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Abstract

Often the structure of discrete sets can be described in terms of a closure operator.
When each closed set has a unique minimal generating set (as in convex geometries in
which the extreme points of a convex set generate the closed set), we have an antimatroid
closure space. In this paper, we show there exist antimatroid closure spaces of any size,
of which convex geometries are only a sub-family, all of whose closed sets are generated
by precisely the same number of points. We call them uniform closure spaces.

The issue of whether a planar convex geometry, that is a discrete set of points in in
the plane, exists in which all convex configurations are triangles, with no quadrilaterals;
or as quadrilaterals and triangles, with no pentagons; etc., has fascinated combinatorial
mathematicians for many years. Our results throw light on these kinds of questions,
even though they do not resolve them.

*Research supported in part by DOE grant DE-FG05-95ER25254.



1 Introduction

By a discrete space we mean a set of elements, points, or other phenomena which we will
generically call our universe, denoted by U. Individual points of U will be denoted by lower
case letters: a,b,...,p,q,... € U. By 2Y, we mean the powerset on U, or collection of all
subsets of U. Elements of 2V we will denote by upper case letters:
We say (U, ) is a closure space if ¢ is a closure operator satisfying the three standard

closure axioms:

YCYop

X CY implies X.¢o C Y.

Yoo=Y¢*=Y.p
It is an antimatroid closure space if, in addition, it satisfies

X.po=Y.¢implies (X NY).p=Xp=Y.p.
(From now one, we will use closure space to mean an antimatroid closure space.) The
last axiom is non-standard. It is not hard to show that closure operators which satisfy
this additional axiom are uniquely generated in the sense that for any set Y, there exists a
unique minimal set X C Y such that X.¢o = Y.o. One can also show [14] that

Theorem 1.1 A closure operator is uniquely generated if and only if it satisfies the anti-
exchange property

if p,q € Y.p then p € (Y U{q}).0 implies ¢ € (Y U{p})..

In contrast, any set of elements U with an operator ¢ satisfying the first three closure

axioms, together with the Steinitz-MacLane exchange axiom
if p,q € Y.o then p € (Y U{q}).0 implies ¢ € (Y U{p}).0

is called a matroid [9] [15] [1].! Because (U, ) satisfies the anti-exchange axiom, the ad-
jective antimatroid is completely descriptive [2] [8].2 Other common names for this concept
are APS greedoid, shelling structure [7], alignment [6], or convex geometry [4] provided only
that one further requires the empty set, @, to be closed. By the generator of Y, or basis?
of Y, denoted Y.3, we mean a minimal set X such that X.p = Y.¢. Because ¢ is uniquely
generated, Y. is uniquely defined. In convex geometries, the generators are called eztreme
points, which is quite descriptive [4].

!The closure operator ¢ of a matroid is normally called the spanning operator.

2 Antimatroid closure spaces are far more abundant than one might expect. For example, there exist
at least 202 distinct closure spaces comprised of 5 elements. More generally, it can be shown that there
exist more than n" distinct, non-isomorphic closure spaces provided n > 10 [12]. Similarly, there are many
different closure operators, .

3The term “basis” has so many connotations, especially with respect to vector spaces and their change
of basis, that we prefer the more neutral “generator”.



Antimatroid closure spaces have been studied in [14], in which the subsets X, Y C U

are partially ordered by <, , where

X <, Y if and only if YNXepCXCYoy (1)

This is a partial order on all the subsets of U, not just its closed subsets. It is possible
to show that this partial ordering of 2V is, in fact, a well structured lattice, £, called the
closure lattice of (U, ¢). A representative closure operator over a partially ordered set,
U, is ¢¢, in which the closure of a set Y is Y.op ={y | Jz,z2 € Y such that z <y < z}.
In this case, the minimal and maximal points of Y constitute its generators. Figure 1(a) is a
typical poset on 6 points; Figure 1(b) illustrates its closure lattice, E(Umc). The regularity
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Figure 1: A Closure Lattice, E(U,%)
of structure suggested by this figure really exists, c.f. [14]. The collection of closed subsets,
for which Y = Y., forms a sublattice [, abcdef], denoted in this figure by bolder strings
and joined by solid lines that are generally inclined from the lower left to the upper right
which denote covering relationships. This sublattice of closed subsets is lower semimodular;



that is, if Z covers Y7 and Ys, then Y7 and Ys must cover a common closed set X.* Edelman
[3] has pushed this further and demonstrated that every antimatroid is meet distributive.

Generators are connected to the corresponding closed sets that they generate by dashed
lines generally inclined from lower right to the upper left. It can be shown that each of
the lattice intervals [Y.¢,Y.0] is a boolean lattice. In the case of the 5 closed sets abcdef,
abcde, acdef, bedef and acde, whose generators are abf, abe, af, bcf and ae respectively,
we indicate these boolean intervals with a dashed elliptical outline. The height of any
element Y, denoted ht(Y), is indicated at the right.

A few constituent sets have also been shown. The dotted lines denote a few of the
covering relationships between non-closed elements in different boolean intervals. These
covering relationships, which we denote by X <, Y, do indeed echo those of the closed
subgraph sublattice. In particular, we have the following results from [14].

Theorem 1.2 (Fundamental Covering Theorem) Ifp ¢ X then

(a) X <, XU{p} if and only if p ¢ X.
(b) XU{p} <, X ifand only if p € X.¢

where (a) is a cover if and only if (X U{p}).¢ = X.¢ U{p} and
(b) is always a covering relationship.

Moreover, if ¢ is uniquely generated then (a) and (b) characterize all covering relations in
(29, <)

Lemma 1.3 If ¢ is uniquely generated, and if Z # O is closed,

(a) p € Z.3 if and only if Z — {p} is closed,
in which case Z.0 — {p} C (Z — {p}).B;

(b) p,q € Z.3 implies there exist closed sets Yy, Y, C Z.¢
such that pe Yy, g€ Y, and p € Yy, q € Yp;

(c) if Q.o = D, there exists p € Z.p such that {p} is closed.

Let Z.] denote the set {Y1,Ya,...Y,,} of sets covered Z in L. If Z is closed, then because of
Lemma 1.3(a), Z.] is uniquely determined by Z.3, and conversely. In particular, |Z.5| =
P

4The lower semimodularity of closed subsets partially ordered by inclusion has been repeatedly discovered
by many authors. See Monjardet [10] for an interesting summary.



Theorem 1.4 (Fundamental Structure Theorem) Let X.¢ <, Y. andlet X € [X.p, X.[].
There exists a unique Y € [Y.@,Y.[] such that X <, Y, where Y is minimal wrt. <,
(mazimal wrt. C). Moreover Y = X UA where A =Y.p — X.p and Y = Y.p — § where
d=Xp—X.

Figure 1(b) illustrates this theorem. Every interval [Y.¢,Y.] can be projected “upwards”.
By Theorem 1.2, every covering relation is marked by the difference of just one element
between the two sets. Consequently, it can be illustrative to label covering relations (edges)
with the corresponding element.

2 Uniform Closure Spaces

A closure space (U, ) is said to be atomic if every singleton set, i.e. point, {z} € oU
is closed.®> Figure 1(b) is atomic. These singleton sets are collectively called the atoms of
L(v,p) and denoted by the set A. Readily, O is closed; and a € A if and only if a covers @.
(Note that we normally represent points, or atoms, in U with lowercase letters and sets of
U with uppercase. In the case of atoms, it is just too convenient to let the single lower case
letter denote both the atom and the singleton set as a whole. Frequently we let a string of
lower case letters denote the set comprised of those atoms.)

Let Ay, sometimes called the atom set of Y, denote the set of atoms a in L(v,p) such
a <, Y. It is not hard to show that the sublattice of closed subsets is also atomic in the
sense that

Y closed implies Y = \/ {a <, Y} = \/ a (2)
acA acAy

even though Ly,,) as a whole cannot satisfy (2). Further, for all closed sets Y, [Y] =
|Ay| = ht(Y) in L(y ). That is, in atomic closure spaces, the cardinality of a closed set Y,
regarded as a set of points in U, equals the cardinality of its atom set in £y ), which in
turn equals its height in L ). This facilitates reasoning which transfers the focus form
sets of points in a closure space to elements of a lattice and vice versa.

An atomic closure space is said to have closure dimension d > 1 if (a) every subset
Y C U with |Y| < d is closed, implying (b) for all closed sets Y,|Y| > d, implies |Y.3| > d.
The interval closure operator, ¢, on posets, such as shown in Figure 1(b), has closure
dimension = 2. In [11] it is called a convex closure. Chordal graphs under monophonic
closure [6] also have closure dimension = 2. A planar convex geometry has closure dimension

®Not all closure spaces are atomic. In particular, the left and right ideal closures, ¢, and ¢, on a poset
are not atomic. See [14]
SA corollary to the results in [12] demonstrates that a finite closure space of dimension 0, is impossible.



3, provided no three points are colinear. If no 4 points are coplanar, a convex geometry
in 3-space has closure dimension 4. For these geometric spaces, the antimatroid closure
dimension is one greater than its matroid dimension.

If the generator of a closed set Y is the set itself, i.e. Y.0 = Y., we call Y a simple
closed set. So a generating set Y. is non-simple if V.3 C Y.¢. Readily, if (U, ¢) is atomic,
with dimension d, then for all non-simple generator sets |Y.3| > d. An atomic closure space
of dimension d in which every non-simple set of generators has cardinality precisely d is
said to be uniform. That is, for all closed sets Y, if |Y'| > d then |Y.(| = d.

Figure 2 illustrates a uniform closure space on 5 points for |Y.3| = 2. Readily each closed
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Figure 2: A uniform closure space, d=2

set corresponds to a subinterval of this totally ordered set. And it is equally clear that for all
n, we have a similar uniform closure space of dimension d = 2. Figure 3 illustrates another
closure space of dimension 2 that is not uniform; but it is nearly so. We say a closure space
is weakly uniform if for all non-simple closed sets Y, |Y| > d implies |Y.3| = d. Observe
that |{abc}.B| = 3 > 2, but {abc} is a simple closed set. Given a uniform closure space, it
is not hard to derive many weakly uniform closure spaces of the same dimension.

While the closure space of Figure 2 can be derived from the intersections of sub-intervals
of a total order, Figure 3 has no such equivalent characterization. Many closure spaces
appear to be “unrealizable” in terms of other more familiar closure operators. The issue
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Figure 3: A weakly uniform closure space, d=2

as to whether specific operators, such as convex geometric closure, define characteristic
families of closure lattices remains an interesting open question.

It has been uncertain whether for all d, there exist uniform antimatroid closure spaces
(U, ¢) of dimension d for |U| = n > d. We spend the remainder of this paper demonstrating
that this is so.

3 Uniform Closure Spaces of Higher Dimension

Figure 2 in the preceding section established that there exists a uniform closure space
of dimension 2 over 5 elements. And, because we could observe that the closure space
represents that obtained by interval closures over a totally ordered set, we could argue that
such uniform closure spaces exist for all n. Figure 4 illustrates a uniform closure space of
dimension 3 over 6 points. But, because we cannot identify an equivalent closure operator,
we cannot assume that such closure spaces exist for all n.

We begin our argument by observing that every generator-closure pair is a boolean
lattice of 2/Y:?I~1¥-0l elements. Hence, for all Y and all k such that V.08 < k < |Y.p|, we
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Figure 4: A uniform closure space, d=3

have
{Z €Yo, YB|Z| =k} = C(Y.o|-|Y.B,k—|Y.0]). (3)

So the right hand combination counts the number of subsets Y in [Y.p,Y.] with precisely
k points. Further, if |U| =n

Z olY|-|Y.B] _ 9n
Y closed

because the lattice is an ordering of all the subsets of U. If we let a; denote the number of
boolean intervals such that |Y.¢| — |Y.B| = k, (4) can be rewritten in the form

> a2k =2n, (4)
k

A sequence of coefficients < ay,...,ak,...,a, > satisfying (4) are called the partition
coefficients of the closure space. In [12, 13], an algorithm was presented to generate at least
one corresponding closure lattice with that sequence. Hence (4) characterizes closure lattices
in general, but not in particular. Distinct closure lattices can have identical coefficient



sequences. Figure 1(b) has a coefficient sequence < 22,5,3,2,0,0,0 >. < 10,3,2,1,0,0,0 >
are the partition coefficients of Figure 2(b).

If we let bz denote the number of non-simple closed sets with k£ elements, then for
uniform closure spaces, (4) can be rewritten as

d—1 n
> C(n, k) + b -2k4 =2, (5)
k=0 k=d

If (U, ¢) is uniform it is not hard to determine what these b¢ must be.

Lemma 3.1 Let L(y,p) be the lattice of an uniform closure space of dimension d on n
points, then

1 k=n
b= Cnk) =X 410G —dk—d)bd d<k<n
C(n, k) kE<d

Proof: The results for £ = n and k < d are straight forward from the definition of uniformity and
the structure of the lattice.

There are C(n, k) sets of k elements. By definition, b¢ of them are closed, and the rest are not.
Consider all elements of height 7 > k. There are bf elements, and by (3), for each such element Y,
there are C(i — d, k — d) elements of size k whose closure is Y. Thus there are C(i — d,k — d)b¢
elements of size k whose closure is of size i for i > k (and clearly none for i < k). Thus b¢ +
Z?:k-{—l C(i —d,k — d)b? = C(n, k), and the result follows. O

If one evaluates the expression of this lemma, we obtain Table 1, where we count down
from the largest closed set, U. For many arguments, this counting down simplifies the
understanding. For this reason, we say the depth of a closed element Y, denoted dpt(Y),
isn—ht(Y).

Surprisingly, we observe that all uniform closure spaces of dimension d over n points,
even non-isomorphic ones, must have identical numbers of closed sets at the same depth,
and hence of the same size.

Corollary 3.2 For any uniform closure space, the value of bgfk 1s dependent only the
values of k and d, hence independent of n and the structure of the closure space.

Proof: Immediate from Lemma 3.1 O

The truth of this is illustrated in Figure 5 by a second, non-isomorphic uniform closure
space of dimension d over 6 points. In both cases, b = b3 = 1,b¢ | = b =3, ¢ , = b} = 6,
and b?_; = b3 = 10 satisfying both Lemma 3.1 and Table 1. To assure ourselves that these



d

i1 2 3 4 5 6 7

nf1 1 1 1 1 1 1
nl|1 2 3 4 5 6
n2|1 3 6 10 15 21 28
3|1 4 10 20 35 56 84
nd |1 5 15 35 70 126 210
n5|1 6 21 56 126 252 462
n6|1 7 28 84 210 462 924
n-7 1 8 36 120 330 792 1,716
n-8 |1 9 45 165 495 1287 3,003

Table 1: b2 ,, 1<d<7

two closure spaces, whose non-simple closed sets have identical structure, are really non-
isomorphic, we observe that in Figure 5, |[{def}.7|, the number of lattice elements covering
{def}, is 3. It is the only such element of height 3. However there are 3 such elements in
Figure 4, namely {aef},{def} and {cef}.

Thus, we have shown the existence of at least two uniform closure spaces of dimension
3, but we have yet to establish that they exist for all (d,n) pairs. For that we provide a
construction.

Algorithm 3.3 For any set of points, U = {p1,p2,....,0n}, and any integer d,2 < d < n,
we designate the collection of closed sets of U by:
(1) designate U as closed, with U.8 = {p1,p2, ..., pa};
Insert U into the collection of UNEXAMINED closed sets;
(2) for each set Y in UNEXAMINED do
(a) remove Y from UNEXAMINED insert into CLOSED;
(b) let k = (dpt(Y) + 1) + d;
(c) for each p; € Y. do // pr. replaces each p;
(1) let X =Y — {p;} be closed with X.0 = (Y. —{p;}) U{px};
(2) if X > d, insert X into UNEXAMINED
(3) For all Y € 2U |Y| < d insert ¥ into CLOSED.

We have yet to show that this collection of designated closed sets and their generators
constitute an antimatroid closure space.

10
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Figure 5: Another uniform closure space, d=3

Lemma 3.4 For all closed sets Y generated by Algorithm 8.3 with ht(Y) > d, Y.0 =
Y N {p1,p2,...,pr} where k =n— ht(Y) + d.

Proof: Let U, = {p1,p2,...,pr}. It follows from the construction and simple induction that
Y. CY NUy, where k =dpt(Y) +d =n+ d — ht(Y). So we need only show that Y N U, C Y.5.
Readily this is true for the single closed set U at depth = 0. Let Y be any closed set at depth =
k =n —Y|. Choose any y € Y NUy. If y = pg, then by construction, y € Y.5. If not, let Z be
any closed set that gave rise to Y in the algorithm, that is Y = Z — {q},q € Z.6. y € Z and y # pi,
implies y € Z N Ug_1 so by induction y € Z.8. But, y € Y implies y # ¢, hence y € Z.8 — {q} and
by construction y € Y.8. O

Corollary 3.5 For all closed sets Y generated by Algorithm 3.3, Y.B is unique.

Algorithm 3.3 only designated the closed sets of the space. We define the closure operator,
p, and its generator 3 by:

(1) For all X €2V, X.p =Y, where Y € cLOSED and V.3 C X C Y.
(2) For all X € 2Y, X3 = X.0.5.

11



Lemma 3.6 ¢, as defined above, is a well-defined operator.

Proof: Y.p is defined for all Y.

U € cLosep and Y C U. So,if UBCY, Y.p = U.

Otherwise, let p; € U. —Y By construction, Z; = U —{p;} € cLoseEDand Y C Z;. If Z; . 5 CY,
then Y.p = Z; and we are done. Otherwise, we let p; € Z;.8 — Y and repeat this reduction step. If
this continues until | Z;| < d, then |Y| < d, implying Y € CLOSED and V.3 =Y.

Y. is unique for all Y.

Assume Y.9o = Z; and Y.p = Z», where both are incomparable. We may also assume that these are
minimal such sets. Readily, Y C Z1 N Z,. If (Z1 N Z3).68 C Y, then Y. = Z; N Z,, contradicting
the assumption of minimality. But, if (Z; N Z2).8 € Y, then there exists p; € (Z1 N Z2).6 — Y such
that Y C Z; — {p;}, leading to a similar contradiction of minimality.

Hence, Z; and Z> cannot be incomparable. Suppose Z; C Zs. Consequently, Z; can be derived ac-
cording to the algorithm from Z5, in particular Jp; € Z5.6— Z;.6. But, this immediately contradicts
the relation Z,.6 CY C Z;. O

Theorem 3.7 (U, p), whose closed sets were designated by Algorithm 3.3, is a uniform
closure space of dimension d.

Proof: ¢ is a closure operator because, (a) Y C Y.p by construction, and (b) X C Y implies
X.p C Y.p because clearly X C Y.p. If Y. C X then X.¢p = Y.¢. Otherwise we can remove
elements p; € Y.0 — X from Y as in the reduction of Lemma 3.4 to obtain Y; C Y such that
;.8 C X CY,;. Finally (c) Y.o.¢ = Y.p follows from the construction.

¢ is uniquely generated. Suppose X.p = Y.p. Let Z = X.p. By definition Z.8 C X,Y C Z, hence
ZLBCXNY CZimplying (XNY).p =27Z=X.g.

Finally, (U, ¢) is uniform, because by construction |Y.5| = d for all Y, |Y| > d and Y is closed for
allY,|Y| <d. O

It can be valuable to follow this construction with an actual example. If we label the 6
points of a space by a,b,c,d, e and f, then the first step of the algorithm is illustrated by
Figure 6. We have chosen a,b and ¢ to be U.3, hence U.| = {abdef,acdef,bcdef} with
generators ab_, ac. and bc_ respectively. Notice that we have labeled each covering edge
with the generator p; whose removal gives rise to it. Lower semi-modularity, or the simple
fact that the intersection of closed sets must be closed, forces the remaining closed sets of
this illustration. The meet-distributive property of lower semi-modular lattices is amply
illustrated as well.

The algorithm always chooses the point d to be p4, the remaining generator. If we do
so we obtain the partially completed lattice of Figure 7 for the next step. Here, each of the
resulting closed sets that are forced by this decision are emboldened. It will be instructive

12



a

\ \ c
\ //
b N c N \
N —— abdef —— acdef bedef nl =5
N c c
\ W
\ \ \
adef bdef cdef
a c

|

def

Figure 6: First step in the construction of a uniform closure space, d=3
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Figure 7: Second step in the construction of a uniform closure space, d=3

to complete the construction by assigning e to the generating sets of every element Y of
height 5, and then making all sets of 2, or fewer elements, closed. The result should be the
uniform space of Figure 4.

Observe that the algorithm always selects the same point pg to complete the generating
sets at each level. It simplifies the algorithm. But, it is not necessary, as Figure 5 attests.
One can employ a non-deterministic generating algorithm.

13



We conclude this section with a lemma that characterizes the generating sets of uniform
closure spaces generated by Algorithm 3.3. This, then provides a way of counting the
numbers of closed sets at any height, or depth.

Lemma 3.8 Let (U, ) be a uniform closure space generated by 3.3. Then X is a generating
set for some element Y where ht(Y') > d if and only if

(a) px € X, where k = dpt(Y) + d,

(b)|X.6| = d,and

(X8 € {p1,p2, ., P}
are true.

Proof: (=) Follows directly from Theorem 3.7.

(<) We run an induction on dpt(X.p). The result is clearly true when dpt(X.p) = 0, because
X.p = U, hence the only set that meets conditions (a), (b) and (c) is {p1, p2, ..., Pa}, the generator
for U.

Assume it is true for all X with dpt(X.p) < k. Let Y be some set such that dpt(Y.p) = k and
Y satisfies (a), (b) and (c). Since |Y.5| = d and dpt(Y.¢) > 0, {p1,p2,....,px} — Y must be non-
empty. If pr_144 is in the difference, let a be that point; else let a be any point in the difference. Let
Y' = (Y —{pr—1})U{a}. By induction hypothesis, Y’ is a generating set and dpt(Y"'.¢) = dpt(Y)—1.
Now consider the set (Y'.¢o — {a}) U{pr_1}, which must be closed by the definition of the algorithm.
Its generating set is (Y' — {a}) U {py—1} =Y, completing the induction. O

Theorem 3.9 If (U, ) is a uniform antimatroid closure space of dimension d, then for
all0 <k<n-—d,
b, =Ck+d—1,d—1)

Proof: By Corollary 3.2 we know the value of ¢ , is dependent only on d and k. So we need only
compute the coefficients for the closure space generated by Algorithm 3.3, and this result will apply
to all d-dimensional uniform closure spaces.

bd_, is the number of closed sets Y such that dpt(Y) = k, which is equal to the number of distinct
generating sets for such Y. Algorithm 3.3 always includes py, so it only chooses d — 1 points from
the available generators used at depth k£ — 1. Consequently, by Lemma 3.8, the number of such
generating sets X is the number of ways d — 1 points can be chosen from the set {p1, p2, ..., Pk—1+4d},
whichis C(k+d—1,d—1). O

4 Decomposition of Uniform Closure Spaces

There is another way of deriving the bgfk. Every uniform space of dimension d can be
decomposed into uniform subspaces of dimension d — 1. In Figure 8, we illustrate the top

14
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Figure 8: Six levels of a uniform closure space, d=3

six levels of a 3 dimensional, uniform closure space on n atoms. (The integers identifying
the lattice elements are completely artificial, and have no significance.) The top three levels
of this lattice are completely isomorphic to those of Figures 4 and 5.

This closure lattice can be decomposed into uniform closure spaces of dimension 2. The
individual subspaces are drawn with solid lines. Their nesting is indicated by the dashed
lines. We have tried to separate these nested 2-spaces by drawing them with solid lines
of different thicknesses and intensity. Two of the elements covered by U, labeled 1 and 3,
begin the first 2-dimensional subspace. The elements labeled 14, 13, 36 constitute the next
level. Readily, this sublattice is isomorphic to the 2-dimensional, uniform lattice of Figure 2.
The third element covered by U is 2. It will be the root of another 2-dimensional, uniform
subspace with elements 12, 23, 124, 123, and 236. Each of these elements is covered by a
corresponding element in the first sublattice, as indicated by the dashed lines. The third
sublattice has 25 as its root. Each of its elements is covered by one in the second sublattice.
The chain of roots of each of these nested sublattices is U, 2, 25, 258, 258a, 258ad.

This kind of decomposition provides another easy way of counting bﬁf > the number of
closed subsets with n — k elements (because L is atomic, every element of the n — k level
has n — k atoms) in a d-dimensional space. We observe a general recurrence relation

b =0 b

n—k n—k+1 n—k
as well as

bk = Yitn & bg_l-

Using this recurrence, it is easy to reconstruct Table 1 for bg_k for arbitrary d. And
from this table, it is again evident that

b =Ck+d—1,d—1).

as asserted by Theorem 3.9.
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5 Post Script

In [5], Erdos and Szekeres conjectured that a planar convex geometry of more than 27 2
points must contain a convex n-gon. The n points may be a simple closed convex set, or
may include other points in its interior, in which case it is a non-simple generating set.
Readily, this conjecture is refuted if we can construct a closure space of dimension n — 1
over 2"~2 41 atoms that is realizable as a planar convex geometry, and confirmed if no such
realization is possible. Since the construction of the uniform closure space of dimension
n — 1 has been demonstrated, and since all n — 1 dimensional spaces can be derived from
the uniform n — 1 dimensional space, the only issue is one of realizability.

As observed earlier, whether a closure space is realizable as a convex geometry, or a
chordal graph, or a block graph, or some other configuration remains an open question.
Nevertheless, we have an interesting relationship to a timeless conjecture.
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