
The Killer Robot Interface

Author(s)

Richard G. Epstein

Description

An article about the Killer Robot's interface.

Body

Mabel Muckraker

Special to the Silicon Valley Sentinel-Observer

Silicon Valley, USA

Abstract 
1. Introduction 
2. Shneiderman's eight golden rules 
3. Robot console overview 
4. How the Robbie CX30 interface violated the eight golden rules 
5. A reconstruction of the "killer robot" tragedy 
6. Summary and conclusions 
7. Footnotes 

Abstract:
The Robbie CX30 industrial robot was supposed to set a new standard for industrial 
robot intelligence. Unfortunately, one of the first Robbie CX30 robots killed an 



assembly-line worker, leading to the indictment of one of the robot's software 
developers, Randy Samuels. This paper propounds the theory that it is the operator-
robot interface designer who should be on trial in this case. The Robbie CX30 robot 
violates nearly every rule of interface design. This paper focuses on how the Robbie 
CX30 interface violated every one of Shneiderman's eight golden rules.

Back to the Top

1. Introduction
On May 17, 1992 a Silicon Techtronics Robbie CX30 industrial robot killed its 
operator, Bart Matthews, at Cybernetics, Inc., in Silicon Heights, a suburb of Silicon 
Valley. An investigation into the cause of the accident led authorities to the 
conclusion that a software module, written and developed by Randy Samuels, a 
Silicon Techtronics programmer, was responsible for the erratic and violent robot 
behavior which in turn lead to the death by decapitation of Bart Matthews.1

As an expert in the area of user interfaces,2, 3, 4 I was asked to help police 
reconstruct the accident. In order to accomplish this, Silicon Techtronics was asked 
to provide me with a Robbie CX30 simulator which included the complete robot 
operator console. This allowed me to investigate the robot's behavior without 
actually risking serious harm. Due to my extensive understanding of user interfaces 
and human factors I was able to reconstruct the accident with uncanny accuracy. 
On the basis of this reconstruction, I came to the conclusion that it was the interface 
design and not the admittedly flawed software which should be viewed as the 
culprit in this case.

Despite my finding, Prosecuting Attorney Jane McMurdock insisted on pursuing the 
case against Randy Samuels. I believe that any competent computer scientist, 
given an opportunity to interact with the Robbie CX30 simulator, would also 
conclude that the interface designer and not the programmer should be charged 
with negligence, if not manslaughter.

Back to the Top

2. Shneiderman's eight golden rules



My evaluation of the Robbie CX30 user interface is based upon Shneiderman's 
'eight golden rules' 5. I also used other techniques to evaluate the interface, but 
those will be published in separate papers. In this section, I offer a brief review of 
Shneiderman's eight golden rules, a subject which would be more familiar to 
computer interface experts such as myself as opposed to the robot hackers who 
read this obscure journal.

The eight golden rules are:

1. Strive for consistency.
2. Enable frequent users to use shortcuts.
3. Offer informative feedback.
4. Design dialogues to yield closure.
5. Offer simple error handling.
6. Permit easy reversal of actions.
7. Support internal locus of control.
8. Reduce short-term memory load.

Strive for consistency.

As we shall see below, it is important for a user interface to be consistent on many 
levels. For example, screen layouts should be consistent from one screen to 
another. In an environment using a graphical user interface (GUI), this also implies 
consistency from one application to another.

Enable frequent users to use shortcuts.

Frequent users (or power users) may be turned off by overly tedious procedures. 
The interface should allow those users a less tedious procedure for accomplishing a 
given task.

Offer informative feedback.

Users need to see the consequences of their actions. It can be confusing and 
disorienting for the user if the computer does not show either that it is processing or 
has processed a command that the user has entered.

Design dialogues to yield closure



Interacting with a computer is somewhat like a dialogue or conversation. The 
dialogue for every task should have a beginning, a middle, and an end, and it is 
important for the user to know when a task is at its end. The user needs to have the 
feeling that a task has reached closure.

Offer simple error handling

User errors should be designed into the system. To state this another way: no user 
action should be considered an error beyond the ability of the system to manage. If 
the user makes a mistake, he or she should receive useful, concise, and clear 
information about the nature of the mistake, and it should be easy for the user to 
undo the mistake.

Permit easy reversal of actions

More generally, users must be permitted to undo what they have done, whether it is 
an error or not.

Support internal locus of control

User satisfaction is high when the user feels that he or she is in control, and user 
satisfaction is low when the user feels that the computer is in control. Interfaces 
should be designed to reinforce the feeling that the user is the focus of control in 
the human-computer interaction.

Reduce short-term memory load

Human short-term memory is remarkably limited. Psychologists often quote Miller's 
law to the effect that short-term memory is limited to seven discrete pieces of 
information. The interface should do everything possible to lessen the user's 
memory burden. For example, instead of being asked to type in the name of a file 
to be retrieved, the user might be presented with a list of files currently available.

Back to the Top

3. Robot console overview
The Robbie CX30 operator interface violated each and every one of Shneiderman's 



rules. Several of these violations were directly responsible for the accident that 
ended in the death of the robot operator.

The robot console was an IBM PS/2 model 55SX with a 80386 processor and an EGA 
color monitor with 640x480 resolution. The console had a keyboard, but no mouse. 
The console was embedded in a workstation which included shelves for manuals 
and an area for taking notes and for reading manuals. However, the reading/writing 
area was quite a distance from the computer screen, so it was quite awkward and 
tiresome for the operator to manage any task that required looking something up in 
the manual and then acting quickly at the console keyboard. The operator's chair 
was poorly designed and much too high relative to the console and the 
reading/writing area. This placed much strain on the operator's back and also 
caused excessive eye strain.

I cannot understand why a sophisticated system such as this would not include a 
better device for input. One can only conclude that Silicon Techtronics did not have 
much experience with user interface technology. The requirements document
6 specified a menu-driven system, which was a reasonable choice. However, in an 
application where speed was of the essence, especially when operator safety was at 
issue, the use of a keyboard for all menu selection tasks was an extremely poor 
choice, requiring many keystrokes to achieve the same effect which could be 
achieved almost instantaneously with a mouse. (See the paper by Foley et. al.)
7. (Actually, I had most of these ideas before Foley published them, but he beat me 
to the punch.)

The robot operator interacted with the robot and made an impact on its behavior by 
making choices in a menu system. The main menu consisted of 20 items -- too 
many, in my opinion -- and each main menu item had a pull-down submenu 
associated with it. Some of the submenus contained as many as 20 items -- again, 
too many. Furthermore, there seemed to be little rhyme or reason as to why the 
menu items were listed in the order in which they appeared. A functional or 
alphabetical organization would have been better.



In the pull-down submenus, some items had up to four pop-up menus associated 
with them. These would appear in sequence as submenu choices were made. 
Occasionally, a submenu choice would cause a dialogue box to appear at the 
screen. A dialogue box requires some kind of interaction between the operator and 
the system to resolve some issue, such as the diameter of the widgets being 
lowered into the acid bath.

A menu system presents a strict hierarchy of menu choices. On this system, the 
operator could backtrack up the hierarchy by pressing the escape key. The escape 
key could also terminate any dialogue. In addition, the use of color in the interface 
was very unprofessional: There were too many colors in too small a space. The 
contrasts were glaring and the result, for this reviewer, was severe eye strain in just 
fifteen minutes. There was also excessive use of screen flashing and silly musical 
effects when erroneous choices or erroneous inputs were made.

One has to wonder why Silicon Techtronics did not attempt a more sophisticated 
approach to the interface design. After a careful study of the Robbie CX30 
applications domain, I have come to the conclusion that a direct manipulation 
interface, which literally displayed the robot at the operator console, would have 
been ideal. The very visual domain that the robot operated within would lend itself 
naturally to the design of appropriate screen metaphors for that environment, 
metaphors the operator could easily understand. This would allow the operator to 
manipulate the robot by manipulating the graphical representation of the robot at 
the computer console. I have asked one of my doctoral students, Susan Farnsworth, 
to give up her personal life for the better part of a decade in order to investigate 
this possibility a bit further.

Back to the Top

4. How the Robbie CX30 interface 
violated the eight golden rules



The Robbie CX30 user interface violated each and every golden rule in 
multitudinous ways. I shall only discuss a few instances of rule violation in this 
paper, leaving a more detailed discussion of these violations for future articles and 
my forthcoming book8. I will emphasize those violations which were relevant to this 
particular accident.

4.1 Strive for consistency

There were many violations of consistency in the Robbie CX30 user interface. Error 
messages could appear in almost any color and could be accompanied by almost 
any kind of musical effect. Error messages could appear almost anywhere at the 
screen.

When Bart Matthews saw the error message for the exceptional condition that 
occurred, an exceptional condition that required operator intervention, it was 
probably the first time he had seen that particular message. In addition, the error 
message appeared in a green box, without any audio effects. This is the only error 
message in the entire system which appears in green and without some kind of 
orchestral accompaniment.

4.2 Enable frequent users to use shortcuts

This principle did not appear in any way in the entire interface design. For example, 
it would have been a good idea to allow frequent users to enter the first letter of a 
submenu or menu choice to effect a choice, in lieu of requiring the use of the cursor 
keys and the enter key. The menu selection mechanism in this system must have 
been quite a mental strain on the operator.

Furthermore, a form of type-ahead should have been supported, which would have 
allowed a frequent user to enter a sequence of menu choices without having to wait 
for the actual menus to appear.

4.3 Offer informative feedback

There are many cases in which a given sequence of keystrokes represents one 
holistic idea, one complete task, but the operator is left without the kind of 
feedback which would confirm that the task has been completed. For example, 
there was a fairly complicated dialogue necessary to remove a widget from the acid 
bath. However, upon completion of this dialogue, the robot operator was led into a 



new, unrelated dialogue, without being informed that the widget removal dialogue 
had been completed.

4.4 Design dialogues to yield closure

There are many cases in which a given sequence of keystrokes represents one 
holistic idea, one complete task, but the operator is left without the kind of 
feedback which would confirm that the task has been completed. For example, 
there is a fairly complicated dialogue which is necessary in order to remove a 
widget from the acid bath. However, upon completion of this dialogue, the user is 
led into a new, unrelated dialogue, without being informed that the widget removal 
dialogue has been completed.

4.5 Offer simple error handling

The system seems to be designed to make the user regret any erroneous input. Not 
only did the system allow numerous opportunities for error, but when an error 
actually occurred, it was something that was not likely to be repeated for some 
time. This is because the user interface made recovery from an error a tedious, 
frustrating and at times infuriating ordeal. Some of the error messages were 
downright offensive and condescending.

4.6 Permit easy reversal of actions

As mentioned in the previous paragraph, the user interface made it very difficult to 
recover from erroneous inputs. In general, the menu system did allow easy reversal 
of actions, but this philosophy was not carried through to the design of dialogue 
boxes or to the handling of exceptional conditions. From a practical (as opposed to 
theoretical) point of view, most actions were irreversible when the system was in an 
exceptional state, and this helped lead to the "killer robot" tragedy.

4.7 Support internal locus of control

Many of the deficiencies discussed in the previous paragraphs diminished the 
feeling of an "internal locus of control," for example: not providing feedback, not 
bringing interactions to closure, and not allowing easy reversal of actions when 
exceptions arose. All of these things acted to diminish the user's feeling of being in 
control of the robot. There were many features of this interface that could make the 
user feel as though there was an enormous gap between the operator console and 



the robot itself, whereas a good interface design would have made the user 
interface transparent and would have given the robot operator a feeling of being in 
direct contact with the robot. In one case, I commanded the robot to move a widget 
from the acid bath to the drying chamber and it took 20 seconds before the robot 
seemed to respond. Thus, I did not feel as though I was controlling the robot. The 
robot's delayed response, along with the lack of informative feedback at the 
computer screen, made me feel that the robot was an autonomous agent -- an 
unsettling feeling, to say the least.

4.8 Reduce short-term memory load

A menu driven system is generally good in terms of the memory burden it places 
upon users. However, there is great variation among particular implementations of 
menu systems. The Robbie CX30 user interface had very large menus without any 
obvious internal organization. These placed a great burden upon the operator in 
terms of memory, and also in terms of scan time, the time it takes the operator to 
locate a particular menu choice.

In addition, many dialogue boxes required the user to enter part numbers, file 
names, and other information from the keyboard. This greatly increased the 
memory burden upon the user. The system could easily have been designed to 
present the user with part numbers, and so forth, so the user would not have to 
recall these things from his or her own memory.

Finally, and this is really unforgivable, incredible as it may seem, there was no on-
line, context-sensitive help facility! Although I was taken through the training course 
offered by Silicon Techtronics, I often found myself leafing through the reference 
manuals in order to find the answer to even the most basic questions, such as: 
"What does this menu choice mean? What will happen if I make this choice?"

Back to the Top

5. A reconstruction of the "killer robot" 
tragedy

Police photographs of the accident scene are not a pleasant sight. The operator 
console was splattered with a considerable amount of blood. However, the 



photographs are of exceptional quality and using blow-up techniques, I was able to 
ascertain the following important facts about the moment when Bart Matthews was 
decapitated:

The NUM LOCK light was on.

The IBM keyboard contains a calculator pad that can operate in two modes. 
When the NUM LOCK light is on, it behaves like a calculator. Otherwise, the 
keys can be used to move the cursor at the screen.

Blood was smeared on the calculator pad.

Bloody fingerprints indicate that Bart Matthews was using the calculator pad 
when he was struck and killed.

A green error message was flashing.

This tells us the error situation in force when the tragedy occurred. The error 
message said, "ROBOT DYNAMICS INTEGRITY ERROR - 45 ".

A reference manual was open and laid flat in the workstation reading/writing 
area.

This one volume of the four volume reference manual was open to the index 
page that contained the entry "ERRORS/MESSAGES."

A message giving operator instructions was also showing on the screen.

This message was displayed in yellow at the bottom of the screen. It read 
"PLEASE ENTER DYNAMICAL ERROR ROBOT ABORT COMMAND SEQUENCE 
PROMPTLY!!!"

On the basis of this physical evidence, plus other evidence contained in the system 
log, and based upon the nature of the error that occurred ("robot dynamics integrity 
error - 45," an error caused by Randy Samuels' program), I have concluded that the 
following sequence of events occurred on the fateful morning of the "killer robot" 
tragedy:

10:22.30. "ROBOT DYNAMICS INTEGRITY ERROR - 45" appears on the screen. 
Bart Matthews does not notice this because there is no beep or audio effect 
such as occurs with every other error situation. Also, the error message 



appears in green, which in all other contexts means that some process is 
proceeding normally.
10:24.00. Robot enters state violent enough for Bart Matthews to notice.
10:24.05. Bart Matthews notices the error message, but does not know what it 
means and does not know what to do. He tries the "emergency abort" 
submenu, a general purpose submenu for turning off the robot. This involves 
SIX separate menu choices, but Mr. Matthews does not notice that the NUM 
LOCK light is lit. The menu choices aren't registering, because the cursor keys 
are operating as calculator keys.
10:24.45. Robot turns from acid bath and begins sweep towards the operator 
console, its jagged robot arms flailing wildly. No one anticipated when the 
console was designed that the operator might have to flee a runaway robot, so 
Bart Matthews is cornered in his work area by the advancing robot. At about 
this time, Bart Matthews retrieves the reference manual and starts looking for 
a reference to ³robot dynamics integrity error - 45² in the index. He 
successfully locates an entry for error messages in the index.
10:25.00. Robot enters the operator area. Bart Matthews gives up on trying to 
find the operator procedure for the robot dynamics integrity error. Instead, he 
tries once again to enter the "emergency abort" sequence from the calculator 
keypad. As he does this, the robot strikes him.

Back to the Top

6. Summary and conclusions
While the software module written by Randy Samuels did cause the Robbie CX30 
robot to oscillate out of control and attack its human operator, a good interface 
design would have allowed the operator to terminate the erratic robot behavior. 
Based upon an analysis of the robot user interface using Shneiderman's eight 
golden rules, this interface design expert has come to the conclusion that the 
interface designer, and not the programmer, was the more guilty party in this 
unfortunate fiasco.

Back to the Top



7. Footnotes
1.The media were misled to believe that Bart Matthews was crushed by the 
robot, but the photographic evidence given to this author shows otherwise. 
Perhaps authorities were attempting to protect public sensibilities.
2.Gritty, Horace. "The Only User Interface Book You'll Ever Need." Oshkosh, WI: 
Vanity Press, 1990. pg 212
3.Gritty, Horace. "What We Can Learn from the Killer Robot." 1992. Invited talk 
given at the Silicon Valley University International Symposium on Robot Safety 
and User Interfaces, March 1991. Also to appear in Silicon Valley University 
Alumni Notes.
4.Gritty, Horace. "CODEPENDENCY: How Computer Users Enable Poor User 
Interfaces." New "York: Angst Press, expected 1993.
5.Shneiderman, Ben. "Designing the User Interface." Reading, Massachusetts: 
Addison-Wesley, 1987. pg 448 (see footnote 9)
6.Robbie CX30 INTELLIGENT INDUSTRIAL ROBOT REQUIREMENTS DOCUMENT : 
Cybernetics Inc. Version, Technical Document Number 91-0023XA, Silicon 
Techntronics Corporation, Silicon Valley, USA, pg 1245
7.Foley, J. P., L.V. Wallace, and P. Chan. "The Human Factors of Computer 
Graphics Interaction Techniques." IEEE Computer Graphics and Applications, 
4(11). 1984. pg 13-48 (see footnote 9)
8.Gritty, Horace (expected 1993). CODEPENDENCY: How Computer Users 
Enable Poor User Interfaces, Angst Press, New York. This book presents a 
radically new theory concerning the relationship between people and their 
machines. Essentially, some people need a poor interface in order to avoid 
some unresolved psychological problems in their lives.
9. Foley and Shneiderman are actual authors. The other references are 
fictitious.

The Case of the Killer Robot is a fictional scenario for ethics teaching and discussion 
purposes.

Continue to Part 8: Software Engineer Challenges Authenticity of "Killer Robot" 
Software Tests

 

https://onlineethics.org/cases/software-engineer-challenges-authenticity-killer-robot-software-tests
https://onlineethics.org/cases/software-engineer-challenges-authenticity-killer-robot-software-tests


Rights

Use of Materials on the OEC

Resource Type

Case Study / Scenario

Topics

Product Liability
Intellectual Property and Patents
Workplace Ethics
Lab and Workplace Safety
Collaboration
Safety
Risk

Discipline(s)

Engineering
Computer, Math, and Physical Sciences
Computer Sciences
Mathematics


