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ABSTRACT

This paper describes a technique for building a fast interpreter to emulate an
arbitrary machine’s instruction set. The interpreter is automatically constructed
from a specification of the instruction set. The instruction set is described by a
machine description language based on ISPS, but is at a sufficiently high level that
nonessential detail may be omitted. This same language has aiso been used to sim-—
plify the construction of retargetable compilers. The machine description language

-along with automatically constructed interpreters and retargetable compilers pro—
vides a set of tools that can be used to design and evaluate proposed and existing
instruction sets, generate address traces for use in the design and evaluation of
“memory systems, facilitate testing and debugging of software, and automatically
build high-level language interpreters. This paper describes the machine descrip~
tion language, the construction of the interpreters, and the use of the interpreters
in the above applications.
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Fast Interpretation of Instruction Sets:

Implementation and Applications

1. Introduction

To effectively evaluate a proposed instruction set, its behavior must be observed during the exe—
cution of real programs. This is often difficult because 1) no programs exist that use the instruction
set, and 2) the machine probably has not been built. A few methods of evaluating instruction sets

address the second problem [Barb81, Crag83], but not the first.

One method to evaluate a proposed instruction set is to implement the instruction set on a
microprogrammable machine. If programs can be generated that use the instruction set, this
method provides fast execution of the programs. The difficulty and time—consuming nature of
microprogramming, however, discourages experimentation. A second approach to instruction set
evaluation is to analyze the execution behavior of programs on existing hardware and then extra—
polate from this information., While this method overcomes the above mentioned problems, the
new design will be contingent on or influenced by previous design decisions. This can stifie archi—
tectural innovation. A third approach is the use of hardware description languages to desc;tibe and
simulate the proposed instruction sets. A number of different systems exist that have this capabil—
ity. While this method encourages experimentation, it is still difficult to generate and execute real
programs that use the proposed instruction set. Even if it is possible to generate a large set of pro—
grams to simulate, the simulation may be so siow that only a few, small unrealistic programs can

be run.

This paper describes a technique that provides for the comstruction of fast interpreters of a
machine’s instruction set. The interpreters are automatically constructed from a high-level
description of the machine’s instruction set. These same descriptions are used in the PO compiler

generation system to build compilers that produce code for the described machine [Davi84bl.
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Existing programs can then be compiled and used to observe the behavior of the instruction set.
Indeed this system hag been used to simulate a 3500 source line "high-level program which was

compiled using the PO system.

The next section of this paper reviews similar work in this area. Section 3 describes the
machine description notation. Section 4 describes the construction and operation of the interpreter.
The retargetable compiler system is described in Section 5. Section 6 describes the implementation
of the interpreter; Section 7 describes some of the possible applications of this system. Section 8

provides a summary.

2. Background

Of the many computer hardware description languages (‘CHDLs’) available today, ISPS is one of
the most popular [Barb81]. ISPS is based on ISP [Bell71]. ISPS, together with a companion ISPS
simulator, have been used to evaluate both new and existing architectures [Barb79}. While ISP was
originally developed to primarily describe instruction sets, ISPS has a broader range of applications.
It has been used to design c1rcu1tsand to automatically generate diagnostic tests for machines
[0ak179,Park79]. Further, it has also been wused extensively in compiler research

[Catt80, Davi8l, Davi84b}, and as a pedagogical tool.

Writing an ISPS description to document an architecture is relatively straightforward. Quite a
lot of detail, however, must be included in the descriptions to be able to simulate assembly
language programs using the ISPS simulator. For example, the instruction set designer must specify
the encodings for all instruction formats and all addressing modes. In addition opcodes must be
assigned to all instructions. While not difficult, this can be a time consuming and tedious task.
While these tasks are a necessary part of instruction set design, they draw attention away from the
primary job at hand ~ designing and determining the machine’s primitive operations. Anoth_er
problem with ISPS is the description of complex instructions {e.g. block moves or character com—

pare instructions). This type of instruction is not easily handled by the ISPS notation.

Conventional programming languages have also been used to specify instruction sets. Cragon



describes the use of LISP to specify an imstruction set [Crag83]. Inmstructions are implemented as
LISP functions. The advantage of using LISP is that the specification of the instructions can be
directly executed. To test this idea, the instruction set of the RISC I [Patt81] was described. To
demonstrate the executability of the specification, a seven instruction loop was hand coded and run.
‘While the descriptions themselves are concise and readable, the instruction simulation was some—
what slow. Cragon reported being able to execute 143 instructions per second on a DECsystem~

2060.

3. The Machine Description Language

The machine descriptions used in this research are based on ISPS. They are, however, at a
sufficiently high level that such detail as opcode assignment and instruction format specification
can be ignored. This allows decisions about opcodes and formats to be postponed, resulting in.
machine descriptions that are easily written and modified. The high level of the description makes

it possible to specify complex instructions.

A machine description is a grammar for syntax—directed translation [Aho77] between ISP regis—
ter transfers and a machine’s assembly language. Simplicity was one of the qualities that was
desired in the machine description language. This simplicity, however, was gained at the expense
of rigorousness. The machine descriptions eschew detail for simplicity and brevity. Thus, they
could not be considered a formal specification of the machine. They are, however, quite descriptive
and easy to write. Typically a machine description takes a day or two to write by someone fami—

iiar with the machine and the description notation.

A machine description is divided logically into two parts. The first part describes the machine’s
addressing modes, and the second part describes the instructioms. This division provides a natural
way to describe machines. The addressing modes are described without regard for the instructions
that use them. The machine operations and the addressing modes are combined to describe the

machine’s instruction set. Machine descriptions structured this way are concise and understandable.

To illustrate the machine description language, portions of the machine description for the



VAX-11/780 are used. Some irrelevant detail has been omitted here for clarity and brevity. The

descriptions for the VAX~11/780 longword—addressing modes are:

STK = m[——r{14]1] = ~{r14)
REG 1= r[RN1] = rRN
LWORD = mf IDENT] ™ 1DENT
m[r[RN1] + IDENT] = IDENT{ rRN1)
mf r[RN11++] (rRN1 )+
mi—-—r[RN11] 1= ~(rRN1)
mlr[RN1]] 1= {rRN1)
mlm[r[RN1]++]] 1= »( rRN1)+
m[m[r[RN1] + IDENT]} e *IDENT(rRN1)
m{m[ IDENT]] 1= *IDENT
m[m[r[RN1]]] i= w{ FRNT)
m{r[RN1] << 2 + IDENT] . IDENT] rRN1)
m{r[RN1} << 2 + r[RN2]] re= {rRN2}[rRN1]
m{r[RN1] << 2 + r[RN2] + IDENT] = IDENT{ rRNZ}[ rRN1 ]
mrIRN1] << 2 + r[RNZ]++] v (rRNZ)+[ rRN1]
mirfRN1] << 2 + —r{RN2]] = ~(+RN2)[ rRN1]
mlr[RN1] << 2 + m{r[RN2]++]] = *{ rRN2)+] rRN1]
m[r[RN1] << 2 + m[r[RN2] + IDENT]] := «IDENT(rRN2) [ rRN1]
LWADDR e IDENT e IDENT
r[RN1] + IDENT = IDENT{ rRN1)
r[RN1]++ = { rRN1)+
——r[RN1] ~(rRN1)
r[RN1] << 2 + r[RN2] = (rRN2) [ FRN?]
r[RN1] << 2 + r[RN2} + IDENT o= IDENT{rRN2) [ rRN1]
r[RN1] << 2 + r[RN2] ~ IDENT —IDENT( rRN2)[ rRN1]
r[RN1] << 2 + r[RNZ}++ (rRN2)+[ rRN1}
r[RN1] << 2 + ——r[RN2] 1= ~{ rRN2) [ rRN1]
r[RN1] << 2 + mf r[RN2]++] = w (rRNZ)+[ rRN1]
r[RN1] << 2 + m[r[RN2] + IDENT] - * IDENT(rRN2) [ rRN1]
RL 1= == eql
= neg
D 5 geq
= = teq
< Iss
> = gtr

The first column of the description contains the name of the addressing mode. The second column
contains the register transfer syntax that describes the addressing mode. The third column defines
the assembly language syntax for the addressing mode. RN1 and RN2 are constants that specify
legal register numbers. IDENT is a constant that specifies legal addressing constants. REG and LWORD
are the names that can be used to refer to register addressing mode and to the longword addressing

modes respectively. LWADDR is the name to refer addressing modes that return addresses. The
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description of the addressing modes for other addressable units {e.g. bytes, 16-bit words, fioat, etc.)

would be similar.

The final part of the address definitions groups the previously defined addressing modes into

classes that can be used to describe the machine’s operations.

DSTL = REG | STK | LWORD
SRCL = REG|STK | LWORD

The above description defines two classes: DSTL and SRCL which are destinations and sources for
longword instructions. A DSTL can be either a register, a reference to the stack, or a longword.
Using the definitions of the addressing mode classes allows the instruction definitions to be equally

concise. For example, below are definitions for several VAX-11 instructions.

NZ = DSTL 7 @ e tsti DSTL
NZ = DSTL ? SRCL; e cmp| DSTL,SRCL
NZ = DSTL & SRCL 7 ©; = bitl DSTL,SRCL
DSTL == @;NZ = @ 7 @; ] clri DSTL
STK = SRCL;NZ = SRCL 7 @; 1= pushl SRCL

STK = LWADDR;NZ = LWADDR ? @; :

i

pushal LWADDR

DSTL = SRCL;NZ = SRCL 7 @; 1= movl  SRCL,DSTL
DSTL = DSTL + 1;NZ = DSTL + 1 ? &; 1= inc!  DSTL
DSTL = DSTL — 1;NZ = DSTL - 1 ? &; e dect  DSTL
DSTW = ~SRCL;NZ = ~SRCL 7 @; r= mnegl  SRCL,DSTL
DSTW = ~SRCL;NZ = ~SRCL 7 @; = meom| SRCL,DSTL
PC = LABEL; = jbr LABEL
PC = NZ RL & —> LABEL | PC; = jJRL LABEL
DSTL = SRCL1 + SRCL2;NZ = SRCL1 + SRCLZ ? @; i= §

tstremp(DSTL, SRCL1): addi2 SRGL2,DSTL

add13 SRCLZ,SRCL1,DSTL

}
DSTL = SRCL1 / SRCLZ;NZ = SRCL1 / SRCLZ ? @ i= §

tstremp(DSTL, SRCL1): divi2 SRCL2,DSTL
divi3 SRCL2,SRCLY,DSTL

}
Pc and NZ are the symbols for the program counter and condition codes. Splitting the machine

description into a section for addressing modes and operations allows concise descriptions of
instructions. For example, the VAX has several conditional jumps. By defining RL in the address—
ing mode section, the instruction definition section needs only one line to define all relational
jumps.

The last two instruction definitions deserve special attention. These describe the longword

addition and division instructions respectively. The VAX has two variants of these instructions: a



two—address version and a three—address version. One of the functions of the retargetable peephole
optimizer, described in Section 5, is to determine the best instruction to use in a given situation.
The above code directs the optimizer to use the shorter two—address variants of the addition and
division instructions if possible. The definitions for subtraction, multiplication, and logical opera-

tions are similar.

Awkward or compiex instructions can be described very simply using the notation. Shortly we
shall describe how these instructions are simulated. A good example of some complex instructions
are the byte instructions found on the DECsystem—10. These instructions allow the programmer o
pack or unpack bytes of any size anyWhere within a word. They use and manipulate a pointer
that specifies the size of the byte {up to 36 bits), the position of the byte within a word, and the
address of the word containing the byte. These instructions can be described using a functional
notation. For example, the load byte, increment byte pointer, and increment and load byte

instructions are described by:

R «— LDB(M) = tdb R,M /* load byte */
M e IBP{M) ibp M /* inc. byte pointer =/
R « LDB{IBP{M)) itldc R,M /* increment ond load byte »/

]

R and M are the definitions for a register and a memory address respectively. Using the load byte
instruction as an example, it is only necessary to describe that the LDB function is applied to a
memory location indicated by M (the byte pointer) resulting in # byte being extracted and loaded
into a register R. Details of how the pointer is explicitly manipulated need not be included in the

description. How the these instructions are simulated is described in the next section.

Because of the simplicity of the descriptions, modifications to existing instructions or the addi—
tion of new ones is guite easy. The functional notation allows the designer to specify complex
instructions without having to worry about implementation details. The details are postponed

until the design has stabilized and reached the implementation phase.



4. The Interpreter

Figure 1 shows the structure of the register transfer list (RTL’) interpreter. The purpose of the
machine description processor (‘MDP") is to produce C [Kern78] language subroutinies that imple—
ment the addressing modes and instructions described by the machine description.t The machine
description simulator library (‘MIDSIM’) contains routines to perform common operations such as
addition, subtraction, multiplication, etc. The MDP constructs code that makes calls on fhese sub—
routines., As the MDP processes each instruction, the machine dependent instruction library is

searched for instruction definitions.

SOurce
language
PO
generated
machine descriptions compiler
Vax~11 —_— ] RTLs
PDP-11 — ] machine e
68000 g description MDSIM

Dec~10 ~—————3 processor
cpC ———21 (MDP)

\ / Library

370 — ] Machine
Description :

Interpretor

' (MDD
machine dep. / \ 1/0

instruction Op. Sys
library Support

Program  Execution
Output Statistics

Figure 1. Schematic of the RT Interpreter

This library contains the hand—coded routines that implement the “hard” instructions that cannot

be explicitly described using the description notation. The byte instructions for the DECsystem~10

1The choice of the C programming language was arbitrary. The techniques for constructing the subroutines couid
be applied to other high-level languages such as Ada, Pascal, or Modula-2.



would be in this class. Typically these routines are very short. For instance, the subroutine that
implements the VAX~11 move character instruction, is 8 lines of C code. When this phase of the
‘process is complete, C routines exist to execute all the instructions defined by the machine descrip-

tion. The machine description interpreter (‘MDI’) uses these routines to simulate an RTL program.

The first step of the simulation process is to read in the RTL program produced by the PO gen—
erated compiler. After the program has been read in, all jumps and subroutine calls in the program
are located, The destinations of these jumps are found and a link is created between the jump and
its destination. This is to avoid searching for the destination of a jump when the program is run-—
ning.} Locating subroutine calls allows all routines that are called but are not part of the RTL pro—
gram to be identified. At this point, the I/O and operating system support library is searched to see
if any of the missing routines are contained in this library. If so they are loaded along with the
RTL program. This allows the RTL program to call system routines for I/0 and operating system

service. At this point, the program can be executed.

Execution of the program is controlled by the user. Breakpoints can be set, and memory loca—
tions can be examined. Currently the user interface in thé ;;fétotype simulator is crude. A clean
user interface is planned for the production version of the simulator. The user can direct the
simulator to collect various statistics. Currently only the number of instructions executed and the
total number of memory references is recorded. Other statistics, such as execution counts for each

instruction and for each addressing mode are planned for the production version.

The prototype simulator executes programs very fast. Running on the VAX-11/780 under
UNIX and emulating the VAX~11/780 instruction set, the interpreter simulated 500 instructions
per second. The number of instructions executed per second depends on the complexity of the
machine being simulated. A less complicated machine was clocked at 650 instructions per second.
The simulator owes its speed to the use of threaded code [Bell73]. Its flexibility is due to its general

model of memory. These are discussed in the following sections.

tAs a practical matter the destinations of all jumps cannot be determined at ‘load’ time. For example, the target
of indexed jumps must be computed at execution time.



4.1 Threaded Code

As the MDI reads in a program, each instruction is identified, and a link to the subroutine
implementing the instruction (previously comstructed by the MDP) is created. In addition, the
addressing modes used by the imstruction are identified and links to the subroutines implementing
these are created as well. At execution time, the interpreter follows the links to each subroutine.
For example, the structure constructed for the program fragment below (taken from the VAX-11)

is illustrated in Figure 2.

Execution of the program becomes essentially a series of subroutine calls. This threaded code
structure has several advantages. Because the subroutine to implement an instruction is shared by
all occurrences of that instruction, memory usage is reduced. Indeed, an entire compiler (3500 lines
of source code) has been executed using the prototype interpreter. The interpreter is fast, which
allows real programs to be simulated in a reasonable amount of time. As noted earlier, the proto—
type interpreter can execute approximately 500 instructions per second on a VAX-11/780 running
UNIX. It is expected that an execution rate of 1000 instructions per second can be obtained once
the interpreter is tuned and code included to facilitate the debugg;ng c;f ‘the interpreter is removed.
'The structure of the threaded code makes it easy to collect statistics about how many times a par—

ticular instruction or addressing mode is used.

4.2 Memory Model

The model of memory used by the interpreter is quite simple. Values are stored in & large asso—
ciative memory that is accessed by a key. Normally a key is a combination of the address and the
type of memory being accessed. This allows registers and main memory locations to be accessed
using the same mechanism. Static memory is allocated and initialized as the program is read in by
the interpreter. All other memory that is requested during program execution is allocated on

demand. This, again, reduces the memory requirements necessary for the interpreter.



assembly language rtl

addi2 r2,xr3 mir[311 <« mlr[3]] + rf2]
subt3 »r2,(r1)+,x mix} « mir{1}++] - nir[2]]
it —(ra) w[--r[4]] < o

/\reg indirect
/;12 ———

/ /?dexed a.uto direct
inc
/1113 - __.—-—/
/ |
.

auto
dec

‘__________/

T

list instruction operand
of definition evaluation
instructions routines o routines

Figure 2. Threaded Code to Interpret Instructions

This simple model of memory can, however, create a problem when the same memory location
can be accessed using two different names. For example, many contemporary arcl;itectur’es can
access a byte at a certain address as well as a word starting at that same address. To handle this
“aliasing” of memory locations, main memory is always accessed in some standard unit. A main
memory access is converted to memory reguests made up of these standard units. This models, in

some sense, the way real architectures work.
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The interpreter provides fast execution allowing machine; code for real programs processing real
data to be simulated. However, it must also be possible to translate high—level language programs
into code that uses the instruction set. Ideally we would like to be able to use a variety of high—
level languages. The machine description notation along with a retargetable code generator, PO,

provides this capability.

5. PO

PO currently runs on a VAX-11/780 running UNIX. Using PO, cross—compilers have been buiit
for seven machines, some in as few as three person days. The seven machines currently supported
are the VAX-11, the PDP-11, the DEC-10, the CDC Cyber series machines, the Motorola 68000, the
IBM 370, and the Intel 8080. Figure 3 shows a diagram of the relationship of PO to the other parts

of the compiler.

Like many retargetable compilers [Korn80, Newe72], front ends for use with PO compile source
code into an abstract machine code. Using an abstract machine code keeps the front end machine—
independent. These intermedi"zi{e._iéﬁguages (*fLs’ are designed to be as simple and concise as possi—
ble. They include only the most general source language operations. For example, special—ocase
instructions such as increment or decrement, are not included in the IL. Only the more general add

and subtract operations are present.

The process of mapping the IL to the target machine is calied code expansion. This stage
expands the IL into register transfers (RTLs). For each target machine a code expander must be
written that translates the source—dependent IL to machine-dependent RTLs. Writing code
expanders is an ad hoc process. For traditional expanders, the quality of the final code depends on
the ingenuity and expertise of the person writing the code expander. This is much less true for
expanders used with PO. PO corrects inefficiencies, turning poor code into good code. Depending on
the size of the source language IL, it takes a day or two to implement a code expander for a target

architecture.
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Figure 3. Schematic of the PO Compiler System
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“Combiner”, and “Assigner”. The “Cacher” phase eliminates common subexpressions in register
transfers; the “Combiner” phase replaces sequences of register transfer instructions with equivalent
singletons§ and the “Assigner” phase translates them into assembly language. When the PO gen—

erated compiler is used to produce programs for the machine interpreter, the Assigner phase is




omitted. For more details on the operation of PO, see [Davi80, Davi84a, Davi84b].

Currently front—ends for Y [Hans81], a subset of C [Kern78], and a subset of Pascal [Jens75] are
available. Thus programs written in those languages can be used to test the proposed instruction
set. A front-end for Modula~2 [Wirt82] is planned. The ability to simulate code produced by
compiling various high-level languages allows realistic simulations to be performed. For most
programming environments, a cémputer must support a variety of high-level languages. Relying
on simulations of code produced for just one language may produce an instﬁ:uction get that is nicely
tailored to that language but can not easily be used to implement or efficiently support other

languages [Ditz80].

6. Implementation

Currently all the software described here runs on a VAX-11/780 running UNIX. The peephole
optimizer, PO, and its retargetable compilers have been in use for approximately four years.

Details of their implementation can be found in [Davi81, Davi84bl

The machine description processor that builds the interpreter is written in SNOBOL4 {Gris71).
It is 391 lines of code. It takes approximately five minutes of CPU time to process a 175 line
machine description. The output is C routines that implement the addressing modes and instruc—
tions defined in the machine description. Some effort was taken to make the resulting routines

portable so they could be run on other systems.

The MDSIM library contains routines that implement common operations. Currently the
library only supports 32-bit and 16-bit arithmetic. Work is in progress to handle other word sizes.

64-bit and 8~bit arithmetic routines are planned.

Much of the impliementation effort at this point is concentrated on improving the execution
performance of the interpreter. Timing measurements of the interpreter show that a large percen—
tage of the execution time is spent in the memory access routines. To reduce the time spent access—
ing the simulated machine’s memory, we are planning to borrow an idea used in real memory sys—

tems — cache memories. The cache memory will hold the portions of the simulated memory in the

.
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heaviest demand.

The other area of implementation is the user interface to the interpreter. Currently the user
can set breakpoints and examine/change memory. A more sophisticated user interface is planned.
This interface would allow the user to set conditional breakpoints, trace of subroutine calls and

returns, and watch memory locations.

7. Applications

7.1 Instruction Set Design

The main application for this system is the design and evaluation of instruction sets. To
effectively evaluate a proposed instruction set, the execution behavior must be observed for real
programs. This is possible with this system as compilers can easily be built that generate code for

the proposed instruction set. As Wulf notes:

The problem arises from a “semantic clash” between the language and high-level
instructions; by giving too much semantic content to the instruction, the machine
designer has made it possible to use the instruction only in limited contexts [Wulf81].

This “clash” occurs because the instruction set designer often has a narrow view of how an instruc—

tion will be used. We believe this system will help designers develop better instruction sets.

The prototype system has been used by its developer to design an instruction set for a proposed
machine. An iterative design technique was used. An instruction set was proposed, compilers for
several languages were constructed, and a set of test programs were executed using the simulator.
Based on the statistics gathered by the simulator and other analysis tools, the instruction set was
modified. The process was repeated until the design was considered complete. An iteration of the
design process took one to four days depending on the extent of the modifications to the instruction
set. This fast cycle time is due both to the high l.ével of the machine descriptions and the ability

to quickly construct a compiler that used the experimental instruction set.
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7.2 Software Testing

Just as with ISPS, this tool has other applications as well. It can be used in software testing.
For example, one way to increase confidence in software is by thorough testing. A program can
hardly be described as thoroughly tested if there are some parts of the code that, in fact, have
never been executed. Through the use of the interpreter, it would be simple to determine which
sections of code have or have not been executed. This could be done by marking each instruction as
it is executed. After the program terminates, the list of instructions comprising the program could
be scanned to locate sections of code that were not executed. Based on this information, new test

cases could be devised that would cause those sections of code to be executed.

7.3 Performance Evaluation

Currently the machine description language does not have a facility for specifying the size or
the timing of instructioms. If this capability were added, the simulator could be used to obtain
detailed timing information about a program. If size information about the instructions and
addressing modes were available, the size of a program could be obtained. These measures.are use—
ful when comparing different instruction sets. Specification of the size and timing of instructions
should be optional so that the user is required to specify this information only if statistics about

program size and speed are desired.

7.4 Cache Memory Design

The interpreter could also be used to generate address traces. Address traces are used in trace—
driven simulations to evaluate the behavior of cache memories [Smit82]. One way to generate an
address trace is to interpretively execute a program and record every main memory location refer—
enced by the program. The addresses are usually tagged to indicate the type of reference (e.g. read
or write), and the size of the reference (e.g. byte, word, etc.). The use of the interpreter would per—
mit interaction between the design of the memory system and the instruction set. This will
become more important as more machines include special hardware and instructions to enhance the

performance of the memory system [Patt83,Radi82]. In order for the proposed interpreter to gen—
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erate address traces, the information about the size of instructions discussed in the preceding section

would be necessary.

7.5 Retargeting Compilers

PO has dramatically simplified the construction of retargetable compilers. The use of the
machine description interpreter can further reduce the time and expense of retargeting a compiler.
Often when retargeting a compiler to a new machine, the new machiqe is not readily accessible.
This may be because the machine is not located physically close to the site where the retargeting
work is being done, or as is often the case with new machines, the machine is being used for other
tasks and is not available for software development. With the use of the machine interpretér,
much of the retargeting and testing of a compiler for a new machine can be done without access to

the target machine. This can save time and development costs.

7.6 Automatic Generation of High—Level Language Interpreters

Many languages run in an interpreted environment. For exampie, many Pascal compilers gen—
erate Pcode, the abstract machine assembly language for Pascal [Berr78]. There are iuterpreted_;ré;
sions of many other high—level languages as well. Often it is desirable to have both a compiler and
interpreter for a language. The interpreter is used for program development and debugging because
it provides fast compilation at the expense of fast execution, while the compiler is used for produc—
tion programs where fast execution is desired. These abstract machine interpreters are generally

hand coded, and depending on the complexity of the abstract machine, they can require substantial

development effort.

By writing a machine description of the abstract machine, the machine description processor can
automatically construct an interpreter. For example, it would be quite easy to write a machine
description for Pcode. By running this description through the machine description processor, we
would have a Pcode interpreter that could be used with the Pcode compiler. This would save
development time and costs. In addition, an automatically generated interpreter would be more

reliable and easier to maintain.
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7.7 Non—-Applications

It is worthwhile to note some limitations of the machine descriptions and interpreter. The
machine descriptions do not contain sufficient detail to be used to generate hardware, nor can they
be considered a formal specification of an architecture. Our view is that this description notation
should be used during the early stages of the design process. At that point it is important to be
able to experiment and make changes guickly and easily. After the design stabilizes, the descrip—

tion can easily be converted into ISPS so that its capabilities can be used.

Also, because of the structure of the interpreter, it is not possible to simulate self-modifying
code. This is seen as no great restriction as modern programming practices and principles discourage
writing self-modifying code. Operating system and interrupt code can not be accommodated
either. The machine descriptions do not describe the interrupt mechanism of the machine or the

memory protection mechanisms.

8. Summary and Acknowledgements

This paper has presented a technique for the fast interpretation of machine descriptions. These
descriptions are at a sufficiently high—level that they are easy to write, and simple to change. The
machine description notation, the interpreter, and the compiler generation system provide an
integrated environment for the design of instruction sets. While this is the major application of
this system, it has a variety of other potential uses such as software testing and automatic genera—

tion of interpreters.

Walter Hansen provided many useful comments on the presentation of this work.
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