THE GEOMETRY OF SEMAPHORE PROGRAMS

Seott D. Carson
Paul F. Reynolds, Jr.

Computer Science Technical Report No. 85-03
April, 1985

Submitted to
ACM Transactions on Programming Languages and Systems

The Geometry of Semaphore Programs

SCOTT D. CARSON
PAUL F. REYNOLDS, JR.

University of Virginia

Synchronization errors in concurrent programs are notoriously difficult to find and correct. Deadlock,
partial deadlock, and unsafeness are conditions that constitute such errors.

A model of concurrent semaphore programs based on multi-dimensional, solid geometry is presented.
The model is shown to be exact for systems composed of an arbitrary, yet fixed number of con-
current processes, each consisting of a straight line sequence of semaphore operations. Properties of
the model suggest efficient algorithms for discovering synchronization exrors.

Categoties and Subject Descriptors: D.1.3 [Programming Technigues]: Concurrent Programming;
D.3.3 [Programming Languages]: Concurrent Programming Structures; D.4.1 [Operating Systems]:
Process Management - concurrency, deadlocks, mltiprogramming/mulziprocessing, mutual exclusion,
synchronization; G.2.2 |Discrete Mathematics]: Graph Theory - graph algorithms; H.1.1 [Models
and Principles]: System and Information Theory - general systems theory

General Terms: Algorithms, Reliability, Theory, Verification

Additional Key Words and Phrases: Static Deadlock Detection, Semaphore Programs

1 INTRODUCTION

Deadlock avoidance, detection, and recovery were among the first topics in operating
sysiems to receive formal treatment in the literature. Early studies were primarily con-
cerned with deadlock avoidance during resource allocation in large, multiprogrammed sys-
tems such as 0S/360 [6]. More recently, studies have treated the problem of statically
proving the deadlock freedom of a set of communicating, concurrent processes.

This paper presents a geometry of semaphore programs based on Dijkstra’s progress
graphs [3]. Starting with a small set of postulates, we prove conditions under which
blocking, full and partial deadlock, unsafeness, and unreachability of states occur. The
model is provably exact for concurrent programs in which each task is composed of a
straight-line sequence of semaphore operations. Algorithms for generating and analyzing
the model are presented in [1].

2. BACKGROUND

A progress graph is a multidimensional, Cartesian graph in which the progress of each
of a set of concurrent processes is measured along an independent time axis. Each point in
the graph represents a set of process times. Areas of relative progress disallowed by syn-
chronization primitives invoked by the processes are representied as rectangular regions;
these areas are known as forbidden regions. Two-dimensional progress graphs were first

Authors’ address: Department of Computer Science, University of Virginia, Charlottesvilie, VA 22903,

2 S, D. CARSON AND P. F. REYNOLDS, JR.

used by Dijkstra [3] to illustrate the action of his synchronization primitives, P and V [4].

More recent works by Papadimitriou, Yannakakis, Lipski, and Kung [8,10,11] have
attempted to exploit the geometric properties of forbidden regions to find deadlocks in
locked database-transaction systems. These studies have met with limited success in two
senses. First, the algorithms for deadlock detection presented in [8] do not generalize to
systems composed of more than two processes. Second, the studies are only concerned with
progress graphs that represent systems composed of binary semaphore operations. The
model developed in this paper containg neither of these restrictions.

3. FUNDAMENTALLY RELATED CONCEPTS

The geometric model developed in this paper is fundamentally related to two other
models of synchronization: R. C. Holt's directed graph model [6] and A. N. Habermann's
semaphore invariant model [2,5]. In this section we present a brief discussion of both
models. A more elaborate treatment can be found in [1].

Holt’s directed graph model is conceptually straightforward. A concurrent system is
represented as a set of nodes (states) and directed arcs (state transitions). Each arc is
labeled with the name of the process that causes the associated state transition. In Holt's
model, as in other models, the system is modeled using single-process state transitions;
thus, no arc can have more than one label.

A process P is blocked at a node (state) S if there is no arc leaving node § with label
P. Total deadlock, in which every process in the system is blocked, is represented as a
node with no outgoing arcs. Partial deadlock, in which a subset of the processes is blocked,
occurs when a process is blocked at a node and at all nodes reachable from that node.
Thus, total deadlock can be discovered by examining single nodes, while partial deadlock
must be discovered by examining many nodes.

Habermann's semaphore invariant provides an interesting contrast to Holl's model.
The semaphore invariant is based on Habermann's observation that the value of a sema-
phore is always equal to its initial value, minus the number of times that it has been suc-
cessfully requested (Dijkstra’s P operation), plus the number of times it has been produced
(Dijkstra’'s V operation). Additionally, the semaphore invariant states thai the value of a
semaphore must always be greater than or equal 1o zero. This condition is denoted I, for
a semaphore 0. The semaphore invariant is typically expressed in terms of auxiliary vari-
ables that are (conceptually) added to the program to count semaphore operations on each
semaphore.

The semaphore invariant can be used as a resowrce invariant in Owicki and Gries's
proof system [9], as shown by Clarke [2]. A predicate that is true if the concurrent system
can deadlock is formed. This predicate, called the deadlock predicate, is expressed in terms
of the preconditions of the staiments in each process, and in terms of /,. Informally, the
deadlock predicate states that "each process has reached a statement beyond which it cannot
proceed because the value of the semaphore it awaits is zero."

The semaphore invariant model is more compact than the graph model. Rather than
representing a system explicitly, as a set of nodes and arcs, the semaphore invariant
represents a system implicitly, as a set of simultaneous, linear equations. However, the
semaphore invariant is shown in [2] to be incomplete in the sense that it defines a neces-
sary, but not sufficient condition for deadlock. In some cases, the deadlock predicate is true
when a system contains deadlocks that are unreachable as part of any execution sequence
of the concurrent system. Additionally, it is shown in [1] that the deadlock predicate is
not sufficiently powerful to express partial deadlock. These problems arise because the
deadlock predicate defines what Keller calls a state intrinsic property: a property of states,
but not of transitions [7]. Reachability and partial deadlock are state extrinsic properties;
they are expressed in terms of sequences of state transitions.

The Geometry of Semaphore Programs 3

4. PROGRESS GRAPHS

The idea of using progress graphs to represent concurrent programs was first pub-
lished in [3], though Coffman attributes the concept to E. W. Dijkstra. A progress graph is
an N dimensional Cartesian graph in which the progress of each of N processes is measured
against an independent time axis. The axis assigned to a process is labeled with the process’
synchronizing events in the order in which they are executed. Some regions in the graph
violate constraints on the relative progress of the processes imposed by the synchronization
events. These regions are known as forbidden regions. The model developed here provides
a way of characterizing the geometry of forbidden regions to determine whether the mul-
tiprogram that defines them can deadlock.

The forbidden regions are simply derived for certain problems. For instance, consider
the following concurrent program in which two processes each access two critical sections:

cobegin
A cycle
P(a) P(b) V(b) V(a)
end
/f
B: cycie
P(b) P(a) V(a) V(b)
end
end

The corresponding progress graph is shown in Figure 1. The forbidden regions represent
relative degrees of progress of the two processes which are disallowed by the mutual exclu-
sion properties of the semaphores. For instance, process B cannot perform the P(a) opera-
tion while process A is between its P(a) and V{a) operations. ‘

Process B
V{b)-
V{a
Pla) 2
f orbidden/
TEZIONS semsmmmtn
P(b) 0

P(a) P(h) V(b) V(a) Process A
FiG. 1. A Progress Graph

4 S. D. CARSON AND P. F. REYNOLDS, JR.

Progress graphs have intrinsic properties which can be used to prove other, less obvi-
ous properties. First, each point in a progress graph represents a specific degree of progress
for each process. Each concuwrrency state, or ordered set of process times of the system is
represented by a unique point; conversely, each point in a progress graph represents a
unique concurrency state. Second, a state transition is a ray defined by an initial state (a
point) and an ordered set of values (a vector) representing the amount of progress made by
each process during the transition. Third, a forbidden region represents a collection of
states that are inherently infeasible; thus, a point representing the state of a system cannot
lie within a forbidden region. Fourth, the time between two synchronizing events within a
process is assumed to be greater than zero. Lastly, no process can progress backward in
time, implying that the vector portion of a state transition can have no negative com-
ponent. These properties are formalized below as postulates:

P1: The concurrency state of a system defines a unigue point in a progress graph.

P2: A transition from a state represented by a point p; to a state represented by a point
P2 is a ray rooted at p; with direction pips.

P3: A point is feasible if and only if it is not within a forbidden region.
P4: The time between two synchronizing events within each process is greater than zero.

P5: Processes cannot progress backward in time, ie.. no (scalar) component of a state
transition vector can be negative.

P3 states that no feasible point is within a forbidden region. A feasible point (or
equivalently, a feasible state) is one that represents a legitimate set of degrees of progress.
In other words, a feasible state is one that does not violate any of the constraints imposed
by the synchronization primitives used in a system. This is the property expressed most
concisely by the semaphore invariant.

DEFINITION: A point P (py, - - - ,py) is feasible if and only if for all semaphores o, I, (P).

Thus, the semaphore invariant defines the set of points that are not within forbidden
regions.

P4 states that the synchronizing events within each process must be assigned a mono-
tonically increasing sequence of times. One might wonder if a particular choice of times
could influence the deadlock properties of the system. However, it is well-known that
only the order of events within each process determines whether or not deadlock can occur.
In the semaphore invariant method, for example, the order of events within each process
generates the pre- and postconditions for each statement without making any assumption
about the time between events {except that it is nonzero).

In the remainder of this paper, we choose unity as the time between synchronizing
events. A discussion of other mappings is presented in [1]. Regardless of the mapping we
choose, we treat the progress graph as a continuous space of concurrency states, with an
embedded, discrete space of synchronization states. A stale transition is a continuous path
between two states.

A trajectory in a progress graph is an ordered set of states that defines a particular
execution sequence of the system of concurrent processes. Lemma 1 proves the intuitive
result that the trajectory cannot pass through a forbidden region.

LEMMA 1. A trajectory in a progress graph cannot cross the border of a forbidden region.

PROOF. Suppose that part of the trajectory crosses the border of a forbidden region. Then
there must exist two states, say A4 and B, in the trajectory such that the transition from A
to B crosses the border of the forbidden region. If B is within the forbidden region, then
P3 is violated. If not, then there must exist a point C along AB such that AC enters the
forbidden region, and CB leaves the region. In this case C violates P3.

The Geometry of Semaphore Programs 5

g

Thus, a state transition defines a continuum of points between two named states, all of
which must be feasible,

The vector portion of a state transition determines the amount of progress made by
each process during the transition. Since forbidden regions restrict the set of possible tran-
sitions from a given state, the underlying synchronizing system (i.e., the scheduler) may at
some time be required to inhibit the progress of certain processes to ensure that the
system’s trajectory avoids them. Accordingly, we might attempt to find potential
deadlocks in the system by finding those reachable points on the surfaces of the forbidden
regions at which no process can make further progress. The disadvantage with this method
is that representing arbitrary surfaces in N dimensions requires exponential time and space.
In the next section we study the properties of the intersections of forbidden regions and
their ability to model deadlocks without representing arbitrary surfaces.

A feasible state transition is one which is allowed by the constraints imposed by the
semaphore operations in a multiprogram. More formally, it is defined as follows:

DEFINITION: A state transition in a system of concurrent processes is feasible if and only if,
in the progress graph representing the system, the state transition ray representing the
transition does not cross the border of a forbidden region.

The semaphore invariant method fails when the progress graph contains frap siates, or
unreachable deadlocks. In Figure 2, for example, state 7 is a deadlock state that is
unreachable through any execution sequence of processes A and B, Clarke’s strengthening
procedure eliminates all unreachable feasible points from the progress graph. Although we
use a different technique for eliminating unreachable points from consideration, the effect is
the same as that of Clarke's algorithm.

Process B

Process A
FIG. 2. Progress graph with trap state I’

6 5. D. CARSON AND P. F. REYNOLDS, JR.

We can define the reachability of a point (state) in terms of state transitions, starting
from the initial state:

DEFINITION: A point P in a progress graph is reachable if and only if there exisis a sequence
of state transition vectors, R; R; - - ' Ky such that:

a) ‘
H
for alli,);Ri is feasible, and

b)
M
%:Ri =P,

We will develop techniques for eliminating sets of unreachable points later in this paper.

5. FORBIDDEN REGIONS

Holt's graph model requires an explicit representation of a state graph, with its associ-
ated nodes and arcs. The geometric model, on the other hand, has smaller space require~
ments, since a set of infeasible points is represented as a single forbidden region. One possi-
ble method of representing the forbidden regions consists of constructing a graph in which
only the nodes at the "corners’ of the forbidden regions are stored.

The problem with this approach is that even though the number of nodes represented
becomes a small fraction of the total number of states as the number of processes (dimen-
sions) grows, the number of nodes remains an exponential function. Although we will
encounter the exponential space problem again later, it seems appropriate to seek better
techniques for representing forbidden regions.

In this section we formally define a forbidden region, and find a representation that
can be stored and manipulated in time proportional to the number of processes. We show
how forbidden regions in a progress graph model blocking in a concurrent system by
defining a property of states called nearness.

5.1 Representing Forbidden Regions

A forbidden region is an N dimensional rectangular structure which is bounded by
2N N—1 dimensional bounded hyperplanes. The location and direction of each hyperplane
are defined by the equation x; = k where x; is the ith coordinate axis and k is some con-
stant. The bounds of each hyperplane are defined by its intersections with the other hyper-
planes comprising the forbidden region. Each hyperplane is parallel to exactly one other
hyperplane within a forbidden region, and is orthogonal to all others. Further, each hyper-
plane is parallel to all coordinate axes excepl one {the one that defines the hyperplane).
These properties allow us to represent an entire forbidden region without explicitly naming
each “"corner”; in fact, we can represent a region with only two points, which we will call
the vertex and the extent.

The vertex of a forbidden region is the point on the region closest to the origin. while
the extent of a forbidden region is the point on the region farthest from the origin. (The
reader may envision diagonally opposed points on a square and on a cube to help under-
stand this definition). For instance. suppose we are given the points (1,1,1,1) and (3,4,5.6)
as the vertex and extent of a forbidden region. These two points, plus the information that
all sides are orthogonal implicitly represent the 16 corners of this 4 dimensional region:

(1.1,1,1) (1.1,1.6) (1,1,5.1) (1.1,5.6)
(1,4,1,1) (1,4,1,6) (1,4,5,1) (1,4,5,6)

The Geometry of Semaphore Programs 7

(3,1.1,1) (3,1,1.6) (3,1,5.1) (3,1,5.6)
(3.4,1.1) (3.4,1,6) (3,4,5.1) (3,4,5.6)

Now we are prepared to formally define a forbidden region:

DEFINITION: A forbidden region is a triple (o, V,E) where ¢ is the semaphore associated
with the region, V is the vertex of the region, and E is the extent of the region.

The symmetric structure of a forbidden region permits a representation that grows linearly
in size as the dimension of the space increases.

5.2. Blocking and Forbidden Regions

Forbidden regions model the blocking action that occurs when multiple processes com-
pete for fewer resources than are available. A trajectory cannot penetrate a forbidden
region. If a trajectory "collides” with a forbidden region, then the underlying synchroniza~
tion system must inhibit the progress of certain processes, causing the trajectory to “cir-
cumvent" the forbidden region. In this section we prove that a forbidden region can block
at most one process in a given trajectory. This result will be used in the next section to
show how the intersections of multiple regions model deadlocks.

First, let us formalize the notion of blocking in the context of the geometric model.

DEFINITION: A process, i, is blocked in a particular state if and only if the state transition
(0,....x; =8§....,0) is not feasible.

In this case § is a quantity large enough to cause the process x; 10 enter a new (discrete)
synchronization state, but small enough that x; does not pass through any intermediate
synchronization states. If the event times are mapped onto integers (as we assume they
are), then unity is an appropriate choice for 8. Intuitively, this means that a process is
blocked if and only if it cannot proceed to its next synchronization state independently.
Notice that this definition is identical to the definition of a blocked process in the sema-
phore invariant method: it, too lacks the power to state that a process is blocked for all
1ime.

Another useful concept is that of containment.

DEFINITION: A point P (py, -+ - .pw) is contained within forbidden region R (o,V.E} if and
only if

Vil v ‘~<-.P, < g;.

This definition says that the state of the system can legitimately lie on any of the hyper-
planes defined by the extent of a region, but that it can only approach the hyperplanes
defined by the vertex. We can interpret this to mean that a process can approach the point
at which it is granted an unavailable resource, but that it cannot arrive at that point until
the awaited resource becomes available.

We can say that a point is near a bounded hyperplane defined by x; = k if its distance
from the hyperplane is within 8 and it is within the bounds of the byperplane in all
dimensions but the ith. In other words, a point is near a bounded hyperplane if and only
if the shortest distance between the point and the bounded hyperplane is a line segment
perpendicular to the hyperplane of length less than or equal to 8.

DEFINITION: A point P (py, - - .py) is near a hyperplane defined by x; = o and bounded
by

8 S. D. CARSON AND P. F. REYNOLDS, JR.

vj#ie{l...N]: 1311 < x; < 3}2

if and only if

vf;'fie{l...N}: BF< p; < sz
and
a—8%p <a
Note thal each hyperplane in a forbidden region can be expressed in a form suitable for the

above definition.

We can divide the hyperplanes of a forbidden region into two sets: those which inter~
sect at the vertex, and those which intersect at the extent. These two sets are called the
vertex set and the extent set, respectively.

LEMMA 2. If a point is near a hyperplane in the extent set of a forbidden region R(o,V.E),

then it is infeasible.

PrOOE. Suppose that a point P is near an extent set hyperplane defined by the equation
xyp=eyg

and bounded by

Vj#geil...N}: v < x; <.

If P is near the e; hyperplane, then by definition
e;—8 S py < ey A Vj;egeu...m Dv; §p; <y
So we have
V:‘E{i.‘.N}= vi € p; <e

provided ey — v¢ 2 8. (Recall that & is small enough that it spans only one synchronizing
event.) Thus P is contained in the forbidden region defined by V (v, - vy) and
E(ey, - ey). so P is infeasible.

2

LEMMA 3. The {th process is blocked at a feasible point P (py, ' - - ,py) if and only if P is
near the {th vertex hyperplane of some forbidden region R(co,V,E).

The Geometry of Semaphore Programs 9

PROOF.
iF. From the definition of nearness. we have

Vg"“'"a g Pt < v /\ vj;g;e{lmN}: V; "~<-. P < €.

So if the system attempts to change state from P via the transition (0,0,...x;= §,...,0), the
{th coordinate of the new state will be p'; such that p'y 2 vy The new state satisfies the
criteria for containment in R, therefore the new state is infeasible. So, by definition, the
{th process is blocked at P.

ONLY IF. If the {th process is blocked, then the transition (0,...x;=8,...,0) is by definition
infeasible. So the point P'(py,..pg+ 8, - Py) is contained in some forbidden region
R(o,VE)}. Thus

Vi;sge{l...zv]: v, S p <eg)
and
L < p§+ & < er. (**)

Since P is feasible, it must be the case that py < vy This, combined with (**) above,
yields

Ve § < P < Vi (oK)

From (*) and (***}, P is near the hyperplane defined by the {th coordinate of the vertex of
R, v§.
0

Lemmas 2 and 3 prove that only the hyperplanes in the vertex set of a forbidden
region can block processes. Since deadlock is a form of blocking, the lemmas suggest that
only the vertex hyperplanes of forbidden regions are important to deadlock detection. The
next two lemmas prove that a single forbidden region can only model the blocking of one
process for a given trajectory. Later, we will use this result to show that a state in which
k processes are blocked is near the intersection of & forbidden regions.

LEMMA 4. If a point P (p1, -+ .py) is near one hyperplane in the vertex set of a region
R (o, V.E), then it is near no other hyperplane in the vertex set of K.

PROOF. Let the hyperplane that P is near be the {th. From the definition of nearness, we
have

V{"‘S S pg << V{ /\ Vj¢§e!1...N}: Vj S_ p", < Ej.

Now suppose that P is also near another vertex set hyperplane, say, the nth hyperplane.
Then

V-n‘“‘““a g P"'i < V,ﬂ /\ vj#?]é{l...Nl: V; ‘g.. PJ < Ej,

10 S. D. CARSON AND P. F. REYNOLDS, iR.

which includes
ve S pr<ey

This contradicts the hypothesis that p; < v
0

LEMMA 5. If a point P (py, -+ .py) is near a hyperplane in the vertex set of a forbidden
region R {0, V.E), then there exists no transition to a point Q (g4 - .gy) such that Q is
near a different hyperplane in the vertex set of K.

PROOY. Again, let the hyperplane that P is near be the {th. The familiar nearness relation
holds at P:

vy— 8 Spp<vy A Vj¢§e{1...N) tv; Sp <
Now, if the point { is near a different hyperplane, say. the nth, then
VT)W 8 ‘S.. q'ﬂ < vn /\ Vj¢1}€{1ulN] : Vj S. qj < ej.

So g, is less than p.,, because p, Z vyand g, < v, To make a transition from F to Q. the
nth process would have to make negative progress, contradicting postulate P5. Thus there
is no transition from P t0 Q.

0

We can interpret Lemma 5 to mean that once a forbidden region has blocked one pro-
cess in a particular trajectory, it can never block a different process. A single forbidden
region cannot model a deadlock, because a deadlock is 2 state in which two or more
processes are blocked forever. So a deadlock must occur when some spatial relationship
among multiple forbidden regions is satisfied. Theorem 1 proves that a point at which 8
processes are blocked is near exactly § distinct forbidden regions.

THEOREM 1. If 8 processes are blocked at a point P {py1,* - .py), then P is near the ver-
tex hyperplanes of 8 distinct forbidden regions.

PROOF. From Lemma 3, if B processes are blocked, then P is near B distinct vertex hyper-
planes. From Lemma 4, no two of the 8 hyperplanes can belong to the same forbidden
region.

0

6. NEARNESS REGIONS

Theorem 1 suggests that to find all of the states at which $ processes are blocked it is
necessary to find those points which are near exactly B forbidden regions. In this section
we develop a method for generating sets of such points. We also show how the sets can be
analyzed to find partial and total deadlocks.

So far, we have used the inherent properties of forbidden regions to prove our results.
Now, however, we must make an assumption about the way in which forbidden regions
are generated from the source program:

The Geometry of Semaphore Programs 11

P6: Given two points, P(py, -~ .py) and Q(gs. '~ gn), such that during the
transition from P to ¢ B processes progress to their next synchronizing events,
and N — B processes make no progress: If the transition from P to ¢ is feasible,
then there exists a trajectory from P to @ such that during each state transition
exactly one of the B8 processes progresses to its next synchronizing event and all
others make no progress.

Intuitively, P6 means that if we can go from £ to Q by running multiple processes
concurrently, we can go from P to Q running the processes one at a time. This means, for
example, that if a diagonal path through a three-dimensional cube exists, then there also
exists a path which follows the cube’s edges. More importantly, P6 implies that if, at a
point P, no single-process, single-event transition is feasible, then there exists no feasible
transition from P. It also implies that if a given number of processes are blocked at a
point, they remain blocked until another process allows them to progress.

It is easy to justify P6 if we consider Holt's graph model. Recall that the graph
model represents a concurrent system as a4 set of nodes and directed, labeled arcs. The
nodes represent states, while the arcs represent state transitions. Each arc is labeled with
the name of a single process. Since the accuracy of graph model depends only on the set of
single-process transitions, it is reasonable to expect the same behavior from the geometric
model.

Given P6, the converse of Theorem 1 is also true. Thus, all points near, say, & for-
bidden regions are those points at which kX processes are blocked. The situation ruled out
by P6 is that depicted in Figure 3. The point P is near the two forbidden regions shown in
the figure, but since point is feasible, the system could progress via the trajectory PQ,
even though neither process one nor process two can progress independently.

Process B

forbidden region

Q
a C
forbidden
5 region
P b

Process A

FIG. 3. Situation ruled out by P6. Transition ¢ is
feasible, but a and b are not.

12 S. D. CARSON AND P, F. REYNOLDS, JR.

Defining the sets of points near the hyperplanes of a forbidden region is straightfor-
ward. Since we need only define those points near the vertex set hyperplanes, each forbid-
den region generates N (the number of processes) such sets. We call each set of points near
a vertex hyperplane a nearness region. Since a nearness region has the same shape as a for-
bidden region, we can use a vertex and an extent to characterize its location and bounds.
Additionally, we can associate a direction with each nearness region, which indicates which
process is blocked at all points within.

DEFINITION: A Nearness Region is a triple (d,V,E) where d is the direction in which the
system is blocked within the region, V is the vertex of the region, and E is its extent.

It is easy to generate the vertices and extents of the nearness regions, especially if the
event times in the progress graph are integers. Supposing that they are, we have only to
form a region with the same shape as each vertex hyperplane, but with unit thickness. For
instance, suppose that a forbidden region is defined (in two dimensions) as having a vertex
(2.2) and an extent (4,4). Each vertex is generated by subtracting unity from a particular
vertex coordinate of the forbidden region, while each extent is generated by substituting
the vertex coordinate of the forbidden region into the dimension from which unity is sub-
tracted. Thus, the vertices and extents of the nearness regions are

V1 = (2,1). E1 = (4.2), Vo= (1,2), Ez = (2,4)

Figure 4 shows the forbidden region defined above, and the nearness regions it generates.

If we compute the intersection of two nearness regions with different associated direc-
tions, then we have a set of points at which two different processes are blocked. Likewise,
we can compute intersections of more than two nearness regions, obtaining sets of points at
which more than two processes are blocked. We call a nearness region which is the inter-
section of { distinct nearness regions a nearness region of degree {. The nearness regions
which are formed directly from forbidden regions are of degree 1. We will see how the

Process B

nearness

. forbidden region
Tegion

neaIness region

Process A

FIG. 4. Nearness regions

The Geometry of Semaphore Programs 13

coordinates of nearness regions of higher degree are computed in the next section. For now,
let us consider the properties of nearness regions.

A nearness region of degree { has associated with it a set of blocked processes. called
the blocked set, which are the directions of its parent nearness regions of degree 1. If the
set is full (contains elements 1 through N), then all processes are blocked; no process can
act to free them. This represents a total deadlock,

If fewer than all the processes are blocked, then we must check to determine whether
they are blocked for all time before we can state that the nearness region represents a par-
tial deadlock. We can do this by checking the extent coordinates in those dimensions which
represent unblocked processes to see if they are infinite. Ways in which nearness regions of
infinite extent are formed are discussed in [1].

Since a nearness region of degree { is finite in the direction of each of its { parents’
hyperplanes, it can be infinite in at most N —{ dimensions. If we associate a set of infinite
directions with each nearness region, called the invariant set, then the nearness region is a
partial deadlock only if

= il,Z,...,N l

the universal set of all directions (processes). Note that we have

ﬂ 1invariant] = D

blocked

U iinvariant

{ blocked

by definition. Using this method, even a single process can be involved in a partial
deadlock, provided it remains blocked indefinitely.

DEFINITION: A deadlock region is a 4-tuple (1B, V.E) where I is the invariant set, B is the
blocked set, V is the vertex, and E is the extent, such that

U 1=11..-NL

Once we have found all the nearness regions of various degrees, we must still deter-
mine whether the nearness regions are feasible, and whether they are reachable. Checking
feasibility can be straightforward. Since the forbidden regions represent those points which
are infeasible, if they totally enclose a nearness region, then that nearness region is infeasi-
ble. If a nearness region is infeasible, then all of its children (nearness regions of higher
degree which are the intersection of it and other nearness regions) are also infeasibie.

Nearness regions possess several other useful properties. First, Lemma 4 indicates
that no two nearness regions formed from the same forbidden region can intersect. Second,
if we attempt to compute the intersection of two nearness regions and find that they do not
intersect, then we know a priori that neither nearness region intersects the other’s children.
Third, we need only concern ourselves with nearness regions formed from a unique set of
directions. There is nothing to be gained, for instance, from computing the intersection of a
region with direction { with another region of directioni. The savings due to these proper-
ties is significant, as shown in [1].

14 S. D. CARSON AND P, F. REYNOLDS, IR.

7. INTERSECTION AND ENCLOSURE

The highly symmetrical structure of forbidden regions and nearness regions suggests a
simple technique for calculating their intersections. We start with a "region of intersection”
equal to the entire space. Then, considering a single dimension at a time, we eliminate
those points that do not lie within the bounds of both regions in that dimension. If, in any
dimension, there exist no points common to both regions, then the two regions do not inter-
sect.

Since forbidden regions and nearness regions (and, indeed, most regions that we con-
sider) are represented in the same fashion, it is convenient to work with generic regions. A
generic region is specified by a vertex and an extent, but carries none of the associated
information (semaphore, blocked process) of forbidden regions, nearness regions, or
deadlock regions. We will often use the term "region” to mean "generic region”.

To find the set of points common to two generic regions in a given dimension, we use
the apyropriate vertex and extent coordinates. Suppose that the two regions are defined by
(VL.EY) and (V2,E?). Then a point, P{py, - - - .py), satisfies the vertex and extent (con-
tainment) bounds for both regions in a direction ¢ if and only if

vi<p NvP<p AN po<er N p <ef,

which can be more conveniently written as

max (v}v?) € p; < min(e;lte?). (7.1)

In practice, we blindly compute the maximum vertex and minimum extent for each
dimension, then compare them. If the maximum vertex is greater than or equal to the
minimum extent in some dimension, then Equation 7.1 is unsatisfiable in that dimension
and the two regions do not intersect. If not, then the maximum vertex and the minimum
extent become the corresponding vertex and extent coordinates {bounds) in the region of
intersection. Figure 5 shows an example of intersecting two-dimensional regions.

THEOREM 2. Two generic regions, (V1,EY) and (V2,E?), intersect if and only if

ViE{l...N]: max (vt v?) < min(ele) (7.2)

'PrROOF. First, observe that for any real numbers x, y, and z,

x 2 max(y,z)=> x 2 min(y.z) (*
and

x < min{y,z)=> x < max(y.z). (**)
IF. Suppose that (7.2) is satisfied. Then for each i, there exists a number p; such that

max(viiv?) € p; < min(ele?).

From (*) and (**), it follows that

The Geometry of Semaphore Programs 15

4
(ef,ed)
1 2
(61.62) (ef.’e:%}
2 2
(i, v3) i, v
(vi,vh)
FIG. 5. Intersecting regions
vt € P < e,-i A v & P < e’
So the point P (py. - - - .py) satisfies the conditions for containment in both regions, and
the two regions intersect.
ONLY Ir. If the regions intersect, then there exists a point P (py, - -+ ,py) Which is contained

in both regions. Now, let there be a subscript j such that
max(v}iv?) 2 min(ejl,ejz 3.
From the definition of containment, we know that
p; 2 max(viv?)
But this implies that
p; Z min(efe?),

so p; is greater than or equal to the smaller extent coordinate, contradicting the hypothesis
that P is contained in both regions.
w]

kt is convenient to compute the blocked set and the invariant set when we compute
the intersection of two nearness regions. The set of processes blocked at all points within a
nearness region is formed from the union of its parents’ blocked sets. A nearness region’s

16 S. D. CARSON AND P. F. REYNOLDS, JR.

invariant set, on the other hand. is the intersection of its parents’ invariant sets.

Another property we need to define is called enclosure. A region is enclosed by
another if the set of points it defines is a subset of that of the other. When one forbidden
region encloses another, the enclosed forbidden region contributes nothing to the synchroni-
zation structure of the system, and can be dropped from the analysis. Similarly, when a
forbidden region encloses a nearness region the nearness region is infeasible and can be
dropped. Although lack of enclosure by a single forbidden region is not sufficient to prove
the feasibility of a nearness region, the enclosure test can be used in a negative fashion, to
show infeasibility.

The conditions for enclosure are simple to formulate. Suppose we have two regions,
defined by R V1.E') and R%(V2,E?). Then R! encloses R? if and only if every point con-
tained within R? is contained within R!. In other words,

Viewnit vit Sv2 A e 2 ¢ (7.3)

Equation 7.3 finds regions that enclose others. In general, this is all the information
we need when determining whether or not a forbidden region contributes to the synchroni-
zation structure of the system. If we want to determine whether or not a nearness region
is feasible, however, we may be faced with a sticky problem. Equation 7.3 can be used to
show infeasibility, but the failure of a single forbidden region to enclose a nearness region
does not necessarily mean that the nearness region is feasible. A nearness region may be
enclosed by the combination of more than one forbidden region.

When Equation 7.3 fails to prove the infeasibility of a nearness region we must
attempt to prove its feasibility or infeasibility in another manner. There are two alterna-
tives, neither of which is attractive. The first possibility is to simply examine every point
(synchronization state) enclosed by the nearness region, checking for feasibility. If the
nearness region is of degree N, then this involves checking a single point, the region’s ver-
tex. If, however, the nearness region is of degree less than N, we must check its entire
volume. The possibility that the nearness region is infinite in various directions is of no
consequence, since it is shown in [1] that a (finite) number can be defined as "effective
infinity". Nonetheless, it is easy to gee that this problem grows exponentially as the
difference of N and the degree of the nearness region.

The other alternative is to compute the volume of the nearness region, then compute
the volume of the intersections of it and all the forbidden regions it intersects. If the
volume of the nearness region equals the volume of its intersections with forbidden
regions, then every point within the nearness region is infeasible. If the volume of the
nearness region is greater, then there exist feasible states within.

Suppose that a nearness region, 4, intersects two forbidden regions, and that we call
the two resulting regions of intersection B and C. Then we must compare the volume of
A,V (A) with the volume of B plusC. In general,

v(B+C)=Vv(BY+VvI(Cc)—Vv(BN C).

The above equation is analogous to the formula for the probability of the union of two
possibly non~disjoint events.

Now suppose than an arbitrary number of forbidden regions, {, intersect a nearness
region. The formula for computing the total volume of the intersections of the forbidden
regions with the nearness region is analogous to the formula for computing the probability
of the union of { possibly non-disjoint events:

The Geometry of Semaphore Programs 17

V(R4 Ra+ -+ +Ry) = (7.4)

Zvr) + LvrNEr) -
i i<j

L v N ORY+ - +

i< <k

(—0 VR, VR, - N RY.

In the worst case, the number of terms in Equation 7.4 is the sum of the {—degree bino-
mial coefficients, 2¢. This situation occurs whenever each R; intersects all the others. The
best case occurs when the regions of intersection are all disjoint. In this event the volume
of their sum reduces to the sum of their volumes. In practice, we must weigh the likeli-
hood of incurring worst case performance with this method against the penalty of search-
ing the entire volume of the region.

8. UNSAFE REGIONS

In the last section we showed how nearness regions in a progress graph model
deadlocks in a system of concurrent programs. We briefly considered the problem of deter-
mining whether or not a deadlock region is feasible. The problem of determining whether
or not a set of states is reachable still remains; we will consider that in the next section.
First, though, let us examine another, related question, that of determining which states
lead inevitably to deadlock.

A state that has the property that it always leads to deadiock is called an unsafe
state. An unsafe region is one from which no feasible trajectory can exit. An unsale region
always encloses an associated deadlock region; the extent of the deadlock region (ie., the
state at which no further progress can be made) is the same as the extent of the unsafe
region.

Consider Figure 6. In this two-dimensional progress graph there exist two forbidden
regions, A and B, whose spatial relationship creates deadlock region C. Using the tech-
nigue developed previously, we can find C by computing the intersections of the nearness
regions of A and B. But notice that while region C is a deadlock region, there are states
putside C which must ultimately lead to deadlock. These are the states contained in region
D. Region D is said 1o be an unsafe region.

DEFINITION: An unsafe region is a triple {D,V,E) where D is a deadlock region, and V and
E are the vertex and extent, respectively, of the region containing all points from which all
trajectories lead to a point in D.

To find the coordinates of an unsafe region, we first need to define a new relation,
called coincidence, between two hyperplanes. A hyperplane is coincident with a second
hyperplane if it has the same location and direction as the second, and if its bounds are
within the second’s bounds. More formally,

DEFINITION: A hyperplane defined by location x; = o' and bounded by
V.WG{L"N}: le € x; <U jl is coincident with a hyperplane defined by x; = o’ and
Vj‘wke{i...m : sz € x; < sz if and only if

i=k N ot=d?

18 S. . CARSON AND P. F. REYNOLDS, JR.

a1 A
[#3] C
D b; | B

by

FIQ. 6. Unsafe Region. Here A and B are forbidden regions, a;, &5, by, b, are nearness regions, C is &
deadlock region, and D is an unsafe region.

A vj sy LS LY

/\ vj;ﬁe{lmN} . UJI ‘-<~. sz

Note that coincidence is not a reflexive relation, but that it is transitive.

Another new property is called proper containment. A point is properly contained in
a region (V.E) if it is strictly inside the region's vertex and extent bounds. This definition
differs from that of containment, since a point on a vertex hyperplane of the region is con-
tained within the region.

DEFINITION: A point P (py, - - - ,pw) is properly contained in a region (V,E) if and only if

V:'E{l...zv): v; < p <eg (8.1

Now, suppose that a point is properly contained in a feasible region (V,E). Lemma 6
proves that to exit the region, a trajectory must cross one of the region’s extent hyper-
planes.

LEMMA 6. Given two points. P (p1. -+ .py) and Q (g3, - - - .gx). such that there exists a
transition from P to 0 that does not violate P5, and a region R (V.E) such that P is prop-
erly contained in R and @ is not. any trajectory from P to 0 must cross one of R’s extent

The Geometry of Semaphore Programs 19

hyperplanes.

PROOF. Since every trajectory from P to Q leaves R, every trajectory must cross at least
one of R's hyperplanes. From the definition of proper containment, Viey)3 vi < pi.
Thus the state transition vector from P to any point X (x;, - - - x5) on one of R's vertex
hyperplanes, say, the ith, contains the negative component

= p=vy—p <0,

violating P5. So by elimination, the trajectory must cross one of R's extent hyperplanes.
]

Lemma 6 suggests a strategy for finding the coordinates of unsafe regions. Note that
each of the N extent hyperplanes of a total deadlock region is coincident with a vertex
hyperplane of one of N forbidden regions. In a partial deadlock region, those extent hyper-
planes whose associated directions are elements of the deadlock region’s blocked set are
coincident with the vertex hyperplanes of forbidden regions. Now, if the extent hyper-
planes of a feasible region are coincident with vertex hyperplanes of forbidden regions,
then no trajectory can exit the feasible region. To find the coordinates of an unsafe region,
we find the coordinates of the largest region that has the same set of coincidence relations
as a particular deadlock region.

Recall that a deadlock region is one in which some processes are blocked forever. We
can think of an unsafe region as one in which some processes will block forever.

Suppose we have a deadlock region, with its associated blocked and invariant sets.
The vertex of the associated unsafe region is formed from the vertex coordinates of the
nearness regions of degree one that intersect to form the deadlock region.

Consider a single dimension, say, the ith, such that i is not a member of the invariant
set of the deadlock region (i is thus a member of the deadlock region's blocked set). Recall
that in this case, there exists a forbidden region whose ith vertex hyperplane blocks the
progress of the ith process at all points within the deadlock region. To find the ith vertex
coordinate of the unsafe region, we must determine at what point in the ith process’s pro-
gress it becomes inevitable that the hyperplane will block the ith process.

Keeping in mind that { is not a member of the deadlock region's invariant set, the
point at which blocking due to the ith hyperplane becomes inevitable is the point al which
all processes involved in the deadlock except the ith are blocked. This value is equal to the
maximum ith vertex coordinate of the nearness regions of degree one., whose intersection is
the deadlock region, not including the nearness region (of degree one) whose associated
direction is i. If the deadlock region is of degree one, then deadlock is inevitable from the
time the ith process is started, and the ith vertex coordinate of the unsafe region is zero.

The conditions for unsafeness are most easily envisioned if we consider a simple
example. In Figure 6, nearness regions a2 and b1 intersect to form deadlock region C.
Notice that C's invariant set is @, and that C's blocked set is {1.2}; both processes 1 and 2
are blocked within C. Now, let the ith vertex and extent coordinates of the nearness

regions be v#1, ef?, vf?, ef?, and so on.

Using the above procedure, we first compute the first vertex coordinate of the unsafe
region D, vY. The nearness region in which process 1 is blocked is 1. Taking the max-
imum vertex coordinate of the remaining contributing nearness regions, namely, a2,
vP = v§%. Likewise, the nearness region in which process 2 is blocked is @2. The (second)
vertex coordinate of the remaining region, b1, is the second vertex coordinate of D. Thus

- the vertex and extent of region D are (v§?,v}') and (e§ .3). respectively.

The technique described applies if each direction is not a member of the deadlock
region’s invariant set. Now, suppose that we wish to find the ith vertex coordinate of an

20 S. D. CARSON AND P, F. REYNOLDS, JR.

unsafe region, and that i is a member of the corresponding deadlock region’s invariant set.
In this case we must find the point in the ith process’s progress at which the remaining
processes become blocked. This is just the ith vertex coordinate of the deadlock region.

Now consider Figure 7. In this progress graph, the forbidden region A extends
infinitely in the X1 direction. Thus the blocked and invariant sets for nearness region a2
are {2} and {1}, respectively. Notice that a2 is a deadlock region since the union of its
blocked and invariant sets is the universal set.

To find the unsafe region corresponding to a2, we first examine direction 1. Since 1 is
a member of the invariant set, the first vertex coordinate of the unsafe region B is the first
vertex coordinate of a2, or v$%. Direction 2 is not a member of the invariant set, so we
take the maximum vertex coordinate of all first degree nearness regions forming a2, whose
blocked set does not include direction 2. There are no such nearness regions, so B's second
vertex coordinate is zero. The extient of the unsafe region is the extent of the deadlock
region, (e9?,e%%). It is easy to see that if process 1 progresses to the event corresponding
to v4? before process 2 progresses to the event corresponding to e%”, then it is inevitable
that process 2 will deadlock.

Theorem 3 summarizes the above discussion, providing a single equation we can use to
compute the coordinates of an unsafe region.

THEOREM 3. Let D be a deadlock region, with invariant set I”, blocked set B”, and vertex
and extent VP and EP. Further, let the nearness regions of degree one whose intersection
is D be R/ (d? V/ E!), for j € B”. If a point P(p;. - .py) is properly contained in a
region defined by (VY .EY) such that

X2

ay A
a
322

a, a2
Va©

B

a XI
Vlz

FIG. 7. Unsafe region with partial deadlock

The Geometry of Semaphore Programs 21

v _ |9 B? = {i} (82)
T max(vh k € B? Ak 3i) BY = i} .

and

ef = e

then P is an unsafe state. Therefore U (D, VY. EY) is an unsafe region.

PrOOF. To prove this result we show that every extent hyperplane in U is either coincident
with an extent hyperplane of a nearness region (and therefore coincident with a vertex
hyperplane of a forbidden region), or infinitely distant from 7.

The deadlock region D is composed of the intersection of nearness regions. If { € B”, then
there exists a nearness region whose {th extent hyperplane is by definition coincident with

the {th vertex hyperplane of a forbidden region. The {th extent hyperplane of the {th
nearness region is defined by

Xy = ef A Vi;éz,eu...w} s vE € x; < ef
Now, the {th extent hyperplane of U is

xwe%’ A Viwgeu...m: v/ € x; <ef
But eg = eé} = eé, and e” = eP, so we have

xg=ef N vi#{e{l...N] vV € x; <ef
‘We know that

Vmgeu..m D ef € eig

because the extent of the deadlock region is computed as the minimum ef for all { € BP.
‘We also know that

ViU > Vig,

since v¥ is computed in Equation 8.2 as the maximum v# for all { % i. Therefore the {th

extent hyperplane of U is coincident with the {th extent hyperplane of the {th nearness
region (of degree 1) composing D, for all { € B?.

The remaining extent hyperplanes of U, those directions { such that { € 1P, are all
infinitely far from P, thus no trajectory can cross them. :

Thus every extent hyperplane of U is either coincident with the vertex hyperplane of a
forbidden region, or is infinitely distant, and no trajectory can exit I/.

22 S. . CARSON AND P. F. REYNOLDS, JR.

O

Equation 8.2 describes the coordinates of regions in which all trajectories inevitably
lead to a single deadlock. In the most general case, however, there may exist regions in
which all trajectories lead to some deadlock, but not all trajectories lead to a single
deadlock. In other words, at a point within such a region we can say that one of a number
of deadlocks will occur. Eguation 8.2 is insufficiently powerful to characterize such
regions.

To find these regions we use an iterative procedure. In the first iteration we find all
unsafe regions using Equation 8.2. We then find those regions all of whose extent hyper-
planes are coincident with vertex hyperplanes of either unsafe regions or forbidden regions.
To accomplish this we regard each unsafe region as a forbidden region and compute the new
deadlock regions, starting anew. If we fail to find any deadlock regions during some itera-
tion, then all unsafe regions have been discovered. Figure 8 shows unsafe regions found by
iteration.

This procedure is clearly very expensive. However, two factors mitigate the cost.
First, the conditions causing the need for multiple iterations are quite specialized, and are
thus rare. Second, this information is useful in that, once we have found all unsafe
regions, we can make repairs to the concurrent system under analysis by inserting
appropriate synchronization primitives. Hf we make every unsafe region infeasible (ie.,
insert the primitives which create a forbidden region), then the concurrent system is
deadlock free. Although we will not explore repair procedures any further in this paper,
we will consider a similar problem in the next section.

forbidden
region

unsafe |forbidden
region

.,_-........---

~—
[x]

&

<]
ot
™

S

]
]
! unsafe ! umsafe [forbidden
H(iteration)? (egn §.2) | region

] ¥

FIG. 8. Unsafe regions found by iteration

The Geometry of Semaphore Programs 23

8. REACHABILITY

Forbidden regions define sets of points which are infeasible because they violate the
constraints imposed by the synchronizing primitives P and V. In general, though, there
may exist points which satisfy the constraints of the synchronizing primitives, but which
are not part of any valid execution sequence of the set of concurrent processes under
analysis. These points, aptly called unreachable points, are unreachable because of certain
spatial relationships among forbidden regions. As Clarke points out, the incompleteness of
the semaphore invariant method is entirely due to the possibility that unreachable points
might exist.

In this section we show how unreachability reduces to unsafeness if a simple linear
transformation is applied to the progress graph. We then derive the transformation and its
inverse.

Recall the fifth postulate:

P5: Processes cannot progress backward in time, i.e., no (scalar) component of a state tran-
sition vector can be negative.

Now, suppose that there exists a trajectory from the origin to a point P (py, - -+ ,py), such
that no state transition in the trajectory violates F5. Then we can also construct a trajec-
tory from P to the origin using the "inverse" of P5:

P5": Processes cannot progress forward in time, i.e., no (scalar) component of a state transi-
tion vector can be positive.

Of course, P5' has no meaning in a real system. We use it here merely as a mathematical
device.

The trajectory from P to the origin is composed of the additive inverses of the vectors
comprising the trajectory from the origin to P. i is easy to see that if it is possible to con-
struct a trajectory from the origin to P using F 3, then it is possible to construct a trajec-
tory from P to the origin using P5'. More importantly, if il is not possible to construct a
trajectory from P to the origin using F5', then it is not possible t0 construct a trajectory
from the origin to P using P5. And, if it is not possible 1o construct a trajectory from the
origin to P using P5, then P is unreachable. In other words, we can legitimately attempt
to verify reachability by working backward from P.

LEMMA 7. Between the origin and a point P (p;, - .px). there exists a trajectory based
on P5 if and only if there exists a trajectory from P (p;, - - .py) to the origin based on
F5.

PROOF.

IF. Let 7' through T% be a series of vectors that compose the trajectory between P and the
origin. Laying the vectors end-to-end, we have

Further, let the components of each 77 subscribe to P5’, that is,
Viewwit t/ < 0.

Let S through S* be a set of vectors such that s/ = —¢/. Then

24 5. D. CARSON AND P. F. REYNOLDS, JR.

Vz‘e{l...Nl: si 2 0.

Also, we have
L
+ 28 =0+pP="r

so the trajectory composed of the §' extends from the origin to P.
ONLY IF. kdentically, let 7 be a series of vectors that subscribe to P35, that is,

Vien.mz t 2 0.
We form a series of vectors S/ such that s{ = —~¢/. Thus,
Vet si €0

and the trajectory composed of the §7 satisfies P5".
O

Unsafe regions are regions from which no trajectory subscribing to P5 can exit. We
can think of an unreachable region as one from which no trajectory subscribing to P5' can
exit. The simplicity of the relationship between trajectories constructed with P5 and those
constructed with P5' suggests that we can use techniques previously derived from PS5,
suitably transformed, to ind unreachable regions. ‘

Suppose we have a collection of forbidden regions. If we reflect the regions through
the origin, then the vertex and extent coordinates of each region are exchanged. Recalling
that there exists a finite value that can be used as "effective infinity", we then translate the
coordinate axes so that the (reflected) point (—oco,—co, -+ - ,~co) becomes the origin. This
new progress graph has the property that any trajectory in it which is constructed with P5
is the same as a tragectory in the ongmai graph canstructed with P5'. Likewise, any
regions which are unszre-freerire=rrans i ety e eaehable in the original
progress graph. We can apply the techmques prekusly developed (based on P5) for
finding unsafe regions , then reverse the transformation. The resulting regions are unreach-
able in the original progress graph.

For example, consider Figure 9. The firsi progress graph, (a). is one derived from a
two-process PV program. The second progress graph, (b}, is the graph obtained by
reflecting and translating (a). Note that there exists an unsafe region, U, in this graph. We
find its coordinates using the technigues described above. We then reverse the transforma-
tion, obtaining graph (c). Region U is unreachable in this graph.

The required transformation is simple. To reflect each forbidden region through the
origin, we merely negate the coordmates of each vertex and extent. We then translate the
forbidden regions back into the ﬁrst 'quadrant”. Let there be a point ® (P19 -~ .Pn)
such that ¢; is "effective infinity" for the ith coordinate axis. The combined reflection and
translation is

xi' = Q‘)i - Xi. (9~1)

Once this transformation has been applied, the vertex of each region is further from the
origin than the extent. Thus, to complete the transformation we must swap the vertex and

The Geometry of Semaphore Programs

(a) Original progress graph

(b) Transformed progress graph. U is an unsafe region.

{¢) Original progress graph. {7 becomes an unreachable region.

FiG. 9. Transforming to Find Unreachable Regions

25

26 5. D. CARSON AND P. F. REYNOLDS, IR.

extent of each forbidden region.

This transformation is its own inverse. Thus,

x;" = — x! {(9.2)
= ¢ — (¢; — x;)
= Xi.

Of course, we must again swap the vertex and extent of each forbidden region.

THEOREM 4. Let P’ be a point that is contained in an unsafe region in a transformed pro-
gress graph G'. Then the point P, transformed from P’ by Equation 9.2, is unreachable in
the original progress graph G .

PROOF. By definition, "effective infinity" is unreachable from a point contained in an unsafe
region. Thus, there exists no feasible trajectory between P' and ©_ Now, applying the
inverse transformation, the two points ' and ¥ in G’ become P and 0 in G. Since there is
no feasible trajectory between P’ and @, there is no feasible trajectory between O, the ori-
gin, and P, and by definition, F is unreachable in G.

O

The above result proves that the geometric model correctly represents systems with
unreachable feasible states.

Now, it is admittedly expensive to effectively perform deadlock detection twice, once
to find unreachable regions and once to find deadlocks. However, if we find unreachable
regions first, then most of the space required to represent the nearness regions can be re-
used during deadlock detection.

10. CONCLUSIONS

The geometric model presented in this paper formalizes the familiar notion of a pro-
gress graph, a multidimensional Cartesian model of synchronization between two or more
processes. The model is sufficiently powerful to characterize state-intrinsic properties, such
as blocking and total deadlock, as well as state-extrinsic properties, such as reachability
and partial deadlock. Additionally, the model is one that is readily analyzed to find such
properties.

The geometric model is exact in that it can be used to identify all reachable deadlock
states. It is more powerful than the algebraic deadlock predicate, in that il has the ability
to describe properties that hold over sequences of states. It has an advantage over graph
based approaches in that entire sets of states with like properties are represenied as single
entities, known as forbidden regions. The Cartesian interpretation provides the same infor-
mation given by arcs in a directed graph, without requiring an explicit representation of
each state transition or path.

We have described a compact representation for sets of states that share a spatial rela-
tionship: forbidden regions. This compact representation uses coordinates for defining such
regions. The number of coordinates required is linearly related to the number of synchron-
ization states (bounded by the number of processes being modelled) required to represent
each set.

While we have defined a formalism for the geometric model of concurrency, and for
identifying regions and therefore synchronization properties of interest, we have not dis-
cussed methods for creating such geometric representations of concurrent programs. We
have investigated this problem in [1], and have found that the geometric model lends itself

The Geometry of Semaphore Programs 27

to simplified analysis for certain classes of programs. For example, for PV programs in
which semaphores are used only for mutual exclusion, the number of forbidden regions
grows polynomially with the number of processes. This in turn, simplifies the complexity
of deadlock analysis.

The geometric model has the distinct advantage of capturing the spatial and thus tem-
poral relationships among a set of cooperating processes. Using the analysis techniques we
have described in this paper, it is possible 1o use these characteristics to identify, for exam-
ple, points at which an appropriate mutual exclusion semaphore could be placed in order to
avoid an otherwise inevitable deadlock. The geometric model could be used, as well, to
support program iransformations and analysis of such transformations. We are currently
exploring these potential applications.

REFERENCES

1. CARSON, S. I, Geometric models of concurrent programs. Ph. D. Dissertation, Department of
Computer Science, University of Virginia, Charlottesville, Va., 1984,

2. CLARKE, E. M. Synthesis of resource invariants for concurrent programs. ACM Trans. Prog.
Lang. Syst. 2, 3 (July, 1980) 338-358.

3. CoFEMAN, E. G., ELPHICK, M. J., AND SHOSHANI, A. System deadlocks., ACM Comput., Surv. 3, 2
(June, 1971) 67-78.

4, Duxstra, E. W, Co-operating sequential proceyses, Programming Languages, F. Genuys, ed.,
Academic Press, New York (1971).

5. HABERMANN, A. N. Path expressions., Technical report, Department of Computer Science,
Carnegie-Mellon University (June, 1975).

6. HoLt, R. C. Some deadlock properties of computer systems. ACM Comput. Surv. 4, 3 {(Sep-
tember, 1972) 179-196,

7. KELLER, R. M. Generalized Petri nets as models for system verification. Technical report, Com-~
puter Science Department, University of Utah (1977).

8. LipsKl, W., AND PAPADIMITRIOU, C. H. A fast algorithm for testing for safety and detecting
deadlocks in locked transaction systems. J. Alg. 2, (1981) 211-226.

9. OWICKI, §. AND GRIES, D. Verifying properties of parallel programs: an axiomatic approach.
Commun. ACM 19,5 (May, 1976} 279-285.

10. PapapmMITRIOU, C. H. Concurrency control by locking. SIAM J. Comput. 12, 2 (May, 1983)
215-226.

11, YANNAKAKIS, M., PAPADIMITRIOU, C. H., AND KUNG, H. T. Locking policies: safety and freedom
from deadlock. Proceedings 20th ACM FOCS (1979) 283-287.

