
Partial Security Policies to Support Timeliness in
Secure Real-time Databases

Sang H. Son, Craig Chaney and Norris P. Thomlinson
Dept. of Computer Science, University of Virginia, Charlottesville, VA 22903

{son, cwc3r, npt4g}@cs.virginia.edu

Abstract

Conflicts in database systems with both real-time and secu-
rity requirements can be unresolvable. We address this issue
by allowing a database system to provide partial security in
order to improve real-time performance when necessary.
Systems that are partially secure allow potential security
violations such as covert channel use at certain situations.
We present the idea of requirement specification that
enables the system designer to specify important properties
of the database at an appropriate level. To help the
designer, a tool can process the database specification to
find unresolvable conflicts, and to allow the designer to
specify the rules to follow during execution when those con-
flicts arise. We discuss several partial security policies and
compare their performance in terms of timeliness and
potential security violations.

1. Introduction

A real-time system is one whose basic specification and
design correctness arguments must include its ability to
meet its timing constraints. This implies that its correctness
depends not only on the logical correctness, but also on the
timeliness of its actions. To function correctly, it must pro-
duce a correct result within a specified time, called dead-
line. In these systems, an action performed too late (or even
too early) may be useless or even harmful, even if it is func-
tionally correct [16]. If timing requirements coming from
certain essential safety-critical applications would be vio-
lated, the results could be catastrophic.

Traditionally, real-time systems manage their data (e.g.
chamber temperature, aircraft locations) in application
dependent structures. As real-time systems evolve, their
applications become more complex and require access to
more data. It thus becomes necessary to manage the data in
a systematic and organized fashion. Database management
systems provide tools for such organization. The resulting
integrated system, which provides database operations with
real-time constraints is generally called areal-time data-
base system.

In many real-time applications, security is another
important requirement, since the system maintains sensitive
information to be shared by multiple users with different

levels of security clearance. As more and more of such sys-
tems are in use, one cannot avoid the need for integrating
them. While Secure Alpha [7] has addressed some of the
issues in supporting real-time and security requirements at
the OS level, not much work has been reported on develop-
ing database systems that support both requirements of
multilevel security and real-time. In this paper, we address
the problem of supporting both requirements of real-time
and security, based on the notion of partial security.

1.1 Real-time database systems

Real-time database systems extend the set of correct-
ness requirements from conventional database systems.
Transactions in real-time systems must meet their timing
constraints, often expressed as deadlines, in order to be cor-
rect. In stock market applications and automated factories, a
poor response time from the database can result in the loss
of money and property. In many real-time database sys-
tems, transactions are given priorities, and these priorities
are used when scheduling transactions. In most cases, the
priority assigned to a transaction is directly related to the
deadline of the transaction. For example, in the Earliest
Deadline First scheduling algorithm, transactions are
assigned priorities that are directly proportional to their
deadlines; the transaction with the closest deadline gets the
highest priority, the transaction with the next closest dead-
line gets the next highest priority, and so on. One important
goal of a real-time transaction scheduler is to minimize or
eliminate the number of priority inversions -- situations
where a high priority transaction is forced to wait for a
lower priority transaction to complete. As we shall see
below, it is this goal that comes in conflict with security
requirements.

1.2 Multilevel secure database systems

Multilevel secure database systems have a set of
requirements that are beyond those of conventional data-
base systems. A number of conceptual models exist that
specify access rules for transactions in secure database sys-
tems. One important model is the Bell-LaPadula model [1].
In this model, a security level is assigned to transactions
and data. A security level for a transaction represents its

clearance level; for data, the security level represents the
classification level. Transactions are forbidden from read-
ing data at a higher security level, and from writing data to a
lower security level. If these rules are kept, a transaction
cannot gain direct access to any data at a higher security
level.

However, system designers must be careful ofcovert
channels. A covert channel is an indirect means by which a
high security clearance process can transfer information to
a low security clearance process [9]. If a transaction at a
high security level collaborates with a transaction at a lower
security level, information could flow indirectly. For exam-
ple, say that transaction Ta wished to send one bit of infor-
mation to transaction Tb. Ta has top secret clearance, while
Tb has a lower clearance. If Ta wishes to send a “1”, it locks
some data item previously agreed upon. (This data item
could be one that is created specifically for this covert chan-
nel by Ta.) If Ta wishes to send a “0”, it does not lock the
data item. Then, when Tb tries to read the data item and
finds it locked, it knows that Ta has sent a “1”; otherwise, it
knows that Ta has sent a “0”. Covert channels may use the
database system’s physical resources instead of specific
data items.

One sure way to eliminate covert channels is to design a
system that meets the requirements of non-interference [5].
In such a system, a transaction cannot be affected in any
manner by a transaction at a higher security level. In other
words, a subject at a lower access class should not be able
to distinguish between the outputs from the system in
response to an input sequence including actions from a
higher level subject and an input sequence in which all
inputs at a higher access class have been removed [9]. For
example, a transaction must not be blocked or preempted
by a transaction at a higher security level.

1.3 Supporting real-time and security require-
ments

In general, when resources must be shared dynamically
by transactions from different access classes, requirements
of real-time performance and security are in conflict [11].
Frequently, priority inversion is necessary to avoid covert
channels. Consider a transaction with a high security level
and a high priority entering the database. It finds that a
transaction with a lower security level and a lower priority
holds a write lock on a data item that it needs to access. If
the system preempts the lower priority transaction to allow
the higher priority transaction to execute, the principle of
non-interference is violated, for the presence of a high secu-
rity transaction affected the execution of a lower security
transaction. On the other hand, if the system delays the high
priority transaction, a priority inversion occurs. The system
has encountered an unresolvable conflict. Those unresolv-
able conflicts occur when two transactions contend for the

same resource, with one transaction having both a higher
security level and a higher priority level than the other.
Therefore, creating a database that is completely secure and
strictly avoids priority inversion is not feasible. A system
that wishes to accomplish the fusion of multi-level security
and real-time requirements must make some concessions at
times. In some situations, priority inversions might be
allowed to protect the security of the system. In other situa-
tions, the system might allow covert channels so that trans-
actions can meet their deadlines.

There are other factors, besides security enforcement,
that could degrade the timeliness of the database system.
For example, transient overload or failure of certain compo-
nents could impact the system performance. In such situa-
tions, it is important that the system provides a feature for
dynamically trading off security and real-time concerns in a
manner specified by the designer. Critical transactions must
complete by the deadlines, while security violations are
strictly controlled.

Our approach to this problem of conflicting require-
ments involves dynamically keeping track of both the real-
time and the security aspects of the system performance.
When the system is performing well and making a high per-
centage of its deadlines, conflicts that arise between secu-
rity and real-time requirements will tend to be resolved in
favor of the security requirements more often, and more pri-
ority inversions will occur. However, the opposite is true
when the real-time performance of the system starts to
degrade. Then, the scheduler will attempt to eliminate pri-
ority inversions, even if it means allowing occasional covert
channels.

Semantic information about the system is necessary
when making these decisions. This information could be
specified before the database became operational using a
specification language, which will enable users to express
the relative importances of keeping information secure and
meeting deadlines. Specifications in this language could
then be “compiled” by a pre-processing tool. After a suc-
cessful compilation, the system should be deterministic in
the sense that an action must be clear for every possible
conflict that could arise. This action might depend on the
current level of real-time performance or other aspects of
the system. Any ambiguities would be caught at compile
time, causing the compilation to be unsuccessful. The com-
pilation of the specification produces output that can be
understood and used by the database system.

The problem of supporting both requirements of secu-
rity and real-time becomes more complicated in a distrib-
uted system. In this paper we do not consider distributed
environments.

In the next section, we describe the notion of partial
security and the ideas behind the specification language. In
Section 3, we discuss several partial security policies.
Results of simulation study are presented in Section 4. Sec-

tion 5 discusses some related work in secure systems and
databases. Section 6 concludes the paper with a discussion
of future work.

2. Requirement specification

In this section, we first outline the approach to defining
partial security. We then provide the details of specifying
different rules for the database system.

2.1 Partial security

As explained above, our approach will at times call for a
violation of security in order to uphold a timeliness require-
ment. When this happens, the system will no longer be
completely secure; rather, it will only be partially secure.
One of the major research questions to be addressed is to
identify quantitative partial security levels and to develop
methods for making trade-offs for real-time requirements.
Although some recent work recognizes the need to consider
incomplete security (e.g., [2]), the notion of security has
been considered binary. The problem with such binary
notion of security is that in many cases, it is critical to
develop a system that provides an acceptable level of secu-
rity and risks, based on the notion of partial security rather
than unconditional absolute security, to satisfy other con-
flicting requirements. In that regard, it is important to define
the exact meaning of partial security, for security violations
of sensitive data must be strictly controlled. A security vio-
lation here indicates a potential covert channel, i.e., a trans-
action may be affected by a transaction at a higher security
level.

One approach is to define security in terms of a percent-
age of security violations allowed. However, the value of
this definition is questionable. Even though a system may
allow a very low percentage of security violations, this fact
alone reveals nothing about the security of individual data.
For example, a system might have a 99% security level, but

the 1% of insecurity might allow the most sensitive piece of
data to leak out. A more precise metric would be necessary
for the applications where security is a serious concern.

A better approach involves adapting the Bell-LaPadula
security model and blurring boundaries between security
levels in order to allow partial security. In this scheme, only
violations between certain security levels would be
allowed. As the real-time performance of the system
degrades, more and more boundaries can be blurred, allow-
ing more potential covert channels. Additionally, with this
scheme, we can still make guarantees about the security of
the data. For an example. consider a system with four secu-
rity levels: top secret, secret, confidential, and unclassified,
as shown in Figure 1. Initially, the system is completely
secure (Figure 1a). Figures 1b through 1d show systems
that are partially secure, progressing from more secure to
completely insecure. Solid lines between security levels
indicate that no violations are allowed between the levels;
dashed lines indicate that violations are allowed. For exam-
ple, in Figure 1b, transactions that are at the unclassified
level may have conflicts with transactions at the confiden-
tial level in accessing unclassified data, resulting in a poten-
tial covert channel.

It is possible to combine this approach with the use of
percentages to define partial security. Then, the amount of
security violations between two levels for which the bound-
ary had been blurred would be required to fall below this
percentage. The above example is really a special case of
this scheme, where levels can either be 0% or 100%. Note
that no guarantees can be made between levels that have
been assigned a non-zero percentage. Guarantees can still
be made between levels designated as allowing 0% security
violations; for the other levels, database designers can use
different percentages to denote their preferences on where
they would rather have the potential covert channels occur.

For certain applications in which absolute security is
required for safety-critical applications, any trade-offs of
security for timeliness must not be allowed. The idea of

Top Secret

Secret

Confidential

 Unclassified

Top Secret

Secret

Confidential

 Unclassified

Top Secret

Secret

Confidential

 Unclassified

Top Secret

Secret

Confidential

 Unclassified

Figure 1 - Partial Security Levels

1b 1c 1d1a

partial security discussed in this paper cannot be used in
such applications. Even if partial security is acceptable to
an application, the system designer should be careful in
identifying the conditions under which it might be danger-
ous to compromise the security. For example, some sort of
denial of service attack could force the system into a condi-
tion where timeliness constraints are not satisfied. The sys-
tem can limit the potential damage by setting up rules that
can identify the situation and take appropriate actions, if
necessary. For example, the system may audit the possible
covert channels and log any activity that might be exploring
the channel. The rules can utilize the notion of encrypted
profile to either look for patterns of illegal access or, alter-
natively, to certify a good pattern of access.

2.2 Specification

Application designers should be able to specify seman-
tic information using a specification language to express the
relative importance of keeping the desired level of security
and meeting timing constraint requirements. A question to
be addressed in that approach is the verification of the given
specification. Specifications should be processed and veri-
fied to check any inconsistency in the requirements and to
clearly determine the necessary actions to be taken. A tool
can be used for specifying the security and real-time
requirements to aid the designer first with locating conflicts
and then with denoting the desired system behavior accord-
ing to the semantics of the database. In this section, we pro-
vide an overview of the specification language, and show an
example to illustrate the idea.

The specification language allows designers to generate
rules at varying levels of detail. In applications where much
information is known about the database beforehand,
designers can control security and real-time aspects of the
database much more tightly than in situations where less is
known beforehand or such a tight control is not required.
There are three levels of detail in the specification scheme.
Note that one system can use rules from all three levels if
needed.

The specification consists of two parts: a description of
the database and a set of rules to follow when conflicts
arise. The description provides a framework for the rules.
As we shall see below, the specification of both the descrip-
tion and the rules varies between different levels of detail.
Regardless of the levels of details that are used, the first part
of the specification contains facts about the database as a
whole. Here, designers specify the number of data items,
the number of security levels, and the number of priority
levels used in the entire database.

In the first, most detailed level, designers can generate
rules for specific transactions. Transactions are given a
number of components. Each transaction is given a readset
and a writeset. These can consist of any number of data

items. If no readset or writeset is given, they are assumed
to be empty. The real-time requirements of a transaction
are given by four variables: priority, execution time, release
time, and periodicity. The periodicity of a transaction
defines how often it starts executing, and the release time
indicates the offset of the periodic start. In addition, trans-
actions are given a security level.

Information about data can also be specified. Data items
are specified by identifier, and each data item is given a
security level. The specification can also contain a default
security level, which is assigned to any unspecified data
items. All of this information about transactions and data
belong in the description portion of the specification.

Not all of these components for transactions and data
items are required. In general purpose database systems,
some of the information might be hard to specify. However,
in many real-time applications, most information is avail-
able, since such information is necessary for schedulability
analysis of the system to support the timeliness and predict-
ability requirements. In fact, in real-time database systems,
many transactions are periodic and their access pattern is
known. The only truly necessary components are the secu-
rity level and the priority level. If a designer leaves out, for
example, the readset and writeset, the specification tool
cannot make any assumptions about the data accessed by
this transaction. It must assume the worst case that the
transaction may conflict with every other transaction.

The database designer comes up with rules that define
the actions that the system must take when the transactions
conflict. These rules can either be static or dynamic. Static
rules apply to conflicts that are resolved in the same way
every time. For example, the user might specify that a con-
flict between two specific transactions, or two categories of
transactions, will never result in a security violation.

Dynamic rules can depend on certain run-time variables
that the database keeps track of during execution. In the
current implementation, dynamic rules can be based on
three different dynamic variables: security violation per-
centage, deadline miss percentage, and the number of con-
secutive missed deadlines. Each dynamic rule has a list of
clauses and a default action. A clause contains a boolean
relation between these dynamic variables and a constant
value, and the action to be taken if the boolean relation is
true. When a conflict is encountered by the database sys-
tem, it checks each clause and takes the associated action if
specific clause is true. If none of the clauses turn out to be
true, the database takes the default action. For example, a
rule might be “If the security violation percentage is less
than 5, violate security. Otherwise violate timeliness.” Here,
the “otherwise” sentence represents the default action.

The second level of specification detail replaces specific
transactions with categories of transactions. Transactions
are categorized by their security levels and priority levels.
The designer can create any number of categories at any

granularity that he or she feels is appropriate, and describes
these categorizations in the description portion of the speci-
fication. Then, rules are created for conflicts between cate-
gories of transactions. These rules are the same as the rules
for the first level.

In the third level of specification, designers create a set
of rules describing actions to take in case of conflicts that
are not specified in the first two levels. This can be consid-
ered as the general system policy. Conditions would depend
on the characteristics of the transactions that are conflicting
or the current performance statistics.

Specifications are not required to solely use one of these
levels of details. The descriptions and rules for these detail
levels can be mixed. In this case, when the database
encounters a conflict during execution, it first searches to
see if a level 1 rule applies. If not, it searches the level 2
rules, and finally checks the level 3 rules. By carefully cre-
ating the rules, database designers can implement the par-
tial security policy suitable for the application. A tool can
help the designers to develop the partial security policy.

Figure 2 shows an example of a system completely
specified with detail level 1. This is a small example, with
only two transactions. Every relevant component of these
transactions has been specified. Both transactions access
data item 3, and UpdatePrice writes to it, so we have a
potential conflict. Since UpdatePrice has both a lower secu-
rity level and a lower priority level than ComputeProfit, this

conflict cannot be resolved without causing either a covert
channel or a priority inversion. Had UpdatePrice been given
a higher priority than ComputeProfit, we can satisfy both
requirements by allowing UpdatePrice to preempt Com-
puteProfit. Alternatively, if UpdatePrice had a higher secu-
rity level than ComputeProfit, then both requirements could
be satisfied by forcing UpdatePrice to wait for Com-
puteProfit.

In the rule specification, SecViolation% indicates the
percentage of security violations and TransMiss% indicates
the percentage of deadline miss ratio. Each rules consists of
a condition and a decision. The condition part of a rule is
stated inside the parenthesis and followed by the decision
after tilde (~). Conditions can be connected by logical AND
(&) of OR (|). The first line in the rule represents a security
crisis. The second line represents a real-time crisis. If none
of the above rules apply, the database is instructed to violate
timeliness.

 Figure 3 shows an example specification with mixed
levels of detail (the database description is not shown).
There are two transactions specified using detail level 1, but
with only the bare minimum number of components speci-
fied. These transactions are the same as those used in Figure
2. There are a couple of transaction categories, relating to
high and low security transactions. Also, there is an exam-
ple of a level 3 rule set.

This specific level 2 rule is also an example of a static

Description:
numDataItems 5;
numSecurityLevels 4;
numPriorityLevels 4;

data[default].security = 1;
data[3].security = 2;

ComputeProfit.readset = 1, 2, 3, 4;
ComputeProfit.writeset = 5;
ComputeProfit.periodicity = 12;
ComputeProfit.priority = 3;
ComputeProfit.security = 3;

UpdatePrice.writeset = 3; # Two transactions access data item 3.
UpdatePrice.periodicity = 30;
UpdatePrice.security = 2;
UpdatePrice.priority = 2;

Rule for ComputeProfit-UpdatePrice conflict:
(SecViolation% >= 5) ~ violateTimeliness,
(TransMiss% > 10) ~ violateSecurity,
(otherwise) ~ violateTimeliness;

Figure 2 - Example of specification with fully specified detail level 1

rule -- every time that transactions in these two categories
conflict, the database must violate priority and uphold secu-
rity. Rules for violations between specific transactions and
transaction categories can be specified, if the database
designer so desires. Otherwise, the designer uses a rule set
for detail level 3. If none of the rules in level 1 or level 2
apply to a conflict encountered by the database, it deter-
mines the course of action by consulting this ruleset. Again,
these are specified in the same manner, with the exception
that other variables can be used. The variable priorityLev-
elDifference represents the difference in the priority levels
of the two transactions; securityLevelDifference does the
same for security levels

2.3 Specification tool

The tool reads the description portion of the specifica-
tion and stores it in internal data structures. It analyzes the
specification to find all potential conflicts between the secu-
rity and real-time requirements. For two transactions to
conflict, the following must be true:

1. They access the same data item.
2. At least one of them writes to the data item.
3. One transaction must be at a higher security and prior-

ity level than the other.
4. The execution times of the transactions must intersect.

Every pair of transactions that satisfy these conditions
are reported to the user. With less detailed descriptions, not
all of these rules apply. For example, if the readset or write-
set of one of the transactions is left unspecified, then the
first two rules do not apply. If the timing information is

incomplete, the last rule does not apply.
The designer specifies the rules that capture the require-

ment for the system when these conflicts are encountered.
For each conflict, the tool provides advises about the impli-
cations of violating security with regard to the partial secu-
rity policies. For example, in the case of a four level secure
database, if a conflict occurs between transactions at the top
secret level and the unclassified level, allowing a security
violation would force the database into the situation of Fig-
ure 1d.

Armed with this information, the designer generates the
rules for the database to follow during execution. Once all
the rules are specified, the tool verifies that it can determine
an action to take in any possible situation. If this is not the
case, it reports the problem in the specification. When the
specification has no remaining problems, it generates an
output file that contains the rules to be referenced by the
system during execution.

3. Partial security policies addressing covert
channels

To use the notion of partial security, it is essential to
specify a level of security acceptable to the applications that
use secure real-time databases. Different levels of partial
security need to be identified so that the policy makers can
decide which level is acceptable, considering potential
covert channels and their consequences. In many cases, it
would be helpful if partial security policies are in a strict
partial order in terms of satisfying the timeliness and secu-
rity requirements. We have identified several partial secu-
rity policies as described below. For the simplicity of

Rule for UpdatePrice-ComputeProfit conflict:
(SecViolation% >= 5) ~ violateTimeliness,
(TransMiss% > 10) ~ violateSecurity,
((Type1TransMiss% <= 5)|(Type2TransMiss% <= 5)) ~ violateTimeliness,
((Type1SecViolation% < 3)&(Type2SecViolation < 3)) ~ violateSecurity,
(otherwise) ~ violateTimeliness;

Rule for HighSecurityCategory-LowSecurityCategory conflict
(otherwise) ~ violateTimeliness;

Level 3 rules:
(SecViolation% < 10) ~ violateSecurity,
(TransMiss% < 15) ~ violateTimeliness,
(priorityLevelDifference >= 2) ~ violateSecurity,
(securityLevelDifference >= 2) ~ violateTimeliness,
((TransMiss% > 10) & (SecViolation% <= 10)) ~ violateSecurity,
(otherwise) ~ violateTimeliness;

Figure 3 - Example of mixed level specification

presentation, we assume 5-levels of security. However, the
number of security levels can be arbitrary - there can be
100s of levels of security, if the system needs a fine-grain
control of security. Security levels are numbered from 0
(lowest) to 4 (highest). In the following description, it is
important to remember that the security violations allowed
are only potential violations. They represent possible covert
channels through which two transactions in collusion might
transfer a small amount of information under the right cir-
cumstances.

The policies that are considered in this paper are:

• Completely secure: No security violations are permit-
ted under any circumstances.

• Secure levels 2, 3, and 4: The three highest security
levels are kept completely secure. However, conflicts
between transactions of the two lowest security levels
are permitted to result in potential violations. This pol-
icy therefore allows one category of violations, based
on the lowest security levels.

• Secure levels 3 and 4: The two highest security levels
are kept completely secure. Potential covert channels
are permitted among the bottom 3 levels. This policy is
very similar to secure levels 2, 3, and 4, except that it
allows an extra security level to be involved in potential
violations. With this policy three categories of viola-
tions are permitted, as each of the lower two security
levels are able to create potential violations with the
third level.

• Split security: Potential covert channels are permitted
between the highest two security levels and among the
lowest three security levels. However, no covert chan-
nels are allowed from one of the two highest levels to
one of the three lowest levels. This policy builds on
secure levels 3 and 4 by adding the extra category of
allowed potential covert channels between the top two
security levels. Four categories of conflicts are possible
under split security.

• Secure level 4: The highest security level is kept com-
pletely secure. Potential violations are allowed among
the four lower levels. This policy simply continues the
trend which occurs from secure levels 2, 3, and 4 to
secure levels 3 and 4. One less level is kept secure,
resulting in three more categories of potential covert
channels, for a total of six categories.

• No security: Any potential covert channel is permitted.
All ten categories of potential violations are possible.

The policies stated above are well defined in specifying
which type of violations would be allowed, and which types
strictly prohibited. A gradual security policy, instead of
strictly allowing or prohibiting violations between each set
of security levels, attempts to limit the number of violations
which can occur. One way to do this might be to allow a

certain percentage of conflicts to result in security viola-
tions. Whenever a conflict arises, it is resolved based on the
percentage of violations which have occurred thus far.

To allow finer control over security, this policy allows
for a unique percentage to be assigned to each possible con-
flict set determined by the security levels of the transactions
involved. In this way, the percentage of potential violations
allowed between the lower security transactions can be
larger than those between more secure transactions. This
also, of course, allows a complete block to be put on viola-
tions between transactions of different security levels. By
simply using permission values of 0% for the correct viola-
tion levels, all of the security policies presented above can
be recreated. More interesting are the effects of combining
these complete prohibitions with softer limitations on cer-
tain levels.

For example, the highest security level might be kept
completely secure, while a controlled number of violations
are permitted among the lower levels. Less stringent con-
trol would be placed on the lower security levels than on the
higher security levels, resulting in security which is gradu-
ally tightened as the security level of the transactions
involved increases. The gradual security policy, following
these specifications, was used in the experiments presented
in the next section.

The advantage of such a policy is that it is dynamically
adjustable. Changes can be made in the percentage of possi-
ble violations allowed for each pair of conflict levels, which
permits great customization. Given a static database with
periodic transactions, it might be possible to optimize the
security/missed deadline trade-off simply by adjusting the
values in this policy appropriately. However, this has lim-
ited use, as it is very difficult to analyze a database system
with unpredictable transactions.

4. Experiments

4.1 Experimental environment

In order to test the performance impact of our approach,
we developed a database simulator. The simulator models a
single-site, main-memory database with multiple proces-
sors that share the memory. The database utilizes the Bell-
LaPadula security model, and all transactions are firm real-
time transactions. The input to the simulator is a set of rules
as described in Section 2.

The database we designed for the simulation experi-
ments was a hypothetical database for hospital application.
For this database, we specified a number of level 1 transac-
tions and level 2 categories. There is one level 2 category
for each security level. Additionally, we defined a number
of transactions for the simulator to generate (outside of
those defined in the ruleset). The database had five security
levels and five priority levels.

Some of the parameters for the basic simulator runs are
shown in Table 1. Several parameters were changed in dif-
ferent experiments; the values listed in the table are the
default values.

One parameter, average execution time of random trans-
actions, requires some explanation. This parameter is ran-
dom, but depends on the priority and the deadline of the
transaction. The random number is weighted to be a higher
percentage of the deadline for higher priority transactions,
and a lower percentage of the deadline for lower priority
transactions. This weighting is necessary to ensure that ran-

dom transactions have reasonable priority levels.

4.2 Simulation results

All results presented in this section were obtained by
taking the average of 10 simulation runs, each using a dif-
ferent random number seed. Each run lasted for 100,000
time units, and about 65,000 transactions completed during
every run.

4.2.1 Varying number of data items. Figure 4 shows the

Table 1: Simulation Parameters

Parameter Value

Number of CPUs 10

Number of time units in a run 100,000

Random transaction arrival rate 1 every 5 time units

Average number of data items read by a random transaction 10

Average number of data items written by a random transaction 6

Average deadline of random transaction 185

Number of data items 500

Approximate number of completed transactions 65,000

Approximate number of transactions active simultaneously 70

Number of periodic transactions 16

Figure 4- Tradeoff between security and priority with varying numbers of data items

A

B

C

D

E

F

A

B

C

D

E

F

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

0 5000 10000 15000 20000 25000 30000

Number of potential covert channels

P
er

ce
n

ta
g

e
o

f
M

is
se

d
 D

ea
d

lin
es

500 Data Items

1000 Data Items

Number of

Data ItemsA - Completely Secure

B - Secure levels 2, 3, and 4

C - Secure levels 3 and 4

D - Split security

E - Secure level 4

F - No security

effect of allowing more potential covert channels on real-
time performance. Each point represents data taken from
experimental runs using one of the six rule sets. The real-
time performance does indeed improve as more potential
covert channels are allowed. At one end of the spectrum, no
security violations are allowed, while at the other all are
allowed. In both the 500 and 1000 data item models, there
is a consistent improvement in real-time performance as
more covert channels are allowed. In both cases the data
points progress from one extreme to the other in roughly a
linear manner.

In the 500 data series, the sharpest improvement occurs
between the rule set that allows no security and the rule sets
that allow but strictly limit the security violations. After
data point C, we see diminishing returns. Real-time perfor-
mance still improves as more covert channels are allowed,
but at a lesser rate. For the data points representing the
more secure rule sets, the database is closer to the saturation
point, and higher benefits are obtained by lessening the
resource contention. Overall, the number of missed dead-
lines in no security (point F) is reduced to roughly 50% of
that under full security (point A).

In the 1000 data series, there is an even steeper drop in
missed deadlines as more potential violations are allowed.
This steep drop is continuous all the way to point E. The
number of missed deadlines under the no security set is
only 20% of those under full security.

The explanation for the fewer missed deadlines and
security conflicts under the 1000 data item model lies in the
fact that there are more data items being accessed by the
same number of transactions. Each transaction is thus more
likely to have the data it needs without conflict with another

transaction. Therefore, the transaction will be involved in
fewer potential violations, and will be less likely to miss a
deadline even after waiting for a block to clear on data it
needs.

4.2.2 Violation breakdown. In Figure 5, we see where the
security violations occur for each ruleset. Each row of bars
that runs from left to right represents the data from one set
of rules. Each column of bars represents the number of
potential security violations between two specific security
levels. The lower security levels represent the less sensitive
data. For example, violations between the two lowest secu-
rity levels are displayed in the left-most column of the
graph. The flat areas of the graph correspond to the poten-
tial security violations that were not allowed by the rule set
of that run.

One might wonder why there were so many violations
between levels 3 and 4 in the split security rule set, espe-
cially when compared to the number of violations between
levels 3 and 4 in the no security rule set. By examining
these runs more closely, we found that the number of secu-
rity violations between levels 3 and 4 doubles, while for the
other levels where the split security rule set allows potential
violations, the amount of potential violations stayed the
same. In the no security rule set, a transaction with security
level 4 was never involved in a priority inversion (since all
security violations are allowed). However, this is not the
case with the gradual security rule set. Here, transactions in
levels 3 and 4 are delayed whenever they conflict with
transactions whose security is 0, 1, or 2. Since these trans-
actions are more likely to be delayed, they will hang around
in the system for a longer time, and are more likely to even-

0-1 1-2 0-2 2-3 1-3 0-3 3-4 2-4 1-4 0-4

Completely secure:

Secure levels 2, 3, &4:

Secure levels 3 & 4:

Gradual security:

Split security:
Secure level 4:

No Security:

0

1000

2000

3000

4000

5000

6000

N
u

m
b

er
 o

f
vi

o
la

ti
o

n
s

Levels

Rule set

Security violations by category

Figure 5 - Potential covert channels by category

tually conflict with each other. Therefore, there are more
conflicts, and consequently more security violations,
between transactions with security levels 3 and 4.

4.2.3 Varying deadline distribution. In Figure 6, the
effects of varying the deadline distribution of transactions
can be seen. For random transactions, the simulator
assigns an execution time based in part on the deadline time
already established. For each series of runs in this experi-
ment, the execution times of all such transactions were
modified to be either higher or lower in relation to the dead-
line times, which were not interfered with. Similarly, the
execution times of the pre-defined transactions were
increased or decreased. The result was a tightening or loos-
ening of slack time for each transaction.

The results show that the lower the slack time, the more
deadlines are missed. There is a consistent increase in
missed deadlines for each rule set as slack time is
decreased. The smallest increase in missed deadlines is
between the 72% and 68% models, as those two models
have the least decrease in slack. Following that, there is a
noticeable jump in missed deadlines between the 68% and
59% models. The largest increase in missed deadlines
occurs between the 59% and 50% models. This suggests
that the system is becoming overly saturated at this point.
An increase in the number of potential security violations is
also evident when comparing the 50% model to the other
three models.

Decreasing slack time has an obvious direct effect on
the likelihood of a transaction missing its deadline. If there

is less time available to waste as the transaction waits to
gain locks on data, the transaction will be more likely to use
all the spare time and fail to meet its deadline. The
increased number of potential violations seen in the 50%
model is due to the system becoming full of lingering trans-
actions. The longer transactions are forced to stay in the
system, the more often the will come into conflict with each
other. Thus, the model with the highest number of transac-
tions missing deadlines also has the highest number of
transactions coming into conflict and forcing the system to
allow potential violations.

4.2.4 Varying numbers of CPUs. The simulator allows for
the user to define the number of CPUs being used in the
simulated system. The effect of fewer CPUs on the number
of potential security violations was examined by running
tests with 10, 7 and 5 simulated CPUs, and comparing the
number of potential violations allowed between each secu-
rity level. Depending on the rule set being used, there were
several possible levels of conflict. Under the Secure 2, 3, 4
model, for example, violations were only possible between
transactions with priority 0 and priority 1, whereas the
Secure 3, 4 model necessitated the examination of conflicts
between transactions of priority 0 and 1, 0 and 2, and 1 and
2.

The results show a consistent trend of more potential
violations allowed when fewer CPUs are in the system. For
each possible set of conflicts between levels, the number of
potential violations in the 10 CPU run was 10-20% smaller
than the number in the 5 CPU run, while the number for the

Figure 6 - Tradeoff between security and priority with varying deadline distributions

F

E

D

C

B

A

A

B

C

D

E

F

A

B

C

D

E

F

A

B

C

D

E

F

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

9.00%

0 5000 10000 15000 20000 25000 30000

Number of potential covert channels

P
er

ce
n

ta
g

e
o

f
M

is
se

d
 D

ea
d

lin
es

50% Slack

59% Slack

68% Slack
(Original)

72% Slack

A - Completely Secure
B - Secure levels 2, 3, and 4
C - Secure levels 3 and 4
D - Split security
E - Secure level 4
F - No security

Slack

7 CPU run fell somewhere in between. There was a larger
gap in the number of potential violations between the 10
and 7 CPU runs that between the 7 and 5 runs. This is easily
explained by the fact that there is a 3 CPU difference
between 10 and 7, as opposed to the 2 CPU difference
between 7 and 5. If this is taken into account, the increase
in potential violations is linear.

The explanation for the increased number of potential
violations relates to the bottleneck created by fewer CPUs.
The system is unable to process as many transactions at
once when using fewer CPUs, so transactions are more
likely to be left waiting for a CPU to be freed. As these
transactions wait in the system, they are more likely to
come into conflict with each other, and thus more likely to
produce potential violations.

4.3 Impacts of partial security policies

Several of the partial security policies described in Sec-
tion 3 were used in the experiments described in this sec-
tion. The effectiveness of a particular partial security policy
depends greatly on which transactions come into conflict.
There is a rather complicated net of cause and effect when-
ever a parameter is changed. This is because allowing, say,
fewer conflicts to resolve into a potential violation indi-
rectly changes the number of potential violations allowed.
As the number of transactions left waiting in the system is
altered, a compounded effect occurs since those transac-
tions are more likely to come into conflict with others.
This relationship causes unpredictable results as the data-
base changes, and as transactions of different security levels
become predominant in conflicts.

The gradual security model described above, in which
the highest level was kept secure and other levels were con-
trolled to varying extents, was tested with the less fluid
security models described in this paper, such as split secu-
rity. In some experiments, the trade-off of violations and
missed deadlines fell nicely between those of the secure
levels 3 and 4, and the split security policy. However, in
other runs, the gradual security policy actually outper-
formed the split security policy, having both fewer potential
violations, and fewer missed deadlines.

What this indicates is that relative performance will
vary when using gradual security policies. If conflicts
between two specific security levels occur often in a certain
database, then the values of the gradual security policy
which affect those levels will be very crucial in the final
results.

The same complex interactions which complicate the
job of establishing an optimal partial security policy apply
in reverse. Given a model, it is still very difficult to deter-
mine exactly how changing particular values in that partial
security layout will affect the violations/deadlines trade-off.
Again, making small changes can have unpredicted results,

which makes it difficult to tailor a partial security model for
a particular situation. Experimentation and analysis seems
the only way to determine which partial security policies
are suitable for controlling a database.

5. Related work

The approach presented in this paper may require a sub-
stantial involvement from system developers/administrators
and users. It may not be feasible to have any single
designer/user to provide all the necessary information to
specify the decision rules. To improve its practicality and
usability in real systems, it might be necessary to provide
methods for the end user to specify a higher-level goals
regarding the potential trade-offs between real-time
requirements and covert channel leaks. The user-centered
security approach [15] which considers user needs as a pri-
mary design goal of secure system development could be
useful to figure out a higher-level description of user needs
and expectations on specific situations. It could begin with
some scenario-based requirement specification for end user
to clearly identify the situation and necessary actions to
take. The system needs to install monitors to check the sys-
tem states and perform necessary adjustments by feedback
control mechanisms to maintain the high-level goals speci-
fied by the user. Ideas similar to the dynamic adaptive secu-
rity model proposed in [13] could be used to provide trade-
offs between security and real-time performance.

There have been several interesting approaches to ana-
lyzing and reducing the covert channel bandwidth [6, 8, 10,
14]. While some of those approaches could be used to spec-
ify policies to make it difficult to exploit the covert channels
that may arise from the trade-off, other may not be applica-
ble in real-time application. For example, a collection of
techniques known as fuzzy time [8,14] is inappropriate in a
real time setting, since the overall mission may be jeopar-
dized by not getting the exact timing information. In fact,
this problem between real-time and covert channel was
identified in Secure Alpha work [7]. They have pointed out
that slowing clocks or isolating processes from precise tim-
ing information is impractical for real-time systems. An
adaptive solution to make appropriate trade-offs between
the requirements of real-time and security is essential, and
it requires a resolution rules to specify the appropriate
behavior. To be effective, it is desirable that the rules will be
based on application-specific knowledge [3]. Our resolution
specification approach is similar to their ideas of “Impor-
tant Enough to Interfere” and signaling cost.

The idea of using probabilistic partitioning in bus-con-
tention covert channel [6] could be applied in our approach.
Instead of keeping track of the percentage of violations for
making decisions when conflicts occur, the system could
enforce a certain pre-determined percentage by picking up a
random number that generates 0 or 1, based on the required

percentage. It needs further study to find out whether this
way of enforcing the requirements provides the same level
of flexibility in specifying the requirements and reduced
system overhead compared with the current method of rule
enforcement.

George and Haritsa studied the problem of combining
real-time and security requirements [4]. They examined
real-time concurrency control protocols to identify the ones
that can support the security requirement of non-interfer-
ence. This work is fundamentally different from our work
because they make the assumption that security must
always be maintained. In their work, it is not permissible to
allow a security violation in order to improve on real-time
performance.

6. Conclusions

In this paper, we have presented policies to allow the
union of security and real-time requirements in database
systems. An important part of this union is the definition of
partial security. The definition allows potential information
flow through covert channels in order to improve real-time
performance, yet does not entirely compromise the security
of the entire database system. However, database designers
must be careful with violations between transactions whose
security levels differ greatly. If a violation is allowed
between transactions, say, at the highest and lowest security
levels, no partial security remains in the system at all. In a
system with many such conflicts, it may be very difficult to
improve on real-time performance. However, it is essential
that the system designer can specify how to manage the sys-
tem security and real-time requirements in a controlled
manner in real-world applications.

We have come up with a scheme that allows database
designers to create rules at whatever level of detail that is
appropriate. These rules can then be analyzed by a tool,
which allows designers to create a database and easily make
conscious decisions about the partial security of the data-
base. The tool can also automates the process of scanning
through the complex dependencies of a database specifica-
tion to find conflicts. It then informs the user of the conse-
quences of violating security for each conflict.

Currently, we have a tool that can analyze transactions
completely specified in detail level 1. This tool parses a
database description, analyzes the dependencies and con-
flicts, and then goes through an interactive process with the
designer to specify rules for all possible conflicts. Our
future work includes extending this tool to handle more
complex rules and to allow the designer to describe a
higher-level description of the system requirements. We are
also developing an object-oriented database system to
investigate the performance of the system with require-
ments in real-time, security, and fault-tolerance. We plan to
analyze the effects of different choices made by the

designer in their requirements and possible trade-offs.

Acknowledgement

This work was supported in part by the National Secu-
rity Agency and the Office of Naval Research.

References

[1] D. E. Bell and L. J. LaPadula. “Secure Computer Systems:
Unified Exposition and Multics Interpretation,” Tech. Rep.
MTR-2997, The Mitre Corp., March 1976.

[2] M. Blaze, J. Feigenbaum, and J. Lacy. “Decentralized Trust
Management,” IEEE Symposium on Security and Privacy,
Oakland, CA, pp 164-173, May 1996.

[3] P. Boucher et al. “Toward a Multilevel-Secure, Best-Effort
Real-Time Scheduler,” 4th IFIP Working Conference on De-
pendable Computing for Critical Applications, San Diego,
CA, Jan. 1994.

[4] B. George and J. Haritsa. “Secure Transaction Processing in
Firm Real-Time Database Systems,” ACM SIGMOD Con-
ference, Tucson, AZ, May 1997.

[5] J. Goguen and J. Meseguer. “Unwinding and Inference Con-
trol,” IEEE Symposium on Security and Privacy, Oakland,
CA, pp 75-86, April 1984.

[6] J. Gray. “On Introducing Noice into the Bus-Contention
Channel,” IEEE Symposium on Security and Privacy, Oak-
land, CA, pp 90-98, May 1993.

[7] I. Greenberg et al. “The Secure Alpha Study - Final Summa-
ry Report,” Computer Science Lab, SRI International, March
1993.

[8] W. -M. Hu. “Reducing Timing Channels with Fuzzy Time,”
IEEE Symposium on Security and Privacy, Oakland, CA, pp
8-20, May 1991.

[9] B. W. Lampson. “A Note on the Confinement Problem,”
Communications of the ACM, Vol. 16, No. 10, pp 613-615,
October 1973.

[10] I. Moskowitz, S. Greenwald, and M. Kang. “An Analysis of
the Timed Z-Channel,” IEEE Symposium on Security and
Privacy, Oakland, CA, pp 2-11, May 1996.

[11] S. H. Son, R. David, and C. Chaney. “Design and Analysis of
an Adaptive Policy for Secure Real-Time Locking Protocol,”
Journal of Information Sciences, vol. 99, pp 101-135, June
1997.

[12] B. Thuraisingham and W. Ford. “Security Constraint Pro-
cessing in a Multilevel Secure Distributed Database Manage-
ment System,” IEEE Transaction on Knowledge and Data
Engineering, Vol. 7, No. 2. April 1995.

[13] B. Timmerman. “A Security Model for Dynamic Adaptive
Traffic Masking,” New Security Paradigms Workshop, pp 1-
25, Sept. 1997.

[14] J. Wray. “An Analysis of Covert Timing Channels,” IEEE
Symposium on Security and Privacy, Oakland, CA, pp 2-7,
May 1991.

[15] M. Zurko and R. Simon. “User-Centered Security,” New Se-
curity Paradigms Workshop, Lake Arrowhead, CA, pp 27-
33, Sept. 1996.

[16] IEEE Real-Time Systems Symposium, San Francisco, CA,
December 1997.

