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Abstract— Numerous wireless sensor network algorithms
assume that individual sensors possess location information.
However, state of the art localization algorithms often
achieve acceptable performance only under restrictive as-
sumptions. For instance, some algorithms necessitate regu-
lar sensor deployment or centralized computations. Other
algorithms require a high proportion of position aware
nodes or the ability to accurately infer emission distance
or emission direction of received radio signals.

We propose the Elastic Localization Algorithm (ELA), a
distributed, scalable, robust and efficient localization algo-
rithm. ELA only presumes that a few percent of the sensors
know their location and that an estimation of the maximum
communication range is available. We provide extensive
simulation data describing the precision, the convergence
speed, and the communication load of ELA, using networks
composed of thousands of sensors. In addition, we submit
ELA to testing considering the influence of maximum range
and beacon position misestimation, irregular radio patterns,
asynchronous nodes, packet losses, particular topologies,
and sensor mobility.

I. INTRODUCTION

Wireless sensor networks (WSNs) have attracted much
interest as a means to monitor and control the physical
world. Many innovative applications of such networks
have been proposed including environmental and biolog-
ical monitoring, target tracking, and smart environments.

Naturally, location information is essential to such
applications: tracking algorithms report the position of
a target over time, environment monitoring networks
inform of the details of relevant events and particularly of
where and when they occurred. Consequently, localization
algorithms constitute an essential part of WSN research.

The WSN literature contains numerous localization
schemes aiming to provide each sensor with accurate lo-
cation estimation. Many such schemes necessitate expen-
sive and energy consuming hardware. Rather than relying
on such additional hardware, we proceed under minimum
assumptions: we only assume that a small fraction of
the sensors, called beacons, know their location and that

sensors possess an estimation of their maximum radio
range.

This paper makes the following contributions to the
localization problem in WSNs. First, we present a novel
equation to more accurately estimate the distance between
two sensors, based on hop-count. Second, we exploit, in
depth, an analogy with a system of masses linked by
springs to efficiently evaluate sensor positions. Third, we
demonstrate a new way to use distance estimations not
only to beacons, but also to nearby sensors to enhance
localization accuracy. Fourth, we show how a multi-
phase algorithm can further improve performance by first
roughly and then precisely locating sensors. Fifth, as an
integration of the previous concepts, we propose ELA, a
robust, efficient and accurate localization algorithm.

In addition, this paper analyzes the performance of
ELA through extensive simulation. We present results ac-
cording to six different metrics characterizing ELA accu-
racy and communication overhead. We also provide scal-
ability results for networks of more than 25,000 nodes.
Furthermore, we thoroughly evaluate the influence of
density and beacon proportion on performance. We then
test ELA on four kinds of randomly generated topologies
and on regular grids. We then evaluate the robustness of
our algorithm with respect to five phenomena occurring
in real networks such as asymmetric links and packet
loss. We subsequently compare ELA to three state of the
art algorithms. Finally, we investigate the performance
of ELA in mobile networks. Our results show that ELA
offers significant improvement over current solutions.

The remainder of this paper is organized as follows.
Section II discusses previous work. Section III describes
our algorithm in detail. Section IV thoroughly evaluates
the performance of ELA and compares it to state of the
art algorithms. Finally, Section V concludes the paper.

II. RELATED WORK

In this section, we discuss previous solutions for pro-
viding location information to individual sensors. We suc-
cessively discuss methods based on time of arrival, time



difference of arrival, received signal strength, angle of
arrival, high radio range beacons, and hop-count. We do
not discuss solutions using infrared [1] or magnetic fields
[2]. They necessitate complex infrastructures surrounding
the sensors, are very expensive, and of limited scalability.

Time of arrival techniques rely on the evaluation of
signal propagation time to infer location information.
Examples of such systems include the global positioning
system (GPS). GPS [3] necessitates expensive and energy
consuming hardware. Moreover, GPS devices need to be
in direct line of sight with at least three satellites and are
therefore unusable indoors.

Time difference of arrival techniques infer location
in the same way as bats. Some dedicated devices emit
radio signals and wait for replies. The time difference
between solicitation emission and reply reception permits
sensors to evaluate the distance between requesting and
answering devices. Such systems either require complex
infrastructures [4] [5] or expensive and energy consuming
embedded hardware [6]. Techniques using ultrasound
signals such as [4] have another disadvantage: they need
a high density of sensors to compensate for the poor radio
range of ultrasonic signals.

Techniques relying on received radio signal strength
assume the existence of a relation between received radio
power and relative distance of the emitting sensor ([7],
[8], [9]). We first note that such a relation may heavily de-
pend on environmental conditions such as rain, presence
of obstacles, irregular signal propagation or interferences.
Additionally, such techniques require additional hardware
that may not be available on all platforms.

Angle of arrival methods allow each sensor to eval-
uate the relative angles between received radio signals.
The main disadvantage of such system is the additional
hardware they employ [8]. Furthermore, current hardware
does not provide enough information to infer 3D location,
thereby limiting localization to a 2D space.

Solutions using high radio range beacons assume that
these beacons possess higher radio range than regular
sensors. Thereby, they can reach more sensors, which
can consequently compute their location more accurately.
This method requires that beacons possess more powerful
radio transmitters and higher reserves of energy. Two such
algorithms are Bulusu’s solution [10] and APIT [11]. We
compare ELA to APIT in Section IV-E.

Hop-count algorithms do not need any extra hardware.
Beacons disseminate location information through the
network and sensors estimate their position from hop-
count. ELA pertains to this particular category. In Sec-
tion IV-E, we compare ELA to two state of the art hop-
count algorithms: DV-Hop [12] and Nagpal’s solution

[9]. MCL [13] also pertains to the class of hop-count
algorithms. It is particularly suited to mobile networks
and uses Monte Carlo filtering techniques to iteratively
evaluate sensor positions. We compare ELA to MCL in
Section IV-F.

III. ELASTIC LOCALIZATION ALGORITHM

Let us consider a system of heavy masses, linked by
springs of various equilibrium length, confined in a vast
room. Let us assume that the equilibrium length of a
spring linking two sensors is equal to the physical length
separating the two sensors. Then, let us ask some opera-
tors to push all the masses towards the center of the room
except some particular masses, called anchors, that are
fixed to the floor and thus unmovable. Once all the masses
reached the center of the room, let us simultaneously
release all of them. Assuming that springs and masses do
not hamper each other, we can intuitively imagine that the
masses regain their initial position because of the spring
forces acting upon them. At least, we can believe that the
more anchors and springs the system contains, the closer
to their initial position the masses end up.

ELA proceeds from an analogy with such a system
of masses. Sensors play the role of masses. Sensors that
know their locations, which we name beacons, play the
role of anchors. If a sensor knows about the existence of
a neighbor, it behaves as if it is linked to it by a spring.
Sensors possess a physical location and a virtual location.
The physical location is unknown from the sensor. The
virtual location is initially set to the cartesian coordinates
value (0,0). In the analogy, this is equivalent to gather
all the masses in the center of the room. Then, sensors
periodically broadcast their virtual position, the virtual
position of their neighbors and the physical position of
their closest beacons. Receiving this information, sensors
can iteratively identify neighboring sensors and beacons
and compute how many communication hops separate
them from these other devices. Considering their current
virtual position, sensors can deduce that they should be
located further or closer to a given neighbor or beacon and
modify their virtual location accordingly. In the system
of masses and springs, the instantaneous force exerted
by a given mass on another one plays the role of the
sensor broadcast. Indeed, a mass moves to satisfy the
constraints imposed by the repulsive and attractive forces
acting upon it. The system of masses reaches equilibrium
when all the masses regained their initial position. At this
point, the length of a given spring equals its equilibrium
length and there is no more forces acting on the masses.
Similarly, sensors reach equilibrium when their virtual
position approximates well their physical position. At



this point, broadcasted messages only indicate to a given
sensor that it is at an adequate virtual distance from
its neighbors. Note that we need a way to evaluate the
distance between two sensors according to the minimum
number of communication hops separating them.

In the remainder of this section, we describe in detail
ELA. Sensors only know their maximum radio range
Tmaz- Additionally, a small fraction of sensors, the bea-
cons, know their exact location. They may obtain this
information through a GPS receiver or manual program-
ming. We emphasize that beacons possess the same radio
range rmq. as other sensors and henceforth communicate
exclusively with sensors physically located at a distance
d such that d < 700

We define the hop distance between two sensors A
and B, noted dj,, (A, B) as the smallest number of com-
munication hops necessary for B to contact A. We note
that there may exist several shortest communication paths
(in terms of communication hops) between two given
sensors. We also emphasize that in the presence of asym-
metric links, dp,qp(A, B) may differ from dj,, (B, A). An
N-hop neighbor of a sensor A is a sensor B such that
dhop(A,B) = N. A one-hop neighbor is also called
an immediate neighbor. The physical distance between
two sensors A and B is noted d(A,B). The average
hop length between two sensors A and B is defined
as lpop(A, B) = d(A, B)/dnop(A, B). Sensors initially
believe their position to be x5(0) = (0,0).

In the following subsections, we describe the four
main components of ELA: the ELA datagram, the ELA
approximation, the spring equations, and the three-phase
protocol. In order to infer their position, sensors need
to exchange information with their immediate neighbors.
They communicate using a particular message format
called the ELA datagram. By periodically communicat-
ing, sensors acquire data about one-hop neighbors, two-
hop neighbors and nearby beacons. They subsequently
use the ELA approximation to estimate their relative
distance to these neighbors and beacons. Sensors then
individually combine this approximate information to
compute a new position estimation. To achieve that goal,
each sensor considers itself to be linked to neighbors and
beacons with springs and attempts to reach an equilibrium
within the so formed system of springs. One problem with
systems of masses linked by springs is that they possess
numerous equilibrium configurations depending on their
initial conditions. Our three-phase protocol aims to make
the system of springs converge towards an equilibrium
corresponding to accurate estimations of sensor physical
positions.

TABLE I
FIELD DESCRIPTION OF THE ENTRIES ENCOUNTERED IN THE
THREE TABLES OF A SENSOR S.

Field Field Description
Name
Sensor ID Unique ID of immediate neighbor (one-hop table entry), two-
hop neighbor (two-hop table entry), or beacon (beacon table
entry).
Estimated Last advertised position of immediate neighbor (one-hop table
Position entry), two-hop neighbor (two-hop table entry), or physical
position of beacon (beacon table entry).
Virtual Difference between last position estimation and next to last
Speed position estimation of immediate neighbor (one-hop table
entry) or two-hop neighbor (two-hop table entry). A beacon
table entry does not contain any such a field. We arbitrarily
consider the time interval between two position estimations
to be one second.
Stage Current stage of immediate neighbor i (see three-phase pro-
tocol). Only a one-hop table entry contains such a field.
Cumulative | Number of neighbors of datagram sender i plus number of
Number of | neighbors of datagram receiver s plus number of neighbors
Neighbors of each sensor on a minimal path from i to s.
Hop Current estimation of hop distance between beacon i and
Distance sensor s (beacon table entry only).
2 Bytes 2 Bytes“ 2 Bytes P 2 Bytes s 2 Bytes .
Beacon Beacon r r Cumulative
" N P P H
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Fig. 1. Elastic localization datagram.

A. Elastic Localization Datagram

Each sensor maintains a one-hop table, a two-hop
table and a beacon table, which respectively contain
information about one-hop neighbors, two-hop neighbors
and beacons. Table I describes the fields encountered
in entries of these tables. The three tables are initially
empty. Periodically, sensors broadcast information con-
cerning themselves, one-hop neighbors and beacons. They
exclusively broadcast information that has changed since
the last datagram emission. They compact the data into an
ELA datagram, of which Figure 1 reveals the structure.
To save space, we do not detail the neighbor information
block in the figure. It is identical to the sensor information
block except that it does not include a stage field.

Upon receiving a datagram, sensors accordingly com-
plete their three tables. The datagram provides informa-
tion about the datagram sender, the n one-hop neighbors
known of the datagram sender, and the b beacons for



which the datagram sender currently saves information.
Sensors only retain information about their b,,,, closest
beacons. In the remainder of this paper, we impose
bmaz = 40: this experimentally discovered value leads
to a good overall performance.

Sensors create or modify one-hop, two-hop and beacon
table entries, according to, respectively, the sender, the
neighbor, and the beacon information contained in the
received datagram. If the neighbor information concerns
a sensor already in the one-hop table or the receiver
itself, the information is discarded. Completing their three
tables, sensors iteratively compute the hop distance dj,,
to their b,,,,; closest beacons, and the cumulative number
of neighbors n. on shortest communications paths to
neighbors and beacons. We define n. as the sum of
the number of neighbors of the information sender i,
of the information receiver s, and of each sensor on a
minimal path from ¢ to s. From n. and dj,,, sensors can
deduce n,, the average number of neighbors on one of
the shortest communication paths, using the formula n, =
ne/(dhop + 1). Subsequently, sensors use 14 and dp,p to
estimate their physical distance to neighbors and beacons.
Finally, sensors use this physical distance estimation to
adjust their location as described in Sections III-C and
1I-D.

B. Elastic Localization Approximation

In the previous section, we saw how sensors obtain
an estimation of the hop distance dj,, to their closest
beacons as well as the average number of neighbors
ng on paths to one-hop neighbors, two-hop neighbors
and beacons. Sensors also know their maximum radio
range Tmqee- Lhe goal of this section is to empirically
evaluate the average physical distance, here noted d, from
a given sensor to each of its neighbors or beacons with
respect t0 dpop, Mg and 7yq.. Previous research [14]
demonstrates that n, and 7,4, play an important role in
the determination of d. Our introduction of dj,, derives
from intuition. To empirically evaluate d according to
the specified parameters, we simulate huge networks
of randomly distributed sensors. For each value of n,
varying from one to thirty, we generate twenty networks
of 5000 sensors. In each network, we compute dj,p
from each sensor to any other one. For given values
of dpop and ng, we finally evaluate the average d. The
data resulting from these simulations allow us to derive
the ELA approximation, an approximation of the average
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We obtained this formula by first observing that our
experimental curves had a shape similar to that of the
arctan function and by subsequently using curve fitting
techniques. In comparison, to approximate [, Nagpal
et al. [9] use the Kleinrock-Silvester formula [14] given
as:

Tmax

lhozn =14e" Ng arccost tvV1— t2)dt

~ e 2)
The Kleinrock-Silvester formula is an approximation of
the average value of [j,, as a function of 7,,,, and
ng. Figure 2 graphs the ELA approximation and the
Kleinrock-Silvester formula. The empirical data from
which we derived Equation 1 indicates that [}, varies
significantly with respect to dj,. We therefore concluded
that using the ELA approximation (a function of dj,,
Ng, and rp,q;) should lead to better performance than
using the Kleinrock-Silvester formula (a function of n,
and 740)-

In addition, we observe that when dj,, approaches
infinity, the ELA approximation well approximates the
Kleinrock-Silvester formula for n, > 10. This could be
expected as the Kleinrock-Silvester formula is an approx-
imation of [j,, when dp,, tends towards infinity. For
nq < 10, the ELA approximation when dj,, approaches
infinity differs significantly from the Kleinrock-Silvester
formula. This is due either to the empirical nature of our
approximation or to the simplifying assumptions used in
[14] to establish Ecauatlon 2. Additionally, we note that
when dp,, = 1, r:::; = 3. The value § adequately
corresponds to the theoretical average distance between
the center of a circle C' of radius 1 and iid randomly
chosen points within C'. The behavior of the ELA ap-
proximation when dp,, = 1 and when dj,, approaches
infinity thus reinforces our confidence into the validity of
our approximation.
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generated by the ELA approximation and the Kleinrock-Silvester
formula.

In Figure 3, we compare the performance of the ELA
approximation with the performance of the Kleinrock-
Silvester formula. We simulate twenty networks of size
5000 with sensors iid randomly distributed within a
square area. The average number of neighbors is fifteen
and the number of beacons is 500. Each sensor evaluates
its distance to its forty closest beacons using successively
the ELA approximation and then the Kleinrock-Silvester
formula. It subsequently compares distance estimates to
real distances. Figure 3 shows that 21% of the distance
estimates that the ELA approximation generated had an
error within the interval [0,10%7,42]. By comparison,
only 19% of the distance estimates that the Kleinrock-
Silvester formula provided had an error within the same
interval. By observing the error distribution in its entirety,
we can clearly state that the ELA approximation performs
better than the Kleinrock-Silvester formula.

Sensors can now evaluate the physical distance to their
neighbors and beacons. They already know the current
position estimations of their neighbors and the physical
positions of their b,,,, closest beacons. Each couple
(distance, position) imposes a constraint on the sensor,
limiting its choices for a new position estimation. In
fact, it is likely that no choice of position simultaneously
satisfies all the constraints imposed on the sensor. Indeed,
sensors initially estimate their position to be (0, 0) and the
ELA approximation only provides a gross approximation
of the distance between two sensors.

To re-estimate their position, sensors imagine that they
are linked to their neighbors and beacons with springs.
We determine the equilibrium length of each spring using
the ELA approximation. Each sensor iteratively moves
towards one of the equilibrium positions defined by its
system of springs. Between iterations, it receives new
estimations of neighbor’s positions. In this way, we expect
sensors to iteratively discover an accurate estimation of
their real position. The next two sections describe the
computation of new position estimations using spring

equations. We first discretize spring equations inspired
from physics before modifying them to ensure quick
convergence.

C. Discretized Spring Equation

We now consider that sensors possess an estimation of
their physical distance to neighbors and beacons. These
estimations are obtained through the ELA approximation
as explained in the previous section. In this section,
sensors re-evaluate their position according to this infor-
mation. They do so each time they receive a datagram.
We proceed with an analogy with the physics of springs.
A given sensor s behaves as if it were a mass linked with
springs to known neighbors and beacons. According to
Newton’s Second Law, s is subject to an acceleration Xg
such that:

mi,(t) = Y F() 3)

Where m is the mass of sensor s, Y F is the sum of
external forces acting on s, and t is the current time. We
can arbitrarily impose m = 1kg to simplify the equations.
According to Hooke’s law, a spring linking sensor s to
another sensor ¢ exerts on s a force F;_¢ such that:
Fis(t) = =k ([lxs(t) = x:(8)|] — di)

X (t)—x;(t)
[ () =i ()]
“)

Where k is the spring constant, x;(t) is the physical
position of sensor i at time ¢, X4(t) is the physical position
of sensor s at time ¢, d; is the equilibrium length of the
spring that links sensor s to sensor i, and ||a|| denotes the
norm of vector a. We can arbitrarily impose k = 1Nm ™.
If x5(t) = x;(t), we apply a random displacement of
unitary norm to sensor ¢. Figure 4 illustrates Equation 4.
We modify Equation 4 such that x;(¢) is the estimation
by sensor ¢ of its position at time ¢, xs(t) is the estimation
by sensor s of its position at time ¢, and d; = d;(t) is
an estimation of the physical distance between sensor i
and sensor s as computed in Section III-B. Additionally,
we need to discretize Equation 4, estimating the values of
physical variables at time ¢ as a function of the values of
physical variables at time (¢t —1). We assume that sensors
broadcast their information simultaneously and instantly
with an identical period 7. We relax this assumption in
Section IV-D. We can arbitrarily impose 7' = 1s. If ¢ is a

one-hop neighbor of s, we evaluate ngosp in the following
way:
1A
FOD) = —(Ixst-1) —xit—Dl| — dit—1))

®)

(%, (1) —x: (1)
X T D=, D]

If sensor ¢ is a two-hop neighbor of sensor s, we cannot
directly use Equation 5 because x;(¢ — 1) is unavailable.
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Nevertheless, we can evaluate x;(t — 1):

xi(t — 1) = x;(t — 2) + Tk(t — 2) (6)

Where T = 1s, x;(t — 2) is the last received position
estimation of sensor 4, and x;(t — 2) is the virtual speed
of sensor ¢ at time (¢t — 2) defined as in Table I. We can
now evaluate F2"%

1—8 °

do not converge because of the discretization of the
spring equation. For ELA to be a viable localization
algorithm, it must converge and converge quickly. This
section describes the computation of a value of x(t)
different from the one proposed in Equation 10, even
though inspired by it, to provide quick convergence of
ELA. We denote this distinct value of x,(t) by x¢(¢). We
do not provide formal proof of the quick convergence of
ELA using the convergent spring equation. However, our
simulation data provides strong empirical support in favor
of our convergence assumption. We pose:

x((t) =x5(t —1) + 3(x7() = x¢(t — 1)) (AD

Where x5%(t) is the equilibrium position at time ¢ of
sensor s in the system composed of springs and masses
defined in sensor s at time ¢. Equation 11, illustrated in
Figure 5, makes sensor s move towards x57(¢), which we
estimate using the following algorithm:

Fr%(t) = —(|Ixst—1) — xit—2) — %t -9 — dit—1)  x(¢) = x(¢ — 1);
X 1) — x4 (-2 — %, (-2) springs eq(y .
¢ ) =, D)5, (2] E (NH DEZSTE xS 0)] > m—) {

If i is a beacon, Fl9¢°" is easy to evaluate as beacons

1—S

know their position and are immobile:

Fireocon(t) = —(|lxs—1) — x| -
% Xs (D) —x%;
[Ixs &) —x||

dit—1)) )

We can now evaluate all the spring forces exerted on a
given sensor s. To eliminate oscillations in our system
composed of springs and masses, we consider that each
sensor s is additionally subject to a friction force F ¢,iction
such that:

—fXs(t = 1) ©))

Where we impose f = lkgs~! to obtain maximum
friction: with such a value, the sensor remains immobile
when no forces are applied to it. Finally, we obtain X4(¢),
X4(t), and x4(t):

Ffriction (t) =

() = NFIV() + D FLE () + S FE (1)
+Ffmctzon (t)
SOFTII() — k(- 1)
Xs(t) = %Xs(t—1)+T%,(t) = Zngzngs( )
Xs(t) = x5(t—1) 4+ T%k4(t)

x,(t = 1) + S F(0)

1—S8

(10)

D. Spring Equation Convergence

One problem with Equation 10 is that it does not
ensure the convergence of the algorithm. In fact, if ELA
only uses Equation 10, the sensor position estimations

xSU(t) = xS1(t) + 4 S (8, x5(1)); }
(12)

Where 7,4, is the maximum radio range of sensor s,
ZFfﬁz”gS( x5!(t)) is the sum of forces exerted by
springs on s computed using x5?(¢) instead of x¢(t — 1),
and N is the total number of spring forces. ( is a constant
influencing the precision of the equilibrium computation
and the convergence of ELA. In the remainder of this
paper, we impose S = 1000: this experimentally dis-
covered value leads to a good overall performance of
ELA. We note that during all the experiments realized in
Section IV-A, the maximum number of iterations that the
loop of Algorithm 12 executed before terminating was
364 and the average number of iterations was equal to
thirteen. At each iteration, ELA must evaluate the sum of
forces, which is 6(n!oP 4 n2hop 4 pbeacons) where plhop,
n2hop and pbeacons gre the number of, respectively, one-
hop neighbors, two-hop neighbors, and beacons known
of the sensor. The MICA2, a popular WSN platform, can
execute several millions of instructions per second and
could compute new values of x5? in a timely manner.

E. Three-Phase Protocol

A system of springs and masses can converge towards
different final states according to its initial conditions. For
instance, Figure 6 represents a system of three masses,
M1, M2 and M 3, linked by two springs. The equilibrium
length of the two springs is identical and equal to the ra-
dius of the dashed circles. If we let M 3 move freely while
keeping M1 and M2 fixed, M3 may converge to either



@® Fixed Mass
@® Free Mass
o 2/5 3/5 o
e Computed Equilibrium & R ] s 1)
Position . .
xSt —1) xg(t)
— Spring

Fig. 5. Movement of sensor s towards equilibrium position.

@® Fixed Mass =TT ~ =TT ~

@® Free Mass / VAN \

Possible Equlibrium
Position of Mass M3

—— Spring

Fig. 6. System of masses linked by springs.

one of the gray equilibrium points, depending on its initial
position. Similarly, the system of springs and free masses
defined in the previous section may converge towards
various final equilibrium states. This section presents
a three-phase protocol aiming to force sensor position
estimations to converge towards a adequate equilibrium,
at which position estimations satisfactorily approximate
physical positions.

This protocol constitutes the main part of ELA. It
contains a subroutine to compute x$(¢) as explained in
Section III-D. This subroutine in turn calls a routine to
compute d; as described in Section III-B. The initial stage
of a sensor is Stage 1. Sensors periodically broadcast
either a full or partial datagram, according to their stage,
as described in Figure 7. Each time it receives a data-
gram from one of its immediate neighbors, a sensor re-
computes its position using the spring equation as well
as the information contained in this datagram. Comparing
its new position estimation xS(¢) to the previous one
x¢(t — 1), it consequently determines if it has moved.
A sensor formally considers itself in motion if and only
if:

[x5() = x5(t = 1) = = (13)

Where 7,4, is the maximum radio range of the sensor
s, and « is a constant influencing the final accuracy of
the position estimation and the convergence speed of the
algorithm. For the remainder of this paper, we impose
a = 100, which leads to a good overall performance of
ELA. Once a sensor determines whether it is in motion,
it effects a stage transition, if appropriate, as described in
Figure 7. It then waits for the next reception of a datagram
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- 1-hop and 2-hop neighbors,
- bmax closest beacons.
Full datagram sent.

All Neighborsin | [ ———-—-————--_{TT--To-oo oo mm o
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Stage atLeast3 | \ ____________/ _____________________
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Fig. 7. The nine stages of the three-phase protocol.

before re-evaluating its position. Once a sensor reaches
Stage 9, it terminates its computations.

The nine stages define three phases called the relative
positioning phase (Phase I), the fast local positioning
phase (Phase II) and the precise local positioning phase
(Phase III). Sensors in Phase I consider to be linked with
springs to their one-hop neighbors, two-hop neighbors
and by, closest beacons. Thus using all available in-
formation, we expect sensors to organize into a global
coordinate system where the relativity of estimated po-
sitions reflects the relativity of physical positions. One
problem with Phase I is that sensors use information from
the b4, closest beacons. This information is essential to
infer sensor relative positions, but may be too imprecise.
Indeed, the more hops away a beacon is, the more approx-
imate the estimation of its relative distance is. This is why
sensors in Phase II consider themselves to be linked only
to their closest beacon: only one spring force contributes
to their position re-estimation. Thereby, Phase II aims
to adjust sensor position estimation assuming that the
estimated distance to the closest beacon is correct. During
Phase II, we expect the relativity of sensor positions
to be conserved. Finally, sensors in Phase III consider
themselves linked not only with their closest beacon, but
also with their one-hop and two-hop neighbors. In this
way, Phase III attempts to enforce the respect of distance
estimations between one-hop and two-hop neighbors.

We have not explained yet why using nine stages while
three would seem sufficient: Stage 1, 4 and 7. The reason
is that we would like the whole network to compute in a



given phase until convergence before any sensor switches
to the next phase. Checking that the whole network has
converged is a costly operation. We thus compromise
by making each sensor check for the convergence of its
neighbors before switching phases. This is the purpose
of Stage 2, 5 and 8. Stage 3, 6 and 9 are transition
stages. Sensors in a transition stage periodically broadcast
information about their current stage and do not re-
evaluate their position. They passively wait for neighbors
to reach the same stage as theirs. They ensure that a
given sensor communicates only with a sensor in the same
phase as itself or with a sensor in a transition stage, which
is seen as an immobile sensor because it does not re-
estimate its position. Thereby, the executions of Phase I,
II and III are isolated from one another.

To conclude this section we present accuracy results
when using various combinations of phases and forces
(see Figure 8). Each data point represents the average
value of ten trials using randomly generated topologies of
5000 sensors, including ten beacons. The average number
of neighbors is ten. Among the shown variants, our three-
phase protocol employing the three forces described in
Section II-C generates the least mean absolute error on
position estimation. Our experiments reveal that we can
generalize this result to many WSN configurations. We
therefore focus on this version of ELA in the evaluation
section. Applications requiring very low communication
overhead may prefer other versions of the algorithm (see
Figure 9). We observe that three phases may induce less
communication overhead than two phases: one phase can
dramatically diminish the execution time of the subse-
quent ones. We also predict that using three-hop forces
would generate prohibitive communication costs. We note
that the time complexity of the three-phase protocol is
evaluated via simulation in Section IV-A (see Figure 12).

IV. EVALUATION

This section provides a detailed quantitative analysis
of ELA. In all the graphs of this section, each data
point represents the average value of ten trials using
different randomly generated network topologies. Except
if specified otherwise, all sensors (including beacons) are
iid randomly distributed within a square area of size
500m x 500m. To obtain various average number of
neighbors in a given network, we vary the radio range
of sensors. Except in Section IV-D, all sensors have
identical radio ranges. On the figures, we note NT the
number of trials used to obtain one data point, NN the
average number of neighbors, NS the number of sensors,
and NB the number of beacons. We first investigate the
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Fig. 8. Influence of phases and forces used on ELA accuracy.
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Fig. 9. Influence of phases and forces used on ELA overhead.

scalability of ELA in Section IV-A. We then study the
variation of performance according to the average number
of neighbors and the number of beacons in Section IV-B.
In Section IV-C, we evaluate the influence of particular
topologies on ELA position estimation accuracy. We then
furnish evidence of ELA robustness to phenomena occur-
ring in real WSNs in Section IV-D. Finally, we compare
ELA to three state of the art algorithms in Section IV-E
and consider mobile networks in Section I'V-F.

A. Scalability

In this experiment, we observe the influence of the
number of sensors and the proportion of beacons on the
performance of our algorithm. Sensors possess eleven
neighbors on average. Figure 10 shows the Mean Abso-
lute Error (MAE) on position estimation with respect to
network size and number of beacons. With ten randomly
located beacons, we obtain a MAE of less than 50% of
the radio range for networks composed of up to 6000
sensors. At this particular limit, the proportion of sensors
is less than 0.17%. With 160 randomly located beacons,
we obtain a MAE of less than 25% of the radio range
even for networks composed of 25000 sensors (we did
not simulate larger networks). At this particular point,
the proportion of beacons is 0.64%. For small networks
of 200 sensors, ELA performs equally well, obtaining a
MAE of about 25% of the radio range when using only
five randomly located beacons. We also notice that, in
general, bigger networks require a lower proportion of
beacons to achieve similar accuracy.



Mean Absolute Error
(% Radio Range)

7| —=—5 Beacons
r| —&— 10 Beacons / /
|| =20 Beacons £ X
|| —%—40 Beacons
—e—80 Beacons X
[| —— 160 Beacons
[L—*—320 Beacons /./—/./ /
PY
» |/./——l\—l/ /‘/ /
— |

100

1000

10000

Number of Sensors (NT=10, NN=11)

100000)

Fig. 10. Scalability results, mean absolute error.

—&—5 Beacons

—4— 10 Beacons
—>—20 Beacons

—*—40 Beacons

—e— 80 Beacons

—+— 160 Beacons

—— 320 Beacons

(% Radio Range)
8 g

Standard Deviation

i
W

1000

10000

Number of Sensors (NT=10, NN=11)

100000)

Fig. 11. Scalability results, standard deviation.
” oo —a— 5 Beacons
5 5 —4— 10 Beacons
e @ s —*— 20 Beacons =
2 s —%— 40 Beacons /—/"/-
2 2 0 —e— 80 Beacons T
© ﬁ —+— 160 Beacons ./
2= w ——320 Beacons
i1
° g
g g 20 - / /—/./‘
Ex. e
S !
- 0¥
00 1000 o000 100000
Number of Sensors (NT=10, NN=11)
Fig. 12. Scalability results, number of iterations.

25000 7

20000 H

15000 14

10000

5000 |

Average Number of Sent
Bytes per Sensor

—&— 5 Beacons
—4— 10 Beacons
—»— 20 Beacons

/

—%—40 Beacons
—e—80 Beacons

A

—+— 160 Beacons
—&— 320 Beacons

/
S

1000 10000
Number of Sensors (NT=10, NN=11)

100000)

Fig. 13.

Scalability results, number of transmitted bytes.

20

100

—a—5 Beacons
—4— 10 Beacons

—%—20 Beacons
—*—40 Beacons
—e— 80 Beacons

—+— 160 Beacons
——320 Beacons

I
A

//

.

Average Number of Sent
Messages per Sensors

1000 10000
Number of Sensors (NT=10, NN=11)

100000)

Fig. 14. Scalability results, number of transmitted messages.

Figure 11 exhibits the standard deviation on position
estimation error. The results indicate that ELA performs
better in some parts of the network than in others.
Additional testing predictably revealed that ELA does not
perform as well in large parts of the network that are free
of beacons.

Figure 12 graphs the number of iterations of ELA nec-
essary for 100% of the sensors to terminate ELA. During
an ELA iteration, all sensors that have not completed
the algorithm broadcast a datagram, which is eventually
processed on neighboring nodes. For small networks of
100 to 200 sensors, only ten to ninety iterations are
necessary for complete convergence of ELA. For bigger
networks of up to 25000 sensors, more iterations are
necessary, but always less than 200 if there are at least
ten beacons in the network.

Figure 13 shows the average number of transmitted
bytes per sensor when all sensors terminated their com-
putations. We observe that the average number of trans-
mitted bytes varies from about 5000 to 25000 bytes. As
an example, the MICA2 mote, a popular WSN platform,
achieves a data transmission rate of 38.4 kilobits per
second [15]. Assuming such bandwidth, sensors neces-
sitate from about one to five seconds of radio channel
availability to complete ELA radio transmissions. We
emphasize that in a real WSN, two neighboring sensors
cannot hold the communication channel simultaneously.
The total time to run ELA is therefore accordingly greater
depending on the used media access layer protocol. Addi-
tionally, we note that our average number of transmitted
bytes considers neither necessary packet headers nor
media access layer control messages.

Finally, Figure 13 exhibits the average number of
transmitted messages per sensor when all sensors ter-
minated their computations. We observe that in small
networks of 200 sensors, less than about forty messages
per node are necessary on average. In large networks of
12800 sensors, less than ninety messages per node are on
average necessary, even with only five beacons. As the
proportion of beacons increases in the network, less and
less messages are necessary.

B. Density

In this section, we investigate the impact of the average
number of neighbors and the number of beacons on
ELA performance. We simulate iid randomly generated
networks containing 5000 sensors contained in a square
area.

Figure 15 depicts our results. We observe that the
accuracy of ELA increases with the average number of
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neighbors and the number of beacons. When using 0.1%
of beacons (5 beacons for 5000 sensors), we need an
average number of neighbors of about 14 to obtain a
MAE of less than 55% of the radio range. When 1% of
the sensors are beacons (50 beacons for 5000 sensors),
an average number of neighbors of 11 is sufficient to
reduce the MAE below 30% of the radio range. When
10% of the sensors are beacons, the MAE is below 25%
of radio range even with an average number of neighbors
of eight. According to experimental results presented in
[11], a localization MAE of 40% of the radio range and
an average number of neighbors of eight are sufficient
to achieve a delivery ratio of almost 100% when using a
routing algorithm such as Geographic Forwarding [16].
This suggests that ELA performance may satisfy the
needs of many algorithms that assume the availability of
location information.

Figure 16 shows, for the same set of experiments, the
percentage of sensors that ELA successfully localized,
defining a successfully localized sensor as as sensor
localized in a circular area centered at the real location
of the sensor and having a radius of 30% of the radio
range. We observe that with a proportion of beacons of
0.4% and an average number of neighbors of fourteen,
at least 80% of the sensors localize successfully. With
the same average number of neighbors and a proportion
of beacons of 1.4%, at least 90% of the sensors localize
successfully.

(a) (b) (d)

Fig. 17. Example of square topology(a), obstacle topology(b), grid
topology(c) and C Shape topology(d).
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Fig. 18. Influence of topology on ELA performance.

C. Topology

In previous experiments, sensors are randomly dis-
tributed within a square. In this section, we study the
effect of various topologies on ELA accuracy. We con-
sider five topologies. Figure 17(a) shows a square topol-
ogy, where sensors are iid randomly distributed within
a square. Figure 17(b) shows an example of what we
name an “obstacle topology”, where sensors are iid ran-
domly distributed within a square containing four circular
sensor-free zones. Figure 17(c) displays an example of
grid topology. Sensor are this time uniformly distributed
in a regular grid, with beacons forming a sub-grid. We
call ”beacon grid topology” a topology where only the
beacons are organized in a grid and where the remaining
of the sensors are iid randomly distributed in a square
topology. Figure 17(d) presents the C topology, where
sensors are iid randomly distributed within an area in
the shape of the letter C. Figure 18 graphs the MAE on
position estimation according to the number of beacons
in the network and the employed topology. All our ex-
periments use an average number of neighbors of twelve
and a network of size 4900 sensors.

We first observe the performance of ELA using the
square topology. The MAE on position estimation can
be as low as 12% of the radio range when 10% of
sensors are beacons. Organizing the beacons in a grid
significantly increases performance when the total number
of beacons is smaller than nine. For a greater number of
beacons, the improvement is not as marked. Organizing
all the sensors in a grid dramatically ameliorate ELA
performance. With only 0.3% of beacons, the MAE is as



low as 10%. And it drops below 3% when the proportion
of beacons approaches 10%. By contrast, the existence
of obstacles impairs performance as we observe when
using the topologies illustrated in Figure 17(b) and 17(d).
However, increasing the proportion of beacons to 2%
reinstates results similar to the ones obtained with the
square topology.

D. Realism

In previous sections, we evaluate the performance of
our algorithm assuming perfect conditions: sensors act
synchronously, they know their exact maximum radio
range, this radio range is identical for all sensors, all
communication links are symmetric, beacons perfectly
evaluate their location and there is no packet loss. These
assumptions are unrealistic in a real sensor network. In
this section, we evaluate the performance of ELA in
realistic conditions. All the experiments of this section
use iid randomly generated square topologies of 5000
sensors with an average number of neighbors of either
eleven (Figure 19, 20, 22 and 23) or twelve (Figure 21).

Figure 19 shows the results of an experiment that
simulate networks with asynchronous sensors. In the
figure, the legend annotation “Period = 1” means that all
sensors periodically send datagrams with the same period
T. ”Period = 1 or 2 or 4” means that one third of the
sensors send datagrams with period 7', one third of the
sensors with period 27" and one third of the sensors with
period 4T'. Figure 19 shows that sensor asynchrony may
significantly degrade performance only when the number
of beacons is below 0.25%.

Figure 20 graphs the MAE on position estimation with
respect to the number of beacons and the maximum
error on radio range estimation. Basically, a maximum
radio range error of 25% means that each sensor iid ran-
domly selects a different radio range within the interval
[0.757mazs 1.257 42| The graph shows that maximum
radio range errors of up to 12% only slightly decrease
the accuracy of ELA position estimations. Greater errors
more significantly impair performance. However, with
10% of the sensors being beacons, the MAE on position
estimation is still below 50% of the radio range even when
the maximum radio range error is as high as 50%. Note
that the MAE is expressed in percentage of r,,,, and not
in percentage of the radio range of the sensors, which is
different for each device in this particular experiment.

Figure 21 depicts the results of an experiment testing
the influence of asymmetric links on ELA accuracy. When
sensor A can send data packets to sensor B and vice-versa,
the communication link between A and B is a symmetric
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link. When only A can reach B, or only B can reach A,
the communication link is an asymmetric link. We define
the percentage of asymmetry of a wireless sensor network
as the percentage of asymmetric links in that network. We
emphasize that we keep the average number of neighbors
constant during our experiment: when we increase the
percentage of asymmetry, we accordingly increase the
radio range of sensors. In this experiment, we gener-
ated asymmetry by iid randomly removing unidirectional
links. We note that this generates not only asymmetry
but also radio range irregularity. Figure 21 shows that
a percentage of asymmetry below 66% can diminish
the MAE on position estimation of at most 15 points.
We believe that the percentage of asymmetry in a real
wireless sensor network is much lower than 66%, which
makes ELA robust to the effect of asymmetry in realistic
networks. For reference, all experiments realized in [17]
with more than 150 Rene motes indicate a percentage of
asymmetric links below 15%.

Figure 22 represents the performance of ELA assum-
ing that beacons do not perfectly know their position.
A beacon maximum position estimation error of 25%
means that all beacons iid randomly select a different
error within the interval [—25%7 42, +25%7mas]. The
figure shows that the performance of our algorithm is
very robust when the beacon maximum estimation error
remains below 50% of the radio range. The MICA?2 mote
achieves an outdoor radio range of 100 ft [15]. Assuming
a GPS receiver with an accuracy of 5 meters, we obtain
a typical beacon position error of about 16.4% of radio
range. ELA thus does not seem to be affected by beacon
position errors typical of real networks.

Figure 23 shows the results of experiments evaluating
the influence of packet loss on ELA performance. As
an example, a packet loss of 50% means that 50% of
emitted datagrams are iid randomly dropped by receivers.
In this experiment, beacon information is broadcasted
reliably while one-hop and two-hop information is subject
to packet loss. We expect such packet loss to have little
influence on ELA accuracy. Indeed, sensors can work
with outdated information until they receive fresh data.
Surprisingly, randomly distributed packet loss improves
the performance of our algorithm by up to 10 points! We
believe that packet loss introduces random perturbations
in the execution of ELA, allowing sensors to explore
a vaster set of solutions and then retain the best one.
We wonder if this improvement in performance would
occur in a real WSN where packet loss is probably un-
evenly distributed. We note that, even though packet loss
improves ELA accuracy in our simulations, it increases
both convergence time and amount of necessary radio
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transmission.

E. Comparison with State of the Art Algorithms

In this section, we compare ELA with three state
of the art algorithms: DV-Hop [12], Nagpal’s solution
[9], and APIT [11].We did not run simulations of the
corresponding algorithms. Instead we directly use the
results provided in the respective papers and compare
with ELA using the same network size, average number
of neighbors, and number of beacons.

Figure 24 compares ELA to DV-Hop. We use two
topologies: a square topology (see Figure 17(a)) and a
C topology (see Figure 17(d)). The iid randomly gen-
erated networks contain 200 sensors, sensors possess
nine neighbors on average. ELA performs significantly
better than DV-Hop on the square topology: the MAE on
position estimation decreases of up to ten points. Besides,
ELA obtains much better results with a C topology. In
particular, when more than fourty sensors are beacons,
the performance of ELA in a C topology is similar to its



performance on a square topology: ELA achieves a MAE
of less than 20% whereas DV-Hop MAE has a value of
more than 110%.

Figure 25 compares ELA to Nagpal’s solution. We
simulate iid randomly generated networks of 200 sensors.
Sensors possess twenty neighbors on average. We observe
a significant and constant improvement of fifteen points
over Nagpal’s algorithm.

Figure 26 compares ELA to APIT. The comparison is
delicate as APIT uses beacons that have greater radio
ranges than sensors. We use iid randomly generated
networks of 1000 sensors where sensors possess seven
neighbors on average. We give a significant advantage to
the APIT network by considering that its beacons possess
ten times the radio range of its sensors. The ELA beacons
have the same radio range as their sensors. Even with this
handicap, ELA performs better than APIT, particularly
when the number of beacons is less than thirteen. For
a greater number of beacons, ELA performance is still
better than APIT performance by at least fifteen points.

Finally, we note that the communication overhead of
ELA is probably higher than the one of DV-Hop, Nagpal’s
algorithm, and APIT. Indeed, sensors using ELA must
broadcast information about themselves, their neighbors,
and their by, closest beacons. By contrast, DV-Hop
and Nagpal’s algorithms need only to propagate infor-
mation about beacons. APIT, using beacons with high
radio range, has relatively low communication needs.
We nevertheless provided data demonstrating that ELA
communication overhead do not impede its efficient im-
plementation on a real WSN (see Section IV-A).

F. Mobility

Our algorithm can operate in the presence of mobile
sensors if it undergoes the following modification. In
the static version of ELA, sensors receive localization
datagrams from their neighbors and subsequently update
their tables, as described in Section III-A. In the mobile
version of ELA, sensors additionally keep track of which
neighbors send a given piece of information and when the
information is received. Sensors decide that a given piece
of information is outdated when tcyrrent — tinfo > tiimits
where fcyrrent 18 the current time, t;,7, is the time at
which the information was received, and t;,,,;; is the time
after which a given piece of information is discarded if
it has not been refreshed. For our simulations, we equal
tiimit to the broadcasting period T'.

As in [13], we adopt the random waypoint mobility
model. Both beacons and sensors are mobile and initially
iid randomly distributed within a 500m x 500m square
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area. They iid randomly select a destination within the
same square and start moving towards this destination
with a velocity v iid randomly selected within the interval
[0, Vmaz] Where vp,q, is the maximum velocity that sen-
sors can reach. Once they reach their goal, sensors select
another destination, another velocity and proceed imme-
diately, without any pause. We note that when sensors
constantly move, the ELA algorithm remains constantly
in Phase 1.

Figure 27 reports on the convergent behavior of ELA
in mobile networks. We simulate networks of size 500
where mobile sensors are initially iid randomly positioned
within a square area. The networks contain sixteen mobile
beacons, the average number of neighbors in the mobile
network is thirteen. The graph presents the evolution of
the MAE on position estimation over time. Note that the
time unit is equal to the broadcasting period 7. We test the
behavior of the networks for various maximum velocities
varying from 0% to 160% of the radio range per time unit.
Unsurprisingly, we observe that the slower the maximum



velocity is, the better ELA performs. We note that for
maximum velocities of up to 40% of the radio range per
time unit, the MEA on position estimation remains below
50% of the radio range.

In Figure 28, we observe the variations of ELA per-
formance in mobile networks according to the number
of beacons and the average number of neighbors. The
experimental setup is similar to the one of the previous
experiment except that the maximum speed is 50% of
the radio range per time unit. We observe that the MAE
on position estimation steadily improves as the number
of beacons increases and reaches 30% of the radio range
in the best case. Low connectivity negatively impacts the
results. In particular, we observe that an average number
of neighbors less than thirteen is not suitable for mobile
networks with sixteen beacons and a maximum speed of
55% of the radio range per time unit.

Figure 29 compares ELA to MCL [13], a localization
algorithm for mobile sensor networks using Monte Carlo
filtering techniques. We simulated networks containing
320 sensors and where the average number of neighbors
is ten. As in previous experiments, the sensors are iid
randomly distributed within a square area. We observe
that ELA performs better than MCL for networks con-
taining less than 15% of beacons. When the number of
beacons exceeds 15%, MCL and ELA perform equally
well. We note that the communication overhead of ELA
is higher than the one of MCL. Indeed, MCL sensors
only broadcast information about themselves and recently
heard beacons while ELA sensors broadcast information
about themselves, their one-hop neighbors, and their ;4.
closest beacons.

V. CONCLUSION AND FUTURE WORK

ELA is a distributed, scalable, robust, efficient, and
accurate algorithm. It only assumes that a few percent
of the sensors know their real physical position and that
an estimation of the maximum communication range is
available. It operates with any kind of network topology
and no time synchronization algorithm is necessary for its
functioning. Additionally, ELA behaves remarkably well
in presence of asymmetry, packet loss, and mobility. It
also tolerates errors on maximum radio range and beacon
position estimations. Furthermore, ELA performs better,
in terms of localization error, than four state of the art
algorithms in conducted experiments.

ELA still necessitates further study. Particulary, we are
interested in implementing ELA on a real WSN platform.
In addition, we are working on using received radio power
and angle of arrival to further improve the performance
of ELA. We also note that all our equations remain

valid when the sensors are distributed within a three
dimensional space and consider testing the performance
of ELA in such a space. Finally, we attempt to adapt ELA
to heterogeneous networks that use various sensors with
different radio range capabilities.
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