
- 1 -

ABSTRACT

Access/execute architectures have several advantages over more
traditional architectures. Because address generation and memory
access are decoupled from operand use, memory latencies are
tolerated better, there is more potential for concurrent operation,
and it permits the use of specialized hardware to facilitate fast
address generation. This paper describes the code generation and
optimization algorithms that are used in an optimizing compiler for
an architecture that contains explicit hardware support for the
access/execute model of computation. Of particular interest is the
novel approach that the compiler uses to detect recurrence relations
in programs and to generate code for them. Because these relations
are often used in problem domains that require significant
computational resources, detecting and handling them can result in
significant reductions in execution time. While the techniques
discussed were originally targeted for one specific architecture,
many of the techniques are applicable to commonly available
microprocessors. The paper describes the algorithms as well as our
experience with using them on a number of machines.

INTRODUCTION

A number of new architectures have appeared that have
several common features. One feature shared by many new
machines is the inclusion of several functional units that can
operate in parallel. A common configuration is to have separate
fixed-point and floating-point execution units although other
specialized functional units, such as graphical processors or
address-generation processors, are possible. A term that has been
coined to denote this type of processor is “decoupled” to emphasize
the separation of the units and their independent, yet cooperative
operation [GOOD85, SMITH84]. Conceptually, the instruction
stream can be viewed as being divided into two or more separate
streams for the individual units. The IBM RISC System/6000
[OEHL90], Intel’s i860 [INTE89], the Astronautics ZS-1 [SMIT87],
PIPE [GOOD85], and WM [WULF88] are all architectures in this
class.

The major advantage of such machines is the ability to exploit

instruction-level parallelism by executing instructions for the
individual units simultaneously. How this concurrent operation is
extracted from an essentially sequential instruction stream varies
from architecture to architecture, and it is beyond the scope of this
paper to discuss these differences. However, regardless of the
mechanisms used to fetch and issue instructions, the ability of the
compiler to generate code that effectively exploits the multiple
execution units is critical.

This paper discusses the algorithms used in an optimizing
compiler for exploiting an execution unit specifically designed to
handle “streams” [WULF90b]. Streams are structured data stored in
memory with a known, fixed displacement between successive
elements. Streaming can be viewed as a special case of the access/
execute model of computation [GOOD85, SMIT84]. In this model,
address generation is separated from consumption of the data. This
allows two processors to be used concurrently and in concert to
execute a task. One processor performs address generation and
fetches the data, while the second processor performs all data
processing calculations. With streaming, accesses to structured data
are performed by dedicated hardware specially designed to take
advantage of the data’s storage regularity. A single 32-bit
instruction contains all the information necessary to direct the
hardware to read/write the entire data structure from/to memory.

The streaming concept is extremely powerful. For example, it
naturally handles codes that contain recurrence relations. These
relations occur frequently in solutions to problems that require
significant computational resources to solve. Recurrences occur in
algorithms involving solutions of partial differential equations,
signal processing, imaging transformations, and graphical
transformations. Furthermore, codes that contain recurrences are
difficult and often impossible to vectorize [HENN90].
Consequently, the detection of recurrence relations in programs
coded in a high-level programming language and the
accompanying generation of efficient machine language instruction
sequences can yield significant execution performance
improvements. The detection of recurrence relations and the
avoiding of possible hazards is non-trivial and difficult in the face
of aliasing problems.

Streaming is also useful in other situations. It is useful for
copying data from one area of memory to another. It can be used
anytime that structured data is accessed in a regular and predictable
fashion. For example, this often occurs when processing strings.
Indeed, the optimizer generates stream instructions for the
following Unix utilities:cal, compact, od, sort, diff, nroff, andyacc.

While the algorithms described were originally developed to

Code Generation for Streaming:
an Access/Execute Mechanism†

MANUEL E. BENITEZ AND JACK W. DAVIDSON
Department of Computer Science

University of Virginia

Charlottesville, VA 22903, U. S. A

†This work was supported in part by the National Science
Foundation under Grant CCR-8611653 and the Defense Advanced
Research Agency under contract Number N00014-89-J1699.

Appeared in the
Proceedings of the Fourth International Conference on

Architectural Support for Programming Languages and Operating Systems

- 2 -

exploit an architecture that contains dedicated hardware support for
streaming, it has been pleasant to discover that the algorithms work
quite well on and provide performance enhancements for stock
microprocessors such as the Motorola 68020, the Intel 386 and 486,
and Motorola 88K. Section 4 contains measurements of the
effectiveness of the optimizations on these machines. The
algorithms would also be applicable to other popular
microprocessors such as the Sun SPARC, MIPS R2000, Intel i860,
and IBM RS/6000.

THE WM ARCHITECTURE

The WM architecture implements the concept of streaming.
The main features of the WM architecture that are germane to the
discussion of the code generation and optimization algorithms are
briefly described below. Many details of the architecture, such as
the various data types supported, instruction format, operating
system support, and I/O, are not discussed. The interested reader
can find these details in The WM Computer Architectures:
Principles of Operation [WULF90a].

The Functional Units

The machine has four main functional units: an instruction
fetch unit (IFU), an integer execution unit (IEU), a floating-point
execution unit (FEU), and a vector execution unit (VEU). All four
units operate concurrently. There is also a fifth unit that is dedicated
to handling streaming instructions.

The Instruction Fetch Unit

The IFU is responsible for fetching and dispatching
instructions to the appropriate execution units. Conceptually, the
IFU fetches instructions sequentially and dispatches them to the
appropriate execution unit where they are placed in first-in-first-out
(FIFO) queues to await execution. Some instructions, notably
branch instructions, are processed by the IFU itself. This allows the
IFU to supply a steady stream of instructions to the execution units.
Even though instructions are fetched and dispatched sequentially, it
should be noted that depending on the relative speed of the
execution units and the instruction mix, the actual execution of
instructions can be out of order with respect to the original program
text. Each execution unit operates at its peak speed. In this respect
WM is similar to the IBM RS/6000 [OEHL90].

Control instructions, that is those that affect the program
counter, and other instructions that require synchronization of the
execution units (such as converting a floating-point value to an
integer value) are executed by the IFU. In the case of unconditional
branches, the IFU is able to update the program counter and
continue fetching and dispatching instructions without delay. Thus,
unconditional transfers of control have essentially zero cost.
Conditional transfers of control are handled in the following way.
Compare instructions are executed by the appropriate unit. These
instructions generate a result that is enqueued into a condition code
FIFO. There is one such FIFO for each execution unit. To execute
a conditional branch instruction, the IFU dequeues a result from the
appropriate condition code FIFO and performs the appropriate
action. If the FIFO is empty, the IFU stalls waiting for an execution
unit to enqueue the result of a compare. It is the responsibility of the
compiler to ensure that exactly one instruction that generates a
condition code is executed for each conditional jump executed. It is
also the compiler’s job to arrange the code so that the computation
of the condition code occurs well before the result is needed. When
this is done properly, conditional jumps, like unconditional jumps,
essentially have zero cost.

The Scalar Execution Units

Both the IEU and FEU have 32 registers. For each unit,
however, certain registers have special meaning. For example, for
both units register 31 is defined to be zero. Writes to register 31
have no effect. Register 0 also has special meaning. For each unit,
register 0 is actually two, first-in-first-out (FIFO) queues that are
used to buffer data to and from memory. A load instruction only
computes an address; the destination is implicitly the input FIFO.
The FIFO holds the data until it is needed for some computation.
Data is consumed from the input FIFO by reading register 0.

For stores, data is enqueued in the output FIFO (by writing to
register 0), then when the address is computed (by a store
instruction) the memory request is generated. Stores may also be
performed by first generating the address followed by writing the
data to be stored into register 0. The memory request to store the
data is generated when both the data and the address are available.
All simple load and store instructions (for both integer and floating-
point data) are executed by the IEU.

The separation of address generation from consumption
(access/execute), combined with the use of queues to buffer data to
and from memory is described by Smith [SMITH84]. It has been
used in the PIPE processor [GOOD85], and the ZS-1 [SMIT87]. The
advantage is that, in concert with the compiler, it allows the
processor to mask memory latency by issuing loads in advance of
the data consumption. The result is a machine that is less sensitive
to memory latency and cache misses. Figure 1 contains a block
diagram of the architecture illustrating these features.

The architecture has several other notable features. First, most
instructions encode two operations in a single 32-bit word. Such
instructions are of the form:

R0 := (R1 op1 R2) op2 R3

The two operations op1 and op2 are performed by a pair of
pipelined arithmetic units connected as shown in Figure 2. The
operation and operands enclosed in parentheses are referred to as
the “inner” operator and operands, respectively. The inner
operation is performed by ALU1, and the outer operator is

Execution
Unit
(IEU)

Integer

Floating
Execution
Unit
(FEU)

Vector
Execution
Unit
(VEU)

Instruction
Fetch
Unit
(IFU)

Queue

Queue

Queue

Memory System

Figure 1. Block Diagram of Primary Architecture Components

- 3 -

performed by ALU2.

This structure induces the following data dependency rule:

The result of an instruction is not available as an
operand of the following instruction forthe same
execution unit. The value of an inner operand is
specifically independent of the effect of the previous
instruction.

It is interesting to note that this simple feature subsumes many
of the specialized addressing modes and special operations found
on many existing machines. For example, scaled addressing modes,
commonly used for array operations, are coded as a single
instruction using shift and add asop1 andop2. Auto-increment
and auto-decrement addressing modes are also easily synthesized.
A few machines include special instructions for performing a
multiply and add [ATT88, OEHL90]. They are particularly useful in
codes that perform transformations such as the fast fourier
transformation and graphics transformations. This is easily and
naturally handled by the two-operation, three-operand instructions.

The Vector Execution Unit

The architecture also supports vector operations. Briefly, these
instructions are of the form:

RO := (R1 op R2) if R3

Each vector register contains N components, where N is a
parameter of the particular implementation. Using C-like operators
and semantics to describe them, each vector instruction performs
the computation:

forall (k = 0; k <= N; k++)
 R0[k] = R3[k] ? R1[k] op R2[k] : R0[k];

Conceptually the iterations of the loop are performed
simultaneously by the vector execution unit (VEU).

Streaming

The instruction set contains special stream instructions
(supported in hardware by specialized units) that provide fast
reading and writing of structured data elements stored in memory
with a known, fixed displacement between successive items. A
single instruction can cause a stream of data to be read/written
from/to either the IEU FIFOs, the FEU FIFOs, or the VEU.

Streaming can be viewed as an extension of the access/execute
capabilities of the machine. The address generation and fetching of
structured data is handled by separate, specialized units tailored for
the job. These units, called stream control units (SCUs), are
responsible for generating the sequence of addresses necessary to
fetch/store the data and issuing the corresponding memory requests.

Register File

ALU1

ALU2

Figure 2. Pipeline Structure of Arithmetic Units

For matrix calculations, where address generation and the fetching
and storing of the array elements can be a substantial component of
the code, the obvious benefit is that these tasks are now handled by
a separate unit that operates concurrently with the execution unit
processing the data.

In streaming mode, both register 0 and register 1 can be treated
as input/output FIFOs. A stream instruction specifies four entities:
the FIFO to read/write the data from/to, the base address, the count
of the number of memory accesses to perform, and the stride or
distance between successive elements. There are also a set of
conditional jump instructions that can test whether or not a
streaming operation is complete. The code below illustrates the use
of streams to compute the dot product of two 32-bit floating-point
vectorsA andB of lengthN.

r5 := N -- initialize count
r6 := A -- load address of array A
r7 := B -- load address of array B
f4 := f31 -- initialize sum to 0
sin32f f0,r6,r5,4 -- stream A into FIFO f0
sin32f f1,r7,r5,4 -- stream B into FIFO f1

L1: f4 := (f0*f1)+f4 -- perform computation
jNIf0 L1 -- jump on stream not exhausted

The above code is very efficient. First, the loop consists of
only two instructions. The first instruction is executed by the FEU,
while the second is executed by the IFU. All memory addresses are
computed by the SCU. With a relatively simple hardware
implementation, the code will produce the dot product inN clock
cycles.

As will be shown later, streaming is useful in a variety of
contexts. However, one of its most important uses is handling codes
that contain recurrences. Such codes are difficult and sometimes
impossible to vectorize. For these codes, streaming allows vector-
like performance to be achieved. Of course, when vector code is
possible, the compiler generates code that uses the vector unit. It is
the compiler’s responsibility to detect codes that have recurrences
and to generate streaming code.

CODE GENERATION

An optimizing C compiler that supports streaming has been
constructed for WM. The compiler is based on an portable
optimizer that operates at the machine-level [BENI88]. Using the
diagrammatic notation of Wulf [WULF75], Figure 3 shows the
overall structure of the C compiler. Vertical columns within a box
represent logical phases which operate serially. Columns that are
divided horizontally into rows indicate that the subphases of the
column may be executed in arbitrary order. The optimizer operates
on register transfer lists (‘RTLs’). RTLs describe the effect of
machine instructions. They have the form of conventional
expressions and assignments over the hardware’s storage cells. For
example, a WM instruction that performs a multiplication and
addition would be expressed in RTL notation as:

r[3] = (r[4] * r[5]) + r[6];

Any particular RTL is machine specific, but the form of the
RTL is machine independent. The optimizer uses RTLs because
their machine-independent form permits it to optimize machine-
specific code in a machine-independent way. Such machine-
independent optimizations take the place of classical machine-
specific case analysis and thus improve retargetability.

Compilers constructed using the optimizer use three pervasive
strategies that lead to the generation of excellent code. The first
strategy is that the front end generates naive but correct code for a

- 4 -

simple abstract machine. The code expander translates the abstract
machine code into straightforward code for the target machine. The
code is inefficient, but simple to produce. Both of these phases are
concerned only with producing semantically correct code.
Efficiency is not an issue. All code generation and optimization
decisions are delayed until the target architecture information is
available. The second strategy is that all optimizations are
performed on object code (RTLs). The guiding principle is that
more complete and thorough optimization is possible by operating
on object code. The above two strategies are similar to the approach
taken in the PL.8 compiler for the IBM 801 [AUSL82, RADI82]. The
third strategy is that the optimizer uses the same representation for
all phases of optimization. This allows optimization phases to be
reinvoked at any time. This largely eliminates phase ordering
problems common to many optimizers, and it simplifies many
optimization algorithms as they need only be concerned with the
transformation at hand and not the interactions with other
optimizations.

The optimizer has proven itself to be quite portable, yet
capable of generating very high-quality code. The C front end and
optimizer have been retargeted to over ten machines. These
machines include several CISC-class machines such as the VAX-
11, Intel 80386, and Motorola 68020 and several RISC-class
machines such as the Motorola 88K, Intergraph Clipper, and Sun
SPARC. The optimizer generates very high-quality code. For
example, on the Sun-3/280 using the C component of the SPEC
benchmark suite, the compiler achieves a SPECratio of 4.3 (see
SPEC Tables in Appendix I). The native C compiler, using the
highest optimization level available, obtains a SPEC rating of 4.0.

Recurrence Detection and Optimization Algorithm

Knuth [KNUT73] defines a recurrence relation as:

A rule which defines each element of a sequence in
terms of the preceding elements.

Strength Reduction

Code Motion

Register Allocation

Recurrence Optimization

Stream
Loop
Detection

Dead Variable Elimination

Copy Propagation

Common Subexpression Elimination

Global
Data-Flow
Analysis

Instruction Scheduling

Instruction Selection

Target
Machine
Description

C Source

Lexical
Analysis

Semantic
Analysis

Code
Generation

Code Expander

Object Code

C-code

RTLs
Basic Block Optimizations

Induction Variable Elimination

Figure 3. Schematic of the Optimizing Compiler

Recurrence relations appear in the solutions to a large number
of compute-bound problems. Consequently, recognizing
recurrences and generating code that computes the relation more
efficiently offers two obvious benefits. First, solutions can be
obtained more quickly, second, and perhaps more importantly,
larger problem instances can be tackled.

Because they are important, a number of benchmark programs
contain recurrences. Consider the following C code:

for (i = 2; i < n; i++)
 x[i] = z[i]* (y[i] - x[i-1]);

This is the fifth Livermore loop, which is a tri-diagonal elimination
below the diagonal. It contains a recurrence sincex[i] is defined
in terms ofx[i-1]. This loop is used to describe the algorithms
developed to handle recurrences and streaming.

Many of the transformations necessary to perform recurrences
optimization are done by the optimizer in the course of other routine
optimizations. For example, loop detection and code motion must
be performed first. Figure 4 contains the resulting WM code after
these optimizations are performed.

The recurrence detection algorithm builds partitions that hold
information about the memory references being performed in the
loop. The information is represented in a vector of the form:

(lno, acc, ivdir, cee, dee, roffset)

where

lno - line number where the memory reference
occurred

acc - whether it is a read or write reference (R/W)
iv - the induction variable
dir - the direction; + if theiv is increasing, -

otherwise
cee - c in the formula iv = c*i+d†
dee - d in the formula iv = c*i+d†
roffset - dee - base offset

In the following step-by-step description of the algorithm the
sections set inCourier font describe the application of the step to
the code in Figure 4, and discuss any special conditions not
illustrated by the example.

Recurrence Detection and Optimization Algorithm

Step 1. Divide the memory references that are made in the loop
into partitions that reference disjoint sections of memory. For a
particular memory reference, if the proper group is unknown, add
the memory reference to each group. Also record whether the
memory reference is a read or a write, and where the reference
occurs.

There are three partitions:
X = {(14,r,,,,), (16,w,,,,)}

Y = {(13,r,,,,)}

Z = {(10,r,,,,)}

For memory references made via pointers, it is often
the case that it is impossible to tell what regions
of memory may be accessed. In this case, the
reference will be added to each partition as it
potentially touches each.

† SeeCompilers, Principles, Techniques and Tools [AHO86] for a
complete description of induction variable detection.

- 5 -

Step 2. For each memory reference in the loop, determine the
induction variable, the direction of the loop (i.e., whether the
induction variable is increasing or decreasing), the ‘cee’ value, and
the ‘dee’ value.

The induction variable is i for all memory
references in the loop, which is held in register
22. The direction of the loop is positive. The ‘cee’
value is 8 for each memory reference. For the X
partition read, the ‘dee’ value is _x-8 since the
reference is to x[i-1] (doubles are eight bytes).
The X partition write ‘dee’ value is _x. For the Y
and Z partition, the ‘dee’ values are _z and _y
respectively. The partitions are now:

X = {(14,r,r22 +,8,_x-8,), (16,w,r22 +,8,_x,)}

Y = {(13,r,r22 +,8,_y,)}

Z = {(10,r,r22 +,8,_z,)}

Step 3. For each partition do:

Step a.If all references in the partition do not have the same
induction variable or they do not have the same ‘cee’ value, mark
the partition as unsafe.

For partition X, all references use the induction
variable r22 (i.e., i), and have a ‘cee’ value of
8. Partitions Y and Z contain only one reference
so they trivially satisfy the condition.
Generally, a pointer reference will not have an
induction variable.

Step b.Determine the constants that all ‘dee’ values in the
partition have in common. Call this the base offset. For all
references in a partition, determine the relative offset between the
reference and the induction variable. If the relative offset is not
evenly divisible by the ‘cee’ value, mark the partition as unsafe.

The base offset for the X partition is _x, for the
Y partition it is _y, and for the Z partition it
is _z. For partition X, the relative offset
between the read memory reference and the
induction variable is -8. For the write memory
reference the relative offset is 0. Both are
evenly divisible by the ‘cee’ value which is 8.
For the Y and Z partition, the relative offsets

are 0. The partitions are now:

X = {(14,r,r22 +,8,_x-8,-8), (16,w,r22 +,8,_x,0)}

Y = {(13,r,r22 +,8,_y,0)}

Z = {(10,r,r22 +,8,_z,0)}

Step4. For all partitions still marked safe and which contain
reads and writes do:

Step a.Identify read/write pairs, that is memory references
where a read fetches the value written on a previous iteration. For
each read/write pair, calculate the distance between the
references. This is the absolute difference of the relative offsets
for the references. The maximum difference determines the
number of registers needed to handle the recurrence. This
distance is divided by the stride of the loop.

For the X partition, the maximum distance between
read/write pairs is 8. The stride is 8, thus we
need two registers to handle the recurrence. In
general, you need one more register than the
degree of the recurrence.

Step b.Logically, before the write, code is generated to copy the
value to a register. Similarly, the subsequent reads are deleted and
replace with register references. The partition is modified to
reflect that the read is no longer performed in the loop.

This step is machine-dependent. For WM, the
following actions are taken. At line 15, the write
to FIFO f0 is modified so that the value is
retained in f22. Before the write at line 16, f22
is written to FIFO f0. The load at line 14 is
deleted, and the FIFO read reference in line 15 is
replaced with a reference to f23. f23 holds x[i-
1]. The partitions are:

X = {(16,w,r22 +,8,_x,0)}

Y = {(13,r,r22 +,8,_y,0)}

Z = {(10,r,r22 +,8,_z,0)}

Step c. At the top of the loop, generate code that copies the
register that held the ith value into the register that holds the ith-
1 value. The number of copies required is equal to the degree of

1. r31 := (2 >= r23) -- compare n to 2
2. r22 := 2 -- initialize i
3. JumpIT L16 -- jump if n < 2
4. llh r21 := _x
5. sll r21 := _x -- compute address of x
6. llh r24 := _z
7. sll r24 := _z -- compute address of z
8. llh r25 := _y
9. sll r25 := _y -- compute address of y
10. L20: l64f r31 := (r22<<3) + r24 -- generate memory request for z[i]
11. r20 := (r22-1) << 3 -- compute offset of ith-1 array element
12. double f20 := f0 -- dequeue z[i]
13. l64f r31 := (r22<<3) + r25 -- generate memory request for y[i]
14. l64f r31 := (r20) + r21 -- generate memory request for x[i-1]
15. double f0 := (f0-f0) * f20 -- compute new x[i] and enqueue result
16. s64f r31 := (r22<<3) + r21 -- generate memory request to store x[i]
17. r22 := (r22) + 1 -- increment i
18. r31 := (r23) <= r22 -- compare i to n
19. JumpIF L20 -- jump if i <= n
20. L16:

Figure 4. Unoptimized WM code for the 5th Livermore loop.

- 6 -

the recurrence.

The degree of this recurrence is 1. Thus, at the
top of the loop (after line 10), register f22 is
copied to f23. If the order of the recurrence is
greater than 1, it is important to emit the copies
in the proper order.

Step d. Build a loop pre-header (if one does not exist) to perform
the initial reads.

An initial load of x[1] is emitted. It is loaded
into register f22.

The resulting code is shown in Figure 5. Notice that the major
difference between the code in Figure 4 and Figure 5 is that there
are now only three memory references in the loop instead of four.
The value of x[i] is retained in register f22 and becomesx[i-1]
on the next iteration of the loop. For this loop, the number of
memory references that will be executed is reduced by one quarter.

After performing the recurrence transformations, the
optimizer invokes other phases to catch any optimizations that may
be possible on the transformed code. For example, the copy
propagate optimization phase would delete the register-to-register
copy at line 10 replacing the use of register f23 at line 15 with
register f22.

The algorithm applies to other machines as well. In fact, the
algorithm is largely machine-independent. The routine that replaces
memory references with register references is machine-specific. It
consists of approximately 30 to 50 lines of C code. Figure 6
contains the assembly code the C compiler retargeted to the
Motorola 68020 generated for the 5th Livermore loop. Again, it is
worthwhile noting that the structure of the compiler simplifies the
machine-independent implementation of the optimizations. First,
the machine-independent form of the RTLs allows the
optimizations to be implemented without regard to the target
architecture. Second, the compiler can reinvoke other phases of the
compiler at any time. In the Motorola 68020 example, the

instruction selection phase determined that auto-increment
addressing modes could be used to fetch the memory operands at
the top of the loop.

Several C compilers on various machines were examined to
see if they optimized codes containing recurrences. The C
compilers were on:

1. a Sun-3 running SunOS 4.0 (Motorola 68020-based),

2. a HP9000 series 345 running HPUX 7.0 (Motorola 68030-
based),

3. a Motorola 88K Delta running System V/88 (88K-based
and with the Green Hills compiler Version 1.8.4),

4. a DecStation 3100 running Ultrix V2.1 Rev 14. (MIPS
R3000-based)

5. a Sparcstation 1+ running SunOS 4.1 (Sun Sparc-based)

 6. an IBM RS6000/530 running AIX Version 3.1

Only the IBM C compiler optimized codes that contain
recurrences. It is possible that the FORTRAN compilers on these
machines optimize recurrences, although most of them use the same
back end for both C and FORTRAN.

To evaluate the effect that recurrence relation detection and
optimization has on execution times, the 5th Livermore loop was
compiled and run on five machines. The array size was set to
100,000. For each machine, the code was generated with and
without recurrence detection enabled. Table I shows the percentage
improvement in execution time when recurrence optimizations are
enabled. The best case improvement would occur if the time to
perform the memory references dominated all other operations
performed in the loop. In this case, elimination of one of the four
memory references would produce a speed up of approximately 25

1. r31 := (2 >= r23) -- compare n to 2
2. r22 := 2 -- initialize i
3. JumpIT L16 -- jump if n < 2
4. llh r21 := _x
5. sll r21 := _x -- compute address of x
6. llh r24 := _z
7. sll r24 := _z -- compute address of z
8. llh r25 := _y
9. sll r25 := _y -- compute address of y
9a. l64f r31 := (r31+8) + r21 -- generate memory request for x[1]
9b. double f22 := f0 -- dequeue x[1]
10. L20: double f23 := f22 -- copy x[i-1] to x[i]
11. l64f r31 := (r22<<3) + r24 -- generate memory request for z[i]
12. r20 := (r22-1) << 3 -- compute offset of ith-1 array element
13. double f20 := f0 -- dequeue z[i]
14. l64f r31 := (r22<<3) + r25 -- generate memory request for y[i]
15. double f22 := (f0-f23) * f20 -- compute new x[i]
16. double f0 := f22 -- enqueue x[i]
17. s64f r31 := (r22<<3) + r21 -- generate memory request to store x[i]
18. r22 := (r22) + 1 -- increment i
19. r31 := (r23) <= r22 -- compare i to n
20. JumpIF L20 -- jump if i <= n
21. L16:

Figure 5. WM code for the 5th Livermore loop with recurrences optimized.

- 7 -

percent. The observed improvements range from 6 to 19 percent.

Streaming

After recurrences have been detected and optimized, the
compiler attempts to exploit any possibilities for using stream
operations. The algorithm makes use of the memory partition
information collected in the previous algorithm.

Streaming Optimization Algorithm

Step 1. Determine the number of iterations through the loop. Call
this the loop_count. If it is impossible to determine, set loop_count
to ∞. If the number of iterations is determined to be three or fewer,
do not use streams.

If the number of iterations is low, setting up the
stream instructions would result in code that
executes slower than the code without streaming.
For the example, loop_count is n-1. The current
partition information is:

X = {(17,w,r22+,8,_x,0)}

Y = {(14,r,r22+,8,_y,0)}

Z = {(11,r,r22+,8,_z,0)}

Step 2. For all partitions marked safe do:
 For each memory reference in the partition do:

Step a. Ensure that no memory recurrences remain in the loop
(e.g. subsequent reads of something written in the previous
iterations). If memory recurrences still exist, do not stream.

For this example, all memory recurrences have been
eliminated. Some recurrences may not be completely
eliminated because there may not be enough
registers to hold the intermediate results. If

Machine Percent Improvement
in Execution Time

Sun 3/280 19
HP 9000/345 12
VAX 8600 6
Motorola 88100 7
WM 18

Table I. Effect of Recurrence Optimization on Execution Time

memory recurrences still exist, it is not possible
to guarantee that the value written on one
iteration will be the value read on the next
iteration.

Step b. Calculate the stride which is ‘cee’ × loop increment.

Cee is 8 and the loop increment is 1, resulting in
a stride of 8.

Step c. Determine if the memory reference is executed every
time through the loop. If true, then use streaming.

This is determined by making sure that the block
that contains a memory reference dominates all
blocks that branch to the loop header. This
condition is necessary as streaming will fetch
every element of the structure being referenced.
The example loop satisfies this requirement.

Step d. Determine the number of times the memory reference is
executed.

If the memory reference dominates the loop exit,
then it is loop_count, otherwise it is loop_count
- 1. For our example, each memory reference is
executed loop_count or n-1 times.

Step e. If it is a read reference, use the stream-in operation,
otherwise use stream-out. Allocate appropriate FIFO register. If
one is not available, do not stream.

For the Livermore loop, the write reference in the
X partition is allocated output FIFO f0, the read
reference in the Y partition is allocated input
FIFO f0, and the read reference in the Z partition
is allocated input FIFO f1.

Step f. Generate code in the loop preheader to test whether the
loop should be executed and to jump around the loop if it should
not be executed.

This is the code at lines 1 and 11 of Figure 7.

Step g. Add appropriate stream in and stream out instructions in
loop header.

These are the instructions at lines 13, 15, and
17.

Step h. Change loads and stores to use FIFO registers.

moveq #2,d1 -- initialize i
movl a7@(n.),d0 -- load n
cmpl d0,d1 -- compare i to n
jge L44 -- jump if loop should not be executed
fmoved (8 + _x),fp0 -- load x[1]
lea (16 + _z),a0 -- address of z[2]
lea (16 + _y),a1 -- address of z[2]
lea (16 + _x),a2 -- address of x[2]

L48: fmoved a1@+,fp1 -- load y[i]
fsubx fp0,fp1 -- subtract x[i-1]
fmoved a0@+,fp0 -- load z[i]
fmulx fp1,fp0 -- calculate x[i]
fmoved fp0,a2@+ -- store x[i]
addql #1,d1 -- increment i
cmpl d0,d1 -- compare to n
jlt L48 -- branch if i < n

L44:

Figure 6. Motorola 68020 code for the 5th Livermore loop with recurrences optimized.

- 8 -

The load instructions for y and z are deleted.
These are the instructions at lines 11, 13, and 14
of Figure 5.

Step i. If loop_count is ∞, add stream stop instructions at all loop
exits. If loop_count is known and finite, delete loop test and
replace with a stream instruction.

The example does not use infinite streams, thus
the step results in lines 19 and 20 in Figure 5
being deleted and replaced with line 20 in Figure
7.

Step j. If the value of the induction variable is dead on loop exit,
delete the increment of the induction variable.

In this example, the induction variable is dead,
so line 18 of Figure 5 is deleted.

Step 3. Perform strength reduction on the modified loop.

For details of this algorithm see any text on
compiler construction.

With streaming and strength reduction, the loop now consists
of only three instructions. No address computations are performed
in the loop. These as well as the accompanying memory requests
are handled by the stream control units that operate concurrently
with the other execution units. The resulting code’s execution rate
is determined by how fast the data can be read and written. Because
addresses generated by the SCUs exhibit a regular pattern, it may
be possible that the interface between the SCUs and the memory
unit can be optimized to take advantage of this characteristic (e.g.
burst mode transfers).

It is clear that streaming is applicable to codes containing
recurrences and array manipulations. However, it was somewhat of
a pleasant surprise that streaming appeared in a variety of programs.
A number of Unix utilities were compiled and were found to use
streaming. Some examples are: cal, compact, od, sort, diff, nroff,
and yacc. The uses included copying strings and structures,
searching a decoding tree, searching a data structure for a specific
item, and initializing an array.

It also appears that streaming can provide good execution
performance improvements. Table II gives the percent reduction in
cycles executed for programs compiled with and without streaming
optimizations enabled. The programs were executed on a simulator
capable of determining exact cycle counts (including memory
delays). The largest improvement was exhibited by dot product (43
percent), and the smallest gain was produced by quicksort (1
percent).

SUMMARY

This paper has described an optimizer designed to exploit the
access/execute capabilities of an architecture under construction.
The architecture is unique in that it contains hardware support for
efficiently accessing streams of data. A stream is a set of data items
stored in memory with a fixed, known displacement between
successive elements. Streams can be used in several contexts. One
of the most important, however, is in codes that contain
recurrences. Loops containing recurrences are the computational
hot-spot in codes for many important problems. Furthermore,
recurrences are difficult and usually impossible to vectorize.

The paper describes two complementary algorithms that are
used to exploit streaming. The first algorithm detects and optimizes

Program Percent Reduction in
Cycles Executed

banner 5
bubblesort 18
cal 17
dhrystone 39
dot-product 43
iir 13
quicksort 1
sieve 18
whetstone 3

Table II. Execution Performance improvements by streaming.

1. r31 := (r21-1) <= 0 -- check if loop should be executed
2. llh r20 := _x
3. sll r20 := _x -- compute address of x
4. l64f r31 := (r31+8) + r20 -- generate memory request for x[1]
5. llh r22 := _z
6. sll r22 := _z -- compute address of z
7. llh r23 := _y
8. sll r23 := _y -- compute address of y
9. r24 := (r21) - 1 -- compute number of items to stream
10. double f22 := f0 -- dequeue x[1]
11. jumpIT L16 -- jump if loop should not be executed
12. r19 := (16) + r22 -- compute address of z[2]
13. SinD f1,r19,r24,8 -- stream in z[2], z[3],...,z[n]
14. r19 := (16) + r23 -- compute address of y[2]
15. SinD f0,r19,r24,8 -- stream in y[2], y[3],...,y[n]
16. r19 := (16) + r20 -- compute address of x[2]
17. SoutD f0,r19,r24,8 -- stream out x[2], x[3],..,x[n]
18. L20: double f22 := (f0-f22) * f1 -- compute x[i]
19. double f0 := (f31) + f22 -- store x[i]
20. Jnif1 L20 -- jump if stream count not zero
21. L16:

Figure 7. WM code with stream instructions.

- 9 -

recurrences. Surprisingly, this optimization is included in few
available C compilers. Of six commercially available C compilers
examined, only one optimizes recurrences. The algorithm is
interesting because it is machine-independent, yet it is applied to
machine-dependent code. For the machines examined, the
optimization significantly reduces the time to execute loops
containing loop-carried dependences.

The second algorithm builds on the results of the recurrence
detection and optimization algorithm to handle streams. The ability
of the optimizer to detect situations where streaming can profitably
be used is key to exploiting the power of the architecture. For
example, when streams are detected and special stream instructions
are used, the cost of computing addresses and issuing memory
requests is off-loaded to a separate, dedicated processor. This
increases the amount of concurrency obtained when executing the
loop. The algorithm appears to perform well. Besides detecting the
obvious situations for using streams (like vector and array
manipulations), the algorithm finds opportunities for streaming in
codes where such possibilities are not immediately obvious.
Furthermore, it appears that the algorithms may be applicable to
generating code for vector units.

ACKNOWLEDGEMENTS

The WM architecture was designed by William A. Wulf of the
University of Virginia. Charles Hitchcock of Dartmouth
participated in the initial design and is responsible for a number of
the machine’s unique features. The WM team at the University
consists of Jim Aylor, Barry Johnson, Anita Jones, Peter Kester,
Sunil Pamidi, and Max Salinas. The support of the Defense
Advanced Research Agency and the National Science Foundation
made this work possible.

REFERENCES

[ATT88] WE DSP32 Digital Signal Processor Information
Manual, AT&T Documentation Management
Organization, 1988.

[BENI88] M. E. Benitez and J. W. Davidson, A Portable Global
Optimizer and Linker, Proceedings of the SIGPLAN
Notices ’88 Symposium on Programming Language
Design and Implementation, Atlanta, GA, June
1988, 329-338.

[AHO86] A. V. Aho, R. Sethi and J. D. Ullman, Compilers
Principles, Techniques, and Tools, Addison-Wesley,
Reading, MA, 1986.

[AUSL82] M. Auslander and M. Hopkins, An Overview of the
PL.8 Compiler, Proceedings of the SIGPLAN
Notices ’82 Symposium on Compiler Construction,
Boston, MA, June 1982, 22-31.

[GOOD85] J. R. Goodman, J. Hsieh, K. Kiou, A. R. Pleszkun, P.
B. Schechter and H. C. Young, PIPE: A VLSI
Decoupled Architecture, Proceedings of the 12th
International Symposium on Computer Architecture,
Boston, MA, June 1985, 20-27.

[HENN90] J. L. Hennessy and D. A. Patterson, Computer
Architecture A Quantitative Approach, Morgan
Kaufmann, San Mateo, CA, 1990.

[INTE89] i860 64-Bit Microprocessor Hardware Reference

Manual, Intel Corporation, Santa Clara, CA, 1989.

[KNUT73] D. E. Knuth, Fundamental Algorithms, Addison-
Wesley, Reading, MA, 1973.

[OEHL90] R. R. Oehler and R. D. Groves, IBM RISC System/
6000 Processor Architecture, IBM Journal of
Research and Development34,1 (January 1990), 23-
36.

[RADI82] G. Radin, The 801 Minicomputer, Proceedings of the
Symposium on Architectural Support for
Programming Languages and Operating Systems,
Palo Alto, CA, March 1982, 39-47.

[SMIT84] J. E. Smith, Decoupled Access/Execute
Architectures, ACM Transactions on Computer
Systems2,4 (November 1984), 289-308.

[SMIT87] J. E. Smith, G. E. Dermer, B. D. Vanderwarn, S. D.
Klinger, C. M. Roszewski, D. L. Fowler, K. R.
Scidmore and J. P. Laudon, The ZS-1 Central
Processor, Proceedings of the Second International
Conference on Architectural Support for
Programming Languages and Operating Systems,
Palo Alto, CA, October 1987, 199- 204.

[WULF75] W. Wulf, R. K. Johnsson, C. B. Weinstock, S. O.
Hobbs and C. M. Geschke, The Design of an
Optimizing Compiler, American Elsevier, New
York, NY, 1975.

[WULF88] W. A. Wulf, The WM Computer Architecture,
Computer Architecture News16,1 (March 1988), 70-
84.

[WULF90a] W. A. Wulf, The WM Computer Architectures:
Principles of Operation, TR90-02, University of
Virginia, January 1990.

[WULF90b] W. A. Wulf and C. Hitchcock, The WM Family of
Computer Architectures, TR90-05, University of
Virginia, March 1990.

- 10 -

APPENDIX I - C SPEC BENCHMARK RESULTS

Configuration Information

7/90, SPEC License No. 268
Sun 3/280
1 processor Motorola 68020, 25 MHz clock speed
1 FPU Motorola 68881; 20 MHz clock speed
16 MB main memory
2 Fujitsu Eagle II disk drives, each 575MB capacity (formatted)
1 ZyLogics 451 disk controller
Operating Systems Sun OS, Version 4.0.3
All measurements run in Multi-User State
File System parameters: 8K block size, 1 K fragment size, optimized for time.
Small background load during measurements (less than 0.2)

SPEC Benchmark SPEC Reference System Under Test SPECratio
Release 1.0 Time Elapsed Time (Sample) Elapsed

(seconds) Time (seconds)

001.gcc 1482 336 4.4
008.espresso 2266 644 3.5
022.li 6206 1401 4.4
023.eqntott 1101 296 3.7

Geometric Means 2188.7 547.3 4.0

Table III. SPEC measurements for C compiler distributed with Sun OS 4.0.1

SPEC Benchmark SPEC Reference System Under Test SPECratio
Release 1.0 Time Elapsed Time (Sample) Elapsed

(seconds) Time (seconds)

001.gcc 1482 317 4.7
008.espresso 2266 611 3.7
022.li 6206 1252 5.0
023.eqntott 1101 279 4.0

Geometric Means 2188.7 510.0 4.3

Table IV. SPEC measurements for vpcc/vpo C compiler for Motorola 68020 version 7/90.

