
EUROGRAPHICS - IEEE VGTC Symposium on Visualization (2005), pp. 1–8
K. W. Brodlie, D. J. Duke, K. I. Joy (Editors)

Scalable, Robust Visualization of Very Large Trees

Dale Beermann † and Tamara Munzner‡ and Greg Humphreys†

Abstract
The TreeJuxtaposer system [MGT∗03] allowed visual comparison of large trees with guaranteed visibility of land-
marks and Focus+Context navigation. While that system allowed exploration and comparison of larger datasets
than previous work, it was limited to a single tree of 775,000 nodes by a large memory footprint. In this paper, we
describe the theoretical limitations to TreeJuxtaposer’s architecture that severely restrict its scalability. We pro-
vide two scalable, robust solutions to these limitations: TJC and TJC-Q. TJC is a system that supports browsing
trees up to 15 million nodes by exploiting leading-edge graphics hardware while TJC-Q allows browsing trees
up to 5 million nodes on commodity platforms. Both of these systems use a fast new algorithm for drawing and
culling and benefit from a complete redesign of all data structures for more efficient memory usage and reduced
preprocessing time.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Graphics data structures
and data types

1. Introduction

Many domains require the manipulation and com-
prehension of complex hierarchical datasets. To ad-
dress this need, many visualization systems have been
developed that support interactive browsing of large
trees [CN02, LRP95, Mun98, PGB02]. Despite the continu-
ing progress in scalability, such as the recent TreeJuxtaposer
system that handles up to 775,000 nodes [MGT∗03], dataset
size has grown as well, and many important datasets outstrip
our ability to explore them interactively. For example,
reconstructing the ancestral relationships between all known
species on Earth, a tree estimated to contain at least 10
million leaves, is a current grand challenge for evolutionary
biologists [Pen03]. Genealogical trees contain hundreds of
millions of human names [Anc04]. The ability to explore
the huge proof trees traversed by automated theorem provers
could help people steer verification systems out of currently
intractable computational bottlenecks [TBK92].

In this paper, we present two systems: TJC, which allows
interactive browsing of trees of up to 15 million nodes on
recent graphics hardware, and TJC-Q, for browsing trees up
to 5 million nodes on commodity machines. Both support

† University of Virginia, {humper,beermann}@gmail.com
‡ University of British Columbia, tmm@cs.ubc.ca

the accordion drawing technique, recently developed in the
TreeJuxtaposer (TJ) application [MGT∗03].

Accordion drawing has two key characteristics: a stretch-
and-squish navigation metaphor, and guaranteed visibility.
This requirement that marked objects be visible at all times,
even when they fall into highly compressed screen-space re-
gions smaller than one pixel, cannot be met by straightfor-
ward drawing, culling, and picking algorithms. The benefit
of this guarantee is drastically reduced navigation time for
tasks where it is possible to accurately mark regions of inter-
est, as discussed previously [MGT∗03].

TJ was originally designed to facilitate both browsing
trees to build a mental model of their topological structure,
and structural comparison between two or more trees. In this
work, we focus only on the task of browsing. We do so for
much larger datasets than could be handled previously by
introducing more robust and scalable algorithms.

1.1. Challenges

We address four key challenges in the interactive exploration
of very large hierarchical datasets:

Memory FootprintWe limit ourselves to a process size of
2GB in order to use standard operating systemmemory man-
agement facilities. Fitting a tree of 15 million nodes into
2GB requires using an average of only 143 bytes per node.

submitted to EUROGRAPHICS - IEEE VGTC Symposium on Visualization (2005)



2 D. Beermann & T. Munzner & G. Humphreys / Scalable, Robust Visualization of Very Large Trees

Of course, simply browsing the topological structure of a
tree would be of little use without also drawing textual la-
bels for a significant fraction of the nodes, so storage for
those strings is included in our per-node memory budget.

Pre-processing Time The need for minimal startup time
is an important aspect of software usability. At startup, we
must not only parse the entire tree, but also carry out any
pre-processing steps of spatial layout and data structure cre-
ation.

Drawing and Culling An ideal drawing algorithm would
render only the visible parts of the scene even when faced
with high depth complexity, while guaranteeing visibility
of any marked areas even if they are shrunk to subpixel
size. If the guaranteed visibility constraint is relaxed, then
straightforward approaches to drawing and culling, as in
[vWvdW99], would suffice and the amount of work to be
done would be proportional to the size of the screen. How-
ever, ensuring mark visibility makes these problems more
difficult. The quadtree-based TJ algorithm works for trees
of a few hundred thousand nodes, but the culling is incor-
rect for trees of millions of nodes, and gaps may appear in
some places where edges should be visible. Their algorithm
also incurs large performance penalties by carrying out ex-
cessive overdrawing and maintaining a sorted priority queue
of items to be drawn.

Edge Picking Using a mouse to select edges in a scene
should incur as little computational overhead as possible.
Mouse-based picking presents a sampling problem: the
mouse location is given as integer pixel coordinates, but
the true resolution of the structure being drawn can be
much more fine-grained. This mismatch is particularly se-
vere when considering our nonlinear distortion-based ap-
proach to navigation. A robust system should allow the user
to pick any geometric item that is drawn.

1.2. Contributions

TJC and TJC-Q provide scalable accordion drawing with
new data structures that use far less memory than those of TJ,
improved algorithms to drastically increase drawing speed,
and a completely new approach to picking that uses cutting-
edge graphics hardware to provide pixel-accurate picking
while saving both time and memory.

Redesigned Architecture We have created a scalable sys-
tem through careful redesign. Every data structure has been
carefully considered and either eliminated or redesigned to
reduce both memory footprint and startup cost. Our architec-
ture can handle trees of 5 million nodes on commodity plat-
forms, and 15 million nodes on systems with leading-edge
graphics hardware.

Edge Drawing We present a new unified algorithm for
drawing and culling edges. This method ensures that no vis-
ible gaps appear, avoids most overdrawing, guarantees the

visibility of marked areas, and is fast enough to draw the
entire scene in less than a second for any tree size on a
workstation-resolution display.

Edge Picking We present a new robust picking algorithm
that exploits modern graphics hardware, allowing us to re-
place large data structures with lightweight ones that can be
created quickly. We solve the aforementioned sampling mis-
match by using multiple rendering targets to determine the
edge that is the current focus of user interaction.

2. Previous Work

TJC and TJC-Q were inspired by the TreeJuxtaposer (TJ)
system and its accordion drawing technique [MGT∗03]. TJ
was written in Java, whereas we have chosen to work in
C++. Although the language switch does reduce our memory
requirements somewhat, the primary reductions come from
our new data structures and architecture. The switch does
affect processing time, especially the time to parse a file.

Many tree drawing systems have been presented in a vari-
ety of application domains. The recent survey of Herman et
al. discusses over one hundred systems for interacting with
visual representations of trees and graphs [HMM00], but few
are scalable. The TreeMap approach to visualizing large hi-
erarchies has recently been scaled up to trees of one million
nodes [FP02], but their space-filling approach is suitable for
exploring attribute values of the nodes rather than topologi-
cal structure.

Many application-specific tree drawing systems are use-
ful for only small datasets because the only navigational
controls are panning and rigid zooming. PhyloDraw is
one of many examples in the application domain of phy-
logeny [CJKC00]. The TreeWiz system for exploring phylo-
genetic trees can accomodate trees of 50,000 nodes [RBB02]
by aggregating subtrees into supernodes to avoid visual clut-
ter, but the exploration method is extremely disorienting:
clicking on an aggregated node spawns a new window show-
ing its subtree.

In these approaches the screen area required to lay out
a tree grows exponentially as its depth increases, so details
are too small to comprehend when looking at an overview
of the entire tree, and panning around the tree after zoom-
ing in to see details can be extremely disorienting. The idea
of using surrounding context to help people stay oriented
when investigating the details of large datasets has been ex-
tensively explored in the information visualization literature
under the name Focus+Context [LRP95]. Among the most
scalable were systems that used the mathematics of hyper-
bolic geometry for a fisheye-like effect, with trees of around
10,000 nodes in the 2D case and 100,000 nodes in the 3D
case [Mun98]. Although these systems were effective for
browsing large local regions of trees, users still lost track
of their global location in very large trees.

TJ addresses this problem with the global Focus+Context

submitted to EUROGRAPHICS - IEEE VGTC Symposium on Visualization (2005)



D. Beermann & T. Munzner & G. Humphreys / Scalable, Robust Visualization of Very Large Trees 3

Figure 1: TreeJuxtaposer Quadtree Structure. The bottom
level of the quadtree defines a grid with vertical lines be-
tween each level of the topological tree and horizontal lines
between each leaf. As the size of the tree grows, the cells be-
come much wider than they are tall. For roughly balanced
trees, increasing the size of the tree by one level halves the
height of a cell while the width is made only slightly smaller.

navigation metaphor of a stretchable rubber sheet with its
borders tacked down, as named by Sarkar et al. [SSTR93].
The accordion drawing technique proposed by TJ com-
bines this rubber sheet metaphor with guaranteed visibility
of landmark regions. SpaceTree [PGB02] and Degree-Of-
Interest Trees [CN02] are Focus+Context tree visualization
systems that use aggregate glyphs to show surrounding con-
text for the data, whereas the opposite accordion drawing
approach strives for the highest possible information den-
sity. This choice imposes significant challenges, requiring
aggressive culling to achieve realtime rendering. However,
the lightweight interaction of simply moving the mouse in-
side the window allows users to quickly explore a large frac-
tion of their datasets without the overhead of explicit naviga-
tion. The stretch-and-squish approach allows for extremely
fluid navigation when the user does choose to do so.

3. Quadtree Limitations in TreeJuxtaposer

TJ relies heavily on a quadtree to support accordion drawing.
The quadtree serves four main purposes: placing nodes in
screen space, culling to terminate recursive drawing, draw-
ing edges in sorted order, and spatial subdivision for picking.
The use of a quadtree has several drawbacks when trying to
work with trees containing several million nodes. In this sec-
tion, we discuss the quadtree used by TJ and its limitations,
motivating the improvements we present in later sections. In
overcoming these limitations, we were able to remove the
quadtree entirely, allowing us to meet our memory require-
ments.

3.1. Placing Nodes

We use the term GridCell for nodes in the quadtree,
to distinguish them from the TreeNodes in the topologi-

cal tree. In TJ, the GridCells at the bottom level of the
quadtree form a grid in which to place TreeNodes. Mun-
zner et al. [MGT∗03] describe how to extend a standard
quadtree to support distortion-based navigation by encoding
the position of lines in the grid relative to each other in a hi-
erarchical structure. Both lookup and update of the absolute
position of a line in space can be done in logarithmic time
relative to the number of leaves in the topological tree, due
to the hierarchy shown in Figure 1. The user can stretch or
shrink the quadtree by dragging lines of the grid closer to-
gether or further apart. Any interaction therefore creates a
global deformation of the tree.

3.2. Culling

After TJ’s quadtree is created, TreeNodes are attached to
GridCells to create a relationship between the TreeN-
ode and its screen-space extent. The bounding box for that
node is defined by its horizontal edge (connecting the node
to its parent), and its vertical edge (connecting the node to
its children). A node is attached to the lowest GridCell in
the quadtree that completely encloses it. The bounding box
of a GridCell thus provides an upper bound on the screen-
space extent of all edges attached to it and to its children. TJ
uses the GridCell size as a heuristic to determine whether
or not edges attached to a GridCell should be visible and
should therefore be drawn.

When rendering very large trees, basing the culling de-
cision on GridCell properties is not a scalable solution
for two reasons. First, the correspondence between the spa-
tial extents of a GridCell and its attached edges becomes
more distorted as the size of the tree increases. As the num-
ber of leaves in the tree increases and the tree stays roughly
balanced, the GridCells become much wider than they
are tall (Figure 1). When this happens, the GridCell is
a poor approximation of the true bounding box, and testing
whether a GridCell’s area or height is less than a pixel is
an incorrect termination condition for the recursive drawing
procedure, resulting in visible gaps in the rendering.

Even if we compute the exact bounding box of the edges
attached to a GridCell, a second problem remains. The
spatial extent of those edges is different than the spatial ex-
tent of the subtrees formed by their descendants in the topo-
logical tree. The latter extent is needed for a correct termi-
nation test because the subtree can fall outside the spatial
region represented by the GridCell. In this case, culling
the edges attached to a GridCell would also result in in-
correctly culling edges outside that GridCell, due to the
drawing algorithm discussed in the next section.

3.3. Drawing

Drawing in TJ is handled with a progressive rendering ap-
proach. The core assumption is that the number of geomet-
ric items to draw in the scene will often outstrip the capa-

submitted to EUROGRAPHICS - IEEE VGTC Symposium on Visualization (2005)



4 D. Beermann & T. Munzner & G. Humphreys / Scalable, Robust Visualization of Very Large Trees

y2 y2

y1 y1

Figure 2: Subtree Culling. Left: For any given subtree, we
check the top-most and bottom-most leaves (marked in red)
to determine if they map to the same pixel. Right: If so, then
the entire subtree maps to the same row of pixels, with y-
coordinate y2. We can then draw only the edges between the
root of the subtree and the top-most leaf, marked in red. This
flattened path maps to a single straight line on the screen.

y1

y2

1

2

9

10

13

3

6

15

14

12

11

7

5

4

8

Figure 3: Guaranteeing the visibility of marked edges in a
small subtree. For the subtree starting at node 1, we must
continue descending into the tree until we find a subtree that
is either homogeneous, or either the top or bottom flattened
path of all edges from the root to the top-most leaf is com-
pletely marked. For the subtree starting at node 9, we see
that all edges along the line from the root to the top-most
leaf are marked, and we only need to draw the flattened path
of edges for nodes 9, 10, and 11.

bilities of the graphics pipeline. Therefore, drawing items
in order of “importance” would allow both interactivity and
a good view as the scene is gradually filled in. Items are
drawn by popping a GridCell off a queue and drawing all
of its attached edges. Those edges’ parents’ and children’s
enclosing GridCells are then enqueued. In order to avoid
confusing intermediate views, they sort the queue accord-
ing to local topological coherence in order to maximize the
context around the starting points. The queue is seeded with
the GridCell in which interaction last occurred, and one

GridCell from each active set of landmarks (which are
guaranteed to be drawn).

The queue of GridCells is implemented using the Java
TreeSet data structure, a sorted, balanced, binary tree that
supports logarithmic insertion and deletion. The number of
nodes in the queue is frequently a major fraction of all visi-
ble nodes, so the computational overhead of this approach is
considerable. This overhead causes performance to be lim-
ited by the bookeeping task of maintaining the queue, and
yields graphics performance two orders of magnitude less
than the raw capabilities of the graphics accelerator.

3.4. Picking

Quadtrees provide support for picking objects in the scene
by using a logarithmic-time recursive traversal from the node
to any leaf. Although the resolution of the quadtree subdi-
vision is bounded only by floating-point precision, mouse
events are reported in integer screen coordinates. This mis-
match causes a serious problem for sufficiently large trees,
where a GridCell can only be reached through a mouse
event if the GridCell is larger than a pixel in both dimen-
sions, or it straddles the border of two pixels.

In dense areas of the tree, there is a pickable edge at every
mouse position, so the fact that some edges are unpickable
is not usually a problem. However, in sparse areas of the
tree, a single edge might be plainly visible but unpickable.
Although expanding that region is one approach to making
the desired edge pickable, requiring such navigation could
interfere with the user’s exploratory intent.

4. Combining Drawing and Culling

We present a new drawing and culling algorithm that elimi-
nates all visible gaps, avoids most overdrawing, guarantees
the visibility of marked areas, and is fast enough to draw the
visible parts of a 15-million-node dataset in less than one
second.

Our method avoids the use of heuristics by exploiting the
relationship between a subtree’s structure and its pixel co-
ordinates. For any subtree, we find the current absolute lo-
cation of its two boundary leaves (Figure 2). If these two
leaves map to the same pixel in screen space, then the en-
tire subtree will map to a horizontal row of pixels. We can
then draw only the single path from the subtree’s root to its
topmost leaf.

This approach still supports TreeJuxtaposer’s notion of
guaranteed visibility. We can check for marks in a subtree
by comparing the range of nodes in the subtree to a list of
marked ranges in the entire tree (Figure 3). If we use node
indices from either a preorder or a postorder traversal of the
tree, then subtree ranges are exact [MGT∗03]. When we find
a flattened path from the root to either the top or bottom leaf

submitted to EUROGRAPHICS - IEEE VGTC Symposium on Visualization (2005)



D. Beermann & T. Munzner & G. Humphreys / Scalable, Robust Visualization of Very Large Trees 5

we can safely cull the rest of the subtree if it is entirely ei-
ther marked or unmarked. If there is a mix of marked and
unmarked nodes in the subtree we must continue our recur-
sive descent into the subtree. The pathological worst case of
a tree where all the leaves (but none of the interior nodes)
are marked does not arise in practice because users typically
mark entire subtrees.

Both drawing and culling are now based entirely on tree
topology, and do not depend on any properties of Grid-
Cells. In addition, there is now little benefit to drawing
items in order of “importance”, because our drawing algo-
rithm requires a nearly constant amount of work after the
dataset size surpass a particular point (Table 1). We elimi-
nate the extreme performance penalty of updating a sorted
queue of items to be drawn, instead using a simple FIFO.
The time to draw large trees is now determined entirely by
the size of the screen.

5. Robust Picking in Hardware

As we discussed in section 3.4, TreeJuxtaposer’s quadtree-
based picking method makes some visible objects unpick-
able. We instead handle picking by exploiting leading-edge
graphics hardware capabilities, eliminating the need for
quadtree traversal. Recent graphics hardware supports an ex-
tension to OpenGL allowing multiple render targets [Arc02].
This extension gives us the ability to draw encoded edge
identifier information into an offscreen buffer at the same
time that we draw color into the draw buffer.

The edge identifier is specified using OpenGL’s secondary
color state, and a simple fragment program directs the edge
color into the framebuffer for display, and the identifier into
the offscreen picking buffer. When we need to know what
edge a mouse event refers to, we simply read back a pixel
from this buffer and use the results to find the chosen edge.
Because we only read a single pixel, this picking method is
extremely fast. It also eliminates the need for the quadtree,
giving dramatic memory savings. Currently this technique
supports trees of up to 16 million nodes because of the 24-bit
precision of OpenGL’s secondary color. However, it would
be trivial to use the 32-bit primary color to encode the edge
identifier, and use the 24-bit secondary color to draw the
edges in the framebuffer.

6. Replacing Quadtrees with Grids

The approaches described above for fast and accurate
culling, drawing, and picking eliminate the need for a
quadtree. However, we still need to support the stretchable
navigation of accordion drawing. We employ a lightweight
grid data structure where horizontal and vertical lines are
decoupled from each other and stored separately. Our grid
structure is very similar to the O-buffer, extended to sup-
port our navigational needs [QK04]. Figure 4 shows that we

Stokesia

Tagetes

Dimorphoteca

Senecio

Gazania

Gerbera

Echinops

Felicia

Chromolaena

Blennosperma

Coresposis

Figure 4: Grid Structure. We replace the quadtree with a
lightweight hierarchical grid that still allows stretchable
navigation, but with decoupled horizontal and vertical lines.
Each line is represented by a split value with respect to a set
of two parent lines, shown by maroon annotation lines. Each
node has a row index for a horizontal reference line plus a
vertical offset from it (magenta), plus a column index for a
vertical reference line plus a horizontal offset (green).

still use a hierarchical approach of storing the relative dis-
tance where a child line forms a split between two parent
lines. Every TreeNode in the topological tree stores a row
index and vertical offset from the split line for that row, and
similarly a column index and horizontal offset. The sepa-
rate arrays of p vertical lines and q horizontal lines leads to
an O(p+q) memory cost for our grid, which is far cheaper
than the O(p ∗ q ∗ log(p ∗ q)) upper bound for a quadtree.
Moreover, building this data structure is fast enough that the
time it takes to build it is greatly outweighed by the time to
parse the file, as shown in Figure 6.

7. Low-Memory Quadtrees

In Section 5 we presented an algorithm that supports pick-
ing through graphics hardware rather than quadtree traversal,
but that approach depends on cutting-edge graphics hard-
ware. Many potential users of our tree visualization system
will be using commodity platforms. We present TJC-Q, a
second system that runs on commodity hardware and uses
quadtrees with a drastically reduced memory footprint. TJC-
Q can handle trees of 5 million nodes, a factor of three less
than the 15 million nodes of the quadtree-free TJC.

The critical factor in reducing memory consumption is re-
ducing the per-object memory cost as our data structures
contain several million objects. We use inheritance as one
method to decrease memory usage, creating separate leaf
cell and interior cell classes derived from a common par-
ent. The three major types of data that GridCells contain are

submitted to EUROGRAPHICS - IEEE VGTC Symposium on Visualization (2005)



6 D. Beermann & T. Munzner & G. Humphreys / Scalable, Robust Visualization of Very Large Trees

structural pointers, edge attachments, and positional splits.
All GridCells need a structural pointer to the parent Grid-
Cell. Interior cells require four structural pointers to child
GridCells, but leaf cells do not.

Leaf cells also do not require any edge pointers: edges can
only be attached in the interior because they always span at
least two leaf GridCells. For interior cells, we store edge
pointers in a resizeable vector because the number of at-
tached edges cannot be know a priori. The STL [Sil94] vec-
tor class has a slightly higher static overhead than we would
like, and their policy of growing vectors by doubling in size
greatly increases the required memory. We use a simple vec-
tor class, requiring 8 bytes to store the index and array size,
and a growth policy that states that array size is incremented
by a constant value of 4 items. This policy guarantees a max-
imum of 12 unused bytes per vector in the worst case of 3 un-
used pointers. The number 4 was selected after experiments
showed it to be a good compromise between increased run-
ning time from memory copying and increased memory size
from unused items.

The third kind of GridCell data is positional informa-
tion pertaining to the split lines that form cell boundaries.
In TreeJuxtaposer, each GridCell stores an index to the ar-
rays holding the relative split values in both the vertical and
horizontal directions, and the computed absolute position of
the lines that form its four boundaries and two splits in both
world and screen coordinates. First, leaf cells do not need
to store split information. More importantly, we observe that
the same position information is redundantly stored when
we attach it to a GridCell rather than the line in question. Al-
though the combination of these twelve absolute positions is
unique for each GridCell, any one of these values is shared
by multiple GridCells and thus computed multiple times and
cached in multiple places. For instance, the same line would
correspond to the bottom of every GridCell in a row, the top
of every GridCell in the next row, and also the split or top or
bottom of many other GridCells at different quadtree levels.

The lightweight line-based grid described in the previous
section is exactly the right data structure to store this ab-
solute position information. In TJC-Q each GridCell only
stores a pointer to the vertical and horizontal grid lines that
form the two splits. This change brings three benefits; first,
the obvious per-object memory reduction. Second, updating
the node position between frames is much faster because up-
dated grid line values are shared between multiple GridCells
rather than being updated for each one. Finally, these in-
dices can also be initialized dynamically as we create the
quadtree, removing the need for a post-process traversal of
the quadtree data structure.

8. Results

We have addressed the four main challenges in drawing ex-
tremely large trees: minimizing memory use, minimizing

Figure 5: Data Structure Sizes. We compare the theoretical
memory requirements of the quadtree-based TreeJuxtaposer
(TJ), the optimized quadtree of TJC-Q, and the lightweight
grid of TJC. These theoretical numbers were generated by
inspecting class fields rather than instrumenting a running
executable, so as not to include overhead due to language
differences. As expected, the required memory for each data
structure grows linearly, but the constant factor is smaller
with TJC-Q and much smaller with TJC. Note that these
numbers do not include edge attachment information for
reasons described in Section 8.

startup time, correct and efficient drawing, and correct pick-
ing. We present two results: the TJC system that exploits
leading-edge graphics hardware to handle trees of 15 mil-
lion nodes, and the TJC-Q system that handles trees of 5
million nodes on commodity hardware. These systems al-
low users to browse trees much larger than the previous TJ
limit of 775,000 nodes, giving dataset size improvements of
up to 1.2 orders of magnitude. We also note that the num-
bers published in the original TJ paper for a single tree used
a Java heap of 1100MB, allowing for a maximum tree size of
550,000 nodes. Increasing the heap size allowed us to view
a slightly larger tree. All results in this paper are from an
Athlon 1800 with 2GB of memory and an ATI Radeon 9800.

Figure 5 compares the memory required for the three data
structures in the quadtree-based TJ, the quadtree-lite TJC-Q,
and the quadtree-free TJC. Both TJC and TJC-Q use a grid
data structure whose size depends on the width p (number
of leaves) plus the height q (number of levels) of the grid,
rather than on n, the total number of nodes in the tree. Topo-
logical trees with n TreeNodes require a quadtree with ap-
proximately 2 ∗ n GridCells. TJ stores this grid information
redundantly, requiring the larger memory cost. The TJC-Q
quadtree avoids the extra cost for the grid and gains a large
benefit from the architectural redesign stated in Section 7.

submitted to EUROGRAPHICS - IEEE VGTC Symposium on Visualization (2005)



D. Beermann & T. Munzner & G. Humphreys / Scalable, Robust Visualization of Very Large Trees 7

Figure 6: TJC Startup Times. The bulk of startup time is
spent on the unavoidable task of parsing the file. Prepro-
cessing time refers to a tree traversal which initializes cer-
tain data members such as the row and column for any node.
The sorting time is an optional addition.

Nodes in Tree w/ Cull w/o Cull Nodes Drawn

7161 0.030 0.037 5846
35346 0.106 0.145 23648
190265 0.216 0.746 51255
524287 0.092 1.566 40940
1048575 0.113 3.042 31522
2097151 0.140 6.077 37293
4194303 0.192 12.60 43538
8388607 0.239 24.66 50356
14680061 0.286 —— 56137

Table 1: Drawing Performance. We show two performance
measures for our drawing and culling algorithm: the time
to draw the scene with vs. without culling, and the number
of nodes drawn (with culling). Our new method achieves a
near-constant drawing time for any size tree. Note that for
the largest tree, we are not able to enqueue all nodes in the
tree as the size of the vector grows too large for the applica-
tion to fit in main memory.

Replacing the TJC-Q quadtree with the TJC grid allows us
to handle datasets three times larger.

The quadtree numbers shown in Figure 5 are also quite
conservative. We do not include edge attachment informa-
tion, as the TJC-Q vectors for edge attachment are slightly
different than TJ’s, and TJ can only handle trees up to
775,000 nodes so this information would be an estimate any-
way. Nonetheless, the figure still shows that we have suc-
ceeded in drastically reducing the per-object memory cost.
TJ required 1.4GB of memory to handle 786,000 nodes, for
a total per-node cost of 1912 bytes, whereas TJC can han-

dle 14.68 million nodes with 1.7GB of memory, for a total
per-node cost of 124 bytes.

Our second challenge was reducing the startup time re-
quired to view a dataset. For a tree of 512K nodes, TJ re-
quired a total of 14.1 seconds for parsing, and 63.1 seconds
of preprocessing time. TJC offers an order of magnitude
speedup, requiring 2.2 seconds for parsing and 1.4 seconds
of preprocessing time. A large part of our preprocessing time
is taken up by an optional sort, as shown in Figure 6, which
allows the user to search for a particular node by name. If
this capability is not required, we can build our data struc-
tures in a fraction of the parsing time. We use the standard
engineering solution of Flex and Bison for parsing in order
to concentrate on the research pieces of the problem.

One way to evaluate the success of our new drawing and
culling algorithm is to consider the number of nodes drawn
compared to the total number of nodes in the tree. As we dis-
cuss in Section 3.2, the scalability limits in the old method
meant that to avoid spurious gaps in the image, every node
in the tree had to be drawn. The effectiveness of our new al-
gorithm in reducing that number is demonstrated in Table 1.
We achieve a near-constant drawing time even as tree size
increases because the number of nodes drawn grows very
slowly compared to the size of the tree itself. The slow in-
crease in the drawing occurs because some new nodes can be
drawn in formerly sparse regions of the screen. The greatly
improved drawing speed allows users to see much more
global context while interacting with the tree.

9. Future Work

If we could improve rendering speed slightly, we could com-
pletely eliminate the rest of the progressive rendering over-
head. Flushing the graphics pipeline is expensive, and its
elimination would result in an even larger increase in ren-
der speed. We are still limited by the time it takes to update
the grid hierarchy rather the time it takes to draw the tree.

We would also like to explore better methods for guar-
anteed visibility. Our current method does not perform well
when many leaves deep in the tree are marked, as we need
to continue to descend into the tree until we find them. This
case does not seem to appear in practice, but nonetheless
could be a potential problem. Although our current method
is fast enough that even if the entire tree needs to be drawn
the user will only have to wait for a short period of time;
a method that eliminates rather than avoids overdrawing
would be appealing.

10. Conclusion

We have identified the theoretical and practical limitations of
using quadtree-based methods to draw large trees, and sur-
mounted these restrictions with new algorithms. We present
two new systems: TJC exploits leading-edge graphics hard-
ware for picking, allowing us to completely eliminate the

submitted to EUROGRAPHICS - IEEE VGTC Symposium on Visualization (2005)



8 D. Beermann & T. Munzner & G. Humphreys / Scalable, Robust Visualization of Very Large Trees

Figure 7: Screenshot ofTJC during interaction, running on
a tree of 14.6 million nodes with a window size of 1024x768.

quadtree and scale to datasets of 15 million nodes, a size im-
provement of more than an order of magnitude beyond pre-
vious work. The TJC-Q system provides an order of magni-
tude increase on commodity platforms, because of our dras-
tic reduction in the quadtree memory footprint. For trees
of 15 million nodes, the TJC system can carry out all pre-
processing within two minutes, and display the entire tree in
less than one second.

Acknowledgements

We would like to thank Mark Segal at ATI for his extremely
patient help in debugging our countless GPU problems and
François Guimbretière for his early input and support.

References

[Anc04] ANCESTRY WORLD TREE:.
http://www.ancestry.com/trees,
cited April 9 2004. 1

[Arc02] ARCHITECTURAL REVIEW BOARD: ARB
ATI_draw_buffers Specification, Dec 2002.
5

[CJKC00] CHOI J.-H., JUNG H.-Y., KIM H.-S., CHO
H.-G.: PhyloDraw: A phylogenetic tree
drawing system. Bioinformatics 16, 11
(2000), 1056–1058. 2

[CN02] CARD S. K., NATION D.: Degree-of-
interest trees: A component of an attention-
reactive user interface. In Proc. Advanced
Visual Interfaces (AVI) (2002), pp. 231–245.
1, 3

[FP02] FEKETE J.-D., PLAISANT C.: Interactive

information visualization of a million items.
In Proc. InfoVis (2002), pp. 117–124. 2

[HMM00] HERMAN, MELANÇON G., MARSHALL
M. S.: Graph visualization and navigation
in information visualization: A survey. IEEE
Trans. Visualization and Computer Graphics
6, 1 (2000), 24–43. 2

[LRP95] LAMPING J., RAO R., PIROLLI P.: A
Focus+Content Technique Based on Hyper-
bolic Geometry for Viewing Large Hierar-
chies. In Proc. CHI ’95 (1995), pp. 401–408.
1, 2

[MGT∗03] MUNZNER T., GUIMBRETIÈRE F.,
TASIRAN S., ZHANG L., ZHOU Y.:
TreeJuxtaposer: Scalable tree comparison
using Focus+Context with guaranteed visi-
bility. ACM Trans. Graph. (SIGGRAPH) 22,
3 (2003), 453–462. 1, 2, 3, 4

[Mun98] MUNZNER T.: Drawing Large Graphs
with H3Viewer and Site Manager. In
Proc. Graph Drawing, LNCS 1547 (1998),
Springer-Verlag, pp. 384–393. 1, 2

[Pen03] PENNISI E.: Modernizing the tree of life.
Science 300, 5626 (13 June 2003), 1692–
1697. 1

[PGB02] PLAISANT C., GROSJEAN J., BEDERSON
B.: SpaceTree: Design evolution of a node
link tree browser. In Proc. InfoVis (2002),
pp. 57–64. 1, 3

[QK04] QU H., KAUFMAN A. E.: O-buffer: A
framework for sample-based graphics. IEEE
Trans. Vis. Comput. Graph. 10, 4 (2004),
410–421. 5

[RBB02] ROST U., BORNBERG-BAUER E.: Treewiz:
interactive exploration of huge trees. Bioin-
formatics 18, 1 (2002), 109–114. 2

[Sil94] SILICON GRAPHICS INC.: Standard Tem-
plate Library Programmer’s Guide, 1994. 6

[SSTR93] SARKAR M., SNIBBE S. S., TVERSKY
O. J., REISS S. P.: Stretching the Rub-
ber Sheet: A Metaphor for Viewing Large
Layouts on Small Screens. In Proc. User
Interface Software and Technologies (UIST)
(1993), pp. 81–91. 3

[TBK92] THÉRY L., BERTOT Y., KAHN G.: Real the-
orem provers deserve real user-interfaces. In
Proc. 5th SIGSOFT Symp. on Software De-
velopment Environments (1992). 1

[vWvdW99] VAN WIJK J. J., VAN DE WETERING H.:
Cushion treemaps. In Proc. InfoVis (1999),
pp. 73–78. 2

submitted to EUROGRAPHICS - IEEE VGTC Symposium on Visualization (2005)


