ±2% of the desired utilization US within 7.5 sec after the
Controller is turned on. Similarly, with the miss ratio Controller, the miss ratio M(k) can also settle down
to within ±2% of the desired miss ratio MS within 7.5 sec after the Controller is turned on.

6.3.3. Overshoot
The overshoot decreases as the damping ratio of the closed-loop transfer function (Equation (14))
decreases. Our closed loop poles result in a theoretical overshoot of 29% in term of utilization U(k) for
utilization control and miss ratio M(k) for miss ratio control, respectively. For example, if the reference
utilization is US = 80%, the utilization control loop should achieve a theoretical maximum CPU utilization
of Umax = 0.8*(1+0.29) = 103%. Practically this means that the CPU utilization will saturate at 100% and
cause transient deadline misses at the overshoot instant. In the case of the miss ratio control loop, suppose
the reference miss ratio MS = 1%, the system should get a maximum miss ratio of Mmax = 0.01*(1+0.29) =
1.29% at the overshoot instant.

6.3.4. Steady State Error
Both FC-U and FC-M can achieve zero steady state error, i.e., Es = 0. Applying the Final Value Theorem
[14] to the closed loop transfer functions (Equation 14), we have the following result regarding the steady
state error.

Theorem 1. Assuming stability, let RS denote the reference value (US or MS), the final values of
the error E(k) of the system scheduled by FC-U (E(k) = US - U(k)) or FC-M (E(k) = MS - M(k))
modeled by Equation (14) is
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This result means that the miss ratio control achieves its desired miss ratio MS in steady state, and the
utilization control achieves the desired utilization US in steady state. If Us is less than the utilization
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threshold Ath, this result also guarantees that the utilization control can achieve zero miss ratio in steady
state.

6.3.5. Sensitivity
Because the final values of the error E(k) is independent of the utilization ratio Ga and the  miss ratio GM

(Equation (18)), we have the following theorem regarding the sensitivity of both feedback control loops.

Theorem 2. Under the condition that the system remains stable, systems scheduled by the
utilization control or miss ratio control always achieves the desired CPU utilization US or the
desired miss ratio MS regardless of the variations of task execution times, inter-arrival-times, or
miss ratio factors.

Theorem 2 verifies the robustness of utilization control and miss ratio control in guaranteeing desired
steady state performance in unpredictable environments.

6.4. FCS Algorithms
We present the design of FCS algorithms based on the utilization and/or miss ratio control to achieve the
performance specifications (Section 6.1) in different types of real-time systems. We also discuss the
impacts of the basic scheduling policy and workloads on the FCS algorithms design.

6.4.1. FC-U: Feedback Utilization Control
The FC-U scheduling algorithm uses a utilization control loop (see Figure 3(b)) to control the utilization
U(k). FC-U can guarantee that the system has zero miss ratio in steady state if its reference US ≤ Ath where
Ath is the schedulable utilization threshold of the system.

Because CPU utilization U(k) saturates at 100%, FC-U cannot detect how severely the system is
overloaded when U(k) remained at 100%. The consequence of this problem is that FC-U can have a
longer settling time than the analysis results based on the linear model (Figure 3) in severely overload
conditions. The closer the reference is to 100%, the longer the settling time will be. This is because the
utilization control measures an error with a smaller magnitude and thus generates a smaller control input
than the ideal case described by the linear model (Equation (14)). For example, suppose the total
requested utilization A(k) = 200% and the utilization reference is 99%, the error measured by the
Controller would be EU = US – U(k) = 0.99 – 1 = -0.01; however, the error would have been EU = US –
U(k) = 0.99 – 2 = -1.01 according to the linear model . In the extreme case, US = 100% can cause the
system to stay in overload (a settling time of infinity) because the error EU = 0 even when the system is
severely overloaded. Therefore, the reference US should have enough distance from 100% (e.g., US ≤
90%) to alleviate the impact of saturation on the control performance.

FC-U is especially appropriate for systems with a utilization bound that is a priori known and not
pessimistic. In such systems, FC-U can guarantee zero miss ratio in steady state if its reference US ≤ Ab ≤
Ath. For example, FC-U can perform well in a system with EDF scheduling and periodic and independent
tasks because its utilization bound is 100%. However, FC-U is not applicable for systems whose
utilization bounds are unknown or significantly pessimistic. In such systems, a reference that is too
optimistic (higher than the utilization threshold) can cause high miss ratio even in steady state. On the
other hand, a reference that is too pessimistic can unnecessarily underutilize the system.

6.4.2. FC-M: Feedback Miss Ratio Control
The FC-M scheduling algorithm uses a miss ratio control loop (see Figure 3(a)) to directly controls the
system miss ratio M(k) (FC-M has been called FC-EDF if EDF is plugged into the Basic Scheduler [26]).
Compared with FC-U, the advantage of FC-M is that it does not depend on any knowledge about the
utilization bound and thus is applicable in many real-world systems. In the process of directly controlling
the miss ratio, the miss ratio control loop always changes the total requested utilization A(k) to the vicinity
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of the (unknown) utilization threshold Ath(k). An additional advantage of FC-M is that it can achieve
higher CPU utilization than FC-U because the utilization threshold is often higher than the utilization
bound.

Similar to FC-U, FC-M has restrictions on the miss ratio reference MS due to saturation. Because miss
ratio M(k) saturates at 0, FC-M cannot detect how severely the system is underutilized. Therefore FC-M
can have a longer settling time than the analysis results based on the linear model (Figure 3) in severely
underutilized conditions. The smaller the reference is, the longer the settling time will be. This is because
the miss ratio control measures an error of a smaller magnitude and generates a smaller control input than
the case of the linear model (Equation (14)). For example, suppose the total requested utilization A(k) =
10% and the miss ratio reference is 1%, the error measured by the Controller would be EM = MS – M(k) =
0.01 – 0 = 0.01; however, the error would have been much larger according to the linear model because it
would have a “negative” miss-ratio. In the extreme case, MS = 0 can cause the CPU to stay underutilized
because the error EM = 0 even when the system is severely underutilized. Therefore, the miss ratio
reference should have some distance from the saturation boundary 0 (e.g., MS ≥ 1%) to alleviate the
impact of saturation on the control performance. Unfortunately, a positive miss ratio reference also means
that the system cannot achieve zero miss ratio in steady state.

In summary, the FC-M scheduling algorithm (with a small positive reference) can achieve low
deadline miss ratio (close to MS) and high CPU utilization even if the system’s utilization bound is
unknown or time varying [26]. Since FC-M cannot guarantee zero deadline miss ratio in steady state, it is
applicable only to soft real-time systems that can tolerate sporadic deadline misses in steady state.
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Figure 4: The FC-UM Algorithm

6.4.3. FC-UM: Integrated Utilization/Miss Ratio Control
The FC-UM algorithm (also called FC-EDF2 if EDF is plugged into the Basic Scheduler [25]) integrates
miss-ratio control and utilization control (Figure 4) together to combine the advantages of FC-U and FC-
M. In this integrated control scheme, both miss-ratio M(k) and utilization U(k) are monitored. At each
sampling instant, M(k) and U(k) are fed back to two separate Controllers, the miss ratio Controller and the
utilization Controller, respectively. Each Controller then computes its control signal independently. The
control input of the utilization control DBU(k) is compared with the miss-ratio control input DBM(k), and
the smaller one DB(k) = min(DBU(k), DBM(k)) is sent to the QoS Actuator. FC-UM utilizes the min operator
and an integrator anti-windup [16] technique to achieve smooth transition between the two Controllers.
Integrator anti-windup means that each PI Controller turns off the error integration at a sampling instant
if its control input is larger than the other control input.

Note that the advantage of FC-U is that it can achieve excellent performance (M(k) = 0) in steady
state if the utilization reference is correct, while the advantage of FC-M is that it can always achieve low
(but non-zero) miss ratio and therefore is more robust in face of utilization threshold variations. The
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integrated control structure can achieve the advantages of both controls due to the following reasons. If
used alone, the utilization control would change the total requested utilization A(k) to its reference US in
steady state, and the miss ratio control loop would change A(k) to the vicinity of the utilization threshold
Ath(k) in steady state. Due to the min operation on the two control inputs, the integrated control loop
would change the total requested utilization to the lower value caused by the two control loops,
min(Ath(k), US). The implication of this feature is that the integrated control loop always achieves the
performance of the relatively conservative control loop in steady state. Specifically, in a system scheduled
by FC-UM, if US ≤ Ath(k), the utilization control dominates in steady state and guarantees that the total
requested utilization A(k) stays close to its utilization reference US and thus miss ratio M(k) = 0 in steady
state. On the other hand, if US ≤ Ath(k), the utilization control dominates in steady state and guarantees the
total requested utilization to stay close to its utilization threshold Ath(k) and miss ratio M(k) = MS in steady
state.

Therefore, in a system with the FC-UM scheduler, the system administrator can simply set the
utilization reference US to a value that causes no deadline misses in the nominal case (e.g., based on
system profiling or experiences), and set the miss ratio reference MS according to the application’s
requirement. FC-UM can guarantee zero deadline misses in the nominal case while guaranteeing that the
miss ratio stay close to MS even if the utilization threshold of the system becomes lower than the
utilization threshold. Our experimental results demonstrate that FC-UM achieves satisfactory
performance. The rigorous analysis of the integrated Controller is left for our future work.

6.4.4. Impacts of Scheduling Policies and Applications on the Design FCS algorithms
An important factor that affects the design of FCS algorithms is whether an a priori known and non-
pessimistic utilization bound exists for the scheduling policy and workload of a system. Existing real-time
scheduling theory has derived the schedulable utilization bound for various scheduling policies based on
different workload assumptions. For example, assuming all tasks are periodic and independent, Liu and
Layland proved that the schedulable utilization bound of EDF and RM is 100% and 69%, respectively
[23]. Recently, Abdelzaher proved that the schedulable utilization bound for Deadline Monotonic
scheduling is 62.5% for independent aperiodic tasks [1]. Other papers established schedulable utilization
bounds for other types of workloads (e.g., [19][36]). Since FC-U can guarantee miss ratio M(k) = 0 in
steady state if its utilization reference US ≤ Ab, the utilization reference should be determined based on the
scheduling policy and workload of a system. For example, for an independent and periodic task set
scheduled by EDF, a US = 90% is sufficient to guarantee that miss ratio stays at 0 in steady state. Because
FC-U can achieve zero steady state miss–ratio, it is the most appropriate FCS algorithm for systems with
a known and non-pessimistic utilization bound. FC-UM can also achieve zero steady state miss-ratio in
this type of system, but it is more complicated than FC-U.

Unfortunately, the utilization bounds of many unpredictable real-time systems are still unknown. For
example, in a typical on-line trading server, database transactions and Web processing can be blocked
frequently due to concurrency control, disk I/O, and network congestion. The task arrivals patterns may
vary considerably because its workload is composed of periodic price updating tasks and unpredictable
and aperiodic stock trading request processing. Deciding a utilization bound on top of commercial OS’s
can become even more difficult due to unpredictable kernel activities such as interrupt handling. Another
issue is the utilization bound can be significantly pessimistic for the current specific workload in a
system. For example, although the utilization bound of Rate Monotonic is 69% for periodic independent
tasks, uniformly distributed task sets often do not suffer deadline misses even when the CPU utilization
reaches 88% [20]. Enforcing the utilization at the utilization bound may not be cost-effective in soft real-
time systems. FC-M and FC-UM are more appropriate than FC-U for systems without a known and non-
pessimistic utilization bounds.

We should note that different scheduling policy and workloads usually introduce different miss ratio
factors GM. Because the gain KP of the miss ratio Controller should be inversely proportional to the miss
ratio factor (Equation (17)), the scheduling policy and workload can directly affect the parameter of the
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miss ratio Controller. For example, our previous experiments showed that while EDF with a periodic task
set lead to a miss ratio factor GM = 1 (details of experiments is skipped due to space limitations), Deadline
Monotonic (DM) with a mixed periodic and aperiodic task set has a much smaller miss ratio factor GM =
0.447 (see Section 7.3). This result means that if the case of DM with the mixed task set, KP of the miss
ratio Controller should be 2.24 times of the KP in the case of EDF with the aperiodic task set in order to
achieve similar performance profiles.

In summary, we have designed three FCS algorithms (FC-U, FC-M, and FC-UM) using control
theory based on an analytical model for a real-time system. Our control theory analysis proved that the
resultant FCS algorithms could satisfy the transient and steady state performance specifications. This
design methodology is in contrast with existing ad hoc design methods that depend on laborious design
and testing iterations. We also investigated the impacts of scheduling policies and workloads on the
design of FCS algorithms.

7. Experiments
In this section, we describe simulation experiments to evaluate the performance of our FCS algorithms
and the correctness of our control design. Our previous evaluation of FCS algorithms focused on the EDF
scheduling policy and periodic task sets [25][26]. To demonstrate the robustness of our FCS algorithms,
we present experimental results using the Deadline Monotonic policy as the underlying Basic Scheduler
and mixed periodic/aperiodic task sets.
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Figure 5: The FCS Simulator

7.1. Simulation Model
The FCS architecture is implemented on a uniprocessor simulator called FECSIM [26] of a soft real-time
system. The simulator (Figure 5) has five components: a set of Sources that each generates a periodic or
aperiodic task; an Executor that emulate the Basic Scheduler and the execution of the tasks; a Monitor
that periodically measures controlled variables; a Controller that periodically computes the control input
based on the performance errors; and a QoS Actuator that adjusts the QoS levels of the tasks to optimize
the system value under the utilization constraints. Different basic real-time scheduling policies can be
plugged into the Executor. The Controller can be turned on/off to emulate the closed loop or open loop
scheduling. The QoS Actuator can also be turned off for system profiling experiments (see Section 7.3).
The configurations of the simulator are as follows.

7.1.1. Scheduling policy
A Deadline Monotonic [1] policy is used in all the experiments in this paper. In the DM policy, each
periodic or aperiodic task is assigned a fixed priority based on its (fixed) relative deadlines. Deadline
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Monotonic has been proved to be the optimal static scheduling policy in term of maximizing the
utilization bound [1].

7.1.2. QoS optimization
A Highest-Value-Density-First (HVDF) QoS assignment algorithm [34] is used in the QoS Actuator. The
value density of QoS level j of a task Ti is defined as VDi[j] = Vi[j]/Bi[j]. The HVDF algorithm assigns
QoS levels to all the current tasks in the order of the decreasing value density until the total estimated
requested utilization reaches a utilization constraint UC. A fixed threshold (e.g., 80%) is used by open
loop scheduling algorithms, while our FCS algorithms dynamically change the threshold UC = B(k+1) =
B(k) + DB(k) at each sampling instant. When tasks’  utilization is small (e.g., < 1%) and there is no
deadline misses, the HVDF can approximate the optimal value under the utilization constraint. However,
if the actual requested utilization is unknown (as the case in unpredictable environments), the QoS
optimization algorithm cannot always guarantee no deadline misses and maximize the system value when
used with an open loop scheduling algorithm.

We should note that FCS has a general architecture that can incorporate different real-time
scheduling policies and QoS optimization algorithms (although the scheduling policy does affect the
design of FCS algorithms and the Controller parameters as discussed in Section 6.4.4)). Our work focuses
on the steady and transient state performance of the feedback control loop rather than evaluating the best
basic scheduling policy or QoS optimization algorithm.

7.2. Workload
The workload is composed of 50% aperiodic tasks and 50% periodic tasks where each task follows the
task model described in Section 2.1. This task model can be found in a typical on-line trading server
whose workload is composed of periodic stock updating tasks and aperiodic user requests such as trading
and information queries. Each task is assumed to have three QoS levels (0, 1, 2) including the lowest level
0 that represents service rejection. For the rejection level, both the task execution time and value are set to
0. The distributions of the task parameters are as follows. For the purpose of presentation, we assume
each time unit is 0.1 ms in this paper.

EEi[j]: The estimated execution time ETi[2] of task Ti at the QoS level 2 follows a uniform
distribution in the range [0.2, 0.8] ms, and ETi[1] = 0.2ETi[2].

AEi[j]: The actual execution time AEi[j] of task Ti at QoS level j followed a normal distribution
N(AEi, AEi

1/2), where the average execution time AEi[j] = Ga′ETi[j]. Ga′, called the execution
time factor, is a tunable workload parameter that approximated the utilization ratio Ga in
Equation (2). The larger Ga′ is, the more pessimistic is the estimation of execution time. For
example, in our experiments, we set Ga′ = 2.0, which means that the estimated execution time
is twice the average execution time.

Di[j]: All QoS levels of a task Ti have a same relative deadline Di = 10(Fi + 1)ETi[2], where Fi,
follows a uniform distribution in the range of [10, 15]. A task instance is immediately aborted
once it misses its deadline.

Vi[j]: The value Vi[j] of task Ti at QoS level j is computed as a weight wi times its estimated
execution time, i.e., Vi[j] = wi ETi[j]. The weight wi follows a uniform distribution in the
range [1, 5].

For periodic tasks:
Pi[j]: All QoS levels of a task Ti have a same period that equals its deadline Pi = Di.

For aperiodic tasks:
AIi[j]: The inter-arrival-time of an aperiodic task Ti follows an exponential distribution with an

average inter-arrival-time of AIi = Di.
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EIi[j]: The estimated inter-arrival-time of an aperiodic task Ti equals the average inter-arrival-time,
i.e., EIi = AIi = Di.

7.3. Saturation of Control Variables
In this section, we profile the controlled system with a set of experiments to verify the saturation
properties of the controlled variables and measure the miss ratio factor GM in Equation (8). Different step
loads are used to stress the system (with both the Controller and the QoS Actuator turned off) for 60 sec.
We plot the average CPU utilization and miss ratio in Figure 6. Each point in Figure 6 represents the
average value of 5 runs. The 90% confidence intervals of the average miss ratio are also shown, while the
confidence intervals of the average utilization are skipped because it is always within ±1% from
corresponding average values. We can see that the CPU utilization saturates at 100% after the total
requested utilization A(k) exceeded 100%. Miss ratio saturates at zero when the total requested utilization
A(k) is below 90%. Deadline misses starts to occur when the total requested utilization reaches 90%. This
shows that the utilization threshold Ath located between 80% and 90% for our workload. When the miss
ratio is outside of its saturation zone, it increases as the total requested utilization increases. Because the
miss ratio reference is usually small, we measure the maximum slop of the miss ratio curve near the
boundary of the saturation zone to approximate the miss ratio factor GM. In Figure 6, the maximum slope
is 0.447 occurred when the total requested utilization A(k) increases from 100% to 110%, i.e., GM ≈ 0.447.
This result provides a basis for tuning the miss ratio Controller (Equation (17)). Note that although the
actual miss ratio factor may deviate from the profiling results at run-time, the steady state performance of
the FCS algorithms are robust with regard to the miss ratio factor according to Theorem 2. Therefore, the
measured miss ratio factor is usually adequate for the purpose of Controller tuning.
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Figure 6: Total Requested Utilization vs. Control Variables

7.4. Evaluation Results of FCS Algorithms
In this Section, we present evaluation results of three FCS algorithms, FC-U, FC-M, and FC-UM. An
open loop QoS optimization algorithm with a fixed threshold Uth = 80% is used as a baseline. All the FCS
algorithms start with an initial threshold B[0] = 0. The same scheduling policy (Deadline Monotonic) and
QoS optimization algorithm (the HVDF algorithm) is used for all FCS algorithms and the baseline. The
configurations of the FCS algorithms are summarized in Table 2. The Controller parameters are based on
the analytical tuning results in Section 6.3.

The sampled miss ratio M(k) and CPU utilization U(k) of a typical run for each of the scheduling
algorithms are illustrated in Figure 7. A step load SL(0, 200%) was used to stress the system in all the
runs. The execution time factor Ga′ = 2, i.e., the average execution time of each task was twice of the
estimation. Each run lasted for 60 sec. We now describe the results for each of the scheduling algorithms.
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FC-UM

FC-U FC-M

KP 0.5 1.1

KI 0.1 0.1

Reference US = 80% MS = 1%

Table 2: Configurations of FCS Algorithms

7.4.1. FC-U
The performance of FC-U is illustrated in Figure 7(a). We can see that after the Controller is turned on at
time 0, FC-U increases task QoS levels and causes the CPU utilization to overshoot to UO = 93% at time
0.5 sec. The overshoot also causes a transient miss ratio of 0.5%. The overshoot is lower than the
theoretical prediction of 100% possibly due to the system noise caused by random execution times and
inter-arrival-times of aperiodic tasks. The settling time is difficult to measure due to the system noise.
However, we can see that the CPU utilization U(k) settles to the vicinity of the reference US = 80% within
5 sec. The CPU utilization U(k) remains stable all through the run and close to 80% after 5 sec, which
shows the system error is close to zero in steady state. Because the utilization threshold Ath < 80%, the
miss ratio M(k) = 0 in all the sampling instant except for the overshoot at time 0.5 sec.

7.4.2. FC-M
The performance of FC-M is illustrated in Figure 7(b). After the Controller is turned on at time 0, FC-M
dynamically increases task QoS levels and causes the CPU utilization to increase. Because the miss ratio
M(k) remains in the saturation zone in the starting phase, the miss ratio stays at zero and the CPU
utilization increases slower than the case of FC-U. At time 11 sec, the miss ratio overshot to MO = 6.09%
while the CPU utilization reached 99.36%. The overshoot is higher than the theoretical prediction of
1.23% (but still well within the performance specification of 15%) due to saturation and system noise.
The system remains stable all through the run. The miss ratio M(k) remains close to 1% and below 5% at
most of the sampling instants after 15 sec, which shows that the miss ratio error is close to zero in steady
state. We should note that CPU utilization in the run of FC-M stays close to 95% after the system settles,
which is significantly higher than the CPU utilization (close to 80%) in the case of FC-U. This is because
by directly controlling the miss ratio, FC-M can change the CPU utilization to the vicinity of the
utilization threshold, which is higher than the utilization reference of FC-U that is set to 80% a priori.
Therefore, compared with FC-U, FC-M achieves higher CPU utilization and robustness with regard to
utilization threshold variations at the cost of a small (but bounded) miss ratio in steady state.

7.4.3. FC-UM
The performance of FC-UM is illustrated in Figure 7(c). After the Controller is turned on at time 0, FC-
UM dynamically increases task QoS levels and causes the CPU utilization to increase. Similar to the case
of FC-M, the miss ratio stays at zero and the CPU utilization increases slower than the case of FC-U in
the starting phase. Note that in the starting phase, the (saturated) miss ratio control has a smaller error
(EM(k) = 0.01 – 0 = 0.01) than the error of the utilization control (e.g., EU(0) = 0.9 – 0 = 0.9), and hence
the miss ratio dominates the control loop due to the min operation on control inputs from both
Controllers. At time 11 sec, the miss ratio overshoots to MO = 1.19% while the CPU utilization overshoots
to 95.76%. Because the utilization threshold is lower than the utilization reference US = 80%, the CPU
utilization U(k) settles to 80% while the miss ratio settles to 0 by 15 sec. The system remains stable all
through the run. The miss ratio M(k) remains close to 1% and below 5% at most of the sampling instants
after 15 sec, which showed the system error is close to zero in steady state. This is because the utilization
control has smaller errors and dominates the control loop when the system is approaching the steady state.
For example, consider time 12 sec, the utilization error is EU(k) = 0.8 – 0.913 = -0.113 while the miss
ratio error is EM(k) = 0.01 – 0 = 0.01 > EU(k). Note that if the utilization threshold were higher than the
utilization reference, the miss ratio control would dominate the control loop and therefore miss ratio
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would stay close to the miss ratio set point MS = 1%. In summary, FC-UM combines the advantages of
both FC-U and FC-M by achieving zero miss ratio in the nominal case when the utilization reference is
lower than the utilization threshold, and robustness with regard to utilization threshold variations.

7.4.4. Open Loop QoS Optimization Algorithm
In comparison with the FCS algorithms, the system scheduled by the open loop QoS optimization
algorithm suffers from high miss ratios (see Figure 7(d)). This is because the task execution time is higher
than the estimation (by a factor of 2) and the QoS optimization algorithm overloaded the CPU due to the
incorrect estimations on task execution time. On the other hand, the system would suffer from low CPU
utilization if the task execution time were considerably lower than the estimation [26]. This result
demonstrates that open loop QoS optimization algorithms are incapable of maintaining satisfactory
performance in face of workload variations.

In summary, our evaluation results demonstrate that our FCS algorithms achieve robust performance
guarantees even when the workload significantly varies from the estimation, while an open loop QoS
optimization algorithm fails to provide performance guarantees. The results also demonstrate that the FCS
algorithms can satisfy transient and steady state performance specifications in Table 1 and verify the
correctness of our analytical control design. In addition, the experiments also demonstrate the advantages
of different FCS algorithms. In particular, FC-UM combines the advantages of both FC-U and FC-M by
achieving zero miss ratio in the nominal case when the utilization reference is lower than the utilization
threshold, and robustness with regard to utilization threshold variations.
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Figure 7: Typical Runs of Scheduling Algorithms

8. Comparison of Real-Time Scheduling Algorithms in Overload Conditions
We now qualitatively compare several existing real-time scheduling paradigms/algorithms (see Table 3).
Our comparison is based two criteria, the required knowledge of the workload by a scheduler and its
performance in overload conditions. Simple algorithms such as Rate (Deadline) Monotonic based on off-
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line schedulability analysis depend complete knowledge about the workload and the system including
tasks’  resource requirements, future arrivals and the system’ s schedulable utilization bound. These
algorithms cannot work in overload conditions because of their lack of overload handling mechanisms.
The (open loop) on-line admission control or QoS optimization based algorithms add flexibility to real-
time systems by not requiring knowledge about task future arrivals, although the tasks’  resource
requirements and utilization bound still need to be known a priori. FCS algorithms accomplished the next
level of flexibility by providing robust performance guarantees without requiring a priori knowledge
about tasks’  resource requirements and even the utilization bound as in the case of FC-M and FC-UM.
Therefore, feedback control real-time scheduling provides the most appropriate solution for soft real-time
systems in unpredictable environments. Such systems include online trading and e-business servers, and
data-driven systems such as smart spaces, agile manufacturing, and many defense applications such as
C4I.

Knowledge of the Workload/System Performance in Overload

Miss RatioTask resource
requirement

Future
arrival

time

Utilization
Bound

Steady state Transient
state

CPU utilization

RM, EDF Yes Yes Yes N/A N/A

Open Loop Admission
Control/QoS Optimization

Yes No Yes 0 High if estimation of
resource requirement is not
pessimistic; Low otherwise

FC-U No No Yes 0 Bounded by
overshoot

High

FC-M No No No Small Bounded by
overshoot

High

FC-UM
No No No 0 nominally;

Guaranteed
to be small

Bounded by
overshoot

High

Table 3: Comparison of Real-Time Scheduling Paradigms in Overload Conditions

9. Conclusion
In summary, this paper presents a feedback control real-time scheduling (FCS) framework for adaptive
real-time systems. An advantage of the FCS framework is its use of feedback control theory (rather than
ad hoc solutions) as a scientific underpinning. We apply a control theory based design methodology to
systematically design FCS algorithms to satisfy their transient and steady state performance
specifications. In particular, we establish an analytical model and complete analysis of feedback control
scheduling algorithms, which is a major challenge and key step for the control design of adaptive real-
time systems. We also generalize the FCS scheduling architecture that allows plug-ins of different real-
time scheduling policies and QoS optimization algorithms. Based on our model, we identify different
types of real-time applications where each FCS algorithm can be applied. Performance evaluation results
demonstrate that our analytically tuned FCS algorithms provide robust steady and transient state
performance guarantee for periodic and aperiodic tasks even when the task execution time varied
considerably from the estimation. In our future work, we are developing theoretical analysis of the
nonlinearities of real-time systems. We will also extend our solutions to networked embedded systems.
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