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Abstract

We define a class of genetic algorithms where, at each time step, two par-
ents are selected to produce a child which then replaces one member of the
population at the next time step. We consider the finite-population case. We
define a general crossover and mutation operation, as well as a genomic distance
between individuals. We require a specific property to hold for such operations
and distance functions, and present examples of crossover operations, mutation
operations, and distance functions which meet the requirements. We then de-
fine the sum over all pairwise population distances as a measure of the diversity
of a population and consider the time evolution of the expected diversity of a
population. We show that under uniform, independent selection of parents and
the individual to be replaced the expected diversity is strictly decreasing. For
this case we calculate an explicit formula for the diversity at each time step,
based only on the initial population diversity. We then consider and discuss
the case where independent, fitness-based selection is used and show that the
expected diversity is strictly decreasing whenever the same probability function
is used to select both the parents and the individual to be replaced. We qual-
itatively discuss conditions where expected diversity will increase rather than
decrease with fitness-based selection. Finally, we discuss fitness measures based
on a distance function.

1 Introduction

In this paper we consider the diversity of finite populations of individuals under a
genetic algorithm. The type of genetic algorithm we consider selects two parents
at each time step, as well as an individual to be replaced. The population at the
next time step consists of the same population except that the individual selected



for replacement is replaced by a child of the two parents. Similar techniques should
also be applicable to other definitions of genetic algorithms.

The diversity measure we define is based on a general, additive genomic distance
between individuals. We analyze the dynamics of this diversity measure under the
specific class of genetic algorithms we consider. In certain cases, like uniform selec-
tion without mutation, the expected diversity measure is strictly decreasing, causing
a population to converge toward a state where all individuals have identical genome
sequences. The intuitive idea is that when parents mate and produce a child, the
child is “close” in some sense to the parent. If the child then replaces a different
individual the diversity of the population will tend to decrease on average. When
mutation of individuals is included in the uniform selection case the expected di-
versity decreases to a level where the diversity introduced by mutation counters the
decrease due to the crossover operation. We calculate explicit expressions for the
expected diversity measure under uniform selection which show this trend.

When fitness-based selection is used, the expected diversity is no longer strictly
decreasing in general. We derive an expression for the expected diversity when
independent, fitness-based selection is used and show the expected diversity is still
strictly decreasing if the parent selection and individual removal probability functions
are identical. We qualitatively consider the conditions when the expected diversity
will decrease and when it will increase.

Finally, we discuss the relationship between the fitness value of an individual
and its genomic representation. We consider the effects of assuming that the fitness
measure is, at least approximately, related to the genomic distance from an individual
to an individual with maximum fitness.

In Section 2 we describe the class of genetic algorithms we consider. In Section
3 we define the general form of the crossover operation and give some examples.
In Section 4 we define a class of additive distance functions between the genomic
representations of individuals and give some examples. In Section 5 we define the
mutation operation and a basic assumption about its interaction with the distance
function in terms of expected distances. We give some examples where this assump-
tion holds and present the basic lemma used in later results. In Section 6 we define
the diversity measure as the sum of all pairwise distances within a population, and
in Section 7 we calculate a recursive expression for the expected diversity of a popu-
lation at time step k. In Section 8 we consider the dynamics of the diversity measure
in the case of independent, uniform selection. We present some theorems for this
case which explicitly characterize the expected diversity of a population over time.
In Section 9 we consider the diversity measure when selection is fitness-based and
where the selection probabilities for parents are independent and identical and the
selection probability for the individual to be replaced is independent. In Section
10 we discuss cases where the fitness function is defined by a relationship between



genomic distances and fitness values. In Section 11 we give a general discussion of
the results. Appendices A and B present a derivation similar to that in Sections 7
and 8 but with a slightly different genetic algorithm definition.

2 Algorithm Definition

In this section we define the specific class of algorithms to be analyzed. In general
terms, the algorithm works on a population of individuals. An individual is repre-
sented by some string or vector, often representing a genome sequence or a problem
instance. Each individual is also associated a positive, scalar fitness value.

The algorithm begins with some initial population of individuals. At each suc-
cessive discrete time instance two distinct individuals are chosen from the population
to be mated, and one individual is chosen for replacement. This selection is random,
with probabilities determined by the fitness values of the individuals. A crossover
operator is applied to the two individuals to be mated, producing a new individual
(the offspring or child). The population at the following time step is created by
replacing the individual chosen for removal with the child.

We denote the population at time k£ by

where the population size n > 1 is fixed for all k. The initial population is defined
as SO, The fitness values associated with individuals at time k are written as

FE = (71, 1),

The algorithm moves from time k to time k + 1 by first selecting three integer
indices between 1 and n, representing the parents to be mated and an individual
to be replaced. The indices of the parents chosen at time k will be written as m(¥)
and w®), and the index of the individual to be replaced will be written v(*). These
indices are chosen according to a known probability function p(m*) w®) o®)|FKk)),

We assume a generalized crossover operator ® which takes two individuals and
produces two new individuals. This function is typically random, but we write it as a
deterministic function by having it take an additional random vector as an argument
(possibly a random vector with both discrete and continuous elements). We typically
write this additional random vector as ¢. We discuss the specific properties we
require for the crossover operation in the next section. Only one child produced by
the crossover operation is selected, and we assume the choice is random with equal
probabilities for each child. A 0-1 random variable b(*) will be used to denote this
choice. After an individual is selected it is mutated and replaces individual s,,.



To represent the mutation operation we define a mutation operator ¥ which
takes an individual and returns a modified individual. Mutation is also a random
operation, and so takes a random vector ¢ as an additional argument. We discuss
the specific properties we require for the mutation operation in a later section.

For now we have

(@, 67) = a5, W) 1)
glk+1) (clk)ﬂ"/Jl ) lfb (2)
' (e g8) bt =17

where cgk) and cgk) are the individuals produced as the children of 57(71? and sq(f ).

We assume all the random vectors ¢ and 1) are independent from all other random
vectors and variables. Defining sng) = sz(-k) for 4 # v completes the definition of

the algorithm. Note that there is one crossover at each time step.

3 The Generalized Crossover Operator

We require the crossover operator @ to have a certain form. As mentioned earlier, we
take individuals to be strings or vectors of some sort of element, having a fixed length
h. Letting a and b be individuals, we write a = (a1,...,a;) and b = (by,...,by).
Note that here we are using subscripts for elements of individuals rather than for
individuals in a population.

The mutation operator on parents a and b, producing children z and y, is written
as

®(a,b,9) = (2,y), 3)

where ¢ is a random vector as described earlier. We require that either z; = a;
and y; = b; or else that z; = b; and y; = a;, for each 7. Thus the operator chooses
elements of the parents and assigns them to the children, though mixing them up.

Example 1: One-point crossover. In this case the random vector ¢ passed
in specifies some crossover point ¢ between 1 and n. We then take

m:(al,...,aq,bq+1,...,bh)
and
y:(bla"'abqaanrla"'aah)'

Example 2: Uniform crossover. In this case the random vector ¢ passed in
contains h binary random variables with an arbitrary distribution function. Often



each will be independent with equal probabilities for 0 and 1. We then choose z; = a;
andyizbi iqui:Oandxi:bi andyz-:ai ifngi:l.

We note that other forms of crossover operators will also work, provided they in-
teract correctly with the distance functions to be introduced later. That is, provided
distance relations to be defined in Section 5 still hold.

4 An Additive Distance Function Between Individuals

We assume there is a distance function d(a, b) defined between any individuals a and
b. This distance function is required to have the following properties:

e Symmetric: d(a,b) = d(b,a),
e Non-negative: d(a,b) > 0,
e Zero only for identical individuals: d(a,b) = 0 if and only if a = b,

e Additive in the sense that d(a,b) = S, gi(ai, b;), where the g; are arbitrary
functions (which, with some restrictions, may also depend on & ) such that the
previous properties hold for them (i.e. they are symmetric, non-negative, and
zero only for identical elements).

Some examples of common distance functions with these properties follow.

Example 1: Hamming distance. In this case we treat the individuals as
strings. For simplicity we restrict the strings to be binary strings in this example, i.e.,
strings over the alphabet {0,1}. We define g;(a;,b;) = 0 if a; = b; and g;(a;,b;) =1
otherwise.

Example 2: Squared Euclidean distance. In this case we have individuals
which can be considered to be vectors of integers, rationals, or real numbers. We
define d(a,b) = 2| (a;—b;)%. That is, g;(a;, b;) = (a; —b;)?. Note that the Euclidean
distance (based on the Euclidean or [ norm) does not meet the additive requirement.
Distance based on the the /; norm, i.e., the sum of the absolute differences, does
meet the requirements and provides another example.

Example 3: Combined forms. Since the function g; can depend on ¢ one can
treat part of an individual as a string and part as made up of real numbers, as in
the two earlier examples.

Combining a distance function of this form with the generalized crossover opera-
tion defined above we obtain the following lemma. In words, the lemma states that
the sum of the distances from an arbitrary individual to a pair of parents equals the
sum of the distances from that arbitrary individual to the two children produced by
a crossover operation on those parents.



Lemma 1 Let
@(a7 b’ QS) = (:'E’ y)

be a crossover operator of the type defined in Section 3, and let d be a distance
function with the properties above. Then

d(s,a) +d(s,b) = d(s,z) +d(s,y)

for any individual s. Also, d(a,b) = d(z,y).

Proof:
h h
d(s,a) +d(s,b) = Zgi(sia a;) + Zgi(si’ bi)
h
= Z[gi(si,ai) + gi(s4, ;)]
ZZ
= Z[gl(sl,wl) + 9i(si,yi)]

= d(s, )+ d(s,y).

Note that this lemma holds regardless of the properties of the random variable ¢ and
allows us to write the summed distances from any individual to a pair of children in
terms of the summed distances to the parents.

5 The Mutation Operator

As defined previously, the mutation operator takes an individual and a random
vector and produces another, modified, individual. That is, b = ¥(a,)) applies
the mutation operation to an individual a¢ and produces a new individual b. The
mutation operator is also required to meet certain requirements defined with respect
to the expected value of the distance function d. We define those requirements later
in this section.

Before proceeding, we discuss the notation we use for expected values. We use
the symbol E with a superscript indicating the probability distribution with respect
to which the expectation is taken. Thus, for example,

EP(I:y‘Z)[g(;E’y’z)] :/ / dx dy g(fvayaz)p(xay|z)’
—00 J—00

where the integrals are replaced by summation for discrete random variables (which
we deal with in this paper). This allows us to manipulate expectation operators



in some cases as if we are multiplying densities, e.g., Er@y) = pr) prly) and
so forth.! We will write the operator £ without the superscript to denote the full
expectation with respect to all random variables of its argument (resulting in a
number rather than a random quantity).

We assume that any random argument v to the mutation operator is independent
from all other random variables. The condition we require for the mutation operator
is that

E"[d(W(a,9).b) | = erd(a,b) + e, (4)

where we assume €; and €2 are nonnegative. The constants €; and e are fixed for
a given mutation operation ¥ and probability function p(+)). Thus we also have the
relations

Ep(w1,¢2)[ d(V(a,11), U(bap))] = e%d(a, b) + €1€2 + €2
Ep(w1,¢2)[ d(U(¥(a,91),99), b)] = e%d(a, b) + €12 + €9

and so forth, making use of the independence of the two (or more) mutation opera-
tions.

Some examples of mutation operators which meet this condition follow, corre-
sponding to the examples of distances given in Section 4.

Example 1: Random changes in a string. Suppose we are using the Ham-
ming distance between binary strings as our d function, as in Example 1 of Section
4. A mutation is assumed to change exactly one string element, chosen uniformly.
The index of the element to be chosen is passed in as random variable 1. We write
this index as z to indicate that, in general, other random variables could be passed
in as well. A change of a string character is assumed to always flip the bit value b,
from its previous value to 1 — b,. Then we have

h
Ep(w) [d(\If(a, 'l/})a b)] = Ep(:v)[ (Z gi(aia bz) ) - gm(ama bm) + gm(l — Qg, bm) ]
i=1

= d(a, b) + Ep(x)[gz(l — Qg, bm) - gm(ama bfL‘) ]
= d(a, b) + Ep(x)[ (1 - g:p(ama bm)) - gfL‘(ama bI) ]

h
= d(a,b) + 1 Z(l = 2z (az, bg))
h
=1

!Note that the expectation operators do not commute in general, though they do for expectations
with respect to independent variables. Note also that for conditional distributions like EP(*¥:2) =
EP@:2) gP@1V:2) the p(y) expectation must be to the left. One way to view this is just as an ordering
of the integration or summation operations for evaluating the total expectation (of a function of a
random vector), making use of conditional probability rules. One can also view this as successive
expectations with certain variables “given,” though independent variables are usually dropped from
the conditioning on a probability function or density.

€1 and €2 de-
fined.



= (1= 2)d(a,b) +1
h
The case where more than one element is mutated can be obtained by repeatedly
applying the operator, or else derived similarly if some number of distinct elements
are required to be mutated.

Example 2: Additive, zero-mean random noise. Suppose we are using
the squared Euclidean distance, as in Example 2 of Section 4. Recall that in this
case we treat the elements as numbers. The mutation operator for this example is
defined to add independent, zero-mean random noise to exactly one element of the
individual, i.e., to one component of the vector. The additive noise w is assumed
to have variance ¢2. Thus the random vector 1 contains two random variables: an
integral index z into the string and the real-valued, zero-mean random noise w. We
assume z and w are independent. Then we have

h
w)[d(\p(aa"/))a b) ] = Ep(m’w)[ (Z gi(aia bi) ) - g:c(a:ca b:v) + gx(\I/(am,z/J), b:c)]
= d(aab) + Ep [gm( (ama'l/})abm) - gm(amabm)]
= d(a,b) + BT ((ag — by) + w)? — (az — by)? ]
= d(a,b)+E” EP)] 2w(ay — by) + w? ]
= (aa b)

Similar expressions can be obtained for the cases where more than one element is
perturbed.

Using property (4) of the mutation operator and Lemma 1 we obtain the following
lemma.

Lemma 2 Let
@(a7 b’ QS) = (:'E’ y)

be a crossover operator of the type defined in Section 3, and let d be a distance
function with the properties defined in Section 4. Then, with ¥ a mutation operator
of the type defined in Section 5,

EPO)d(s, W(z, 1)) +d(s, U(y,92)) ] = er(d(s,z) +d(s,y)) + 2
= e€(d(s,a) +d(s,b)) + 2e

for any individual s. Also,

Ep(w1,¢2)[ d(U(z, 1), V(y,12))] = e%d( Y) +€e1€2 + €2

= d(a,b) +erea+ e




Proof:
the sum of the expected values. Applying requirement (4) to both terms in

The expected value is linear, so the expected value of the sum is

the sum, along with Lemma 1, gives the first two equations. For the third
equation, set ¢ = ¥(y,1-) and take the expectation with respect to v (using
the independence of the v; and requirement (4)). Then substitute back in for
¢ and take the expectation with respect to 1. Apply Lemma 1 to get the final

line.

Note that, again, the random vector ¢ from the crossover operation does not enter
into the result. In words, the sum of the distances from an individual to the two
mutated children equals a constant times the sum of the distances to the parents
plus another constant.

Lemma 2 is the basic property that the crossover operator, mutation operator,
and distance measure between individuals must satisfy for the results of this paper
to hold. Alternate definitions of these operations are possible provided this condition
still holds (and provided the distance properties of Section 4 still hold).

6 A Measure of Population Diversity

We now construct a measure of population diversity from the previously defined
distance function between individuals. We assume the distance function d has all
the properties previously specified.

We define a diversity measure L%) of a population at time k as the sum over all

pairwise distances between individuals in the population. That is,

k)

LK) (5)

Il
N | =
=

U
~~~

Va)
S~

=

©»

S~

=

SN—

(6)
where sz(-k) and s§k) are individuals in population S®*) and d®) is the average of
all distances (including zero self-distances) at time k. The following lemma follows
directly from the properties of the distance function.

Lemma 3 L) = 0 if and only if all the individuals in population S®) are identical,
and L) > 0 otherwise.

Proof: From the requirements of the distance function d we know d(s;, s;) =0
if and only if s; = s;, and is positive otherwise. The lemma then follows directly
from the definition of L)

L® gnd 4%
defined.



Actually, a weaker condition will guarantee convergence for finite populations.
Here we write the jth element of individual s; as s;;.

Lemma 4 L*) < (n—1) mini’j7h[g1-(sz(-,]j), sy;l)) # 0] if and only if all the individuals

in population S*) are identical.

Proof: The “if” part follows directly from Lemma 3. To show the “only if”
part, assume the contrary. That is, assume that not all individuals are identical
but L*) < (n —1)*) | where %) = mini’j7h[gi(s§,]§),s§';)) # 0]. Thus there is
at least one individual s which is different from at least one other individual.
Because of the finite number of individuals in S*) we can calculate a minimum
possible distance between unequal individuals, which is the value 5. Because
equality of individuals is transitive we partition S into two sets of individuals
A and B, where all individuals in A are identical to s and all individuals in B
are different from s. Thus we have

L(k) Z Z Z d(si,sj)

si€As;EB
> |A]1B|5"
= r(n—r)g®
> (’I’L - 1)ﬂ(k)7
where we have defined |A| = r. The expression is minimized when r = 1,

yielding a contradiction.

Note that for the discrete-valued Hamming distance we know the minimum difference
between unequal individuals is 1, independent of k, so in this case L*) < n — 1
guarantees that all the individuals are equal.

7 The Expected Diversity

We now write an expression for L**1 in terms of L*). From the definition of
the algorithm and of LX) it is clear that to get L**1) we need to subtract off all
distances to the individual that was removed and then add in all the distances to
the new child. Exactly one child is produced at each time step. Recall that m and w
are the indices for the individuals chosen as parents and that v is the index for the
individual selected for removal. Where the superscript is left off it will be assumed
to be k.

We define the new (potential) children as ¢; and ¢y. That is, letting (a,b) =
D(sm, sw) then (c1,c2) = (V(a,11), ¥(b,12)). One of the two children is chosen,
randomly with equal probabilities, to go in slot v in the next generation. We write

10



the 0-1 random variable representing this choice as b. Writing the expression out we
obtain

L+ — (k)
Z d(sy, ;)
i#v
+ bZd(cl,si) +(1-0) Zd(CQ,SrL‘).
i#v 17£v

Note that we can choose to sum over the zero self-distances or not, but leaving out
other indices is significant. For example, leaving out the 4 = v terms in the sums of
the third line corresponds to not including the distance from the new child to the
individual chosen to be removed.

We next take the expected value of L**1), Note that functionally, in terms of
random variables,

LD = (5@, O m®)w®) o8, ) i) p0)),

for some function g, since we assume that n and all other variables are known con-
stants. Thus to find the full expectation E[L# 1] we take the expectation

Ep(S.Emauwviipab)  _ pe(S,F) pp(m,wo|S,F) po(,42) pp(b)
EP(S7F)Ep(m’w7U‘F)Ep("/)17w2)Ep(b),

where we have left off the superscripts k. We will evaluate these expectations in
left-to-right order, applying the operator sequence to L**1). Notationally, we use
the forms where the expectation argument is in brackets and where the argument is
the expression to the right of the operator symbol interchangeably. We first take the
expectation with respect to b, and obtain

O kD) _ k)
Z d(SU, Si)
1£v
1 1
+ = Zd(cl, si) + = Zd(CQ, Si)-
2 “ 2 “
iV 1#£v

We now take the expected value with respect to the mutation noise by applying
Lemma 2 to the distances to the children in the third line of the equation above. We
also obtain an expression entirely in terms of distances between population members
at time k :

11



EPWie) po(d) (k+1) (k)

Zd(sv, Si)

v
+ 5 Y lerd(sm, ) + ard(su, ) + 260
i#v
It follows after some simplification that
Er@rv2) pr) [ k41— L) 4 — 1)ey

Zd(sva 54)

i#v

+ %1 #Zv d(Sm., Si)

€1
+ 5 Z d(swa Si)'
i#v

The expected value with respect to the mutation operations has now been evaluat-

ed. We next take the expected values with respect to the selection of parents and
individual to be replaced.

Taking the expectation and rearranging the summations we obtain,

L Epmali)

- Zd(sv,si)

1#£v
€1
- id(sm, Sy)
€1
+ E Z d(Sm, Si)
i
€1
- id(sw, Sy)
€1
+ Ezd(swasi)]‘
i
We now use the linearity of the expected value operation and write

BN d(sy, 55)
i#v

12



%Ep(m”"F)d(sm, Sv) (7)

+ GBS d(sm. )
6_1 7

2

+ %E’p(w'F)Zd(sw,si).

BP0 (s, 50)

Note that the expected values sum over the variables not present in a term, resulting
in expectations with respect to the marginal probability functions. Further analysis
will require making some assumptions about the distribution of m, w, and v.

Note that nowhere have we assumed m, w, and v to be distinct. Thus expression
(7) holds for any of the cases where m = w, m = v, w = v, and m = w = v. This is
important because it allows for — though does not require — various assumptions
of independence between m, w, and v (conditional on F'). For example, one might
assume that p(m,w,v|F) = p(m|F)p(w|F)p(v|F). We use this assumption in the
following section.

8 Independent, Uniform Selection

In this section we assume that m, w, and v are independent and uniformly selected.

That is, we take .
p(m,w,v) = p(m)p(w)p(v) = —. (8)

The algorithm is independent of the fitness values (or they are assumed to all be
equal at all times k& ) and so dependence on F®) is removed from the expected value.

The marginal distributions, e.g. p(m) and p(m,v), are equal to 1/n for single
arguments and 1/n? for two arguments. We can therefore evaluate expression (7)
with these distributions and obtain

EpimawolF) pp(erge) pre) p(k+1) - — 1) 4 (n — 1)y
1
- - d(S 73')
2@: - Z 05 8i
€1 1
= 52D 5d(sm )
€1 1
DLy
m n )
€1 1
- 5 2.2 w5

13



Simplifying and writing in terms of L) we obtain

L),

L),

L),

L),

Simplifying again we have

| F) (o) ) (k4D (22 2 2_621) LB & (n = 1)ey
n n n

2
= [1-S5(n—ne+ e)]L®) + (n — 1)es.

We now take the final expectation. Since L) = ¢(S®)), where function g is the
sum over pairwise distances, we know EP(L(k))[L(k)] = E”(S(k))[g(S(k))]. So we only
need to take the expectation of the r.h.s. with respect to p(L(*)), resulting in

E[L*+D] =  pp(S®) gpmawplF) gplvia) f(k+1) (9)
= (1= Zn—ner + )] BIL®] 4 (0~ e (10)
To simplify the equations we define
g2 = (n—1e (11)
nh = 1- %(’n—’n€1+61). (12)

Summarizing in a theorem, we have

14

61 and 02 de-
fined.



Theorem 1 Ifm, w, and v are selected uniformly and independently (with replace-
ment) from {1,...,n} then

E[L*Y] = §E[L™] + 4, (13)

%

Eld*] = §EdP] + = (14)
n

Using Theorem 1 we obtain another theorem on the conditions for E[L*)] to be
decreasing for increasing k. Note that the next three theorems follow from Theorem
1, and so similar results apply whenever the expected value of the diversity measure
obeys the formulas in Theorem 1 (and d9 > 0). That is, the same formulas may hold
for different models with a redefinition of ; and ds.

Theorem 2 If m, w, and v are selected uniformly and independently (with re-
placement) from {1,...,n} then E[L*+V] is strictly less than E[L®)] if and only
if 01 <1 and

02

B[L®] > AL

Proof: Apply Theorem 1 and require that §; E[L®)] 4 65 < E[L®)] . Then
8y < (1 —61)E[L™]. If §; < 1 we have 1i—251 < E[L™™]. If §; = 1 we must have
85 < 0, and similarly for the case where §; > 1 since L(*) is strictly nonnegative.
But we assumed €5 > 0 so we know that d» > 0.

This theorem shows that, if the diversity starts out larger than do/(1 — d7) it will
decrease monotonically until it reaches that level. The delta values are based on the
mutation constants and the expression will typically be small relative to an initial
population. Considering the population of individuals as a cluster, and the diversity
measure as a clustering measure, the expected “size” of the initial cluster decreases
until it reaches a level where the decrease in diversity is countered by the increase
due to the mutation operation. With no mutation (i.e., with ; = 1 and €3 = 0) the
expected diversity converges toward zero.

The next theorem gives a formula for computing the expected diversity at any
time step, based only on the initial average or expected population diversity. It
can also be applied to calculate future expected values at any time step when the
expected diversity is known or can be estimated.

15



Theorem 3 Ifm, w, and v are selected uniformly and independently (with replace-
ment) from {1,...,n} and k > 1 then

1— 6%
1—6

E[LW] = §*E[L©)] + 5, (15)

Proof: Solve equation (13) for E[L®)]. A recurrence relation of the form
ap = cap_1 + f(k), has a general solution for k¥ > 1 given by a, = cfag +
Sk I f(j). IMKBS3] Also, Y5 af = 4" =L,

a—1

We now present another theorem which will allow us to use the expected value
E[L™)] to obtain a lower bound on the probability that L) is less than some given
constant value.

Theorem 4 Let m, w, and v be selected uniformly and independently (with re-
placement) from {1,...,n}. Let @ > 0 be a given constant. Then

(k)
p(L¥ <o) > 1 ZET]
«
_ 0 oy d2(1 = dF)
R L w0

Proof: From a generalization of the Tchebycheff inequality, for a random
variable L(¥) taking only positive values, we know [Pap63]

(k)
p(L(k) >a) < M
(0]
(k)
1= p(L® >a) > 1- 2L
(6]
(k)
p(LM <a) > 1- B[]
(6]

We can then use Theorem 3 to write in terms of L(9).

This theorem can be used to show the convergence in probability of the zero mutation
case to zero expected diversity. In a practical sense it allows for computing a bound
on the the number of time steps until the expected diversity is below a certain
arbitrary value a with some given probability. For example, one could use Lemma
4 and the Hamming distance along with this theorem to compute an upper bound
on the number of time steps k until all individuals in a population are identical with
probability, say, 0.99.
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9 Independent, Fitness-Based Selection

In this section we consider the dynamics of population diversity (with respect to
the previously defined diversity measure) when the selection of parents and of the
individual to replace is based on fitness. Including fitness leads to a much more
complicated analysis in general. Our results are not as strong as for independent
uniform selection, where the expected diversity can be predicted at any time k based
on the initial diversity. When selection is by fitness the expected diversity is no
longer strictly decreasing in general, even without mutation. We characterize some of
these situations where expected diversity will still decrease and qualitatively describe
when it will tend to decrease and when it will tend to increase. We obtain these
results while making few assumptions about the fitness values (which can be quite
complicated in general since the probability distributions change at each k, and
fitness evaluation may be a complicated function).

To carry out our analysis we assume the parents are selected independently ac-
cording to a common parent selection distribution, and that the individual selected
for removal is selected independently according to another probability distribution.
That is, we assume

Pl (8| F) = puye (i|F) = P (4) (16)
and that
o (i|F) = piP (4), (17)

where we have left off the superscripts & on m, w, v, and F. By the independence
assumption, the joint distribution is the product of these probability functions. Note
that we now use subscripts on the probability function p to indicate what distribution
is being referred to, since the convention that the argument provides this information
is no longer sufficient here. It is important to remember that these probability
distributions are generally functions of the fitness values fi(k) in F5)_ since to obtain
an expected value with respect to all random variables it is necessary to take an
expectation with respect to fitness.?

Substituting these distributions into equation (7) and relabeling the dummy vari-
ables we have

= 20D d(siysg)
J

)

2Qften fitness at time k is a deterministic function of the population S in which case we can
eliminate the expectation with respect to F' and only deal with S. We have left fitness in as p(S, F')

because the fitness might in general have a random component as in fl-(k) = f(S(k),,u(k)) with p(®)
a random vector.
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- Zzpm )d(si, 5)
+ Z Zd $i»55)
- Zme P (G)d(si, 55)
+ 5;% i zj:d 51 55)-

Simplifying, we obtain
EpimawvlF) ppline) pro) [(k+1) - — 1K) 4 ( — 1)y

Z_ps,’“)(z')zd(si,sj') (18)
- 61221’77; 'u )d(si, s5)
+ elzpm i Z (8iy55)-
i j

We now apply the final expectation operator (symbolically) and group the distance
terms into a single pair of summations:

EILF] = B[L™]+ (n—1)62+ EPs®F0)
ZZ e1p(6) — p) (i) — exp® (@)p*) ()] (s, 55) -

To obtain a symmetric form for the summation, we replace the summation with the
sum of two identical versions of it, each weighted by 1/2. Then we then rename the
dummy indices on one of the summations, swapping 4 and j and making use of the
symmetry of d.

EIL*)] = E[LW]+ (n - 1)ey + B D)
1 . . . .
5 2 e () = p(0) — eapl) (D) ()] d(si. 55)
i J

+ % > lep (@) — o0 6) — el (D)o ()] dsi, 55) ).
i

Combining the summations we have
E[L* D] = BILW] 4+ (n—1)e (19)
1 (k) (k) o
T ) 3 SCIT VO
i
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where

dM(i,5) = elpP @) +p® ()] (20)
—[p$ () + p{F) ()]
—e [P (0)p$ () + pF (5)pk) (3)]
= epP )1 - pF )] + e (5)[1 - P (4)] (21)
—pP (i) — p{F) (5) (22)

We first point out a case where the diversity can be shown to be strictly decreasing
even with fitness-based selection. For simplicity we will assume that e = 0. The
basic idea is that the expectation over the summation term must be negative for the
diversity to be decreasing in the es = 0 case. (Its absolute value must be sufficiently
large to also overcome the (n — 1)ey term if €9 # 0.) We saw earlier that if the
selection is uniform then (mutation-free) diversity is strictly decreasing. In fact, this
is the case whenever p,,, = p, and €; < 1, since then the first two terms of (20) cancel
each other out (and a negative term results if €7 # 1).

For the more general case we must consider the products [pn,(i)[1 — py(J)] +
Pm (7)1 — py(3)]]di; and [py (i) + py(j)]dij, where we have abbreviated the notation.
Basically, the sum will tend to be positive when the distances between high fitness
parents tend to be large, and will tend to be negative when the distances between
low fitness individuals tend to be large (assuming parents are selected for high fitness
and the individual to be replaced is selected for low fitness). There is a bias toward
decreasing diversity due to the 1 — pq(,k) terms, since the probability distributions are
all normalized.

To get much farther we would need to make some assumptions about the form
of the fitness function. Examining the forms of these equations may lead to insights
into other useful statistics of a population to track, either in addition to L or as an
enhancement, as well as possibly useful assumptions to make. An amortized analysis
over some number of time steps greater than one might also yield stronger results.

10 Fitness Measures Based on Genomic Distance

To effectively analyze the dynamics of some statistic of a population under fitness-
based selection, such as the diversity or average fitness, it is generally necessary
to make some assumptions about the particular fitness function and its interaction
with the genomic representation, crossover operation, etc. For example, in the most
general sense a fitness function could be a deterministic hash function such that there
is essentially no relationship between fitness values and the genomic sequence. In a
nondeterministic sense, a fitness could simply be an independent random variable
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associated with an individual. In these cases the dynamics of a genetic algorithm
amount to an undirected random search which generates individuals of arbitrary
fitness and tends to keep those with the higher fitness values. The crossover operation
acts somewhat like a pseudo-random generator of individuals, which may not be an
especially good generator at that.

One can still trivially obtain a monotonically increasing average fitness for an
undirected random search, assuming that individuals are generated uniformly over
the universe of individuals. (This assumption is reasonable when fitness is indepen-
dent of genomic representation, but does assume that all individuals can be generated
from a population.) Define the probability function for selection such that the lowest
fitness individual is always the one replaced. In this case, considering the individuals
to be arranged by fitness, the lowest fitness “slot” at time k will have an expected fit-
ness at time step k4 1 given by the expected fitness over the universe of individuals.
The other slots will slowly increase in expected fitness since there is a small chance
that a better individual will be found on each time step. Thus the expected average
fitness of the population, the sum of the expected fitnesses over all slots divided by
n, will monotonically increase. Nonetheless, this is the probabilistic equivalent of a
brute force search.

In this section we begin to discuss assumptions on the fitness landscape based on
genomic distances between individuals. One assumption which is explicitly or implic-
itly present in many genetic algorithm optimization techniques is that, on average,
the children will “inherit” fitness values which are on average near those of their
parents. One way to “derive” this condition is to make a fundamental assumption
that, at least approximately, the fitness values are directly related to the genomic
distance from an individual to a maximum fitness individual. For example, assume
that?

F) =T —d(s?, 2) (23)

for some distance function d, where z is the maximum fitness individual and T is a
constant larger than the largest distance value between any individuals. Note that
under this definition there can be only one maximum fitness individual (i.e., with

zero distance to itself). We write fitness either as a function f(sz(-k)) or abbreviated

as fz-(k). The constant T' = f(z) might be used, for example, in a theoretical sense or
if the fitness of z is known. The individual z is generally unknown but is assumed
to exist and the fitness values are assumed to obey this relationship.

This assumption on the fitness landscape (and hence on the problem structure in
an optimization sense) is, by the additivity property of d, essentially a “divide and
conquer” assumption that pieces of the optimal solution representation provide a
proportionate fitness contribution even when inserted in a suboptimal solution rep-

3 Another possible definition is f(sgk)) =1/(1+ d(sgk), z)), which leads to a similar analysis.
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resentation. This is not an uncommon assumption, but we have written it explicitly
in terms of a genomic distance function.*

Assumption (22) is a strong assumption on the problem structure. From an algo-
rithmic viewpoint, assuming the problem is to be solved by a traditional computer,
it allows a problem to be solved exactly with h~y fitness evaluations. Here we assume
the elements of individuals are discrete, each with « possible values, and that h is the
number of elements in an individual’s representation. One simply tries out all pos-
sible elements at a position while keeping the other positions fixed to arbitrary but
constant values. In this way, the maximum for each element can be found, and they
can then be combined to form the global maximum. Nonetheless, this assumption
can serve as a starting point for analysis.

Under assumption (22) the expected sum of fitnesses of two children from the
mutation operation equals the sum of the parent’s fitnesses, plus some terms due to
mutation (assuming that Lemma 2 holds for the crossover, mutation, and distance
functions). That is, letting ¢; and ¢y be children of individuals z and y,

fler) + fle2) = 2T —d(c1, 2) — d(cz, 2),
and so

EPWrv2)[f(e)) + flea)] = 2T — [erd(z, 2) + e1d(y, z) + 2€3]
= T—d(z,z)+ (1 —e)d(z,y)
+ T—d(z,y)+ (1 —e€1)d(y,z) — 2
= flz)+ fly) + (A —e)d(z,y) +d(y, 2)] — 2€2.

When the expectation with respect to selection of one of the two children is taken
(EP(®) the result is similar, given by one half times the expression above. Thus the
expected fitness of a child with respect to mutation and choosing one child of the
two is the average of the parent’s fitnesses plus some terms due to mutation. Such
an averaging process, without mutation, depends on the variance of the distribution
to create children whose fitness values are greater than either parent.

4 Another way to reach (22) is to take as the fundamental assumption that fitness is additive in
the sense of

h
fla) = filas), (24)

where here the f; are functions on the components of an individual. Then we can define a distance
d(a,b) = Z:;l | fi(a:) — fi(b;)| which meets all the conditions necessary for Lemma 1, although we
would have to assume unique fitness value f;(a;) for each possible a; in order for “d(a,b) = 0 if
and only if a is identical to b” to hold. (Lemma 2 still requires an assumption on the form of the
mutation operation and in this case its interaction with the componentwise fitness function). Then,
since z has the maximum fitness of any individual and hence each component is maximum, it is
easy to show that d(a,z) = f(z) — f(a). One can then define T = f(z).
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Given this condition is is not surprising that the expected fitness of a population
without mutation is strictly increasing under assumption (22) when selection is based
on fitness and initial diversity is greater than zero. We assume parents are selected
proportional to their fitness values and that the individual selected for replacement
is chosen uniformly. We next illustrate this result, first defining the sum of fitness

values over a population as
n
k) _ (k)
R W
i=1

Then, leaving out some initial steps which are similar to those carried out earlier,

) gOpk+) — p®) _ p® 1w L
v 2 m 2 w
Fpmaw) g gO) = g® -y 1w
v n
(k) (k)
Il oy I So” o)
t 3l gwhn’ Ty gmle

2
_ U(k)—lU(k)—i—U(k)Z e
n — \ (k)

)

The bracketed term in the final line is the sum of squares of a set of numbers
normalized to sum to one. Its minimum value therefore occurs when all the terms in
the bracket are equal to 1/n. This occurs only when all the fitness values are equal,
and results in canceling the —(1/n)U*) term. Therefore E[U*+V] > E[U®)] since
this happens for any possible fitness assignment and thus for any weighted sum of
such assignments. In all other cases the summed fitness must be increasing. The
expected fitness of the next generation given the current fitness values is constant if
all the fitness values are equal. In this case the expected fitness given the current
fitness values will again be positive at future times if L) # 0, provided the differing
individuals mate to produce a child with a different fitness value (though the given
population fitness, rather than the expected fitness, may decrease).

By writing the assumption (22) explicitly we can consider both the implications of
the assumption as well as when it might not provide a good approximation for certain
problem spaces. The use of a single z value assumes in a sense a unimodal problem
structure. A more general assumption might be constructed from multiple, weighted
distances to a set of z; optima, similar to a kernel estimate of a function. One might
also consider assumptions that larger “chunks” of a genome string contribute fitness
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values proportionately when inserted into any individual, but that the property does
not necessarily hold for single elements.

11 Discussion

We have defined the properties for a class of distance functions and defined a di-
versity measure in terms of it. Mathematically, of course, we have defined a term
proportional to the average distance between individuals in a population and re-
ferred to it as the diversity of a population. There are many possible measures of a
population which might reasonably be called the diversity, depending on the various
senses in which the term is used.

The results we presented for the uniform selection case allow for explicit predic-
tions of the expected diversity at a given time step. How these results relate to the
behavior of typical genetic algorithms using fitness-based selection is still an open
question for analytical or empirical research. The uniform selection case might pro-
vide useful heuristic values to apply in choosing mutation rates and time schedules
for algorithms using fitness-based selection.

It is interesting to consider the effects of separate subpopulations within a popu-
lation. Suppose there are r subpopulations of a population. This can be specified by
setting the probability density p(m,w,v) appropriately. When there is no interaction
between the subpopulations then each changes in its own Lgk) diversity measure, but
any tendency toward commonality across populations is driven only by the fitness
function. On generations where all the subpopulations do interact there is again a
common tendency toward sameness. Analysis of the diversity of populations and
subpopulations may help to characterize the effects of isolated subpopulations in-
teracting with other populations either occasionally at certain times k£ or with low
probabilities at each time k.

The basic computational model introduced in Section 2 (and similar versions by
various researchers over the years) has its roots largely in evolutionary computation,
or computing algorithms based on an analogy to the process of evolution. The models
may well have some applicability or lead to insights relating to biological evolutionary
processes, though we do not attempt to make such claims here. It is worth pointing
out some of the simplifications of the model with regard to the fitness function —
besides such basic assumptions as a fixed population size, a genome represented by
a string and combined with a crossover and mutation function, and so forth.

The fitness function is typically assumed to be constant over time and indepen-
dent of the population and any other factors. There is no notion of a changing
environment. The constant fitness function also eliminates any interaction between
individuals except as an isolated competition to maximize a fixed function. In par-
ticular, there are no cooperative interactions between individuals. In a more general
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sense such interactions could modify the fitness function. There are also various
independence assumptions that limit the amount of feedback in the model, making
it more tractable analytically though less representative of real biological and cer-
tainly sociological systems. So while such models can lead to insights into physical
processes, some care must be taken to not to draw false conclusions from a purposely
simplified model. A very rough physical analogy to the simplified model might be
a gardener growing exactly n rose bushes and externally applying his own, approxi-
mately fixed, fitness evaluations to the rose bushes to determine which to breed. The
roses would all grow independently of each other, under exactly the same conditions.

On a more limited level, the distance functions we have defined depend on com-
paring genome sequences element by element. In many sequence comparison appli-
cations a more general distance function such as the Levenshtein distance is used
[SK83| which allows for mutations that include insertions and deletions of new ele-
ments between existing elements in a genome sequence rather than just the change
of an existing string element. While the distance definition we have used does not
allow for this case, it might be possible to obtain an inequality analogous to Lemma
2 for such a distance.
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A Analysis for Four Distinct Parent and Removal Indices

This appendix contains some analysis of the case where both children produced by
the crossover operation are mutated and placed in the next population. The analysis
is a bit more complicated than that in the main paper and does not lend itself as
readily to independence assumptions on the selection probabilities. Nonetheless, it
illustrates the analysis of a slightly different model yielding similar results for the
case of independent selection.

In this case four indices are selected: two for the parents and two for the indi-
viduals to be replaced. These are denoted by m, w, t, and v (where we have left
off the superscript k. ) We assume here that these four indices are have density
p(m,w,t,v|F) and that they are restricted by the definition of this density to be
four distinct integers.

We use the same measure of population diversity as in the main paper, equation
(5), to analyze convergence. We also make the same assumptions about the crossover
operator, the mutation operator, and the distance function.

We now proceed in the same manner to write an expression for L1 in terms
of L), From the definition of the algorithm and of LX*) it is clear that to get L(,+1)
we need to subtract off all distances to the individuals which were removed and
then add in all the distances to the new children. Recall that m and w are the
indices for the individuals chosen as parents and that ¢ and v are the indices for the
individuals selected for removal. Where the superscript is left off it will be assumed
to be k. We define the new children as ¢; and ¢y, i.e., letting (a,b) = ®(sp, Sy) then
(c1,c2) = (Y(a,11), ¥(b,1P2)). Writing the expression out we obtain

L&+ — (k)
- Z d(s, 8;) — Z d(sy, Si)
i£tv i£tv
— d(sg,8y)
+ Z d(c1,s;) + Z d(ca, 8;)
1#£t,v 1#£t,v
+ d(Cl, CQ).

Note that we can choose to sum over the zero self-distances or not, but leaving out
other indices is significant. For example, leaving out the ¢ = ¢ and 4 = v terms in
the sums of the fourth line corresponds to not including the distances from the new
children to the individuals chosen to be removed.
We next take the expected value of L 1), Note that, functionally,
k41 — L(k+1)(5(k)’F(’f)’m(k),w(k)’t(k)’v(k)’ ¢§k)’ ¢g’9))

bl
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since we assume that n and all other variables are known constants. Thus to find
the full expectation E[L*+1)] we take the expectation

pr(S.Emuw o) o pp(SF) pp(mw,t]S,F) pp(d1,42)
Ep(st)Ep(mawytvv|F)Ep(wl31/)2)’

where we have left off the superscript k. We will evaluate these expectations in
left-to-right order, applying the operator sequence to L+,

We now take the expected value with respect to the mutation noise by applying
Lemma 2 to the distances to the children. We also obtain an expression entirely in
terms of distances between population members at time k.

ErWe) p(k+1) (k)
Z d(sy,s;) — Z d(sy, Si)
(e} i£tv
— d(sg,sy)
+ Z [€1d(Sm, 8i) + €1d(Sw, Si) + 2€2]
i£t,v

+  €d(spm,s0) + €162 + €.

It follows after some simplification that

ErWus2) 1 (k+1) (k)
— ) d(s,si) — Y d(sy. i)
i#t,v i#£t,v
- d(St,Sv)
+ Z €1d(8m,8i) + Z €1d(8w,8i).
i#t,u,m i#£tv,w

+ d(sm,5w)

+ €1€9 + €9 + 2(n — 2)62.
The expected value with respect to the mutation operations have now been evalu-
ated. We next take the expected values with respect to the selection of parents and

individuals to be replaced.
Taking the expectation and rearranging the summations we obtain,

EpimawtolF) pe(usye) [ k+1) - — - 1K) 4 (¢ 4 2n — 3)e,
+ Ep(mzwft:U‘F)[

+ d(sy,80) — Y d(sy, 5i)
it
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+ d(sy,St) — Zd(sv,si)

£V
— d(sy,8y)
— ed(sm,st) — €1d(Sm, $p) + Z €1d(Sm, i)
i#Em
— e1d(sy, st) — €1d(Sy, Sy) + Z €1d(Sy, Si)
+  €d(5m,50)]
We now write
ErmwtolF) pp(pre) p (k1) — (k) 4 (€14 2n — 3)ey
EPUF) Z d(sy, s;)
it
B Y d(s,, )
i#v

+ B (s, s,)

— qEP™IU 45, 50)

— qEP" ) (s, 5,)

+ e EPmIF) Z d(Sm, Si)
i£Em

— B (s, s

— B g(g, s,)

+ e BN d(sy, )
iFw

+ EEPMmeIN)d(s,, 5]

Further analysis will require making some assumptions about the distribution of m,
w, t, and v.

B Four Indices Continued (Independent, Uniform Selec-
tion)

In this section we assume that m, w, t, and v are sequentially selected, uniformly
from all remaining slots. That is, we take

1
n(n—1)(n —2)(n —3)’

p(m’w7tﬂlu) =
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with p(m,n,t,v) = 0 if any of the arguments are equal. Note that in this case the
order of selection does not matter, and the sums for expected values can be taken in
any order. The algorithm is independent of the fitness values (or they are assumed
to all be equal at all times k ) and so dependence on F®) can be removed from the
expected value.

The marginal distributions, e.g. p(m) and p(m,v), are equal to 1/n for single
arguments and 1/(n(n — 1)) for two unequal arguments. We can therefore evaluate
the expected diversity expression with these distributions and obtain

Ep(m,w,t,v|F)Ep(¢17¢2)L(k+1) — (61 + QTL - ) €9
L |
— Z — d(St, Si)
=1 "k
"1
— Z — d(Sy, Si)
v=1 n £V
+ zn: ¥d(sta 51})
t=1 At n(n —1)
n
1
_ Z Z 7d(8m,8t)
=1 i n(n—1)
— € zn: ﬁd(smasv)
m=1v#m
o1
+ € Z — Z d(Sm,Si)
m=1" i#m
z": 1
— g ——————d(sy, 5¢)
w=1 t£w n(n N 1)
n 1
— € Z 7d(5wasv)
w=1v£w n(n N 1)

+

a2
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Simplifying and writing in terms of L) we obtain

Ep(m7w7t7v|F)Ep(¢l7¢2)L(k+1) = L(k) + (61 —+ 2n — 3)62

28



Simplifying,

We now take the final expectation, using E‘p(s(k))g(L(S(k)))

EP(S(’“))Ep(m,w,t,v\F)EP@/Jl,1/)2)L(k+1)

Ep(m,w,t,v|F)Ep(w1 7¢2)L(k+1)

Erimuw tolF) pp(d1¢2) 1 (k+1)

n(n —1)
2L(k)

9L(k)

“l n(n —1)

2L (k)

€1

n(n —1)
91,(k)

“l n(n —1)

€1

n(n —1)

2L*)

Eln(n -1)

1
(€14 2n — 3)es + 2L(k)[§
2
n

1

n(n —1)
4 2

(€1 +2n — 3)es + 2L(’“)[%
2n +1
n(n —1)
2n —6
n(n —1)
1
n(n —1)

€1

+ € ]

ErL)g(L).

E[L(k+1)]
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n(n —1)
2n —6
€
"n(n —1)
+ : ]
61n(n -1)"
To simplify the equations we define
(5; = (61 + 2n — 3)62
1 2n+1 Mm—6 o, 1
N o= 2(= -
! (2 n(n —1) 61n(n—l)—i_eln(n—l))

Summarizing in a theorem we have

Theorem 5 For the case of uniform selection of four distinct indices, independent
of fitness,

EIL*+D] = SrB[LW] + 83
_ I 8%
Bd*HY] = 51E[d('“)]+n—22

Note that these form of the equation is the same as in Section 8, so theorems
similar to the other theorems in that Section also hold. In this case it is not possible
to assume the probability distribution factors factors into independent components,
though, because we assumed distinct indices. (Two distinct indices are required for
the removal position in the analysis above since otherwise it is unspecified where the
two children are to be placed.)

30



