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Abstract

A statistical network service which allows a certain fraction of tra�c to not meet its QoS
guarantees can extract additional capacity from a network by exploiting statistical properties
of tra�c. Here we consider a statistical service which assumes statistical independence of ows,
but does not make any assumptions on the statistics of tra�c sources, other than that they are
regulated, e.g., by a leaky bucket. Under these conditions, we present functions, so-called local
e�ective envelopes and global e�ective envelopes, which are, with high certainty, upper bounds of
multiplexed tra�c. We show that these envelopes can be used to obtain bounds on the amount
of tra�c on a link that can be provisioned with statistical QoS. A key advantage of our bounds
is that they can be applied with a variety of scheduling algorithms. In fact, we show that one
can reuse existing admission control functions that are available for scheduling algorithms with
a deterministic service. We present numerical examples which compare the number of ows
with statistical QoS guarantees that can be admitted with our e�ective envelope approach to
those achieved with existing methods.
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1 Introduction

Performance guarantees in QoS networks are either deterministic or statistical. A deterministic

service guarantees that all packets from a ow satisfy given worst-case end-to-end delay bounds

and no packets are dropped in the network [4, 6, 10, 17]. A deterministic service provides the

highest level of QoS guarantees, however, it leaves a signi�cant portion of network resources on the

average unused [30].

A statistical service makes probabilistic service guarantees, for example, of the form:

Pr[Delay > X] < " or Pr[Loss] < " ;

where " is generally small, e.g., " = 10�6. By allowing a fraction of tra�c to violate its QoS

guarantees, one can improve the statistical multiplexing gain at network links and increase the

achievable link utilization. The key assumption that leads to the de�nition of statistical services is

that tra�c arrivals are viewed as random processes. With this assumption a statistical service can

improve upon a deterministic service by (1) taking advantage of knowledge about the statistics of

tra�c sources, and (2) by taking advantage of the statistical independence of ows.

Since it is often not feasible to obtain a reliable statistical characterization of tra�c sources,

recent research on statistical QoS has attempted to exploit statistical multiplexing without assuming

a speci�c source model. Starting with the seminal work in [10], researchers have investigated

the statistical multiplexing gain by only assuming that ows are statistically independent, and

that tra�c from each ow is constrained by a deterministic regulator, e.g., by a leaky bucket

[8, 10, 9, 11, 12, 14, 19, 20, 23, 24, 25].

In this paper we attempt to provide new insights into the problem of determining the multiplex-

ing gain of statistically independent, regulated, but otherwise adversarial tra�c ows at a network

link. We introduce the notion of e�ective envelopes, which are, with high certainty, upper bounds

on the aggregate tra�c of regulated ows. We use e�ective envelopes to devise admission control

tests for a statistical service for a large class of scheduling algorithms. We show that with e�ective

envelopes, admission control for a statistical service can be done in a similar fashion as with deter-

ministic envelopes for a deterministic service [4, 6]. In fact, we show that one can reuse admission

control conditions derived for various packet scheduling algorithms in the context of a deterministic

service, e.g., [6, 17, 33]. This is encouraging, since, with few exceptions [9, 14], only few results are

available on statistical multiplexing of adversarial tra�c, which can consider non-trivial scheduling

algorithms.

The related work for this paper is all previous work which attempts to consolidate the deter-

ministic network calculus [6] with statistical multiplexing (e.g., [4, 12, 13, 14, 16]). In addition,

of particular relevance to this paper are all previous results on statistical multiplexing gain with

adversarial regulated tra�c, as cited above. In Section 5 we compare our work to the existing

literature.

The results derived in this paper only apply to a single node. Since tra�c from multiple ows

passing through the same sequence of congested nodes may become correlated, the assumption
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Figure 1: Regulators and scheduler at a link.

of statistical independence of ows may not hold. Only few results are currently available on

end-to-end QoS guarantees for adversarial regulated tra�c [9, 24, 25].

The remaining sections of this paper are structured as follows. In Section 2 we specify our

assumptions on the tra�c and de�ne the e�ective envelopes. In Section 3 we derive su�cient

schedulability conditions for a general class of packet schedulers, which can be used for a determin-

istic and (two types of) statistical QoS guarantees. In Section 4, we use large deviations results to

derive bounds for e�ective envelopes. In Section 5 we contrast our results to the existing literature.

In Section 6 we compare the statistical multiplexing gain attainable with the e�ective envelopes

approach to those obtained with other methods [10, 14, 23, 25]. In Section 7 we present conclusions

of our work. In Appendix A we provide additional numerical examples using MPEG video traces.

In Appendix B we provide some additional comments on the simulation experiments in Section 7

and Appendix A.

2 Tra�c Arrivals and Envelope Functions

We consider tra�c arrivals to a single link with transmission rate C. As shown in Figure 1, the

arrivals from each ow are policed by a regulator, and then inserted into a bu�er. A scheduler

determines the order in which tra�c in the bu�er is transmitted. In the following, we view tra�c

mainly as continuous-time uid-ow tra�c. Note, however, that our discussion applies, without

restrictions, to discrete-time or discrete-size (packetized) views of tra�c arrivals.

QoS guarantees for a ow j are speci�ed in terms of a delay bound dj . A QoS violation occurs if

tra�c from ow j experiences a delay exceeding dj . (We assume that delays consist only of waiting

time in the bu�er and transmission time.)

2.1 Tra�c Arrivals

Tra�c arrivals to the link come from a set of ows which is partitioned into Q classes. We use Cq
to denote set of ows in class q and Nq to denote the number of ows in class q. (Each ow may

itself be an aggregate of the tra�c from multiple sessions.)

The tra�c arrivals from ow j in an interval [t1; t2) are denoted as Aj(t1; t2). We assume

that a tra�c ow is characterized by a family of nonnegative random variables Aj(t1; t2) which is

characterized as follows:
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(A1) Additivity. For any t1 < t2 < t3, we have Aj(t1; t2) +Aj(t2; t3) = Aj(t1; t3).

(A2) Subadditive Bounds. Tra�c Aj is regulated by a deterministic subadditive envelope A�j as

Aj(t; t+ �) � A�j(�) 8t � 0;8� � 0 : (1)

(A3) Stationarity. The Aj are stationary random variables, i.e., 8t; t0 > 0

Pr[Aj(t; t+ �) � x] = Pr[Aj(t
0; t0 + �) � x] : (2)

In other words, all time shifts of Aj are equally probable.

(A4) Independence. The Ai and Aj are stochastically independent for all i 6= j.

(A5) Homogeneity within a Class. Flows in the same class have identical deterministic en-

velopes and identical delay bounds. So, A�i = A�j and di = dj if i and j are in the same class.

Henceforth, we denote by dq the delay bound associated with tra�c from class q. By ACq we

denote the arrivals from class q, that is, ACq (t; t+ �) =
P

j2Cq
Aj(t; t+ �).

Remarks:

� We want to point out that the above assumptions are quite general. The class of subaddi-

tive deterministic tra�c envelopes is the most general class of tra�c regulators [4, 6]. The

assumptions on the randomness of ows are also quite general. Note that we do not require

ergodicity.

� The tra�c regulators most commonly used in practice are leaky buckets with a peak rate

enforcer [1, 2]. Here, tra�c on ow j is characterized by three parameters (Pj ; �j; �j) with a

deterministic envelope given by

A�j (�) = min fPj�; �j + �j�g 8� � 0 ; (3)

where Pj � �j is the peak tra�c rate, �j is the average tra�c rate, and �j is a burst size

parameter. We will use this type of regulators in our numerical examples in Section 6.

As a generalization of the peak-rate enforced leaky bucket the tra�c on ow j may be char-

acterized by a set of parameters f�jk; �jkgk=1;:::Kj
, with a deterministic envelope

A�j (�) = min
k=1;:::Kj

f�jk + �jk�g 8� � 0 : (4)

We will use this type of regulators in our numerical examples in Appendix A.

� A consequence of subadditivity of the A�j is that the limit �j := lim�!1A�j(�)=� exists, and

that it provides an upper bound for the longterm arrival rate for Aj . We assume without loss

of generality, that for all t,

lim
�!1

Aj(t; t+ �)

�
= �j : (5)
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� Stationarity has the useful consequence that expected values can be computed as long-time

averages. For example, for any function F ,

E [F (Aj(t; t+ �)] = lim
T!1

E

�
1

T

Z T

0
F (Aj(s; s+ �)) ds

�
: (6)

Similar relations hold for the joint distributions of several random variables.

2.2 De�nition of E�ective Envelopes

We next de�ne local e�ective envelopes and global e�ective envelopes which are, with high certainty,

upper bounds on aggregate tra�c from a given class q. The envelopes are de�ned for a set of ows

C with arrival functions Aj and aggregate tra�c AC(t; t+ �) =
P

j2C Aj(t; t+ �).

De�nition 1 A local e�ective envelope for AC(t; t + �) is a function GC that satis�es for all

� � 0 and all t

P r

�
AC(t; t+ �) � GC(� ; ")

�
� 1� " : (7)

In other words, a local e�ective envelope provides a bound for the aggregate arrivals AC(t; t+ �) for

any speci�c ('local') time interval of length � . Under the stationarity assumption (A3), Eqn. (7)

holds for all times t, provided that it only holds for one value t = to.

It is easy to see that there exists a smallest local e�ective envelope, since the minimum of two

local e�ective envelopes is again such an envelope. Note, however, that local e�ective envelopes are

in general not subadditive in � , but satisfy the weaker property

GC(�1 + �2; "1 + "2) � GC(�1; "1) + GC(�2; "2) : (8)

A local e�ective envelope GC(� ; ") is a bound for the tra�c arrivals in an arbitrary, but �xed

interval of length � . Global e�ective envelopes, to be de�ned next, are bounds for the arrivals in

all subintervals [t; t+ �) of a larger interval.

For the de�nition of global e�ective envelopes, we take advantage of the notion of empirical

envelopes, as used in [4, 30]. Consider a time interval I� of length �. The empirical envelope

EC( : ;�) of a collection C of ows is the maximum tra�c in any time interval of length � � � in

the interval I�, as follows:

EC(� ;�) = sup
[t ;t+�)�I�

AC(t; t+ �) : (9)

De�nition 2 A global e�ective envelope for an interval I� of length � is a subadditive function

HC(:;�) which satis�es

Pr

�
EC(� ;�) � HC(� ;�; "); 80 � � � �

�
� 1� " : (10)
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The attribute `global' is justi�ed since HC(� ;�; ") is a bound for tra�c for all intervals of length

� � � in I�. Note we can always choose EC(� ;�) �
P

j2C Ej(�) for all � � �, where Ej(� ;�) =
sup[t ;t+�)�I� Aj(t; t+ �) is the empirical envelope of a single ow j.

Due to stationarity of the Aj , Eqn. (10) holds for all intervals of length �, if it holds for one

speci�c interval I�. When applied to scheduling, we will select � such that � � Bmax, i.e., it has

at least the length of the longest busy period.1

Assuming that one has obtained local or global e�ective envelopes separately for each tra�c

class, the following lemma helps to obtain bounds for the tra�c from all classes.

Lemma 1 Given a set of ows that is partitioned into Q classes Cq, with arrival functions ACq .

Let GCq (:; ") and HCq (:;�; ") be local and global e�ective envelopes for class q. Then the following

inequalities hold.

(a) If
P

q GCq (�; ") � x, then, for all t, Pr
hP

pACq (t; t+ �) > x
i
< Q � ".

(b) If
P

qHCq (�; �; ") � x(�) for all � , then Pr
h
9q 9� : Pq ECq (�; �) > x(�)

i
< Q � ".

Proof: We only prove part (a) of the lemma. The proof for (b) is almost identical as for (a).

Assume X
q

GCq (�; �) � x: (11)

Consider the event X
q

ACq (t; t+ �) > x; 8t: (12)

In this case, it follows that: X
q

ACq (t; t+ �) > x �
X
q

GCq (�; �) : (13)

This in turn implies that

9q : ACq (t; t+ �) > GCq (�; �) : (14)

Using the de�ning property of the local e�ective envelope, we can bound the probability of the last

event by:

Pr
�9q : ACq (t; t+ �) > GCq (�; �)

� �X
q

Pr
�
ACq (t; t+ �) > GCq (�; �)

�
< Q� : (15)

2

1For arrival functions Aj and regulators with deterministic envelopes A�
j , the longest busy period in a work-

conserving scheduler is given by: Bmax = inff� > 0 ;
P

j2C A
�
j (�) � �g.
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Our derivations in Section 4 will make it clear that for " small enough, both GCq (� ; ") and

HCq (� ;�; ") are not very sensitive with respect to ", so that the bounds for " andQ�" are comparable.

In Section 3, we will use the local and global e�ective envelopes to derive su�cient schedulability

conditions for a statistical service for a general scheduling algorithms. We will show that admission

control with local and global e�ective envelopes can be done in an analogous fashion as admission

control with deterministic envelopes is used in a deterministic service.

In Section 4 we will use well-known large deviations results to provide bounds on envelopes

GCq (:; ") and HCq (:;�; ") for collections of ows satisfying (A1)-(A5). Our goal is to select the

bounds as small as possible.

3 Deterministic and Statistical Schedulability Conditions

In this section, we present three schedulability conditions for a general class of work-conserving

scheduling algorithms. The �rst condition, expressed in terms of deterministic envelopes, ensures

deterministic guarantees. The second and third conditions, which use the local and global e�ective

envelopes, respectively, yield statistical guarantees. All three schedulability conditions will be

derived from the same expression for the delay of a tra�c arrival in an arbitrary work-conserving

scheduler (Eqn. (21) in Section 3.1).

In our discussions, we will not take into considerations that packet transmissions on a link

cannot be preempted. This assumption is reasonable when packet transmission times are short.

For the speci�c scheduling algorithms considered in this paper, accounting for non-preemptiveness

of packets does not introduce principal di�culties, however, it requires additional notation (see [17]).

Also, to keep notation minimal, we assume that the transmission rate of the link is normalized,

that is C = 1.

3.1 Schedulability

Suppose a (tagged) arrival from a ow j in class q (j 2 Cq) arrives to a work-conserving scheduler

at time t. Without loss of generality we assume that the scheduler is empty at time 0. We will

derive a condition that must hold so that the arrival does not violate its delay bound dq.

Let us use Aq;t(t1; t2) to denote the tra�c arrivals in the time interval [t1; t2) which will be

served before a class q arrival at time t. Let Aq;t
Cp
(t1; t2) denote the tra�c arrivals from ows in Cp

which contribute to Aq;t(t1; t2).

Suppose that t� �̂ is the last time before t when the scheduler does not contain tra�c that will

be transmitted before the tagged arrival from class q. That is,

�̂ = inffx � 0 j Aq;t(t� x; t) � xg : (16)

So, in the time interval [t � �̂ ; t) the scheduler is continuously transmitting tra�c which will be

served before the tagged arrival. (Note that �̂ is a function of t and q. To keep notation simple, we

do not make the dependence explicit.)
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Given �̂ , the tagged class-q arrival at time t will leave the scheduler at time t + � if � > 0 is

such that

� = inf
�
�out j Aq;t(t� �̂ ; t+ �out) � �̂ + �out

	
: (17)

Hence, the tagged class-q arrival does not violate its delay bound dq if and only if

8�̂ 9�out � dq :
�
Aq;t(t� �̂ ; t+ �out) � �̂ + �out

	
: (18)

Then, the tra�c arrival does not have a deadline violation if dq is selected such that

sup
�̂

�
Aq;t(t� �̂ ; t+ dq)� �̂

	 � dq : (19)

In general, Eqn. (19) is a su�cient condition for meeting a delay bound. For FIFO and EDF

schedulers, the condition is also necessary [17]. 2

For a speci�c work-conserving scheduling algorithm, let �� (with ��̂ � ��p � dq ) denote the

smallest values for which

ACp(t� �̂ ; t+ ��p) � Aq;t
Cp
(t� �̂ ; t+ dq) : (20)

Remark: For most work-conserving schedulers one can easily �nd ��p such that equality holds in

Eqn. (20). For example, for FIFO, SP,3 and EDF schedulers, we have:

FIFO: ��p = 0

SP: ��p =

8><
>:

��̂ ; p > q

0 ; p = q

dq ; p < q

EDF: ��p = maxf��̂ ; dq � dpg .

With Eqn. (20), the arrival from class q at time t does not have a violation if dq is selected such

that

sup
�̂

(X
p

ACp(t� �̂ ; t+ ��p)� �̂

)
� dq : (21)

Next, we show how Eqn. (21) can be used to derive schedulability conditions for deterministic

and statistical services, using deterministic envelopes, local e�ective envelopes, and global e�ective

envelopes. For a deterministic service, the delay bound dq must be chosen such that Eqn. (21) is

never violated. For a statistical service, dq is chosen such that a violation of Eqn. (21) is a rare

event.
2A FIFO scheduler transmits tra�c in the order of arrival times. An EDF (Earliest-Deadline-First) scheduler tags

tra�c with a deadline which is set to the arrival time plus the delay bound dq , and transmits tra�c in the order of

deadlines.
3An SP (Static Priority) scheduler assigns each class a priority level (we assume that a lower class index indicates

a higher priority), and has one FIFO queue for tra�c arrivals from each class. SP always transmits tra�c from the

highest priority FIFO queue which has a backlog.
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3.2 Schedulability with Deterministic Envelopes

Exploiting the property of deterministic envelopes in Eqn. (1), we can relax Eqn. (21) to

sup
�̂

8<
:X

p

X
j2Cp

A�j (��p + �̂)� �̂

9=
; � dq : (22)

Since, ��p + �̂ is not dependent on t, we have obtained a su�cient schedulability condition for an

arbitrary tra�c arrival. We refer the reader to [17] to verify that for FIFO and EDF scheduling

algorithms the condition in Eqn. (22) is also necessary, in the sense that if it is violated, then

there exist arrival patterns conforming with A�j leading to deadline violations for class q. For SP

scheduling, the condition is necessary only if the deterministic envelopes are concave functions.

Next we present bounds on the likelihood of a violation of Eqn. (21), using local and global

e�ective envelopes.

3.3 Schedulability with Local E�ective Envelopes

With Eqn. (21), the probability that the tagged arrival from time t experiences a deadline violation

is less than " if dq is selected such that

Pr

"
sup
�̂

(X
p

ACp(t� �̂ ; t+ ��p)� �̂

)
� dq

#
� 1� " : (23)

Let us, for the moment, make the convenient assumption that

Pr

"
sup
�̂

(X
p

ACp(t� �̂ ; t+ ��p)� �̂

)
� dq

#
� inf

�̂
Pr

"X
p

ACp(t� �̂ ; t+ ��p)� �̂ � dq

#
: (24)

Assuming that equality holds in Eqn. (24), we can re-write Eqn. (23) as

inf
�̂
Pr

"X
p

ACp(t� �̂ ; t+ ��p)� �̂ � dq

#
� 1� " : (25)

Remark: The assumption in Eqn. (24) requires further justi�cation, since, in general, the right hand

side is larger than the left hand side. Note that standard extreme-value theory [3] is not immediately

applicable to the left hand side of Eqn. (24), since the supremum in sup�̂

nP
pACp(t� �̂ ; t+ ��p)� �̂

o
is taken over a family of random variables indexed by the continuous parameter �̂ . Thus, one must

consider the correlations between the ACp(t� �̂ ; t + ��p) for di�erent values of �̂ in order to obtain

any useful estimate for the distribution of the supremum. (Even if �̂ is discrete, neglecting these

correlations will lead to poor estimates.) One way to provide a theoretical justi�cation for the

assumption in Eqn. (24) is to assume that arrivals follow a Gaussian processes. Also, several works

on statistical QoS have used Eqn. (24) with equality [5, 13, 14, 15, 16], and, in several cases, have

supported the assumption in Eqn. (24) with numerical examples.
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Recall from the de�nition of the local e�ective envelope that GCp(�; ") � x implies

Pr
�
ACp(t; t+ �) > x

�
< ". Then, with Lemma 1(a) and assuming that Eqn. (24) holds with

equality, we have that a class-q arrival has a deadline violation with probability < " if dq is selected

such that

sup
�̂

(X
p

GCp(��p + �̂ ; "=Q)� �̂

)
� dq : (26)

With Eqn. (26) we have found an expression for the probability that an arbitrary tra�c arrival

results in a violation of delay bounds. This condition can be viewed as a generalization of schedu-

lability conditions for statistical QoS from [13, 14, 16].

The drawback of the condition in Eqn. (26) is its dependence on the assumption in Eqn. (24).

Empirical evidence from numerical examples, including those presented in this paper, as well as

numerical evidence from previous work which employed this assumption [14, 5], suggests that

Eqn. (26) is not overly optimistic. However, it should be noted that the bound in Eqn. (26) is not

a rigorous one.

3.4 Schedulability with Global E�ective Envelopes

We next use global e�ective envelopes to express the probability of a deadline violation in a time

interval. We will see that this bound, while more pessimistic, can be made rigorous.

Consider again the tra�c arrival from class q which occurs at time t. The arrival time t lies in

a busy period of the scheduler I� of length at most �, which starts at time � t� �̂ and which ends

at a time after the tagged arrival has departed.

Using the properties of the empirical envelope ECp(: ;�) as de�ned in Section 2 we have that,

for all t and ��p + �̂ � 0,

ECp(��p + �̂ ;�) � ACp(t� �̂ ; t+ ��p): (27)

Thus, we do not have any deadline violation of any class-p arrival in the time interval I�, if

sup
�̂

(X
q

ECp(��p + �̂ ;�)� �̂

)
� dp : (28)

With Lemma 1(b), the probability that an arrival from class q experiences a deadline violation

in the interval I� is < ", if dq is selected such that

sup
�̂

(X
p

HCp(��p + �̂ ;�; "=Q) � �̂

)
� dq : (29)

Note that the nature of the statistical guarantees derived with local e�ective envelopes (in Subsec-

tion 3.3) and with global e�ective envelopes (in Subsection 3.4) are quite di�erent. Local e�ective

envelopes are (under the assumption in Eqn. (24)) concerned with the probability that a deadline
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violation occurs at a certain time. Global e�ective envelopes address the probability that a deadline

violation occurs in a certain time interval. Clearly, a service which guarantees the latter is more

stringent, and will lead to more conservative admission control.

Lastly, we want to point to the structural similarities of the conditions in Eqs. (22), (26), and

(29). Thus, schedulability conditions which have been derived for a deterministic service can be

reused, without modi�cation, for a statistical service if the respective envelopes or bounds thereof

are available.

4 Construction of E�ective Envelopes

In this section we will construct the local and global e�ective envelopes for the aggregate tra�c

from a set of ows as described in (A1)-(A5). Throughout this section, we will work only with

ows from a single class. So, we will drop the index `q', and denote by C and N , respectively, the

set of ows and the number of ows. We denote by A�(�) the common deterministic envelope for

the ows in C (that is, A�j (�) = A�(�) for all j 2 C), and by AC(t; t+ �) the aggregate tra�c. The

empirical envelope of the aggregate tra�c will be denoted by EC , and the local and global e�ective

envelopes by GC and HC .

Our derivations proceed in the following steps:

Step 1. We compute bounds for the moments of the individual ows Aj(t; t+ �). Since the

ows are independent, this directly leads to bounds for the moments of AC(t; t+ �).

Step 2. We use the Cherno� bound to determine a local e�ective envelope GC directly from

our bounds on the moments.

Step 3. We use a geometric argument to construct HC from any local e�ective envelope GC .
Speci�cally, we will provide bounds of the following nature:

GC(� ; ") � HC(� ;�; ") � GC(� 0; "0) : (30)

where � 0=� > 1 and "0=" < 1 depend on �. We claim that for " su�ciently small and � not

too large, � 0=� � 1, and the resulting global e�ective envelope is reasonably close to the local

e�ective envelope.

The three steps will be discussed in Subsections 4.1, 4.2, and 4.3.

4.1 Moment bounds

The moment generating functions of the distributions of AC and the Aj are de�ned as follows:

MC(s; �) := E[eAC(t;t+�)s] ; (31)

Mj(s; �) := E[eAj(t;t+�)s] : (32)
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Stationarity (A3) guarantees that the moment generating functions do not depend on t. Due to

the stochastic independence (A4) and homogeneity (A5) of the ows, we can write:

MC(s; �) =

NY
j=1

Mj(s; �) =

�
Mj(s; �)

�N

: (33)

Thus, to obtain a bound on MC(s; �), it is su�cient to bound the moment-generating function of

a single ow Aj(t; t+ �).

The k-th moments of Aj(t; t+ �) and AC(t; t+ �) are de�ned by

m
(k)
C (�) := E[(AC(t; t+ �))k] ; (34)

m
(k)
j (�) := E[(Aj(t; t+ �))k] : (35)

The moments are related with the moment generating functions by

Mj(s; �) =
1X
k=0

m
(k)
j (�)

sk

k!
; (36)

MC(s; �) =
1X
k=0

m
(k)
C (�)

sk

k!
: (37)

The following lemma will be used to provide bounds on the moment generation function and

the moments of the arrivals on a ow Aj(t; t+ �).

Lemma 2 Assume that Aj(t; t + �) satis�es Conditions (A1), (A2), and (A3). Then, for every

convex increasing function F ,

E [F (Aj(t; t+ �)] �
�

��

A�(�)

�
F (A�(�)) +

�
1� ��

A�(�)

�
F (0) : (38)

Proof: By stationarity (A3), we may write

E[F (Aj(t; t+ �)] = lim
T!1

E

�
1

T

Z T

0
F (Aj(t; t+ �)) dt

�
: (39)

Since the limit in Eqn. (39) exists, we may compute it by considering only cases where T is a large

integer multiple of � . We compute the average over [0; T ] by partitioning [0; T ] into subintervals of

length � , and then averaging over the position of the subintervals.

E[F (Aj(t; t+ �)] = lim
T!1

E

�
1

T

T=�X
i=1

Z �

0
F
�
Aj((i� 1)� + !; i� + !)

��
(40)

= lim
T!1

E

�
1

�

Z �

0

1

T=�

T=�X
i=1

F
�
Aj((i � 1)� + !; i� + !)

�
d!

�
(41)

� lim
T!1

E

�
max
0�!��

1

T=�

T=�X
i=1

F
�
Aj((i � 1)� + !; i� + !)

��
: (42)

12



For a �xed value of T and a �xed arrival pattern fAj(t; t+ �)gt�0, let !0 be the shift for which the

maximum is assumed in Eqn. (42). Set

yi = Aj((i� 1)� + !0; i� + !0) : (43)

To obtain an upper bound for the limit in Eqn. (42), we consider the following optimization problem:

maximize
1

n

nX
i=1

F (yi) (n = T=�) (44)

subject to

0 � yi � A�(�) i = 1; : : : ; N (45)
NX
i=1

yi � A�(T ) : (46)

By convexity, the maximal value is attained at some point on the boundary of the region de�ned

by the side conditions. Moreover, since F is increasing, side condition (46) holds at this point with

equality. Exploiting the symmetry of the problem under permutations of the yi, we see immediately

that the following is a maximizing solution:

yi =

8>><
>>:

A�(�) if i � bA�(T )A�(�) c
A�(T )� i A�(�) if i = bA�(T )A�(�) c+ 1

0 otherwise :

(47)

This assigns the maximum value A�(�) to as many yi as possible, subject to the �rst side condition.

So, the maximum of Eqn. (44), up to a rounding error of O(1=n), is

�(T )F (A�(�)) + ((1 � �(T ))F (0) ; (48)

where

�(T ) =
A�(T )

nA�(�)
< 1 : (49)

Inserting the maximum back into Eqn. (42) and recalling that n = T=� , we obtain the following

bound

�F (�) � lim
T!1

�
�(T )F (A�(�)) + (1� �(T ))F (0)

�
(50)

=

�
� �

A�(�)

�
F (A�(�)) +

�
1� � �

A�(�)

�
F (0) : (51)

In the evaluation of the limit, we have used that

lim
T!1

�(T ) = lim
T!1

�

T

A�(T )

A�(�)
=

��

A�(�)
(52)

by the de�nition of �. This completes the proof. 2

With Lemma 2, we can easily obtain bounds for the moment-generating function Mj(s; �) and

the k-th moments m
(k)
j . These bounds are formulated in Theorems 1 and 2.

13



Theorem 1 Given a set of ows C from a single class which satisfy conditions (A1){(A5). Let

Aj(t; t+ �) denote the arrivals from a ow j 2 C, let AC(t; t+ �) denote the aggregate tra�c, and

let A�(�) denote the subadditive envelope for each ow in C. Then,

Mj(s; �) � 1 +
��

A�(�)

�
esA

�(�) � 1
�

(53)

and

MC(s; �) �
�
1 +

� �

A�(�)

�
esA

�(�) � 1
��N

: (54)

Proof: Eqn. (53) is obtained by setting F (y) = esy in Lemma 2. Combining Eqn. (53) with

Eqn. (33) yields Eqn. (54). 2

The bound in Eqn (54) can be strengthened to bounds for individual moments.

Theorem 2 Under the assumptions of Theorem 1,

m
(k)
j (�) � �� (A�(�))k�1 (k � 1) (55)

and

m
(k)
C (�) � k! �

�
coe�cient of sk in 1 +

��

A�(�)

�
esA

�(�) � 1
��

: (56)

Proof: Lemma 2 with F (y) = yk yields Eqn. (55). Using the formula for the moments in Eqn. (37),

we compute

m
(k)
C (�) = k! � �coe�cient of sk in MC(s; �)

�
(57)

= k! �
�
coe�cient of sk in

�
Mj(s; �)

�N�
(58)

=
X

k1+���+kn=k

NY
j=1

m
(kj)
j (�) (59)

� k! �
�
coe�cient of sk in 1 +

��

A�(�)

�
esA

�(�) � 1
��

: (60)

Here, the �rst line is from Eqn. (37), the second follows from independence, the third combines

the Cauchy product formula for power series with Eqn. (36). The inequality in the last line follows

from the bounds in Eqn. (56) and the positivity of the moments m
(k)
j (�). 2

The results in this Subsection will now be used to derive bounds on the e�ective envelope.
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4.2 Local E�ective Envelopes

4.2.1 Using the Central Limit Theorem

Combining the bound for the second moment from Theorem 2 with the assumption that E [Aj(t; t+ �)] =

�� yields the bound

V ar [Aj(t; t+ �)] � ��(A�(�)� ��)| {z }
=:ŝ2

(61)

for the variance of the individual ows. As indicated, we de�ne

ŝ = ��

s
A�(�)

��
� 1 : (62)

By the independence and homogeneity of the ows, it follows that

V ar [AC(t; t+ �)] = N V ar [Aj(t; t+ �)] (63)

� N ��(A�(�)� ��) : (64)

Using �rst the Central Limit Theorem and then the bound on the variance in Eqn.(64), we see

that for x > ��

Pr [AC(t; t+ �) � Nx] � 1� �

 
Nx�N��

V ar
�
AC(t; t+ �)

�! (65)

� 1� �

�p
N

x� ��

ŝ

�
; (66)

where � is the cumulative normal distribution.

To �nd GC so that

Pr[AC(0; �) � GC(� ; ")] � " ; (67)

we set Pr [AC(t; t+ �) � Nx] � " in Eqn. (66) and solve for Nx. This produces an (approximate)

local e�ective envelope of the form

GC(� ; ") � N�� + z
p
N��

s
A�(�)

��
� 1 ; (68)

where z is de�ned by 1� �(z) = " and has the approximate value z �
p
j log (2�")j.

We remark that our bound in Eqn. (61) is equivalent to Knightly's bound on the rate variance

in [14]. The rate variance in [14] is de�ned by

RV [Aj(t; t+ �)] := V ar

�
Aj(t; t+ �)

�

�
: (69)

Knightly's bound states that

RV [Aj(t; t+ �)] � A�(�)

�
�� �2 ; (70)

which is just Eqn. (61) with both sides multiplied by ��2.
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4.2.2 Using the Cherno� Bound

While the estimate in Eqn. (68) is asymptotically correct, for �nite values of N it is only an

approximation. To obtain a rigorous upper bound on Pr [AC(0; �) � Nx], recall the Cherno�

bound for a random variable Y (see [21]):

Pr[Y � y] � e�sy E[esY ] 8s � 0 : (71)

In particular, for AC , this gives

Pr[AC(0; �) � Nx] � e�NxsMC(s; �) (72)

�
�
e�xs

�
1 +

� �

A�(�)

�
esA

�(�) � 1
���N

: (73)

Here, Eqn. (72) simply uses the Cherno� bound, and Eqn. (73) uses Eqn. (54). We want to �nd

a value s which makes the bound in Eqn. (73) as tight as possible. For x < A�(�), the right hand

side of (73) is minimal when s is chosen so that

esA
�(�) =

x

��

A�(�)� ��

A�(�)� x
: (74)

Substituting this value of s into Eqn. (73) yields

Pr
�
AC(0; �) � Nx

� � � ���
x

� x
A�(�)

�
A�(�)� ��

A�(�)� x

�1� x
A�(�)

�N
: (75)

Again, our goal is to �nd GC satisfying Eqn. (67). Using the bound in Eqn. (75) and enforcing that

GC(� ; ") is never larger than NA�(�) we may set

GC(� ; ") = N min(x;A�(�)) ; (76)

where x is set to be the smallest number satisfying the inequality

���
x

� x
A�(�)

�
A�(�)� ��

A�(�)� x

�1� x
A�(�)

� "1=N : (77)

It can be veri�ed that for N su�ciently large, this bound matches closely the CLT bound of

Eqn. (68).

Remark: For deterministic envelopes with a peak-rate constraint A�(�) � P� , the expressions

for GC in Eqn. (76) and Eqn. (68) describe lines, with slopes which depend on �, P , N , and ". In

other words, the arrivals AC(t; t+ �) satisfy, with probability at least 1� ", again a rate constraint.

The new rate di�ers from the mean rate N� by an error of order
p
N (for �xed values of �, P ,

and ").
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τ / k

τ'

Interval of length   Ιβ

Figure 2: Embedding intervals.

4.3 From Local to Global E�ective Envelopes

We use the results from the previous subsection to construct a global e�ective envelope HC for AC .

The �rst step is a geometric estimate for the empirical envelope EC(� ;�) for a particular value of

� in terms of the local e�ective envelope. The second step �xes the value of the global e�ective

envelope for a �nite collection of values �i. Finally, we obtain the entire envelope by extrapolation.

The construction of the global e�ective envelope requires the choice of a number of parameters.

We conclude with a heuristic optimization of these parameters.

Let us de�ne two events:

B(x; t; �) = fAC(t; t+ �) � Nxg : (78)

B�(x; �) = fEC(� ;�) � Nxg : (79)

where I� is an interval of length �. The event B(x; t; �) occurs if the arrivals in the speci�c time

interval [t; t+� ] exceed Nx, while B�(x; �) occurs if there is some interval of length � in the interval

I� where the arrivals exceed Nx.

With Eqn. (75), we have a bound for the probability of events B(x; t; �). The following bound

for B�(x; �) in terms of B(x; t; �) will be used to construct HC(� ;�; ") from GC(� ; ").

Lemma 3 Let k � 2 be a positive integer, I� an interval of length �, t 2 I�, and 0 � � � �. Then

Pr[B(x; t; �)] � Pr[B�(x; �)] � �k

�
Pr[B(x; t; � 0)] ; (80)

with � 0=� = (k + 1)=k.

Proof: By stationarity, we may assume that I� = [0; �] and t = 0. The left inequality holds

by de�nition, since B(x; 0; �) � B�(x; �). To see the inequality on the right, let ti = i�=k (i =

0; : : : ; d�k=�e), and consider the intervals Ii = [ti; ti+k+1] of length � 0 = k+1
k � for i = 1; : : : ; d(� �

�)k=�e (all but possibly the last are subintervals of [0; �].) See Figure 2 for an illustration of this

construction. Clearly, every subinterval of length � in I� is contained in at least one of the Ii. The

claim now follows with stationarity. 2
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Lemma 3 provides a bound on arrivals in all subintervals of length � in I�. One of its implications

is that for every value of � ,

Pr

�
EC(� ;�) � GC

�k + 1

k
� ; "
�� � �k

�
" ; (81)

where EC(:;�) is the empirical envelope, and GC(�; ") is any local e�ective envelope.

Constructing a �nite number of values for H�
C : We next assign a �nite number of values for

HC(:;�; "): Pick a collection of values �i and ki (i = 1; : : : ; n) and de�ne

HC(�i;�; ") = GC(� 0i ; "0) ; (82)

where

� 0i =
ki + 1

ki
�i and "0 = "

 
nX
i=1

�ki
�i

!�1

: (83)

To justify this construction, note that by Eqn. (81) we have

Pr
h
9i : EC(�i;�) � GC(� 0i ; "0)

i
�

nX
i=1

�ki
�i

"0 (84)

� " : (85)

Interpolation: We de�ne a �rst approximation to HC(� ;�; ") by

f(�) = minfNA�(�); HC(�i;�; ")g � 2 [�i�1; �i) ; (86)

where the values HC(�i;�; ") are given by Eqn. (82). Since the empirical envelope EC(� ;�) increases
with � and cannot exceed NA�(�) by assumption (A2), we see that

Pr [9� 2 I� : EC(� ;�) � f(�)] � " : (87)

Since EC is subadditive, we may take HC(� ;�; ") to be the largest subadditive function which does

not exceed f(�), in formulas:

HC(� ;�; ") = infP
�i=�

X
i

f(�i) : (88)

Heuristic optimization: Since there exists no universal \best" global e�ective envelope, it is

clearly impossible to make an optimal choice for the values of �i and ki in Eqs. (82) and (83). It is,

however, possible to make good choices, which lead to global e�ective envelopes that approximate

the given local e�ective envelope well, at least when " is su�ciently small.
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We will discuss only the case where the tra�c regulators satisfy a peak rate constraint with

peak rate P and average rate �. Our goal is to �nd an e�ective envelope satisfying again a rate

constraint

HC(� ;�; ") � N�� (89)

with � < P as close to � as possible. In this case we set

ki = k and �i = i�o i = 1; : : : ; n ; (90)

where �o is a small number, and

 � 1 +
1

k + 1
; (91)

k � z
�
z +

p
N

��

ŝ

�
= z

 
z +

p
Np

P=�� 1

!
; (92)

where z is de�ned by 1� �(z) = ", and

ŝ = ��
p
P=�� 1 (93)

in accordance with Eqn. (62). This choice of the �i and ki is used in all our numerical simulations.

We motivate the choice below by appealing to the Central Limit Theorem.

Let us for the moment accept Eqn. (90), �x �o and �, and optimize over the parameters k and .

Eqn. (90) guarantees that

HC(� ;�; ") � GC
�
k + 1

k
 � ; "0

�
(94)

for all � 2 [�o; �], where, by Eqn. (83),

"0 =
�o( � 1)

�k
� " : (95)

We estimate

Pr
h
9� 2 [�o; �] : E�C (�) � N��

i
� Pr

h
9i : E�C (�i) � N��i=

i
(96)

�
nX
i=1

�k

�oi
Pr

�
AC

�
0;
k + 1

k
�i

�
� N��i=

�
(97)

� �k

�o( � 1)

 
1� �

 p
N

�k=((k + 1))� �

�
p
P=�� 1

!!
(98)

where the �rst step follows from monotonicity, the second step uses Lemma 3, and the third step

invokes the Central Limit Theorem, and a simple estimate for the geometric series.

We next solve for � in the equation

" =
�k

�o( � 1)

 
1� �

 p
N

�k=((k + 1))� �

�
p
P=�� 1

!!
: (99)
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For every integer of k and  > 1, an (approximate) envelope is given by

HC(� ;�; ") � N�� (100)

=
(k + 1)

k

�
N�� + z0

p
N��

p
P=�� 1

�
; (101)

where "0 is given by Eqn. (95), and 1��(z0) = "0. This approximation is valid for � in the interval

[�o; �].

Our goal is to choose k and  so that the right hand side of Eqn. (101) is as small as possible.

The di�culty is that z0 depends on the choice of k and . We can achieve our goal by minimizing

instead the right hand of Eqn. (98). It is easy to see that the minimum value is achieved for some

�nite positive value of k and . Using the approximation 1 � �(z) � z�1�(z), where � is the

density of standard normal normal distribution, di�erentiating with respect to k and , and solving

approximately for the critical values, we see that the minimum is attained at a point satisfying

 � 1 +
1

k + 1
; (102)

k � z0

 
z0 +

p
Np

P=�� 1

!
; (103)

where z0 is de�ned by 1��(z0) = "0. Approximating z0 by z we arrive at the conditions in Eqs. (91)

and (92).

We turn to the basic choice made in Eqn. (90). The fact that the right hand side of Eqn (98),

and hence k and  determined by either Eqs. (102){(103) or Eqs. (91){(92), does not depend on

�o and � indicates that optimal choices of ki and i := �i=�i�1 do not depend on the size of �i,

provided that �i is small enough to lie in the region where A�(�i) = P�i.

The above heuristic method to choose parameters for the global e�ective envelope is for peak-

rate constrained leaky buckets with parameters (P; �; �). We propose the following analogous

heuristic optimization for general regulators with subadditive deterministic envelope A�.

Assuming as above that � is given, we set �o to be a small number, and set z such that

1��(z) = ". We replace Eqs. (90) { (92) by the following method to recursively determine the ki,

i, and �i for 1 � i � n, where n is the �rst time such that �n � �.

ki = z

�
z +

��i�1

ŝi�1

p
N

�
(104)

= z

 
z +

p
N

�
A�(�i�1)

��i�1
� 1

��1=2
!

; (105)

where ŝi is as given in Eqn. (62) (the subscript i in ŝi corresponds to �i), and

i = 1 +
1

ki + 1
; (106)

�i = i�i�1 (107)

When the algorithm terminates after n steps, we obtain "0 as in Eqn. (83).

20



5 Related Work

The literature on statistical services and statistical multiplexing in Quality of Service networks is

extensive and a full discussion is beyond the scope of this paper. Excellent discussions on the state

of the art of statistical multiplexing can be found in [15, 26, 28].

Here, we will only discuss two groups of prior work on statistical multiplexing which we regard

as particularly relevant to this paper. The �rst group studies the statistical multiplexing gain

of statistically independent, regulated, adversarial tra�c at a bu�ered multiplexer with uid ow

service. The second group of work are extensions of results on deterministic QoS [6, 7] to a

probabilistic framework.

5.1 Regulated, Adversarial Tra�c at a Multiplexer

Several researchers have studied the multiplexing gain of statistically independent, regulated, ad-

versarial tra�c at a bu�ered multiplexer, such as the one shown in Figure 1, where each ow is

allocated a �xed amount of link bandwidth and bu�er capacity. Such a system is sometimes referred

to as a virtual bu�er/virtual trunk system. In these studies, it is assumed that tra�c is served

in a uid ow fashion, that is, the multiplexer can simultaneously transmit tra�c from all ows

at their respective allocated rates. These works generally do not consider scheduling algorithms

at the multiplexer. The allocated rate and the bu�er capacity for a ow is selected such that the

probability of losses due to bu�er overows is smaller than some small number ". The allocated

rate is sometimes referred to as the e�ective bandwidth of a ow.

Elwalid, Mitra, and Wentworth [10] consider a virtual bu�er/virtual trunk systems with ows

which are regulated by peak-rate constrained leaky buckets with parameters (P; �; �) and deter-

ministic envelopes as given in Eqn. (3). The analysis of the system proceeds by reducing a two

resource system (bu�er and bandwidth) to a single resource system (bandwidth), and then analyze

the (bu�erless) single resource system. The adversarial tra�c pattern used in [10] is a periodic

on-o� source, which is known to maximize the overow probability in a bu�erless multiplexer. In

[9], the solution approach of [10] is applied to the GPS [22] scheduling algorithm.

LoPresti, Zhang, Towsley, and Kurose [19] consider the same system. They analyze the virtual

bu�er/virtual trunk system by transforming it into two systems, each with one resource: a bu�erless

trunk and a bu�er with no server. Losses occur if the demand for bandwidth exceeds the capacity of

the trunk, or the demand for storage space exceeds the size of the bu�er. Rajagopal, Reisslein, Ross

[23] study the same system as [19], and consider more general tra�c regulators with deterministic

envelopes as given in Eqn. (4).

The question of the adversarial tra�c pattern at a bu�ered multiplexer with (P; �; �) regulators

has received a lot of interest. As suggested in [8] and by others, and supported by numerical

data presented in [20], on-o� tra�c sources are adversarial for bu�erless multiplexers, but not for

bu�ered multiplexers. Kesisidis and Konstantopoulos [11, 12] address the problem of �nding explicit

expressions for the adversarial tra�c patterns at a bu�ered multiplexers. In [11], the authors derive
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the adversarial tra�c pattern for a single ow, and in [12] the authors analyze the queue length

distribution for multiple ows. In all cases, the adversarial tra�c pattern is shown to be periodic,

with multiple on-phases and di�erent rates in each `on' phase.

Rajagopal, Reisslein, Ross [24, 25] investigate the statistical multiplexing gain for a speci�c type

of multiplexer, which consists of one dedicated bu�er for each ow and a bu�erless multiplexer.

All arrivals on a ow are stored in the dedicated bu�er for this ow. The output rate of the bu�er

of a ow is set to a �xed rate, such that no tra�c from the ow experiences a delay violation.

The output of all bu�ers is multiplexed at a bu�erless multiplexer. Losses eccur at the bu�erless

multiplexer when the aggregate output from the bu�ers exceeds the link capacity.

Our bounds in Section 4 have similar goals as the studies cited above, in that they investigate

statistical multiplexing for statistically independent, regulated, and adversarial tra�c. On the other

hand, our approach deviates from the above papers in several ways. For example, di�erent from

most studies mentioned above, we do not use a particular adversarial tra�c pattern in our analysis.

In fact, for the scheduling algorithms considered in this paper (e.g., EDF) and for the general class

of tra�c regulators with subadditive deterministic envelope functions, an explicit derivation of an

adversarial pattern may be a formidable, if not, impossible task. Another di�erence of our work

is that we do not analyze a bu�ered multiplexer with a uid ow server. Rather, we consider the

scheduling algorithm of the multiplexer throughout the analysis.

5.2 Probabilistic Extensions of Deterministic Calculus

Our general approach can be characterized as generalizing schedulability conditions for a deter-

ministic service to a probabilistic framework (see Section 3). Several researchers before us made

probabilistic extensions to deterministic service models. In particular, Cruz's deterministic network

calculus [6, 7] has inspired several researchers to de�ne a statistical service within a probabilistic

interpretation of the network calculus.

Chang [4] derives probabilistic bounds for the delays in a multiplexer with a shared bu�er, as

discussed in the previous subsection, i.e., each ow is served in a uid-ow fashion at an allocated

rate. The arrivals on a ow j to the bu�er in time interval [t1; t2), Aj(t1; t2), are assumed to be

bounded by a function Âj(s ; :) such that

1

s
lnE[eAj(t;t+�)s] � Âj(s; �) :

Thus, Âj(s; :) is a bound on the moment generating function of the arrival function Aj(t; t + �).

For a certain class of bounds Âj(s; :), i.e., bounds of the form

Âj(s; �) = �̂j(s) + �̂j(s) � � ;

Chang derives bounds on the loss probability. Even though the notation and the formalism in [4]

bears similarity to those used in this paper, the system studied by Chang is quite di�erent from our

work. A key di�erence is that we do not assume that there exists an a priori bound on the moment
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generating function of the arrivals. Instead, we assume a deterministic tra�c regulator for each

ow (as shown in Figure 1), and, with this constraint, derive bounds on the moment generating

functions of the arrivals.

Yaron and Sidi [31] present another probabilistic extension of Cruz's deterministic network

calculus. They consider stochastic tra�c sources which satisfy the constraint

Pr [Aj(t; t+ �) � �j(�) + �j ] � B e��� ;

where � and B are constants. These source are referred to as having exponentially bounded bursti-

ness. Yaron and Sidi prove that if the incoming ows to a multiplexer satisfy exponentially bounded

burstiness constraints, then the output of the multiplexer has exponentially bounded burstiness.

The work was recently extended in [29] to more general bounding functions.

Kurose [16] explores bounds on the distribution of the delay and bu�er occupancy of a ow in

a network environment. The tra�c on a ow is determined by a family of random variables, where

each random variable denotes the tra�c over a time interval of a certain length. (The family of

random variables can be thought of as a family of local e�ective envelopes.) For a link with FIFO

scheduling and making an assumption analogous to that in Eqn. (24), [16] derives an expression

for the distribution of the delays at a single node. Kurose also provides bounds on the output

of a node, and, thus, can obtain bounds for networks with multiple nodes. Zhang and Knightly

[34] extend this work, and, for speci�c types of random variables, i.e., Markov modulated uid

ow sources or sources with a binomial arrival distribution, obtain probabilities for delay bound

violations at a rate-controlled SP scheduler.4 Both [16] and [34] calculate the arrival distribution

of aggregate sources directly, without resorting to large deviations results.

Knightly [13, 14] extends the approach of [16] and [34] by introducing a characterization of ow

arrivals using �rst and second moment information on the sources. The notion of a rate-variance

envelope RVj(�) is introduced as a function which describes the variance of the arrivals of a ow

j over a time period of length � , as de�ned in Eqn. (70). In [13], arrivals on a ow are assumed

to be characterized by the rate-variance envelope and the long-term arrival rate �j (see Eqn. (5)).

Then, applying the CLT (Central Limit Theorem), a bound for the probability of a delay bound

violation is derived for an SP scheduler. In [14], the same framework is used to address bounds on

the rate-variance envelope for regulated, adversarial tra�c sources. Recall from Section 4.2.1, that

these bounds on RV (�) can also be obtained by using the second moment bound from Theorem 2

from Section 4.

A common characteristic of the works in [13, 14, 16, 34] is that they consider bounds of the

form shown in Eqn. (23). Hence, all results make an assumption as in Eqn. (24).5

Our work can be viewed as a generalized framework for the approach pursued in [13, 14, 16,

34]. The generalization is done in several directions. First, we consider more general scheduling

algorithms. Also, we derive di�erent types of bounds, including those, which allow us to not

4A rate-controlled SP (RCSP) scheduler is proposed in [32] performs per-ow shaping of tra�c at each node, and,

hence, is not workconserving.
5Chang [4] makes a similar assumpition in his work. The assumption occurs between Eqns. (55) and (56) of [4].
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depend on assumptions as in Eqn. (24). Finally, we use a formalism which enables us to derive

schedulability conditions for deterministic and statistical QoS guarantees in a uniform fashion.

6 Evaluation

In this section, we evaluate the e�ective envelope approach, using the schedulability conditions

from Section 3 and the bounds derived in Section 4. The key criteria for evaluation is the amount

of tra�c which can be provisioned on a link with QoS guarantees.

As benchmarks for statistical QoS provisioning we consider the following non-statistical meth-

ods:

� Peak Rate Allocation: It is well-known that peak rate allocation provides deterministic

QoS guarantees, but is an ine�cient method for achieving QoS. The number of connections

that can be supported with a peak rate allocation serve as a lower bound for any method for

provisioning QoS.

� Deterministic Allocation: We use admission control tests for deterministic QoS from

Eqn. (22). The admissible tra�c is dependent on the scheduling algorithm.

� Average Rate Allocation: Since average rate allocation only guarantees �niteness of delays

and average throughput, the number of connections that can be supported with an average

rate allocation are an upper bound for any method for provisioning QoS.

We will evaluate the methods for provisioning statistical QoS which are presented in this paper.

� Local E�ective Envelope: We use Eqn. (25) to determine admissibility. We evaluate the

quality of the following two bounds, derived in Section 4:

{ Local E�ective Envelope (CB): Uses the bound from Eqn. (77), obtained with the

Cherno� bound.

{ Local E�ective Envelope (CLT): Uses the bound from Eqn. (68), obtained with the

Central Limit Theorem.

Recall from our discussion in Section 4 that the local e�ective envelope (CLT) results

are equivalent to the rate-variance envelope method described in [14].

� Global E�ective Envelope: We use the procedure, including the heuristic optimization,

developed in Section 4.3 to determine admissibility. We select � such that it is larger than the

longest busy period (see Footnote 1). In Eqn. (82), we use the local e�ective envelope (CB)

rather than the corresponding CLT bound, since the latter would yield only approximate

bounds.

We compare our results with the e�ective bandwidth approach for regulated adversarial tra�c

from the literature:
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� E�ective Bandwidth [10, 19, 23]:6 The e�ective bandwidth approach assigns to each

ow a �xed capacity, the e�ective bandwidth, and assumes that each ow is serviced at a

rate which corresponds to the e�ective bandwidth. General scheduling algorithms are not

considered (with the exception of [9], which extends the results in [10] approach to GPS

scheduling.). Thus, when we compare e�ective bandwidth results to our approach, we will

assume FIFO scheduling for the e�ective envelopes.

The delay bounds is indirectly derived from the bu�er size. We set the delay bound d to

d = B=C, where B is the bu�er size at the scheduler and C is the transmission rate of the

link.

In our examples, we include the following results on e�ective bandwidth:

{ EB-EMW: This is the result from the classical paper by Elwalid/Mitra/Wentworth

(Eqn. (39) in [10]).

{ EB-RRR: We use Eqn. (9) from [23] by Rajagopal/Reisslein/Ross which presents an

improvement to the EB-EMW result.

� Bu�erless Multiplexer (Bu�erless MUX) [25]: In [25], the multiplexing gain of regu-

lated adversarial tra�c is analyzed for a particular switch architecture, where arriving tra�c

on a ow is shaped at a dedicated bu�er for this ow. The output rate of each bu�er is set

to a �xed rate, such that no tra�c experiences a violation of its delay bound in the bu�er.

The output from the bu�ers is multiplexed on the link, however, there are no bu�ers at the

multiplexer (hence, the term Bu�erless multiplexer). Thus, if the aggregate output from the

bu�ers exceeds the link capacity, tra�c is dropped.

In all our experiments, we consider tra�c regulators which are obtained from peak rate con-

trolled leaky buckets with deterministic envelopes as given in Eqn. (3).7 In all experiments, we

consider a 45 Mbps link (C = 45 Mbps), and we consider two tra�c classes. The tra�c parameters

for single ows in the classes are as follows:

Class Peak Rate Mean Rate Burst Size

P (Mbps) � (Mbps) � (bits)

1 1.5 0.15 95400

2 6.0 0.15 10345

The parameters are selected so as to match (approximately) the examples presented in [10, 23].

In this section we present four sets of examples. In the �rst example, we compare the deter-

ministic envelopes with our bounds for the local and global e�ective envelopes for di�erent sets of

6The cited works calculate e�ective bandwidth for regulated adversarial sources. The complete literature on

e�ective bandwidth is much more extensive.
7Most of the methods listed here can work with more complex regulators. However, since peak-rate enforced leaky

buckets are widely used in practice, [1, 2], they serve as good benchmarks.
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sources. In the second example, we compare the maximum number of admissible ows in a FIFO

scheduler for given delay bounds d and delay-violation probability ". In the third example, we show

how the statistical multiplexing gain increases at higher link capacities. In the fourth example, we

investigate the case of heterogeneous tra�c with di�erent QoS requirements, and we compare the

admissible regions for di�erent scheduling algorithms (SP, EDF).

6.1 Example 1: Comparison of Envelope Functions

In the �rst example, we study the shape of local and global e�ective envelopes for homogeneous

sets of ows as functions of the lengths of time intervals. The envelopes are compared to the

deterministic envelope A�j (�) = minfPj ; �; �j + �j; �g, to the peak rate function Pj � , and to the

average rate function �j � . In our graphs, we plot the amount of tra�c per ow for the various

envelopes (e.g., we present
P

j2C Gj(� ; ")=N).

Figures 3(a) and 3(b) show the results for multiplexed ows from Class 1 and Class 2, respec-

tively. We set " = 10�6 for all envelopes. By depicting the amount of tra�c per ow for di�erent

numbers of ows (N denotes the number of ows), we can observe how the statistical multiplexing

gain increases with the number of ows.

The �rst observation to be made is that local and global e�ective envelopes are much smaller

than the deterministic envelope or the peak rate. Another observation is that, for a �xed number

of ows N , the e�ective envelope is larger than the local e�ective envelopes, and the local e�ective

envelope bound is smaller when using CLT (central limit theorem), as compared to CB (Cherno�

bound). Figure 3 also shows that the di�erence between local and global e�ective envelopes narrows

as the number of ows N is increased. Note that in Figure 3(b) local e�ective envelopes are identical

for CB and CLT bounds for N = 10000.

In Figure 4 we depict the sensitivity of the e�ective envelopes to the selection of the parameter

". We use the same parameters as before. We �x the value for the number of ows to N = 1000,

and we show the e�ective envelopes for " = 10�3; 10�6, and 10�9: Figure 4 shows that the e�ective

envelopes are not very sensitive to variations of the parameter ".

In Figure 5 we show how the e�ective envelopes vary if the number of ows N is increased.

We use the same parameters as before, but only consider the values of the envelopes for the time

interval � = 50 ms. For this value of � , Figures 5(a) and (b) show, for ows from Class 1 and

Class 2, respectively, the values of the rates GC(� ; ")=(N�) and HC(� ; ")=(N�), as the number of

ows N is varied. For comparison, we include the peak and average rates into the graph. There

are three noteworthy observations to be made. First, as the number of ows N is increased, the

e�ective envelopes, both local and global, are close to the average tra�c rate. Second, the di�erence

between the two local e�ective envelopes diminishes when N is large. Third, for large values of N

the di�erence between the local e�ective envelopes and the global e�ective envelope is quite small.
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Figure 3: Example 1: Comparison of envelopes for � � 100 ms, " = 10�6, and for number of ows

N = 100; 1000; 10000.
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Figure 4: Example 1: Comparison of envelopes for � � 100 ms, number of ows N = 1000 and for

di�erent values of ".
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Figure 5: Example 1: Tra�c rates GC(� ; ")=(N�) and HC(� ; ")=(N�) for � = 50 ms and " = 10�6
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Figure 6: Tra�c pattern for (P; �; �) ows used in simulations.

6.2 Example 2: Admissible Region for Homogeneous Flows

In this example, we investigate the number of ows admitted by various admission control methods

for guaranteeing QoS at a link with a FIFO scheduler. We assume that ows are homogeneous, that

is, all ows belong to a single class. We compare the admissible regions8 of the the local and global

e�ective envelopes, to those of the e�ective bandwidth techniques (both EB-EMW and EB-RRR),

the bu�erless Multiplexer (bu�erless MUX) and to deterministic QoS guarantees.

We compare the results with those obtained from a discrete event simulation. For the simulation,

we take a pattern which we expect, based on the simulations in [20], to be close to an adversarial

tra�c pattern for peak-rate controlled leaky buckets. However, do not claim that the results from

the simulation scenario are the worst possible.

In the simulations, the tra�c for a ow with parameters given by (P; �; �), is periodic with a

pattern as shown in Figure 6. A ow transmits at the average rate � for a duration Ton1 = d=2, where

d is the delay bound. Then, the ow transmits at the peak rate P for a duration Ton2 = �=(P ��),

followed by another phase of length Ton1 at which the o transmits at rate �. Then, the source

shuts o�, waits for a duration Toff = �=� and then repeats the pattern. The starting time of a

pattern of the ows are uniformly and independently chosen over the length of its period. We refer

to Appendix B for additional comments of of the simulations.

Figures 7(a) and (b) depict the number of admitted ows as a function of the delay bound. Here,

the probability of a violation of QoS guarantees is set to " = 10�6. The �gures show that all methods

for statistical QoS admit many more connections than a deterministic admission control test. In

both Figures, the e�ective envelopes (both CLT and CB) are closest to the simulation results.

(Once again, we point out that the results using the local e�ective (CLT) bounds are identical to

the rate-variance results presented in [14].) Note, however, that results obtained with local e�ective

envelopes are approximate and are not guaranteed to be upper bounds on the admissible regions.

Comparing the results from e�ective envelopes to the e�ective bandwidth results, we observe

that the e�ective envelope methods admits more connections than the e�ective bandwidth methods

if delay bounds are large.

8The admissible region is the range of parameters which results in a positive admission control decision.
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The di�erence of the admissible regions in Figure 7(a) to those in Figure 7(b) illustrate the high

degree to which the size of the admissible region is dependent on the selection of parameters. The

lower burst sizes of ows in Class 2 lead to larger admissible regions for all methods. Speci�cally,

notice that deterministic QoS in Figure 7(b) yields similar results to the statistical methods, if the

delay bounds are large.

In Figure 8 we show the results for the same experiment as before, however, with " set to

" = 10�9. A comparison of Figures 7 and 8 indicates that the admissible regions are not very

sensitive to variations of ".

31



300

250

200

150

100

50

0
0 20 40 60 80 100

0.25

0.5

1

0

A
verage utilization

Average Rate

Local Eff. Env. (CLT)

Local Eff. Env. (CB)

Global Eff. Env.

Deterministic

Peak Rate

Bufferless MUX
EB-RRR
EB-EMW

0.75

Delay bound (ms)

Simulation

N
um

be
r 

of
 a

dm
is

si
bl

e 
co

nn
ec

tio
ns

(a) Class 1.

300

250

200

150

100

50

0
0 20 40 60 80 1000

0.25

1

Delay bound (ms)

Local Eff. Env. (CLT) Average Rate

Peak Rate

Global Eff. Env.
EB-RRR
Bufferless MUX
EB-EMW
Deterministic

Local Eff. Env. (CB)

0.5

0.75 A
verage utilization

Simulation

N
um

be
r 

of
 a

dm
is

si
bl

e 
co

nn
ec

tio
ns

(b) Class 2.

Figure 7: Example 2: Admissible number of ows at a FIFO scheduler for homogeneous ows as a

function of delay bounds (" = 10�6).
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Figure 8: Example 2: Admissible number of ows at a FIFO scheduler for homogeneous ows as a

function of delay bounds (" = 10�9).
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6.3 Example 3: Link Utilization for Homogeneous Flows

Our goal in Example 3 is to illustrate how the achievable utilization of a link with a FIFO multiplexer

increases as the capacity of the link is increased. We use a similar setup as in Example 2, that is,

we consider a FIFO scheduler with homogeneous tra�c, where tra�c is either from Class 1 or from

Class 2. As before, we compare our results to the e�ective bandwidth methods from [10] and [23],

and to the bu�erless MUX method [25]. We �x the delay bound of tra�c to d = 50 ms and we use

" = 10�6.

The results of this experiment are shown in Figure 9. We depict the achievable average link

utilization as a function of the link capacity. The average achievable link utilization is the sum of

the average rates of ows which can be accepted according to a chosen schedulability conditions.

In Figures 9(a) and (b) we observe, for Class 1 and Class 2, respectively, that the achievable

average link utilization increases with the link capacity for all considered methods. This illustrates

that all methods exploit the statistical multiplexing gain well at high link capacities. Note that

the achievable utilization with deterministic QoS is only about 20% in Figure 9(a), but more than

70 % in Figure 9(b). The achievable utilization for deterministic QoS is (almost) constant as a

function the link capacity, which illustrates that deterministic QoS does not exploit the statistical

multiplexing gain. The e�ective envelope method performs well over the entire parameter range.

Note that the di�erence between the admissible regions of the local and the global e�ective envelopes

is small at high link capacities.
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Figure 9: Example 3: Achievable average utilization vs. link capacity, " = 10�6 and d = 50 ms.
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6.4 Example 4: Admissible Region for Heterogeneous Flows

In this example we consider di�erent scheduling algorithms with heterogeneous tra�c arrivals. As

scheduling algorithms, we consider Static Priority (SP) and Earliest-Deadline-First (EDF). For a

deterministic service, EDF is optimal, in the sense that the admissible regions with EDF scheduling

are maximal [17]. To our knowledge, results for a statistical service (with adversarial tra�c) have

not been reported for EDF.

In this example, we multiplex a number of ows from Class 1 and from Class 2 on 45 Mbps. We

�x the delay bounds such that the delay bound for Class-1 ows is relatively long, d1 = 100 ms, and

the delay bound for Class-2 ows is relatively short, d2 = 10 ms. For any particular method, we

determine the maximum number of Class-1 and Class-2 ows that can be supported simultaneously

on the 45 Mbps link.

The result are shown in Figure 10. The plot depicts the admissible region for SP schedulers

and EDF scheduling using the results from the local e�ective envelope, e�ective envelope, and

deterministic envelope approaches, respectively. We also include the admissible regions using the

e�ective bandwidth approaches (EB-EMW and EB-RRR). Note, however, that e�ective bandwidth

method assume a simple multiplexer (with virtual bu�er partitioning (see [9]) and do not account

for di�erent scheduling algorithms. The results in Figure 10 show that the di�erence between SP

and EDF schedulers is small in all cases. The e�ective envelope is, again, more conservative than

the local e�ective envelope method. Figure 10 illustrates that with heterogeneous ows and the

e�ective bandwidth methods (EB-EMW, EB-RRR) may not perform as well as methods which

consider scheduling algorithms.
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7 Discussion

We have presented new results on evaluating the statistical multiplexing gain for packet scheduling

algorithms. We have introduced the notions of local and global e�ective envelopes, which are, with

high probability, bounds on aggregated tra�c ows, and we have derived admission control tests

for these bounds. We want to conclude with a brief discussion of some issues:

� We have presented two schedulability conditions for a statistical service at a single node.

The �rst condition, which uses local e�ective envelopes (Section 3.3), provides a guarantee

for the probability of a QoS violation for an arbitrary arrival. The second condition, which

uses global e�ective envelopes (Section 3.4), provides a guarantee for the probability of a

QoS violation in an arbitrary time interval. Our motivation to introduce a second, more

conservative (and possibly less intuitive) condition is motivated by a technical problem which

appears in the derivation of the �rst schedulability condition (see Section 3.3). The technical

problem is the assumption in Eqn. (24), which, as we discussed, has been made in several

previous papers. Without a veri�cation of this assumption, however, any admission control

conditions which applies this assumption may be too optimistic. The condition based on

global e�ective envelopes does not require us to make any assumptions and provides a true

lower bound on the admissible region.

In our numerical examples, for large number of ows and small values of ", the di�erence

between the admissible regions for local and global e�ective envelopes may be small. Thus,

in many cases, it may not be necessary to make the assumption given in Eqn. (24).

� We believe that our approach to separate the consideration of the service de�nition (deter-

ministic, statistical), the scheduling algorithm (FIFO, SP, EDF), and the choice of the large

deviations result (Central Limit Theorem, Cherno� Bound) may prove to be useful, as it

simpli�es the task of testing new scheduling algorithm or large deviations results.

� The schedulability conditions derived in Section 2 for deterministic service (Eqn. (22)), and

for a statistical service (Eqs. (26) or (29)) have a similar structure. Thus, schedulability condi-

tions which have been derived for a deterministic service can be reused, without modi�cation,

for a statistical service if the local or global e�ective envelopes are available.

� The derivations of the local and global e�ective envelopes in Section 4 have used novel bounds

on the moment generating function and the moments for a set of regulated ows. Our

numerical results have shown that our bounds are tight if the number of ows N is large and

the probability of QoS violation " is small.

� Our work does not attempt to explicitly derive an adversarial tra�c pattern. Even though

recently results on adversarial patterns have been obtained for bu�ered multiplexers [11, 12,

23], it may not be feasible to derive adversarial tra�c patterns for more complex scheduling
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algorithms. On the other hand, our results show that tight bounds on the admissible regions

are attainable even without knowledge of adversarial tra�c patterns.

� A few years ago, a study has addressed the question on the fundamental limits of a deter-

ministic service [30]. The �ndings of [30] were that (a) the admissible region for deterministic

QoS is signi�cantly greater than the schedulable region with a peak-rate allocation, and (b)

the choice of the packet scheduling algorithm has a signi�cant impact on the size of the ad-

missible region. Since this paper is, to our knowledge, the �rst to analyze EDF scheduling

(which is the optimal scheduling algorithm for deterministic QoS, in the sense that the ad-

missible regions with EDF scheduling is maximal [17]) in the context of a statistical service

for regulated, adversarial sources, and which compares the impact of scheduling algorithms in

such a setting, the numerical results may shed light on the fundamental limits of a statistical

service:

1. The examples in this paper (in Section 6 and Appendix A) show that the di�erence of

the admissible region of statistical and deterministic is signi�cant, even if " is selected

very small, e.g., " = 10�9.

2. The results from Examples 4 and A.4 suggest that the selection of the scheduling algo-

rithm (SP vs. EDF in our case) has a noticeable, but, in relative terms, small impact on

the size of the admissible region. It appears that additional numerical data is required

to make more conclusive statements on the importance of scheduling algorithms in a

statistical service.

3. The examples in this paper show that, for high-capacity links, the statistical multiplexing

gain is signi�cant. The admissible region for a statistical service is sometimes close to

that of an average rate allocation. Since an average rate allocation provides an upper

bound on the admissible region, the additional gain achievable by improving currently

available methods appears marginal.

As directions for future work, the admission control methodology presented in this paper only

applies to a single node, and must be extended to a network environment. A main problem is that

bu�ering and scheduling destroys the independence of ows at the output of a node.
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Movie Trace Average frame size Mean Rate Peak Rate

(bits/frame) (Mbps) (Mbps)

Terminator 10,904 0.261 1.90

Lambs 7,312 0.171 3.22

Table 1: Parameters of the movie traces.

A Additional Examples: MPEG Traces

In this section, we continue our evaluation of the e�ective envelope method for admission control.

Di�erent from the previous sections, however, we use statistics of MPEG-compressed video as tra�c

sources. The evaluation with MPEG streams is analogous to that in [30] which investigated the

maximum achievable utilization at a link with a deterministic service. Several works on statistical

multiplexing [15, 25] have used MPEG tra�c sources to evaluate methods for admission control.

In our examples, a number of MPEG-compressed video sequences are multiplexed on 45-Mbps

and 622-Mbps links. We assume that the video sequences are played continuously with a randomly

shifted starting time chosen uniformly over the length of the trace. We consider two traces of

MPEG-compressed video from [27]. The �rst trace is taken from the movie \Terminator 2" (Ter-

minator), and the second trace is obtained from the movie \Silence of the Lambs" (Lambs). Both

traces are digitized to 384 by 288 pixels with 12 bit color information and compressed at 24 frames

per second with frame pattern IBBPBBPBBPBB (12 frames). Each sequence consists of a total of

40,000 video frames, corresponding to approximately 30 minutes of video. The data of these traces

is given in terms of frame sizes. In Table 1, we show some of the statistical parameter of the traces.

We assume that the arrival of a frame is spread evenly over an interframe interval (of length 1=24

s); Hence, a (normally instantaneous) frame arrival occurs at a constant rate.

For each of the MPEG traces, we assume that a deterministic regulator is obtained using the

method described in [30]: (1) the empirical envelope is obtained from the MPEG trace (using

Eqn. (9) with I� set to the length of the movie trace), (2) the convex hull of the empirical envelope

is determined, yielding a piecewise linear function, and (3) the segments of the concave hull are

taken as leaky bucket parameters. In Table 2 we present the leaky bucket parameters which are

obtained from the two MPEG traces, yielding a large number of parameters. An algorithm which

achieves an accurate characterization with a signi�cantly lower number of leaky bucket parameters

can be found in [18].

We now conduct a similar set of experiments as in Section 6. As before, we compare the results

with those from simulations, and other methods to calculate the statistical multiplexing gain. Due

to the complexity of implementing the method in [23], we do not include results for the EB-RRR

method. In our simulation, the simulated time is equal to twice the length of the transmission time

of the MPEG trace.

It should be noted that the MPEG tra�c sources are not random sources. We have not veri�ed

if the assumptions of stationarity is satis�ed for the MPEG sources.
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Silence of the Lambs (Lambs)

Rate parameter Burst parameter

(Bits per second) (Bits)

�1 = 3; 221; 376:0 �1 = 0:0

�2 = 867; 008:0 �2 = 98; 098:7

�3 = 759; 628:8 �3 = 156; 262:4

�4 = 694; 336:0 �4 = 246; 149:3

�5 = 656; 472:0 �5 = 321; 122:0

�6 = 647; 850:7 �6 = 372; 131:6

�7 = 563; 438:9 �7 = 1; 126; 242:3

�8 = 502; 912:0 �8 = 2; 042; 261:3

�9 = 448; 013:1 �9 = 2; 911; 892:3

�10 = 208; 800:0 �10 = 3; 157; 800:0

Terminator 2 (Terminator)

Rate parameter Burst parameter

(Bits per second) (Bits)

�1 = 1; 909; 440:0 �1 = 0:0

�2 = 869; 056:0 �2 = 43; 349:3

�3 = 791; 680:0 �3 = 75; 589:3

�4 = 624; 776:3 �4 = 165; 995:4

�5 = 592; 576:0 �5 = 214; 296:0

�6 = 425; 421:1 �6 = 485; 922:6

�7 = 361; 641:5 �7 = 679; 919:0

�8 = 346; 464:0 �8 = 961; 968:0

�9 = 317; 920:00 �9 = 1; 563; 770:7

�10 = 304; 514:7 �10 = 1; 853; 100:7

Table 2: Leaky bucket parameters of the movie traces using the algorithm from [30].

A.1 Example A.1: Comparison of Envelope Functions for MPEG Traces

Analogous to Example 1 in Section 6, we study the shape of local and global e�ective envelopes as

functions of the lengths of time intervals. The envelopes are compared to the deterministic envelope

A�j (�) = minkf�jk + �jk�g, where the parameters f�jk; �jkgk=1;::: ;K , given in Table 2, are obtained

from the concave hull of the empirical envelope of the movie traces [30].

Figures 11(a) and 11(b), respectively, show the results for N multiplexed Lambs and Terminator

traces, where N is set to N = 100; 1000, and 10000 ows. In the graphs, we plot the size of the

envelopes normalized by the number of ows as functions of time. We use " = 10�6 for all envelopes.

We can make the same observations as in Example 1. Local and global e�ective envelopes are

much smaller than the deterministic envelope or the peak rate. The global e�ective envelope is

always larger than the local e�ective envelopes. Increasing the number of ows N increases the

statistical multiplexing gain, leading to a lower tra�c rate for each ow. Also, increasing N reduces

the di�erence between the local and the global e�ective envelopes.

In Figure 12 we show the shape of the envelopes for a �xed number of ows, N = 1000, and

di�erent values of ", namely " = 10�3; 10�6 and 10�9. Figure 12 shows that the e�ective envelopes

are not very sensitive to variations of the parameter ".

In Figure 13 we show how the e�ective envelopes vary if the number of ows N is increased. As

in Example 1, we consider the values of the envelopes at time interval � = 50 ms. For comparison,

we include the peak and average rates into the graph. As in Example 1, when N is large, the local

and global e�ective envelopes are close to the average tra�c rate. Also, the values for local and

global envelopes are similar when N is large.
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Figure 11: Example A.1: Comparison of envelopes for � � 150 ms, " = 10�6, and for number of

ows N = 100; 1000; 10000.
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Figure 12: Example A.1: Comparison of envelopes for � � 150 ms, number of ows N = 1000 and
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Figure 13: Example A.1: Tra�c rates GC(� ; ")=(N�) and HC(� ; ")=(N�) of Lambs and Terminator
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A.2 Example A.2: Admissible Region for Homogeneous MPEG Flows

This example is analogous to Example 2 in Section 6. We consider a single link with a FIFO

scheduler and compare the admissible region of our and other admission control methods for guar-

anteeing QoS. The tra�c sources are either all ows from the Lamb MPEG trace or all ows from

the Terminator MPEG trace. We include the following methods in our comparison:

� Peak Rate and Average Rate Allocation.

� Deterministic QoS.

� Statistical QoS with E�ective Bandwidth (EB-EMW) [10].

Note that this method only considers tra�c which is regulated by peak-rate enforced leaky buckets.

Research on deterministic QoS has provided evidence that such a regulator does not lead to an accurate

characterization of MPEG video traces [18, 30].

Recent work has adapted the EB-EMW method to more general tra�c regulators [19, 23]. However,

due to the signi�cant complexity of implementing these methods, we are unable to provide numerical

data.

� Statistical QoS with Bu�erless Multiplexer (Bu�erless MUX) [25].

� Statistical QoS using Local E�ective Envelopes (CLT and CB) and the Global E�ective En-

velope.

� Simulations.

The results for this example are shown in Figures 14{17. All Figures show the number of

admitted ows as a function of the delay bound. The selection of parameters C and " in the

Figures is as follows.

Figure 14: C = 45 Mbps " = 10�6

Figure 15: C = 45 Mbps " = 10�9

Figure 16: C = 622 Mbps " = 10�6

Figure 17: C = 622 Mbps " = 10�9

The results show that the e�ective envelope methods perform well if compared to other methods.

All statistical QoS approaches, with exception of EB-EMW, admit many more ows than a deter-

ministic QoS. As mentioned earlier, the poor showing of the EB-EMW method is due to the tra�c

characterization which is not appropriate for MPEG traces. The EB-EMW results are included for

reference purposes only. The results in Figures 16 and 17 show that the statistical multiplexing

gain of all methods is signi�cantly higher when the link capacity is high.
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Figure 14: Example A.2: Admissible number of homogeneous MPEG ows at a FIFO scheduler as

a function of delay bounds, C = 45 Mbps, " = 10�6.
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Figure 15: Example A.2: Admissible number of homogeneous MPEG ows at a FIFO scheduler as

a function of delay bounds, C = 45 Mbps, " = 10�9.
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Figure 16: Example A.2: Admissible number of ows at a FIFO scheduler for homogeneous ows

as a function of delay bounds, C = 622 Mbps, " = 10�6.
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Figure 17: Example A.2: Admissible number of ows at a FIFO scheduler for homogeneous ows

as a function of delay bounds, C = 622 Mbps, " = 10�9.
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A.3 Example A.3: Link Utilization for Homogeneous MPEG Flows

In this example we show, similarly as in Example 3 of Section 6, how the achievable average

utilization of a link with a FIFO multiplexer increases as the capacity of the link is increased. We

use the same MPEG traces as in the previous two examples. We �x the delay bound of tra�c to

d = 50 ms and we set " = 10�6.

The results of this experiment are shown in Figure 18. We depict the achievable average link

utilization as a function of the link capacity. The average achievable link utilization is the sum of

the average rates of ows which can be accepted according to a chosen admission control test.

The results in Figures 18(a) and (b) show that for both MPEG traces, an average utilization of

60% and higher is attainable if the link capacity is 400 Mbps or more.
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Figure 18: Example A.3: Average utilization vs. link capacity, " = 10�6 and d = 50 ms.
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Figure 19: Example A.4: Admissible region of multiplexing Lambs and Terminator ows with

" = 10�6 and dTerminator = 50 ms and dLambs = 100 ms.

A.4 Example A.4: Admissible Region for Heterogeneous MPEG Flows

We investigate the statistical multiplexing gain at a link with two classes of tra�c, ows of type

Lambs and ows of type Terminator. The link has a capacity of 622 Mbps. The delay bounds are

set to dTerminator = 50 ms for ows of type Terminator, and to dLambs = 100 ms for ows of type

Lambs.

We consider two scheduling algorithms, Static Priority (SP) and Earliest-Deadline-First (EDF).

For purposes of comparison, we include the methods EB-EMW and bu�erless MUX, which do not

consider scheduling algorithms. Also, we include results for a peak rate allocation, average rate

allocation, and deterministic QoS.

In Figure 19. we show the admissible region for the various methods. As in Example 7 in

Section 6, the di�erence between SP and EDF schedulers is small in all cases. The e�ective

envelope is, again, more conservative than the local e�ective envelope method. The results with

the local e�ective envelope are quite close to those attainable with an average rate allocation.
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B Simulations

In this section, we provide some details on our simulation experiments from Section 6 and Ap-

pendix A. Note that, in all simulations, the packet size is ignored and we assume that tra�c

arrivals and transmissions are uid ow. This is consistent with our earlier decision to ignore the

discrete size of packets in this study.

QoS Violations

In our framework, a QoS violation occurs if tra�c exceeds a delay bound. Bu�ers are assumed

to be large enough so that no bu�er overow occurs. Note, however, that in FIFO schedulers,

a deadline violation occurs if the bu�er length exceeds a certain length. We have exploited this

feature when comparing the e�ective envelope approach to equivalent bandwidth approaches.

One can think of di�erent de�nitions of the relative frequency of a delay bound violation.

(Additional de�nitions of QoS violations can be found in [25].)

1. The fraction of tra�c which experiences a delay bound violation.

2. The fraction of time during which deadline violations occur.

3. The fraction of busy periods which contain a delay bound violation.

We use the �rst notion of QoS violation, probably the most intuitive one, in our simulation.

The second notion may be useful if a QoS violation is related to a certain state of the scheduler,

e.g., the bu�er has a maximum length and arrivals to a full bu�er are lost. The third de�nition is

of interest in the context of the global e�ective envelope. Recall that the global e�ective envelope

is used to bound the likelihood of a QoS violation in a time interval.

In a simulation, which measures delay bound violations, one needs to specify how tra�c which

has experienced a QoS violation is handled. There are two options.

� Option 1: No Discard. Tra�c which experiences a delay bound violation is being

transmitted.

� Option 2: With Discard. Tra�c which experiences a delay bound violation is discarded

and not transmitted.

In our simulations, we implement the �rst option. Implementing the second option requires the

availability of monitoring functions for detecting a QoS violations. Not, however, that the �rst type

of simulations is more pessimistic than the second one.

In Figure 20 we show the di�erence of the No Discard and With Discard options. The �gure

is the same as Figure 7, but includes simulation results for both Option 1 (`Simulation without

discard') and Option 2 (`Simulation with discard').
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Figure 20: This �gure is similar to Figure 7. The only di�erence to Figure 7 is the inclusion of the

`With Discard' simulation.
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