Parallel Composition of

Aspect Mechanisms:

Design and Evaluation®

[Extended Abstract]

David H. Lorenz

Sergei Kojarski

Department of Computer Science, University of Virginia
Charlottesville, Virginia 22904-4740, USA

{lorenz kojarskiy@cs.virginia.edu

ABSTRACT

There is a growing interest in the composition of aspect mech
nisms. All extant works, however, avoid an important questi
what should the semantics of the composed multi-extension |
guage be? The problem is that the semantics for the commositi
is nowhere specified. Therefore, even if third-party contjmos
of aspect mechanisms were successful, it is difficult touatal the
correctness of the composition. In this paper, we propasesk of
Aspec®5 as a benchmark for evaluating and comparing composi-
tion techniques for integrating pointcut-and-advice nagitms. If
an aspect mechanism X implements the semantiessetc@and
another mechanism Y implements the semantigsssfecWERKz,
then the semantics of the composition X+Y can be checkedhsai
the semantics oAspec®W 5. We present a novel parallel compo-
sition technique, and illustrate that it passesAlect 5 bench-
mark.

1. INTRODUCTION

The availability of a variety of aspect mechanisms changes t

ter methods for evaluating them. To this end, in this posipaper
we present a novel parallel composition technique and E@peo
evaluation criteria that may help compare compositionrgres
in terms of quality and correctness:

e The Pluggable AOP benchmark: The degree to which two
distinct independently developed aspect mechanism X and
Y can be subject to third-party composition in producing
X+Y [5, 3]. This introduces a spectrum ranging from black-
box to white-box composition techniques.

e The AspecT 5 benchmark: Demonstrate X and Y such that
X implements the semantics afspec™ 1.2, Y implements
the semantics oAspectWEeRkz, and the semantics of the
composition X+Y yields the semantics abrEcT 5.

In this position paper we propose a high-level semantiGahé-

design space for AOSD. Each aspect mechanism supports som&Vork that passes both benchmarks.

unique crosscutting capability; and no single mechanisppsus
all cases of crosscutting. Yet notwithstanding, an aspgented
design solution can be tailored to a complex crosscuttingem
by combining different aspect mechanisms to form new AOR-fun
tionality.

Unfortunately, little support is provided today for thedgtation of
distinct aspect mechanisms. Even if ad hoc integration péets
mechanisms were possible, there is no criteria by which &b-ev
uate a composition technique. When it is impossible to aadid
the composition semantics, it is impossible to confidenttggrate
multiple aspect mechanisms to produce a desired effecttrand
full potential of AOSD is not realized.

What we lack and need are better composition techniquesethd b

*This work is supported in part by NSF&ience of Design pro-
gram under Grants Number CCF-0438971 and CCF-0609612.

AOSD 2006 Workshop on Open and Dynamic Aspect Languages.

2. REQUIREMENTS

In AspecT5, there is no conceptual difference betwaemwect's
code-style and AsPECTWERKZ'S annotation-style aspects. That is,
in Aspec®5, AspecandAspPecWERKzare just different syntac-
tical interfaces to a single underlying mechanism. Esabytias-
pecTI5 roughly behaves as if it werespECc® 1.2 (OrASPECTWERKZ).

A composition technique passes therpec® 5 benchmark if it
yields a composition that behaves just like a single meahnani
We list four requirements that characterizes more precislat

it means to “behave as a single mechanism:”

e Exposure of aspectual effect [3]: the aspectual effect of each
aspect mechanism should be exposed to all the other com-
posed mechanisms. Specifically, in the composition ef
pecT)andAsPECWERKz, Aspect advice should be visible
to, and be advised by spectWERKz advice, and vice versa.

e Hiding of the mechanism implementation [3]: the internal
operation of an aspect mechanism should be hidden from all
other composed mechanisms. Specifically, in the composi-
tion of AspEcT and ASPECTWERKZ, ASPECTWERKZ aspects
may not advise internal operations of therec® mecha-
nism (e.g., join-point object instantiation, pointcut tahg,
advice selection), and vice versa.

ctx

val ¥

Figure 1:PA mechanism

e Universal advice ordering: pieces of advice selected by dif-

val !

Figure 2:Multi-mechanism

ferent mechanisms for the same join point should be ordered ated is located), and static data (signature types) thatitotes the

w.rt. their types. At each join point, the composition of
Aspec® and AspecWERKz first applies Aspectd and As-
pectWerkz pieces dfef or e advice, then pieces afr ound
advice, and finally pieces eff t er advice. Specifically, it is
illegal for pieces obef or e advice written in one extension
to be executed afterr ound advice written in other exten-
sion.

e Universal join-point history: all the composed mechanisms

context of a call, an execution, and other Java computations

At each join point the mechanism selects a set of advice piece
—

adv. Depending on thé&xt syntax, an advicadv € adv may be

a Base expression, or may be written in extension-specific terms.
For example, ilAspecT, advice body expressions are written in
Java. COOL, on the other hand, can specify advice using only
domain-specific termsr(it ex, sel f ex, etc.)

should share the same program history. In the composition The advice weaver i produces a weaving result computatipn

of Aspec® and AsPEcTWERKz, both mechanisms observe

by transformingg. Intuitively, x wraps advice effects around the

the program execution through exactly the same sequencespase computationy proceeds t@ when the advice proceeds to the

of join points.

3. BACKGROUND

base program.

Pluggable AOP [2, 3] is a semantical model of an AOP language 3.1 M echanisms Composition

in which the aspect extension semantics is defined sepafedet
semantics of the base language. Figure 1 depicts an intergye
that realizes the evaluation semantics fasirale-extension AOP
languagel; = Base x Ext. A; comprises a base mechani&n
and an aspect mechanidvii. B realizes the expression evaluation
semantics for the base languaBese. M realizes the semantics
for the PA extensiorzt.

The model defines the base mechanBnas a computatiocon-
structor, and the mechanisivl as a computatiotransformer. B
constructs a base computati@my interpreting an input expression
exp. M selects advice angeaves them by transformingg into
which replaces in the program execution.

In this paper we focus on pointcut and advice (PA) aspectexte
sions. M associates base computations with advice ugang
points. A join point jp is adescription of a base computation that
allows the mechanism to identif§. More specifically, the join
point is an abstraction of’'s contextcta, and a currently evalu-
ated expressioaxp. In AspecT, for example, join points describe
computations using dynamic (argument values,s andt ar get
objects), lexical (class and method where expression bmiafy-

A multi-extension AOP languagg,, integratesBase with a set

of different PA extension®'xzt4, ..., Ext,. Figure 2 presents a
general approach to third-party composition of PA extamsidn
Figure 2, thel,, semantics is realized by a multi-extension AOP
interpreterA,,. A,, comprises two parts: the base mechanBm
and amulti-mechanism MM. Interaction between the two is sim-
ilar to the interaction between base and aspect mechanisthg i
single-extension interpreter.

The multi-mechanism composes a 34t ..., M,, of PA mech-
anisms that realize semantics of thert, ..., Ext, extensions,
respectively. The mechanisms collaboratively advise basgpu-
tations. A single base computatighis generally advised by a
subset of composed aspect mechanisms.

The mechanisms preserve their individual features (@i goint
ontology, pointcut matching, advice ordering) in the cosifion.
Each of the mechanisms refle@@sby creating its own join point,
and selects advice pieces written in its respective aspéngon.
MM constructsy by integrating advice pieces selected by differ-
ent mechanisms witl#. The result computatiory encapsulates
mechanism collaboration behavior.

ctx

ctx

ab,al 7,)
multi-mechanism weaver-—»
X

voal

Figure 3:Parallel Composition of PA mechanisms

4, COMPOSITION FRAMEWORK

The framework specializes the general composition apprtaal-
low Aspect 5-like compositions. The framework composes PA
mechanisms iparallel. For each base computatiGnMM passes
the currently evaluated expressianp and a computation context
ctx to all the PA mechanismdIy, ..., M,. Each PA mechanism
M; then constructs a join point, computes an aspectual e#adt,
passes it to the multi-mechanism weaver. The weaver comkiiee
aspectual effects of all the mechanisms, and wraps themaitbe
base computatiof.

The framework imposes design requirements on the PA mecha-
nisms for supporting desired collaboration behavior. Siady,

the PA mechanisnM; must provide its aspectual effect via three
functions, namely a before computatiafi, an after computation
«f, and an around computation transformer Intuitively, b, 7,
and«; provide meaning fobef or e, ar ound, andaft er advice
pieces that were selected by the mechanism, respectively.

The multi-mechanism weaver composes all constructedtsffee
gether into the result computation The weaver semantics is il-
lustrated in Figure 4.y is built by sequencing three multi-effect
computations, namely a before computaﬁdﬁ an around compu-
tationa}”, and an after computatiamg :

_ b ar a
X—OZXDOZX l>OéX

where> denotes a left-to-right execution order for the sequenced
computationsy first executes:}, thenad”, and finallyas. More
specifically, lety be a composite computation defined as:

Y=71P...DYm

Then~ execution runs the subcomputations. . . , 7., one by one,
starting from~; through~,,. All subcomputations are passed the
same context as that passedytoThe value computed by is the
value returned fromy,,, .

a5, sequences the after computations in the index-descending o
der:

a

Q" =ap>...>paf

The around transformers, .. ., 7, are composed sequentially, in
the following index-descending order. Firs, produces the around
computationa;.” by transforming the base computatioh The
mn—1 then produces;” ; by transformingai.,”. The process re-
peats untilr; producesxy{” by transforming the output af:

ay =af" =7i(ra(... (Ta(B))...))

The composition of the around transformers allows aspeGtew
in one extension proceed to the aspects written in othensixe.
The af" proceeds tav5", a5" proceeds taxi”, and so on.j3 is
executed only if all the around computations proceed.

5. EVALUATION

Our composition framework passes both the Pluggable AOP and
the Aspec® 5 benchmarks. The framework is tailored for third-
party extensibility.

The explicit separation between a mechanism’s implemienté.g.,
M., internals) and its aspectual effect (e, 7, o?) satisfies the
hiding of the mechanism implementation requirement. Thexpo-
sure of the aspectual effect requirement is satisfied if the composed
mechanisms evaluate advice expression4 in For exampleM;
exposes theef or e advice expressionzp! ,, by constructingx?
as:

o (ctx) = An(ezpya,)

The execution of the? computation is the execution of thep}, 4,
advice expression iA,,. Hence, the execution efrp;,,, is ex-
posed to the composed mechanisms.

Semantics of the framework’s multi-mechanism weaver carepb
respects theuniversal advice ordering requirement. The weaver
semantics enable the desired advice ordering in the cotigosi
of Aspecd and AspectWeRkz. Finally, the parallel mechanism
composition architecture satisfies theiversal join-point history
requirement. All the composed mechanisms observe exdwtly t
same sequences of computation contexts and expressions.

As a proof of concept, we implemented and composed two aspect
extensions to TinyJ, a simple Java-like object-orientetjlmage,
namely, TinyAJ and TinyAW. TinyAJ is aaspecT-like extension

that provides its own syntax for specifying aspects. Tiny&/dn
AspecTWERKz-like extension that allows to define aspects using
comments to TinyJ classes and methods. The third-party asimp
tion of TinyAJ and TinyAW satisfies all four requirements.

6. RELATED WORK

Pluggable AOP [3] is a third-party composition frameworlatth
supports the composition of arbitrary dynamic aspect nashas
into an AOP interpreter. The framework employsequential com-
position of aspect mechanisms. The framework mechanisitas co
laborate by hiding, delegating, and exposing expressiatuation

!, sequences the before computations that are produced by thel© the other mechanisms.

aspect mechanisms in the index-ascending order:

b
X

b b
ay =aib...>a,

The sequential framework passes the Pluggable AOP corgosit
benchmark but not thaspect 5 benchmark. Specifically, a se-

[x=of

ar a
> ay > ay

Figure 4:Semantics of the multi-mechanism weaver

guential composition of PA mechanisms fails to satisfy thé u

versal advice ordering and the universal join-point hisrequire-
ments.

Tanter and Noyé [1] introduce a Reflex framework that allowe
to compose PA extensions. Their work fundamentally diffesen

ours in the extension composition approach. Our framework c

structs a multi-extension AOP interpreter by composindedit

aspect mechanisms. Intuitively, the interpreter weavds-@xtension

aspects usingnultiple mechanism weavers wittlifferent seman-

tics. The Reflex framework composes aspect extensions asing

translation approach. The framework translates prograntsew

in different aspect extensions to assembler aspect extension.

All translated aspects are then woven byir@le weaver undethe
same semantics.

XAspects is another translation-based framework. Shdrdé §4]
present a framework for aspect compilation that allows toluoe
multiple domain-specific aspect extensions. The framewadm-
position semantics is to reduce all extensions to a singhergd-

purpose aspect extensioRspect). Unfortunately, XAspects fails
to satisfy the hiding of the mechanism implementation nesgui

ment [3].

7. CONCLUSION

In this paper, we propose the userec® 5 as a data-point for

evaluating and comparing composition techniques for natiig

pointcut-and-advice mechanisms. We also present a novallgla

composition technique, and illustrate that it passesatbeect 5
benchmark. The composition yields an expression intezprkt,

that implements the evaluation semantics for programs imlé-m
extension AOP languagé,,. The interpreter semantics passes the

AspPec™5 benchmark.

8. REFERENCES

[1] Eric Tanter and J. Noyé. A versatile kernel for multi-lange
aop. InFourth International Conference on Generative
Programming and Component Engineering (GPCE’ 05), 2005.

[2] S. Kojarski and D. Lorenz. Modeling aspect mechanisms: A

top-down approach. IRroceedings of the 28" International

Conference on Software Engineering. ICSE’'06, 2006. To
appear.

[3] S. Kojarski and D. H. Lorenz. Pluggable AOP: Designing

aspect mechanisms for third-party composition. In R. Johns
and R. P. Gabriel, editor®roceedings of the 20" Annual
Conference on Object-Oriented Programming Systems,
Languages, and Applications, pages 247-263, San Diego, CA,
USA, Oct. 16-20 2005. OOPSLA05, ACM Press.

[4] M. Shonle, K. Lieberherr, and A. Shah. XAspects: An

extensible system for domain specific aspect languages. In
Companion to the 18" Annual Conference on Object-Oriented
Programming Systems, Languages, and Applications, pages
28-37, Anaheim, California, 2003. ACM Press.

[5] C. SzyperskiComponent Software, Beyond Object-Oriented

Programming. Addison-Wesley, ® edition, 2002. With
Dominik Gruntz and Stephan Murer.

