
Parallel Composition of Aspect Mechanisms:
Design and Evaluation∗

[Extended Abstract]

David H. Lorenz Sergei Kojarski
Department of Computer Science, University of Virginia

Charlottesville, Virginia 22904-4740, USA

{lorenz,kojarski}@cs.virginia.edu

ABSTRACT
There is a growing interest in the composition of aspect mecha-
nisms. All extant works, however, avoid an important question:
what should the semantics of the composed multi-extension lan-
guage be? The problem is that the semantics for the composition
is nowhere specified. Therefore, even if third-party composition
of aspect mechanisms were successful, it is difficult to evaluate the
correctness of the composition. In this paper, we propose the use of
ASPECTJ5 as a benchmark for evaluating and comparing composi-
tion techniques for integrating pointcut-and-advice mechanisms. If
an aspect mechanism X implements the semantics ofASPECTJand
another mechanism Y implements the semantics ofASPECTWERKZ,
then the semantics of the composition X+Y can be checked against
the semantics ofASPECTJ 5. We present a novel parallel compo-
sition technique, and illustrate that it passes theASPECTJ 5 bench-
mark.

1. INTRODUCTION
The availability of a variety of aspect mechanisms changes the
design space for AOSD. Each aspect mechanism supports some
unique crosscutting capability; and no single mechanism supports
all cases of crosscutting. Yet notwithstanding, an aspect-oriented
design solution can be tailored to a complex crosscutting concern
by combining different aspect mechanisms to form new AOP func-
tionality.

Unfortunately, little support is provided today for the integration of
distinct aspect mechanisms. Even if ad hoc integration of aspect
mechanisms were possible, there is no criteria by which to eval-
uate a composition technique. When it is impossible to validate
the composition semantics, it is impossible to confidently integrate
multiple aspect mechanisms to produce a desired effect, andthe
full potential of AOSD is not realized.

What we lack and need are better composition techniques and bet-

∗This work is supported in part by NSF’sScience of Design pro-
gram under Grants Number CCF-0438971 and CCF-0609612.

AOSD 2006 Workshop on Open and Dynamic Aspect Languages.

ter methods for evaluating them. To this end, in this position paper
we present a novel parallel composition technique and propose two
evaluation criteria that may help compare composition techniques
in terms of quality and correctness:

• The Pluggable AOP benchmark: The degree to which two
distinct independently developed aspect mechanism X and
Y can be subject to third-party composition in producing
X+Y [5, 3]. This introduces a spectrum ranging from black-
box to white-box composition techniques.

• The ASPECTJ 5 benchmark: Demonstrate X and Y such that
X implements the semantics ofASPECTJ 1.2, Y implements
the semantics ofASPECTWERKZ, and the semantics of the
composition X+Y yields the semantics ofASPECTJ5.

In this position paper we propose a high-level semantical frame-
work that passes both benchmarks.

2. REQUIREMENTS
In ASPECTJ5, there is no conceptual difference betweenASPECTJ’s
code-style and ASPECTWERKZ’s annotation-style aspects. That is,
in ASPECTJ5, ASPECTJandASPECTWERKZare just different syntac-
tical interfaces to a single underlying mechanism. Essentially, AS-
PECTJ5 roughly behaves as if it wereASPECTJ1.2 (orASPECTWERKZ).

A composition technique passes theASPECTJ 5 benchmark if it
yields a composition that behaves just like a single mechanism.
We list four requirements that characterizes more precisely what
it means to “behave as a single mechanism:”

• Exposure of aspectual effect [3]: the aspectual effect of each
aspect mechanism should be exposed to all the other com-
posed mechanisms. Specifically, in the composition ofAS-
PECTJ andASPECTWERKZ, ASPECTJadvice should be visible
to, and be advised by,ASPECTWERKZ advice, and vice versa.

• Hiding of the mechanism implementation [3]: the internal
operation of an aspect mechanism should be hidden from all
other composed mechanisms. Specifically, in the composi-
tion of ASPECTJ andASPECTWERKZ, ASPECTWERKZ aspects
may not advise internal operations of theASPECTJ mecha-
nism (e.g., join-point object instantiation, pointcut matching,
advice selection), and vice versa.



base
describe

select
advice

weave
advice

base

comp.

compute

run

jp

M
ctx

ctx

A1

β

χ

val

B

−→

adv

exp

Figure 1:PA mechanism

• Universal advice ordering: pieces of advice selected by dif-
ferent mechanisms for the same join point should be ordered
w.r.t. their types. At each join point, the composition of
ASPECTJ and ASPECTWERKZ first applies AspectJ and As-
pectWerkz pieces ofbefore advice, then pieces ofaround
advice, and finally pieces ofafter advice. Specifically, it is
illegal for pieces ofbefore advice written in one extension
to be executed afteraround advice written in other exten-
sion.

• Universal join-point history: all the composed mechanisms
should share the same program history. In the composition
of ASPECTJ and ASPECTWERKZ, both mechanisms observe
the program execution through exactly the same sequences
of join points.

3. BACKGROUND
Pluggable AOP [2, 3] is a semantical model of an AOP language
in which the aspect extension semantics is defined separately from
semantics of the base language. Figure 1 depicts an interpreterA1

that realizes the evaluation semantics for asingle-extension AOP
languageL1 = Base × Ext. A1 comprises a base mechanismB
and an aspect mechanismM. B realizes the expression evaluation
semantics for the base languageBase. M realizes the semantics
for the PA extensionExt.

The model defines the base mechanismB as a computationcon-
structor, and the mechanismM as a computationtransformer. B

constructs a base computationβ by interpreting an input expression
exp. M selects advice andweaves them by transformingβ into χ,
which replacesβ in the program execution.

In this paper we focus on pointcut and advice (PA) aspect exten-
sions. M associates base computations with advice usingjoin
points. A join point jp is adescription of a base computation that
allows the mechanism to identifyβ. More specifically, the join
point is an abstraction ofβ’s contextctx, and a currently evalu-
ated expressionexp. In ASPECTJ, for example, join points describe
computations using dynamic (argument values,this andtarget
objects), lexical (class and method where expression beingevalu-

describe

select
advice

weave
adviceadvice

weave

advice
select

describe
base

compute

run
comp.

basebase

MM An

. . .

Mn

jpn

−→

advn

exp

β

ctx

χ

−→

adv1

jp1

BM1

val

ctx

Figure 2:Multi-mechanism

ated is located), and static data (signature types) that constitutes the
context of a call, an execution, and other Java computations.

At each join point the mechanism selects a set of advice pieces
−−→
adv . Depending on theExt syntax, an adviceadv ∈

−−→
adv may be

a Base expression, or may be written in extension-specific terms.
For example, inASPECTJ, advice body expressions are written in
Java. COOL, on the other hand, can specify advice using only
domain-specific terms (mutex, selfex, etc.)

The advice weaver inM produces a weaving result computationχ

by transformingβ. Intuitively, χ wraps advice effects around the
base computation.χ proceeds toβ when the advice proceeds to the
base program.

3.1 Mechanisms Composition
A multi-extension AOP languageLn integratesBase with a set
of different PA extensionsExt1, . . . , Extn. Figure 2 presents a
general approach to third-party composition of PA extensions. In
Figure 2, theLn semantics is realized by a multi-extension AOP
interpreterAn. An comprises two parts: the base mechanismB

and amulti-mechanism MM. Interaction between the two is sim-
ilar to the interaction between base and aspect mechanisms in the
single-extension interpreter.

The multi-mechanism composes a setM1, . . . ,Mn of PA mech-
anisms that realize semantics of theExt1, . . . , Extn extensions,
respectively. The mechanisms collaboratively advise basecompu-
tations. A single base computationβ is generally advised by a
subset of composed aspect mechanisms.

The mechanisms preserve their individual features (e.g., join point
ontology, pointcut matching, advice ordering) in the composition.
Each of the mechanisms reflectsβ by creating its own join point,
and selects advice pieces written in its respective aspect extension.
MM constructsχ by integrating advice pieces selected by differ-
ent mechanisms withβ. The result computationχ encapsulates
mechanism collaboration behavior.

2



multi−mechanism weaver

describe
base

compute
advice advice

compute

describe
base compute

base

run
comp.

MM

. . .

αb
n, α

a
n, τn

An

αb
1, α

a
1, τ1

B

exp

ctx
ctx

χ

M1

jp1 jpn

Mn

ctxβ

val

Figure 3:Parallel Composition of PA mechanisms

4. COMPOSITION FRAMEWORK
The framework specializes the general composition approach to al-
low ASPECTJ 5-like compositions. The framework composes PA
mechanisms inparallel. For each base computationβ, MM passes
the currently evaluated expressionexp and a computation context
ctx to all the PA mechanismsM1, . . . ,Mn. Each PA mechanism
Mi then constructs a join point, computes an aspectual effect,and
passes it to the multi-mechanism weaver. The weaver combines the
aspectual effects of all the mechanisms, and wraps them around the
base computationβ.

The framework imposes design requirements on the PA mecha-
nisms for supporting desired collaboration behavior. Specifically,
the PA mechanismMi must provide its aspectual effect via three
functions, namely a before computationαb

i , an after computation
αa

i , and an around computation transformerτi. Intuitively, αb
i , τi,

andαa
i provide meaning forbefore, around, andafter advice

pieces that were selected by the mechanism, respectively.

The multi-mechanism weaver composes all constructed effects to-
gether into the result computationχ. The weaver semantics is il-
lustrated in Figure 4.χ is built by sequencing three multi-effect
computations, namely a before computationαb

χ, an around compu-
tationαar

χ , and an after computationαa
χ:

χ = α
b
χ ⊲ α

ar
χ ⊲ α

a
χ

where⊲ denotes a left-to-right execution order for the sequenced
computations:χ first executesαb

χ, thenαar
χ , and finallyαa

χ. More
specifically, letγ be a composite computation defined as:

γ = γ1 ⊲ . . . ⊲ γm

Thenγ execution runs the subcomputationsγ1, . . . , γm one by one,
starting fromγ1 throughγm. All subcomputations are passed the
same context as that passed toγ. The value computed byγ is the
value returned fromγm.

αb
χ sequences the before computations that are produced by the

aspect mechanisms in the index-ascending order:

α
b
χ = α

b
1 ⊲ . . . ⊲ α

b
n

αa
χ sequences the after computations in the index-descending or-

der:

α
a = α

a
n ⊲ . . . ⊲ α

a
1

The around transformersτ1, . . . , τn are composed sequentially, in
the following index-descending order. First,τn produces the around
computationαar

n by transforming the base computationβ. The
τn−1 then producesαar

n−1 by transformingαar
n . The process re-

peats untilτ1 producesαar
1 by transforming the output ofτ2:

α
ar
χ = α

ar
1 = τ1(τ2(. . . (τn(β)) . . . ))

The composition of the around transformers allows aspects written
in one extension proceed to the aspects written in other extension.
The αar

1 proceeds toαar
2 , αar

2 proceeds toαar
3 , and so on.β is

executed only if all the around computations proceed.

5. EVALUATION
Our composition framework passes both the Pluggable AOP and
the ASPECTJ 5 benchmarks. The framework is tailored for third-
party extensibility.

The explicit separation between a mechanism’s implementation (e.g.,
Mi internals) and its aspectual effect (e.g.,αb

i , τi, α
a
i ) satisfies the

hiding of the mechanism implementation requirement. Theexpo-
sure of the aspectual effect requirement is satisfied if the composed
mechanisms evaluate advice expressions inAn. For example,Mi

exposes thebefore advice expressionexpi
adv by constructingαb

i

as:

α
b
i (ctx) = An(exp

i
adv)

The execution of theαb
i computation is the execution of theexpi

adv

advice expression inAn. Hence, the execution ofexpi
adv is ex-

posed to the composed mechanisms.

Semantics of the framework’s multi-mechanism weaver component
respects theuniversal advice ordering requirement. The weaver
semantics enable the desired advice ordering in the composition
of ASPECTJ and ASPECTWERKZ. Finally, the parallel mechanism
composition architecture satisfies theuniversal join-point history
requirement. All the composed mechanisms observe exactly the
same sequences of computation contexts and expressions.

As a proof of concept, we implemented and composed two aspect
extensions to TinyJ, a simple Java-like object-oriented language,
namely, TinyAJ and TinyAW. TinyAJ is anASPECTJ-like extension
that provides its own syntax for specifying aspects. TinyAWis an
ASPECTWERKZ-like extension that allows to define aspects using
comments to TinyJ classes and methods. The third-party composi-
tion of TinyAJ and TinyAW satisfies all four requirements.

6. RELATED WORK
Pluggable AOP [3] is a third-party composition framework that
supports the composition of arbitrary dynamic aspect mechanisms
into an AOP interpreter. The framework employs asequential com-
position of aspect mechanisms. The framework mechanisms col-
laborate by hiding, delegating, and exposing expression evaluation
to the other mechanisms.

The sequential framework passes the Pluggable AOP composition
benchmark but not theASPECTJ 5 benchmark. Specifically, a se-

3



αar
χ = αar

1
= τ1(αar

2
)

αar
n = τn(β)

. . .αb
nαb

1

αb
χ = αb

1
⊲ . . . ⊲ αb

n

αa
nτ1. . .

αa
χ = αa

n ⊲ . . . ⊲ αa
1

χ = αb
χ ⊲ αar

χ ⊲ αa
χ

. . .αb
2

αa
2 αa

1τn β

Figure 4:Semantics of the multi-mechanism weaver

quential composition of PA mechanisms fails to satisfy the uni-
versal advice ordering and the universal join-point history require-
ments.

Tanter and Noyé [1] introduce a Reflex framework that allowsone
to compose PA extensions. Their work fundamentally differsfrom
ours in the extension composition approach. Our framework con-
structs a multi-extension AOP interpreter by composing different
aspect mechanisms. Intuitively, the interpreter weaves multi-extension
aspects usingmultiple mechanism weavers withdifferent seman-
tics. The Reflex framework composes aspect extensions usinga
translation approach. The framework translates programs written
in different aspect extensions to anassembler aspect extension.
All translated aspects are then woven by asingle weaver underthe
same semantics.

XAspects is another translation-based framework. Shonle et al. [4]
present a framework for aspect compilation that allows to combine
multiple domain-specific aspect extensions. The framework’s com-
position semantics is to reduce all extensions to a single general-
purpose aspect extension (ASPECTJ). Unfortunately, XAspects fails
to satisfy the hiding of the mechanism implementation require-
ment [3].

7. CONCLUSION
In this paper, we propose the useASPECTJ 5 as a data-point for
evaluating and comparing composition techniques for integrating
pointcut-and-advice mechanisms. We also present a novel parallel
composition technique, and illustrate that it passes theASPECTJ 5
benchmark. The composition yields an expression interpreter An

that implements the evaluation semantics for programs in a multi-
extension AOP languageLn. The interpreter semantics passes the
ASPECTJ5 benchmark.

8. REFERENCES
[1] Éric Tanter and J. Noyé. A versatile kernel for multi-language

aop. InFourth International Conference on Generative
Programming and Component Engineering (GPCE’05), 2005.

[2] S. Kojarski and D. Lorenz. Modeling aspect mechanisms: A
top-down approach. InProceedings of the 28th International

Conference on Software Engineering. ICSE’06, 2006. To
appear.

[3] S. Kojarski and D. H. Lorenz. Pluggable AOP: Designing
aspect mechanisms for third-party composition. In R. Johnson
and R. P. Gabriel, editors,Proceedings of the 20th Annual
Conference on Object-Oriented Programming Systems,
Languages, and Applications, pages 247–263, San Diego, CA,
USA, Oct. 16–20 2005. OOPSLA’05, ACM Press.

[4] M. Shonle, K. Lieberherr, and A. Shah. XAspects: An
extensible system for domain specific aspect languages. In
Companion to the 18th Annual Conference on Object-Oriented
Programming Systems, Languages, and Applications, pages
28–37, Anaheim, California, 2003. ACM Press.

[5] C. Szyperski.Component Software, Beyond Object-Oriented
Programming. Addison-Wesley, 2nd edition, 2002. With
Dominik Gruntz and Stephan Murer.

4


