High-Performance Routing Trees
With Identified Critical Sinks

Kenneth D. Boesg,
Andrew B. Kahng,
Gabriel Robins

Technical Report No. CS-92-37
November 1, 1992



High-Performance Routing Trees

With Identified Critical Sinks*

Kenneth D. Boese, Andrew B. Kahng and Gabriel Robins'

CS Dept., University of California at Los Angeles, Los Angeles, CA 90024-1596
i CS Dept., University of Virginia, Charlottesville, VA 22903-2442

Abstract

We present critical-sink routing tree (CSRT) constructions which yield high-performance routing
trees by exploiting the critical-path information that may be available during timing-driven layout.
Motivated by analysis of the Elmore delay formula, we propose the CS-Steiner class of heuristics and a
“Global Slack Removal” algorithm; these modify traditional Steiner tree constructions to optimize signal
delay at identified critical sinks. Extensive timing simulations, using industry IC and MCM technology
parameters and a fast simulator based on a 2-pole distributed RCL delay approximation [29], show that
this simple approach affords very significant improvements over existing “performance-driven” routing
tree constructions. Next, we observe that all existing routing tree objectives (e.g., minimum-cost Steiner
[16] or bounded-radius [5]) are heuristic abstractions of the linear or Elmore delay models. We therefore
propose a new class of efficient Elmore routing tree (ERT) constructions, which iteratively add tree edges
that are optimal in terms of Elmore delay. For the CSRT problem, this direct optimization of Elmore
delay yields trees that significantly improve (by averages of up to 69%) upon minimum Steiner routings
in terms of delays to identified critical sinks. Moreover, ERTs serve as generic high-performance routing
trees when no critical sink is specified: for 8-sink nets in 0.8 CMOS IC technology, we improve average
sink delay by 10% and maximum delay by 13% over the minimum Steiner routing. For a typical MCM
technology, the corresponding improvements are 42% and 22%. The ERT approach represents a basic
advance over existing performance-driven routing tree constructions, including such recent works as [1]

[4] [5].
1 Introduction

Due to the scaling of VLSI technology, interconnection delay has become a dominant concern in the design of
complex, high-performance circuits [7, 25]. As a consequence, performance-driven layout design has become
an active area of research over the past several years. Early work in this field centered on performance-driven
placement, where timing-critical paths are determined by static timing analysis, and modules in these paths
are then placed close together (see, e.g., [7, 10, 17, 18, 12, 25]). Later, a number of performance-driven
interconnection algorithms were developed wherein for a given signal net, the typical objective is to minimize
the average (or maximum) signal delay from the source pin to the sink pins. Based on these results, the
prevailing approach to performance-driven layout involves use of static timing analysis to iteratively “drive”

changes within the module placement and the global routing phases.
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Existing performance-driven placement algorithms fall into two general classes:

1. Net-dependent placement algorithms typically use centroid-connected star cost [24], probabilistic es-
timates of Steiner tree cost [12], minimum spanning tree cost [7] or the bounding box semiperimeter
[18] to estimate wire capacitance and signal delay for a multi-terminal net. From this information,
critical timing paths between primary inputs and primary outputs may be computed, after which
module placements are updated to reduce these “net-based” objective functions for signal nets which

lie along the critical paths.

2. Path-dependent placement algorithms are distinguished by their consideration of delay between the
source and a particular critical sink of a multi-terminal net. The critical sink is typically determined
via timing analysis using known module delays and estimated path delays. For example, Lin and
Du [17] use a linear delay approximation so that their method updates the module placement to
reduce the rectilinear distance between sources and critical sinks. Other path-dependent placement

methodologies include those due to Hauge et al. [10] and Teig et al. [26].

If a timing-critical path passes through a given net, the path-dependent approach will afford an explicit rout-
ing constraint which bounds delay at that net’s critical sink. While the net-dependent approach arguably
provides only implicit routing constraints, it is easy to identify critical sinks after the timing analysis has
been performed, or even a prior:i by finding paths in the design that contain more module delays. However,
despite the availability of such critical-path information during the iterative performance-driven layout pro-
cess, current routing methods do not fully exploit this information, thus betraying what might be termed a
“placement-routing mismatch” in existing methodologies. With this in mind, our paper offers two contri-
butions. First, we present new algorithms which directly exploit available critical-path timing information
to yield high-performance routing trees. Second, we propose a much more basic change to current rout-
ing tree approaches: we avoid the abstraction inherent in such previous objectives as “minimum cost” or
“bounded radius”, and instead give a class of greedy heuristics which directly optimize Elmore delay in the

tree construction.

The remainder of this paper is organized as follows. Section 2 gives a formal definition of the eritical-sink
routing tree (CSRT) problem, and in this context discusses existing algorithms in the performance-driven
global routing literature. Section 2 also presents several motivating observations vis-a-vis the desirable
qualities of a “performance-driven” routing tree which optimizes the first-order moment of the impulse
response 1n the distributed RC delay model, i.e., Elmore delay. Section 3 then presents two new classes
of CSRT algorithms. We first describe the CS-Steiner method, which perturbs an existing Steiner tree
construction to directly capture the presence of identified critical sinks. We then propose an efficient class
of Elmore routing tree (ERT) constructions. These generalize to yield good CSRT solutions and are moreover

the first methods to directly optimize Elmore delay, unfettered by heuristic abstractions inherent in previous



routing tree objectives. Our experimental results are presented in Section 4, where we compare delays at
critical sinks in our heuristic tree topologies with analogous delays obtained using the best-performing
efficient Steiner tree heuristic [13]. These results show that both of our methods effectively address the
CSRT formulation, attaining up to 69% ezpected delay improvement to identified critical sinks. Moreover,
we show that the ERT approach yields generic high-performance routing trees in the case where no critical
sink has been identified: for 8-sink nets in 0.8 CMOS IC technology, we improve average sink delay by
10% and maximum delay by 13% over the minimum Steiner routing. For a typical MCM technology, the
corresponding improvements are 42% and 22%. This represents a significant advance over every existing

performance-driven routing tree construction in the literature, including such recent works as [1] [4] [5] [20].

2 High-Performance Routing Tree Design

In our discussion, we say that a signal net N consists of a set of pins or terminals which are to be connected
by a routing tree T(N) in the Manhattan plane. Since module placements are fixed prior to the global
routing stage of layout, we assume that the net N corresponds to a particular set of pin locations N =
{no,n1,...,n;} C R?, where ng always refers to the location of an identified source pin, and the n; (1 < i < k)
are the sinks of the net. We say that the cost of an edge ¢;; in T(N), denoted by d;;, is the Manhattan
distance between the endpoints n; and n; of the edge. The cost of T(N) is simply the sum of its edge costs.
In a given routing tree T'(NV), the signal delay between two terminals n; and n; is denoted by t(n;, n;); we
use the shorthand notation #(n;) to indicate the delay from the source to a sink n;. Finally, we allow each
n; to have an associated criticality «;, reflecting the timing information obtained during the performance-
driven placement phase. Our goal is to construct a routing tree T(N) which minimizes the weighted sum

of the sink delays:

Critical-Sink Routing Tree (CSRT) Problem: Given a signal net N = {ng,ni,...,n;} C 2 with

source ng and possibly varying sink criticalities o; > 0,7 = 1,..., k, construct a routing tree T(N) such
k

that Z a; - 1(n;) is minimized.
1=1

Notice that the CSRT problem formulation is quite general. In particular, traditional performance criteria
for routing trees can be easily captured: (i) we can minimize the average delay to all sinks by using all o; =
some positive constant, then taking the sum of the weighted delays using the L; norm (i.e., the “standard”
sum of magnitudes); and (ii) we can minimize the mazimum delay to any sink by using all o; = some
positive constant, then taking the sum of the weighted delays using the Lo, norm (i.e., the “max” norm).
In the discussion below, we will concentrate on the simple yet realistic case where exactly one critical sink,
denoted by n., has been identified. In other words, we assume that a, = 1 and that all other a; = 0. Our

methods may be generalized to the case where a small number of critical sinks is specified.



2.1 Previous Performance-Driven Routing Approaches

In this subsection, we review previous work with an eye to revealing the rationales for current performance-
driven routing objectives. Many of these objectives can be viewed simply as approximations of the “true”

signal delay #(n;) used in the CSRT formulation.

Much of the early work in performance-driven routing relied on the assumption that an optimal routing
tree corresponds to the minimum Steiner tree over N. For example, the method of Dunlop et al. [§]
uses static timing analysis to yield net priorities, so that the highest-priority nets may be routed by the
minimum Steiner tree with no detours, while lower-priority nets may be routed by suboptimal Steiner trees
due to possible routing blockages. Kuh, Jackson and Marek-Sadowska [15] have given an approach tuned
to hierarchical building-block layouts, and Prastjutrakul and Kubitz [20] use A* heuristic search [19] for a
similar problem domain. The latter work stands out for two reasons: (i) it uses the Elmore delay formula
[9] in its tree optimization (but then implicitly relies on a crude abstraction of signal delay to constrain the
construction, as we discuss below); and (ii) it was one of the first works to allow prescribed upper bounds on
the individual #(n;), an increasingly well-studied formulation which is somewhat orthogonal to the CSRT

problem above.!

In 1991, Cohoon and Randall [3] proposed a heuristic which tried to simultaneously reduce both the
longest source-sink pathlength of the routing tree (which we call the tree radius) as well as the total edge
length in the tree (i.e., the tree cost). A more general approach was given by Cong, Kahng, Robins,
Sarrafzadeh and Wong [4], wherein a parameter ¢ is used to trade off between the radius and the cost
of the routing tree: the longest source-sink distance is used as a lower bound R for the routing tree
radius, and a low-cost routing tree with radius bounded by (1 + ¢) - R is produced. TLater, Cong et al.
[5] proposed the “provably good” BRBC (bounded-radius, bounded-cost) algorithm, which afforded both
radius and cost simultaneously within constant factors of optimal. The BRBC method, along with the work
of Awerbuch et al. [2] and Khuller et al. [14], belongs to the class of what have been called “shallow /light”
tree constructions. These works all achieve a smooth tradeoff between competing minimum radius (i.e.,
“shallow”) and minimum cost (i.e., “light”) interconnection objectives via the same basic idea: make a
depth-first traversal of the minimum spanning tree over N, and if the accumulated pathlength from the

source to some sink becomes too large, modify the tree to reduce that particular source-sink pathlength.

The radius-cost tradeoff may also be viewed as one between (i) the shortest-path tree (SPT) construction
[6], wherein all source-sink paths are as short as possible, and (ii) the minimum spanning tree (MST) or

minimum Steiner tree construction, which has minimum cost. Using this perspective, Alpert et al. [1]

1Formulations which prescribe exact and/or relative delay bounds often require iterative tree constructions to satisfy these
bounds, particularly when the bounds are ill-chosen (e.g., due to incomplete information about the layout) and must be
revised. While our CSRT formulation can only heuristically enforce exact or relative sink delays t(n;), it is more conducive to
the “one-shot” tree construction that may be desired in the global routing phase.



recently proposed the AHHK tree construction of Figure 2.1, which achieves a direct SPT-MST tradeoff.?
They give simulation results showing that AHHK uniformly outperforms the BRBC method of Cong et
al. [5] by averages of between 6.2% and 27.9% in terms of sink delay (this value depends on the net size,
the interconnect technology, and whether average or maximum sink delay is considered). In view of the

superior performance of the AHHK algorithm, we will compare our new methods against AHHK in Section

4 below.

AHHK Algorithm: MST-SPT tradeoff of [1]
Input: signal net N with source ng € N,
tradeoff parameter ¢, 0 < ¢ <1
Output: routing tree T over N
T=(V,E) = (n0,0)
while |V| < |N| do
select n; € V and n; € N —V minimizing (¢- ;) + d;;
/* I; is the pathlength in T from ng to n; */
V= VU{ni}; FE= EU{@Z']'}
output 7'

AR e

Figure 1: AHHK algorithm [1], which outputs a routing tree with MST-SPT tradeoff governed by
parameter ¢, 0 < ¢ < 1. Choosing ¢ = 0 yields an MST, while choosing ¢ = 1 yields an SPT.

Since the minimum Steiner tree is also a bona fide “performance-driven” routing tree (e.g., within the
net prioritization scheme of Dunlop et al. [8] noted above), and moreover still enjoys widespread use,
Section 4 further compares our new routing heuristics against minimum Steiner tree constructions. To
obtain this comparison, we have implemented the 1-Steiner algorithm of [13] (see Figure 2), which gives
the best heuristic performance reported in the literature (i.e., routing tree cost an average of almost 11%
less than MST cost). Analysis of the Elmore model for distributed RC delay indicates the continuing
utility of Steiner tree constructions for certain technology regimes, because of a close relationship between
tree cost and signal delay. However, the formula for Elmore delay also clearly points out regimes wherein
“shallow/light” or AHHK-style routing will be superior to minimum Steiner tree approaches. We now
describe several insights obtained from the Elmore delay model; these serve to motivate our CS-Steiner

class of CSRT heuristics in Section 3.1 below.

2.2 Intuitions From the Elmore Model

For arbitrary signal nets N, the appropriate criterion to use in efficiently constructing “high-performance

routing trees” has not yet been well-established. In this subsection, we develop intuitions regarding the

2The authors of [1] note the following: (1) Dijkstra’s SPT algorithm [6] begins with the trivial tree consisting only of the
source ng, and then iteratively adds the edge e;; and the node n; to the growing T, where n; and n; are chosen to minimize
lj+di; st. nyj €T, ni € N—T (here, [ is the cost of the path from ng to n; in T). (2) Prim’s MST algorithm begins
with the trivial tree consisting only of the source ng, and then iteratively adds the edge e;; and the node n; to the growing T,
where n; and n; are chosen to minimize d;; s.t. n; € T, n; € N —T. (3) A direct combination of these constructions would
begin with the trivial tree, then iteratively add the edge e;; and the node n; to T, where n; and n; are chosen to minimize
(c-1;)+ dij s.t. nj €T, n; € N =T (cis the user-chosen MST-SPT tradeoff parameter, with 0 < ¢ < 1).



Iterated 1-Steiner Algorithm: Steiner tree heuristic of [13]
Input: signal net NV
Output: heuristic minimum rectilinear Steiner tree T over N

. S=0

2. while |S| < |N|+ 1 and 3 1-Steiner point z do
3. S=5uU{z}

4. output MST(N U S)

Figure 2: The iterated 1-Steiner algorithm of [13]. For a given point set P (consisting of N and a set
S of Steiner points), a 1-Steiner point is any point z such that cost(MST(P U {z})) is minimized,
with cost(MST(P U {z})) < cost(MST(P)). Thus, the algorithm iteratively adds interior nodes
(Steiner points) that afford the largest cost reduction in the spanning tree over N U S.

“correct” objectives for critical-sink routing trees, via Elmore’s formula [9] for the first-order moment of
the impulse response when the routing tree is treated as a distributed RC tree. Elmore delay [9] [23] is
computed as follows. Given a routing tree T, we use e; to denote the edge from node v; to its parent when
we toot the tree at 1.3 The resistance and capacitance of edge e; are respectively given by r., and c.,. Let
T; denote the subtree of T' rooted at v;, and let ¢; denote the node capacitance of v;. The tree capacitance
C; of T; is the sum of node and edge capacitances in 7;. The Elmore delay from the source ng to the sink

n; is then expressed as the sum of Elmore delays on the edges of the ng-n; path:*

tpp(no,n;) = S e (e, /24 C). (1)
ewEpath(no,n:)

Since 7., and c., are usually proportional to the length of edge e,, we see that tgp(n;) has quadratic
dependence on the length of the ng-n; path, suggesting a min-radius criterion. However, the (), term
implies that Elmore delay is also linear in the total edge length of the tree which lies outside the ng-n;
path, suggesting a min-cost criterion. Tt should also be noted that Equation (1) implicitly assumes zero
resistance and capacitance at the source node ng, which would imply that the optimal routing tree would
simply connect each sink directly to the source. This unrealistic conclusion can be avoided by representing
the output driver as a wire from a new “virtual source” nj to the original source ng, with the entire routing
tree topology still incident to ng. Varying the length of this wire allows us to capture features of various

interconnect technologies (in particular, the relation of output driver resistance to wire resistance).

In Figure 3, we show a signal net N with identified critical sink n., along with three routing trees: (a)
the 1-Steiner tree, (b) a minimum-cost SPT, and (c) the optimal CSRT with respect to critical sink n..

Based on this example, the example of Figure 3(d), and Equation (1), we make the following observations.

3We use v; instead of n; to accomodate the possibility that a “node” in a Steiner routing tree is a Steiner point rather than
a sink.

4The recursive expression implies that Elmore delay can be evaluated at all sinks of T in linear time, using a depth-first
traversal of the tree [23] [27]. This fact is enabling to our efficient “Elmore routing tree” methodology, which we propose in
Section 3.2.
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Figure 3: Parts (a)-(c): optimal Steiner tree (cost 2.0cm, delay(n.) 5.90ns); minimum cost shortest-
paths tree (cost 2.5cm, delay(n.) 4.11ns); and optimal-delay tree (cost 2.2em, delay(n.) 3.07ns)
for the same sink set. Coordinates shown are in mm, and 0.8 CMOS technology parameters (see
Section 4) were used for simulation purposes. Part (d): two distinct minimum-cost SPT solutions
for a set of three sinks.

1. The 1-Steiner solution (a) has large delay to the critical sink n. due to the long source-sink path.
Recall that Equation (1) (assuming zero driver resistance) suggests that delays will be minimized

when all source-sink paths are as short as possible.

2. However, requiring a monotone path to every sink, as in the SPT (b) (or in the AHHK tree with

parameter ¢ & 1) can result in too large a tree capacitance, again leading to large delay at n..

3. The optimal CSRT construction (¢) not only demonstrates the dependence of routing topology on the

choice of critical sink, but also shows hints of both star-like SPT and min-cost MST solutions.

4. Tf we model variations in technology by changing the nj-no wirelength described above, we see that
when the nfj-ng wirelength is small, monotonicity of source-sink paths is more important than overall
tree cost, so that star-like topologies give better performance. When we increase the length of the
nh-ng wire (i.e., increase the output driver resistance), the Elmore delay depends more on total tree

cost and a minimum-cost routing tree is preferable.’

5. Finally, we observe that according to Equation (1), the number of Steiner points in the ng-n. path
should in general be minimized, and the Steiner points should be “shifted” toward the source ng. (In
Figure 3(d), note that even though the two trees shown are both shortest-path trees and minimum

Steiner trees, the tree on the right has less signal delay at n..)

5The analysis for small driver resistance is increasingly appropriate, e.g., with multi-chip module interconnects; our intuition
supports the use of such radius-cost tradeoffs as in [1] [3] [5]; also cf. the Steiner tree formulation of [21]. The analysis for large
ny-no wirelength reflects the previous generation of IC technologies and confirms the use of minimum Steiner and spanning
tree constructions in existing global routers. Note that because the interconnect objective is so clearly technology-dependent,
our experiments below are performed with respect to interconnect parameters for both IC and MCM technologies.



3 Two Classes of CSRT Heuristics
3.1 The CS-Steiner Approach

Given the observations above, we may characterize the optimal CSRT solution in Figure 3(c¢) as one which
minimizes total tree cost, subject to the path from ng to n. being monotone. This simultaneous consideration
of radius and cost parameters recalls the motivations in [1] [3] [5], but here the tradeoff is formulated with
respect to the critical sink n.. We thus obtain a simple heuristic to address the CSRT problem. Our basic

algorithm, which we call C'S-Steiner, is shown in Figure 4.

CS-Steiner Algorithm
Input: signal net N; source ng € N; identified critical sink n. € N
Output: heuristic CSRT solution T
1. construct heuristic minimum-cost tree Ty over N — n..
2.  form T by adding a direct connection from n, to Tp,
i.e., such that the ng-n,. path in 7" is monotone.

Figure 4: CS-Steiner heuristic template.

The 1dea behind CS-Steiner is extremely simple: construct a minimum-cost Steiner routing tree as usual,
but then “fix” the tree to reflect an identified critical sink.® Since the algorithm template in Figure 4 is
quite general, we have examined a number of CS-Steiner variants. All of our variants use the 1-Steiner
heuristic of Kahng and Robins [13] to construct the initial tree Ty in Step 1. Section 4 reports results for

the following three variants:”

1. HO: The direct connection in Step 2 consists of a single wire from n, to ng.

2. H1: The direct connection in Step 2 consists of the shortest possible wire that can join n. to Tp,

subject to the monotone path constraint.

6Tt is possible to coerce the CS-Steiner approach into the templates of previous methods, although this certainly does
not reflect our motivations. In particular, our use of a minimum spanning tree or heuristic minimum Steiner tree in Step 1
recalls the BRBC algorithm of [5]. Our consideration of only the ng-n. pathlength is similar to invoking BRBC with ¢ = 0
for n. and € = co for all other sinks. Indeed, [5] describes an extension which permits differing ¢; values for each sink n;.
However, the BRBC (1 + ¢;) - R radius bound is maintained with respect to the net radius R, which is a function of all sink
locations. Therefore, even by using ¢, = 0 the BRBC extension cannot enforce a monotone path to the critical sink when
doe < mazidg; = R. The Ph.D. thesis of Robins [22] describes how to enforce distinct ¢; values along with different R; values
at each sink n;. In a sense, the CS-Steiner method resembles setting R, = dop. and e, = 0 in this latter scheme, but our
construction greatly simplifies due to the assumption of ¢; € {0,c0} Vi. It should be noted that the AHHK method [1] cannot
be extended to address the CSRT formulation at all.

"We also studied two additional variants. Variant H2 modifies Step 1 of CS-Steiner so that the initial heuristic tree Ty is
constructed over the entire net N. H2 then deletes the edge which lies directly above n. when we root Ty at ng, and rejoins
(the component containing) n. to (the component containing) ng using a shortest possible wire from n., as in variant H1.
Variant H3 performs Steps 1 and 2 simultaneously by executing the 1-Steiner algorithm subject to a “maintaining monotone
feasibility” constraint. In other words, we iteratively choose a Steiner point which minimizes the sum of the tree cost and
the cost of any needed direct connection from n. to ng. The direct connection from n. requires that there exist a monotone
path through the “bounding boxes” of the edges in the path to ng. Intuitively, this favors initial choice of Steiner nodes along
some monotone path from ng and n., since such nodes will most rapidly reduce the marginal cost of adding the direct n.-ng
connection. We found that H2 and H3 gave much worse results than HO, H1 and HBest.



3. HBest: Repeatedly apply Step (2), trying all shortest connections from n,. to the edges in the heuristic
tree Ty, as well as from n, to ng. Perform timing analysis on each of these routing trees, and return

the routing tree which has the smallest delay at n,.®

The complexity of these variants is dominated either by the construction of 7Ty in Step 1, or possibly
by the calls to timing analysis in HBest. Below, we present experimental results showing that each of
these variants significantly improves critical-sink delays #(n.) over traditional routing methods. Tt should
be noted that our experimental results reflect the incorporation of a linear-time postprocessing algorithm,
called Global Slack Removal (GSR), which shifts edges in the 1-Steiner output to maximize the monotonicity
of all source-sink paths (thus “removing U’s”) without increasing overall tree cost or the Elmore delay to
any sink. This may be viewed as nearly equivalent to the shifting of Steiner points, which we motivated in
observation (5) of Section 2.2.) For expository reasons, we defer formal description of GSR, along with its

proofs of correctness, to the Appendix.

3.2 Elmore Routing Trees

As noted in Section 2.2, current routing objectives such as minimum tree cost, bounded tree radius, or
prescribed cost-radius balance have all been motivated by consideration of the Elmore model. However, these
objectives do not actually optimize Elmore delay. Rather, they only attempt to heuristically capture the true
minimum-delay routing criterion (with the CS-Steiner method being no exception). Indeed, whether the
current routing objectives are useful will depend on the prevailing technology, on the particular distribution
of sink locations for a given signal net, and even on the user’s ability to find some parameter value (e.g.,
€ in the BRBC algorithm, or ¢ in the AHHK algorithm) which happens to yield a good solution for the

particular input.

In this subsection, we completely avoid the abstraction inherent in “mimimum cost” or “bounded ra-
dius” objectives, and propose a new class of greedy Elmore routing tree (ERT) algorithms which optimize
Elmore delay directly as the routing tree is constructed. The ERT approach is efficient, since Elmore delay
at all nodes of a routing tree can be evaluated in linear time (see Footnote 4 above). Based on the perfor-
mance results in Section 4 for both the CSRT and “generic” performance-driven routing formulations, we
believe that the ERT approach, along with its SERT and SERT-C extensions described below, offer a basic

enhancement to current routing methods.

The Elmore routing tree (ERT) algorithm is stated as follows. Starting with the trivial tree T consisting
of only the source ng, we grow 7' by adding a single additional sink into the tree at each iteration. In each

step, we seek terminals u € T and v € T, such that adding the new edge (u,v) to 7" will minimize the

8In some cases, variants HO and HBest will produce solutions whose edges cross when embedded in the plane. If a non-self
intersecting CSRT is required, these variants are easily modified: HO can always make the closest connection to n. that does
not cross existing tree edges; similarly, HBest may consider only connections to edges that can be reached without intersecting
other edges.



maximum Elmore delay at any leaf of the tree. The algorithm terminates when the tree spans N.° A formal

description of the ERT algorithm is given in Figure 5.

ERT Algorithm

Input: signal net N with source ng € N
Output: routing tree T over N

L T=(V,E)=({n}0)

2. while |V| < |N| do

3. find u € V and v ¢ V which minimize the maximum Elmore delay
from ng to any leaf in the tree (VU {v}, EU{(u,v)})

4. V=Vu{v}

5. E=FEU{(u,v)}

6. output resulting spanning tree T = (V, F)

Figure 5: ERT template: direct incorporation of the Elmore delay formula into a
(spanning) tree construction over N.

The ERT algorithm generalizes to yield a Steiner Elmore routing tree (SERT) when we allow the new
pin to connect to a tree edge, inducing a Steiner point as described in Figure 6. The ERT construction is

a special case of the SERT construction where we require either w = v or w = v’ in Line 4 of Figure 6.

SERT Algorithm

Input: signal net N with source ng € N

Output: Steiner routing tree T over N

L T=(V,B) = ({no}.0)

2. M =N—{no}

3. while M # ( do

4. find u € M, (v,?") € F, and a new point w which minimizes
the maximum Elmore delay from ng to any leaf in
the tree (V U {u,w}, (F — {(v,v")}) U{(v,w), (w,v"), (u, w)})

5 V=VU{uw}

6. E=(F—{(n,0))U{(v,w),(w,0"), (u,w)}

7. M =M —{u}

8. output resulting Steiner tree T'= (V| F)

Figure 6: SERT template: Steiner generalization of the ERT construction.

Finally, we address the CSRT problem by beginning with a tree containing the single edge (ng, n.) in

20ur approach should be distinguished from the method of Prasitjutrakul and Kubitz [20] described in Section 2.1 above,
wherein A* heuristic search and the actual Elmore delay formula are used in a performance-driven routing tree construction.
Like our method, [20] grows a routing tree over a net N starting from the source ng; they perform A* search of a routing
graph (e.g., in building-block design) to find the Elmore delay-optimal Steiner connection from the existing tree to a new sink.
However, the choice of this new sink is forced: the algorithm always adds the sink that is closest (by Manhattan distance) to
the existing tree, and thus falls into the standard pitfall of ignoring the underlying delay criterion. The effect of this difference
is apparent in the ERT ordering of added nodes in Figure 4.2 of Section 4 below. Indeed, the method of [20] can yield Elmore
delays that are at least twice as large as those of ERT: given a very tall, “hairpin”-like version of Figure 3a with many sinks
very closely spaced along the entire hairpin path, [20] forces the sinks to be added into the tree according to the path order
(starting from the source ng at the lower left), yielding an obviously poor solution. Finally, practical considerations also
separate the two methods, e.g., [20] cannot be easily modified to address our CSRT formulation (in the context of the SERT-C
discussion to follow, note that given an initial ng-n. edge in the tree, the method of [20] may be forced to choose arbitrarily
among many ties for the “closest sink” which must be next added into the tree).
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Line 1 of the Figure 6 template (i.e., T = (V, E') = ({no, n.}, {(no,nc)})), and then continuing according to
the SERT algorithm template with the criterion in Line 3 modified to minimize the Elmore delay tpp(n.).
This yields the SERT-C (“SERT with identified Critical sink”) algorithm.

Several points should be noted with regard to implementation of these algorithms:

1. To improve the time complexity of SERT and SERT-C, we consider for each v € M (Line 4 of Figure
6) only the shortest Steiner connection to each edge (v,v') € E. In other words, we choose w so that
dyy is as short as possible with dyy + dyy = dyyr. (By the intuition of Figure 3d, ties should be
broken to make this shortest connection as close to ng on the ng-v’ path, where v is the predecessor
of v in the rooted tree.) Note that we defer the embedding of each tree edge (v,v') € F for as long
as possible, 1.e., we maintain it as a bounding box and determine the shortest connection to u € M

with respect to this flexibility.

2. The SERT-C algorithm can be implemented in O(k?) time, where k is the number of sinks in N. This
is shown as follows. For any edge from u € M to (v,v') € E with v the predecessor of v’ in the rooted
tree, there is only one possible connecting point w that we consider. The effect of the (u,w) edge on
the delay tpp(n.) is an additive constant no matter when (u, w) might be added into the tree. This
delay increment depends on dy,, and on either (i) the ng-w pathlength, when (v,v’) is on the ng-n.
path, or (ii) the ng-n, pathlength (where n, is the lowest common ancestor of n, and v'), when (v, v")
is not on the ng-n. path. We can compute the best connection from each sink in M to the initial
tree (which is trivial). For each new sink added, at most three new edges will be included into the
tree. We simply need to recalculate the effects of connections from nodes u € M to these new edges
(all previously computed effects remain the same), and this requires linear time. We thus obtain the

desired O(k?) complexity.

3. The ERT algorithm can be implemented in O(k?) time, assuming that unit resistance and capacitance
of the interconnect are constant. This fact follows from a simple observation: if a new tree edge
incident to sink v € V' (Line 3 of Figure 5) minimizes the maximum Elmore delay maz;tgp(n;), it
must connect u to the sink v € V that is closest to u. At each pass through the while loop, we
update the shortest “outside connections” for every u € V (a total of O(klogk) time), and then
simply add each of these O(k) outside connections to 7" in turn, evaluating the Elmore delays to all
sinks of the resulting trees in O(k) time per tree (recall Footnote 4). We then choose the outside
connection which resulted in the least increase in maz;tgp(n;). Hence, each pass through the while
loop requires O(k?) time, yielding the O(k?) complexity result. In practice, this complexity will be
transparent to the user since k is small, and since even standard MST or Steiner global routing will
use Q(n?) algorithm implementations. We leave reduction of the ERT complexity as an interesting

open issue.
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4. We do not know any implementation of the SERT algorithm that is faster than the naive O(k*)
method. Intuitively, the difficulty seems to be that (i) we must always consider ©(k?) Steiner connec-
tions from all sinks in M to all edges of T', and (ii) that the connection which minimizes maz;tpp(n;)
may not be the best one from the “perspective” of any individual sink in N or edge 7. Thus, we cur-
rently have a rather interesting situation where the CSRT problem formulation leads to an algorithm
(SERT-C) that enjoys quadratic speedup over the generic Steiner computation (SERT), and where
moreover a Steiner tree computation is faster than a spanning tree computation. We believe that the
time complexities of both SERT and ERT can each be improved, probably by a factor of k; we leave

these as open research directions.

While CS-Steiner began with a minimum-cost Steiner tree and perturbed it to heuristically improve
t(n.), our SERT-C algorithm takes a virtually opposite approach: it starts with the required ng-n. con-
nection and grows the routing tree while keeping ¢gp(n.) as small as possible. In some sense, SERT-C is

the obvious “greedy” approach to the original CSRT formulation of Section 2, when #(n;) is replaced by

tED(’IlZ').

We again observe that the promise of the SERT-C approach lies in its consistent, direct incorporation of
Elmore delay within the construction. Again, this contrasts with heuristics whose objectives or strategies
may be only motivated by Elmore delay and whose outputs can therefore remain sensitive to technology,

choice of parameters, and input instance.

4 Experimental Results

4.1 CS-Steiner Trees

We implemented each of the CS-Steiner variants HO, H1 and HBest along with the 1-Steiner algorithm
[13] using C in the UNTX Sun environment, and ran the algorithms on random 4-, 8- and 16-sink inputs.
We also applied our GSR post-processing algorithm (denoted as +U) to 1-Steiner and each of the CS-
Steiner variants. Our inputs correspond to two distinct technologies: (i) IC is a representative 0.8y CMOS
process, and (ii) MCM is typical of current MCM technologies, with lower driver resistance and unit wire

resistance.?

Table 1 gives delay and tree cost (WL) results and comparisons. The delays at all sink nodes were
estimated using the two-pole circuit simulator developed by Zhou and coworkers in [28] [29]. This simulator
is a computationally efficient method which has produced very accurate results (less than 10% discrepancy)

when tested against the commonly used circuit simulator SPICE over a range of technology and clocking

108pecifics of the technology files (IC,MCM): driver resistance = (100,25) Q; wire resistance = (0.03,0.008) Q/um; wire
inductance = (492,380) fH/um; sink loading capacitance = (15.3,1000) fF’; wire capacitance = (0.352,0.06) fF/um; layout
area = (102,100%) mm?2.
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regimes. Each entry in Table 1 represents an average taken over every sink node in 50 random point sets.
We emphasize that the 1-Steiner algorithm (or the BRBC, AHHK, etc. methods), being net-oriented, will
return the same tree for a given sink set no matter which sink happens to be critical; the delays at the sinks
n; are in some sense “generic”’. In contrast, each of the three CS-Steiner variants can return a different
tree for each choice of critical sink in the same net. Thus, for each variant we report the delay at n; in the

specific tree corresponding to the identification of n; as the critical sink.

1C MCM
IN|=5 | IN|=9 | IN|=17 | [N|=5 | [N|=9 | IN|=17

1Stein 2.44 3.48 5.26 10.52 15.18 25.77
Ave 1Stein+U 2.26 3.30 4.97 9.43 14.11 24.27
Delay HO+U 2.37 2.92 3.57 7.26 7.38 7.40
(ns) H1+U 2.20 3.02 3.93 8.90 11.22 13.81
HBest+U 2.12 2.77 3.47 7.02 7.31 7.35

Ave H0+U/1St+U 1.05 .88 .71 77 .52 .30
Delay H14+U/1St+U 97 .92 .79 .94 .80 57
Ratios HBest+U/1St+U .94 .84 .70 .74 .52 .30
1Stein+U 1.51 2.22 3.13 15.65 21.91 31.29

Ave WL HO+U 1.95 2.74 3.70 20.35 27.32 36.78
(cm) H1+U 1.58 2.39 3.41 16.20 23.33 33.65
HBest+U 1.67 2.54 3.58 19.51 26.95 36.59

Wins HBest+U 51.0 75.5 90.6 81.5 95.5 98.3
(%) 1Stein+U 35.5 12.5 2.3 3.5 0.5 0.1
Nodewise min 0.85 0.68 0.53 0.46 0.29 0.16
(HBest)/(1St+U) ave 0.94 0.85 0.72 0.69 0.50 0.33
Delay Ratio max 1.01 1.00 0.95 0.96 0.87 0.76

Table 1: Routing tree simulation results using IC and MCM technology parameters. Notes: (i) all source
and sink locations are chosen randomly in a layout region with grid resolution 25um; (ii) HBest+U and
1-Steiner+U wins compare only these two heuristics and do not necessarily add up to 100% because of ties;
(iil) min (max) Nodewise Delay Ratio gives the geometric mean of, for each net N, the min (max) HBest+U,
1Steiner+U delay ratio over all sinks in N; and (iv) each value in a given column represents an average over
the same 50 random signal nets.

Variants HO and HBest significantly reduce delay to the critical sink, particularly in nets with a large
number of sinks and in the MCM technology where output driver and wire resistances are low. In other
words, the simple strategy of connecting the critical node via a path with low branching factor i1s very
successful for these cases. Of course, this strategy will produce larger net cost.!! Tt is clear that the degree
of success achieved by CS-Steiner versus the generic 1-Steiner routing depends on the choice of critical node
n;. For example, in each TC signal net with |N| = 17, one expects to find at least one n; for which the
HBest+U delay will be almost 50% less than the 1-Steiner tree delay, while for another n;, one expects the
difference to be only about 5%. With this in mind, we also report the percentage of “wins” between these

two algorithms on a node-by-node basis.

The distinct “domains of expertise” of the 1-Steiner and CS-Steiner approaches seem to be correlated

with the distance of the critical sink from the source. (We have also observed this phenomenon in all

11 The “star” strategy can possibly introduce other difficulties such as crossing wires and nodes of degree > 4.
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IC MCM
IN|=5 | IN|=9 | [N|=17 | [N|=5 | [N|=9 | IN|=17

1 0.90 0.84 0.83 0.51 0.44 0.45

2 0.91 0.78 0.76 0.62 0.37 0.34

Rank | 3 0.96 0.80 0.68 0.75 0.44 0.27
of | 4 0.99 0.80 0.68 0.95 0.44 0.28

Sink | 5 0.82 0.66 0.47 0.30
6 0.87 0.68 0.54 0.26

7 0.91 0.67 0.63 0.28

8 0.96 0.67 0.78 0.28

9 0.67 0.27

10 0.70 0.29

11 0.71 0.31

12 0.72 0.34

13 0.72 0.34

14 0.77 0.38

15 0.80 0.43

16 0.86 0.50

Table 2: Geometric mean ratio of HBest+U to 1Stein4+U delay to sinks, sorted by their distance to the
source. (Sink 1 is closest to the source.)

other comparisons of CS-Steiner against other global routing algorithms, e.g., the BRBC method.) Table
2 illustrates this correlation between the HBest+U and 1Stein+U methods. In the table, the ratio between
HBest+U and 1Stein+U delays is reported on a sink-by-sink basis, where sinks are sorted by distance from
the source. Critical-sink routing is most successful for critical sinks closer to the source, except if n. is the
very closest sink to the source. CS-Steiner also provides larger wins in the MCM technology.'? Figure 4.1
provides a nodewise delay comparison between H1+U and a min-cost SPT (as might be produced by the
AHHK algorithm with ¢ = 0.999 or by the methods of [21]) for a single net with 16 sinks. This comparison
supports the results of Table 2: in general, the H1+U tree offers a significant delay improvement for critical

sinks located close to the source, but if the critical sink is far away, the SPT seems a better choice.

4.2 FElmore Routing Trees

We constructed Elmore routing trees for the same sets of random inputs used in the CS-Steiner exper-
iments. Delay simulation results are presented in Table 3. For purposes of comparison, the table includes

data from the minimum spanning tree, AHHK tree (quoted from [1], and 1-Steiner tree constructions.

Our results show that even as generic net-dependent routers, the ERT methods we propose are highly
effective, beyond their relative efficiency and ease of implementation. For nets with 16 sinks, the spanning
tree ERT construction reduces average sink delay versus the MST construction by 33% in the IC technology
and by 69% in the MCM technology. The ERT algorithm also improves upon AHHK, with reductions of
10% (1C) and 43% (MCM). These results are particularly impressive because the implementation of AHHK

12Recall the intuition above, namely that critical-path routing will be useful if the technology favors star-like, “direct”
connections to the n;. Note also that timing-driven placement algorithms may tend to place the critical sink n. close to the
source.
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A 3.39/4.49 = 0.679

B 3.34/4.88 = 0.684

C 3.83/5.07 = 0.716

D 2:31/2.87 = 0.805

E 3.70/4.57 = 0.810

F 4.44/5.28 = 0.841

o8- G  4.51/5.31 = 0.849

H  2.54/2.88 = 0.882

| 2.53/2.77 = 0.913

J  4.84/5:19 = 0.932

K  5.27/5.46 = 0.965

L 308/3:11 = 0.990

M  5.84/5.50 = 1.062

| N 5.88/5.24 = 1122

00— L — O 7.69/5.81 = 1.371

- - oem P 5.40/3.10 = 1.742

Figure 7: Random 16-sink IC example (1em by lem layout region), showing nodewise delay ratios
of H1+U output versus a heuristic minimum-cost SPT; this SPT is shown in the figure.

in [1] simulates delays for output trees for 21 different values of the ¢ parameter, and then chooses the best

tree found for each signal net instance.

The Steiner tree version of our ERT method also performs well as a generic high-performance router.
For signal nets with 16 sinks, SERT improves average sink delay versus the 1-Steiner routing by 21% and
62% for the IC and MCM technologies, respectively. For 8-sink nets, average delays are reduced by 10%
for IC and 42% for MCM. The percentage reductions in maximum delay are even greater. It should be
noted that for the MCM technology, the ERT and SERT constructions tend to be star-like, producing tree
costs much higher than those of the 1-Steiner construction. In practice, when delay is not an overriding
concern, wirelength can be “recaptured” by increasing the length of the virtual edge between nj and ng
in the ERT and SERT algorithms (i.e., by simulating a larger output driver resistance), if such a heuristic

seems desirable.

Finally, even more significant reductions in delay can be achieved when a critical sink has been identified,
per our original CSRT formulation. The SERT-C algorithm improves over the SERT results by an additional
reduction in delay at the critical sink of 10% for 1C’s and 7% for MCM’s. Identification of a critical sink
has clear advantages in terms of tree cost, particularly for MCM routing: the SERT-C trees have much
less cost than the SERT outputs, while still improving the delay to the critical sink. Finally, we note that
the SERT-C router compares very favorably to the HBest variant of CS-Steiner discussed in the subsection
above. SERT-C produces slightly better delay and tree cost values for the IC technology, and only slightly
worse results for the MCM technology. Note that SERT-C is more practical than HBest, in that it does not

use the circuit simulator during construction of the tree.!® Node-by-node comparisons (Table 4) of SERT-C

13With respect to practicality: the average times in CPU seconds for SERT-C and the distributed RCL delay simulator on a
Sun Sparc IPC were respectively .0012 and .031 seconds for |N| = 5; .017 and .049 for |N| = 9; .31 and .089 for |[N| = 17. This
reflects the “all-purpose” implementation of our package, which has @(k4) complexity for each of ERT, SERT and SERT-C.
We stress that SERT-C can be implemented to run in O(k2) time, as described above.
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1C MCM
v IN|=5 | [N[=9 | IN|=17 | [N|=5 | [N|=9 | IN|=17
MST 2.92 4.35 6.46 12.38 18.72 29.57
Ave AHHK 2.64 3.53 4.77 9.94 12.39 16.26
Delay ERT 2.43 3.24 4.31 7.49 8.16 9.29
(ns) 1Stein+U 2.26 3.30 4.97 9.43 14.11 24.27
SERT 2.22 2.97 3.91 7.49 8.16 9.29
SERT-C 2.12 2.70 3.43 7.26 7.39 7.41
Ave ERT/MST .83 .74 67 .60 44 31
Delay ERT/AHHK .92 .92 .90 .75 .66 57
Ratios SERT/1St+U .98 .90 .79 .79 .58 .38
SERT-C/1St+U .94 .82 .69 77 .52 31
MST 3.75 5.69 8.75 17.28 27.75 45.83
Max AHHK 3.30 4.48 6.04 13.88 18.70 24.75
Delay ERT 3.14 4.07 5.40 13.06 16.18 18.80
(ns) 1Stein+U 2.89 4.28 6.54 14.93 20.81 37.38
SERT 2.83 3.71 4.90 13.06 16.18 18.79
Max ERT/MST .84 72 .62 .75 .58 A1
Delay ERT/AHHK .95 91 .89 .94 .87 .76
Ratios SERT/1St+U .98 .87 .75 .87 .78 .50
MST 1.69 2.47 3.49 17.07 24.43 34.88
AHHK 1.89 2.87 4.10 20.02 29.43 44.22
Ave WL ERT 2.00 3.04 4.41 28.21 54.80 103.67
(Cm) 1Stein+U 1.51 2.22 3.13 15.65 21.91 31.29
SERT 1.67 2.61 3.70 28.21 54.80 103.67
SERT-C 1.71 2.48 3.45 20.35 27.52 37.07
Wins CERT-C 52.5 84.0 90.0 80.0 93.3 98.0
(%) 1Stein+U 21.0 11.0 7.0 12.5 3.7 1.3
Nodewise min 0.84 0.68 0.54 0.42 0.30 0.16
CERT—C/(ISH—U) ave 0.92 0.82 0.72 0.64 0.51 0.33
Delay Ratio max 0.99 0.95 0.97 0.93 0.89 0.78

Table 3: Delay simulation results for Elmore routing tree outputs, compared with the 1-Steiner heuristic us-
ing IC and MCM technology parameters (see notes contained in Table 1 caption). Note that data for AHHK
are quoted from [1] and are computed using values relative to MST for the same technology parameters: a
small error is possible since the respective works did not use the exact same sets of 50 random nets.

versus 1-Steiner are qualitatively the same as for the HBest algorithm in Table 2.

Figures 4.2 and 4.2 illustrate the SERT and SERT-C algorithms for one of the random signal nets used
in our simulations, with the IC technology parameters. Figure 4.2 shows the progressive growth of the
SERT construction. Figure 4.2 contains the trees produced by SERT-C for each choice of critical node.
Note that there are redundancies: the tree constructed when node 3 or node 7 is critical is also the 1-Steiner
tree, and the tree constructed when node 8 is critical is the same as the generic SERT output. The critical
delays and tree costs of these constructions are shown in Table 5. Note that the sink delays produced by
SERT-C improve over the SERT result for all but three of the sinks, and are worse only for sink 3. For the
two sinks furthest from the source, SERT and SERT-C produce identical delays. These relative differences
in delays corroborate the results of Tables 2 and 4, where path-dependent global routing performs best
compared to net-dependent routing when the critical sinks are at a medium distance from the source, or

are close (but not too close) to the source.
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IC MCM
IN|=5 | IN|=9 | [N|=17 | [N|=5 | [N|=9 | IN|=17

1 0.91 0.89 0.89 0.49 0.48 0.48

2 0.88 0.81 0.82 0.55 0.39 0.34

Rank | 3 0.92 0.79 0.72 0.68 0.44 0.28
of | 4 0.97 0.77 0.73 0.90 0.44 0.29

Sink | 5 0.77 0.68 0.48 0.31
6 0.80 0.69 0.55 0.26

7 0.84 0.69 0.63 0.29

8 0.88 0.65 0.79 0.28

9 0.67 0.28

10 0.69 0.29

11 0.69 0.31

12 0.70 0.34

13 0.67 0.34

14 0.72 0.38

15 0.74 0.44

16 0.78 0.50

Table 4: Geometric mean ratio of Critical SEST to 1Stein4+U delays, sorted by distance of the sink to the
source. (Sink 1 is closest to the source.)

Critical | SERT | SERT-C | SERT-C
Node Delay Delay Cost
2 1.81 1.66 2.37
3 1.89 1.97 2.27
4 1.96 1.68 2.37
5 2.30 2.16 2.80
6 2.18 1.95 2.55
7 2.40 2.27 2.27
8 2.42 2.42 2.47
9 2.82 2.82 2.46

Table 5: Delays and costs for trees constructed by the SERT-C algorithm and compared with the SERT
algorithm for the 9-pin signal net in Figures 8 and 9. (Delays are in nanoseconds and costs are in centimeters.
Sinks labels are sorted according to distance from the source.)

5 Conclusions

We have addressed a critical-sink routing iree (CSRT) formulation which arises when critical-path infor-
mation becomes available during the timing-driven layout proces. The CSRT formulation is orthogonal
to previous formulations that required prescribed delay bounds at the sinks of a signal net. Thus, the
CSRT problem facilitates simple, fast solution methods which avoid, for example, iterative determination

of appropriate delay bounds.

Two new classes of CSRT constructions are proposed: (i) the CS-Steiner method, which perturbs a
minimum Steiner tree to accomodate an identified critical sink, and (ii) the SERT-C method, which begins
with a connection from the source to the critical sink and then grows a tree so as to minimize the increase in

Elmore delay to the critical sink. Each of these algorithms is efficient, and offers very significant performance

17



.9 9

Figure 8: Example of the progressive construction of a 9-terminal net by the SERT algorithm on
one of the 50 random examples used in our simulations using IC parameters. The pin labelled 1 is
the source, and sinks are numbered in order of distance from the source.

improvements over existing performance-driven routing tree constructions. We note that the greedy “Elmore
routing tree” (ERT) approach underlying the SERT-C algorithm seems quite powerful. In particular, ERT
generalizes to a “generic” SERT Steiner router which outperforms all previous performance-driven routing
algorithms. The ERT approach is also the first to consistently, and directly, optimize the Elmore delay
formula itself, rather than an objective which heuristically abstracts Elmore delay. Since Elmore routing
trees are efficiently computed, our approaches may lead to basic new utilities that can be integrated within

performance-driven global routing packages.

Current work addresses extensions of the critical path-dependent routing tree design to the general case

of multiple critical sinks with varying criticalities. If a subset of the sinks are designated as critical, the

18



a) Node 2 (or 4) critical b) Node 3 (or 7) critica
(also 1-Steiner tree)

¢) Node 5 critical d) Node 6 critical

€) Node 8 critical f) Node 9 critical
(also Steiner ERT)

Figure 9: SERT-C tree constructions for a single 9-pin net.

SERT-C algorithm can be extended by first routing the critical sinks under the min-max delay objective of
SERT, then connecting non-critical sinks as in SERT-C to minimize the weighted sum of the delays at the
critical sinks. There are also interesting extensions of the CS-Steiner and ERT algorithms to general-cell
layout with arbitrary routing region costs. Finally, we leave as an open problem the reduction in time

complexity of the ERT constructions.
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Appendix: Global Slack Removal

Recall from Section 3.1 that Global Slack Removal (GSR) is a linear-time postprocessing enhancement to
the CS-Steiner approach. GSR shifts edges in the 1-Steiner output to maximize the monotonicity of all
source-sink paths without any increase in total tree cost or Elmore delay to any sink. In what follows,
we use the term 1-Steiner tree to refer to any tree that can be output by the 1-Steiner algorithm. If we
orient a 1-Steiner tree T' by rooting it at the source ng, a U is defined to consist of three consecutive edges
V19, Vo3 and vzvs on a root-leaf path in 7" such that the vi-v4 pathlength is greater than the Manhattan
distance dy4 (Figure 10(a)). The GSR algorithm (Figure 11) takes as input a rooted (1-)Steiner tree 7" and
removes U’s as shown in Figure 10(b); the input tree is processed in top-down order.'* Three clarifying

points should be noted.

1. GSR utilizes a queue which can be implemented arbitrarily as long as each node in the tree is processed

before its children. In practice, a depth-first ordering is simplest.

2. The current node in the traversal is checked to see if it is the third node in a U. This detail is necessary

to ensure that the output tree has no remaining U’s.

3. Finally, notice that all low-degree Steiner nodes (i.e., of degree < 2; these are clearly superfluous) are
removed at two separate points in the algorithm. This is for two reasons: (a) more U’s can be found
if all low-degree Steiner nodes are removed at the outset, and (b) each removal of a U can introduce
additional low-degree Steiner nodes, so low-degree Steiner nodes should again be eliminated at the

end of the algorithm.

N, . o0—o¢ee —@— N 0— oo P W,
0 > | 2
[ ]
Vo V3 Vo V3

(@) (b)

Figure 10: Removing a single “U” in the GSR Algorithm.

We now prove two results showing that the GSR algorithm returns a tree with no U’s in linear time,
and that this output tree dominates the input Steiner tree in each of three parameters: total tree cost,

pathlength from the source to each sink, and Elmore delay at each sink.

Theorem 1: Given a 1-Steiner tree 7' as input, GSR will return a tree 7" such that (i) 7" has the same

or less total cost as T (ii) Vn;, i = 1,...,|k|, the ng-n; pathlength in 7" is less than or equal to the ng-n;

14The GSR algorithm can actually be used on any Steiner tree to reduce source-sink pathlengths without increasing wire-
length. However, GSR is guaranteed to return a tree with no remaining U’s only when no single Steiner node can be added
to the input tree so as to reduce wirelength, i.e., when the input is a 1-Steiner tree.
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GSR Algorithm

Input: 1-Steiner tree 7" with source ng

Output: Steiner tree 7' with all U’s removed

1. remove all Steiner nodes of degree < 2 from T
2. Q@ {noks

3. while Q # 0

4. v3 — Dequeue(Q);

5. ve — pred(vs);

6. vy — pred(va);

7. for each node vy € succe(vs) do

8. Q — Enqueue(vy);

9. if path vyvovgvy is a U

10. remove the U as in Figure 10;

11. insert Steiner nodes w; and ws into T
12. remove all Steiner nodes of degree < 2 from T

Figure 11: Pseudo-code for the GSR algorithm. Local variables include the queue @ and nodes v1 -
v4. Here, pred(v) denotes the predecessor of node v when the tree T is rooted at ng. Similarly, the
set suce(v) denotes the set of all nodes with predecessor v in the rooted tree.

pathlength in T'; and (iii) the Elmore delay ¢gp(no, n;) at each n; in T” is less than or equal to the Elmore
delay tgp(ng,n;) in T.

Proof: (i) In Figure 10, the only change between (a) and (b) in terms of wirelength is the deletion of the
edge vav3 and the insertion of edge wiws, both of which have the same length. Consequently, removing the
U does not immediately change the wirelength of the tree. If, however, either vy or v3 becomes a Steiner
node of degree 1 in Figure 10(b), then 7’ will have less total wirelength than T after all low-degree Steiner
nodes are removed.

(ii) In Figure 10, it is obvious that a single U removal can only affect the pathlengths from the source to
sinks in the tree rooted at vy. In fact, since the U removal does not affect the source-sink pathlengths for
vy and vs, and moreover reduces the pathlength for vy, the only pathlengths changed are those for sinks in
the tree rooted at vy (and these are reduced).

(iii) Note first that Elmore delay along a path depends on the total capacitance (i.e. wirelength) along the
path as well as the wirelength of any subtree branching off from the path. If a subtree is moved so that 1t
has the same total wirelength and meets the path closer to the source, then it will reduce the capacitance
along a part of the path, and thereby reduce the total delay between the end points of the path. With this
in mind, we see in Figure 10 that the delay to node v 1s reduced because the tree capacitance that met the
no-ve path at ve in (a) now meets the same path at w; in (b). For vs, the capacitance that met the ng-vs
path at vz now meets the path at w; and ws. The argument is essentially the same for node vy, except

that additionally the ng-v4 pathlength is reduced in (b). 0

We note that the order in which U’s are removed from the tree is important. If the U’s are processed in

a bottom-up order instead of a top-down order, then new U’s can be introduced and the resulting tree
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Figure 12: An example for which processing U’s in a bottom-up order (b) returns a tree with one
remaining U. Processing U’s in a top-down order (a) is guaranteed to remove all U’s.
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Figure 13: The GSR algorithm with input (a) can produce either tree (b) or tree (¢), depending on
the order in which the U’s are processed.

may not have all of its U’s removed. An example of this is seen in Figure 12. Furthermore, two different
top-down orderings can produce different output trees (although both will have no remaining U’s). Two

different trees that could be produced by the GSR algorithm from the same tree are illustrated in Figure
13.
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The following three lemmas are useful in showing the correctness of GSR in the sense of producing a
tree with no remaining U’s. Lemma 1 is a basic property of a 1-Steiner tree, while Lemmas 2 and 3 follow

easily from Lemma 1.
Lemma 1: Adding a single Steiner node to a 1-Steiner tree cannot reduce the cost of the tree.

Lemma 2: In any 1-Steiner tree, the middle edge of a U must be either horizontal or vertical (i.e., not

“I.”-shaped).

Lemma 3: Fach edge in a 1-Steiner tree is the middle edge in at most one U.

We now show:

Theorem 2: GSR runs in time linear in the size of T' and returns a tree 7" which contains no U’s.

Proof: The algorithm checks for the existence of a U at most once at each edge in the input tree (corre-
sponding to edge vzvy in Figure 10), and testing for and removing each U requires constant time. Hence,
GSR runs in linear time. To see that 7" contains no U’s, we ask whether the removal of the U vv9v3v4
as in Figure 10 can create any new U’s which are not inspected by the algorithm later on. Consider which
nodes could be the third node in such a newly introduced U. Obviously, no node outside the subtree rooted
at vy could be such a node, because the paths to these nodes are not affected by the single U removal.
Other cases of nodes which could be such a third node include v, wy, ws, v, and nodes in the subtree
rooted at vs. Lemmas 1, 2 and 3 suffice to show that none of these nodes can be the third node of a new
U. All other nodes (i.e., those in the original subtree rooted at vz and v4) are yet to be processed. Hence,

the Theorem follows by induction on the depth of vs. 0
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