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Abstract—Micron’s Automata Processor is an innovative re-
configurable hardware accelerator for parallel finite-automata-
based regular-expression matching. While the Automata Pro-
cessor has demonstrated potential for many pattern matching
applications, other applications receive reduced benefit from
the architecture due to capacity limitations or routing limi-
tations. In this paper, we present an efficient input encoding
method that often results in simplified automata designs and
simplified routing by better exploiting the powerful character
matching abilities of the Automata Processor. This enables
the Automata Processor to more efficiently solve problems
for a broad range of new applications. We present Hamming
distance, edit distance, and Damerau-Levenshtein distance
automata as motivating examples, observing space efficiency
improvements up to 192x.

Keywords-Automata Processor; subset encoding; finite au-
tomata; Hamming distance; Levenshtein automata

I. INTRODUCTION

Micron’s Automata Processor (AP) [1] is an innovative
hardware accelerator for parallel finite automata-based regu-
lar expression matching. It is a non-von Neumann processor
which simulates nondeterministic finite automata (NFAs)
mixed with Boolean logic gates and counters. The AP
achieves this end by utilizing a bit-parallel technique [2]
within DRAM, allowing it to run many NFAs in parallel.

The memory-derived AP can match an input byte stream
with a large number of homogeneous-NFAs [1] on the
AP in parallel. Homogeneous-NFAs are computationally
equivalent to traditional NFAs, the only difference being that
homogeneous-NFAs match characters in states instead of on
transitions, as shown in Figure 1. Each NFA state (called a
state transition element, or STE) in the current design of the
AP is realized as a 256-bit memory column to represent the
subset of 8-bit characters which that state matches. An STE
matches on an input character when the input belongs to that
state’s character subset. This action intuitively operates as a
character-OR in regular expressions. More details about the
AP architecture are provided in Section III-A.

Many automata designs on the AP have been developed
for accelerating real-world applications, including: network
intrusion prevention [1], DNA motif searching [3], Brill
tagging in natural language processing [4], association rule
mining [5], entity resolution [6], and DNA alignment [7].
These prior works observe the AP achieve more than 100x
speedup over CPU implementations.
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Figure 1. Two equivalent NFA representations for pattern a+(bc|d): (a)
Traditional NFA; (b) Homogeneous NFA (the model of the AP).

While working toward these exciting results and other
failed ones, we have found that many automata designs on
the AP face a few common problems. One problem is the
number of patterns that can be represented on the AP at
one time and thus checked concurrently. This pattern density
is constrained by hardware resources, such as limited STE
capacity or inefficient routing. Hardware limitations on the
number of states an automaton may have can either limit the
amount of parallelism that machine has available (making
the application less efficient), or prevent an automaton from
fitting on the AP altogether (making the application impos-
sible to accelerate with the AP). Additionally, even some
small automata may have a complicated transition topology,
making them difficult to route on the architecture. This can
cause a poor STE utilization rate. As a consequence, for
large problems that exceed the capacity of the AP, one
may have to either use more AP hardware, or perform the
computation using many passes through the input stream.

Another problem is that it is difficult to fully utilize the
powerful character-OR ability of STEs on the AP. One rea-
son is that if we combine many regular expression patterns
together using character-ORs, we cannot later distinguish
which character was matched. The other reason is that
there is a mismatch between common regular expression
structures and the matching procedure of the AP, as real
world regular expressions typically operate over unions of
larger subexpressions rather than using single character-ORs.

We observe that it is possible to overcome these limita-
tions. Since each STE is a 256-bit memory column, it can
represent any one of 2256 possible subsets of 8-bit characters.
This gives plenty of entropy to represent more complex
matching behavior than the simple character-OR.

To address these problems, we propose the subset en-
coding method, which can help the AP to achieve better
utilization of its hardware resources for various applications.
The subset encoding method encodes both application data
and patterns into subsets of characters, illustrated in Figure
2. For example, it can encode a 64-character DNA sequence
into a subset of 8-bit characters, so that it only uses one
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Figure 2. Overview of the subset encoding method: (a) The typical AP
execution flow; (b) The execution flow after the subset encoding method
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STE to represent this DNA sequence. By matching encoded
data with encoded automata we are able to access a richer
design space, addressing those problems mentioned above.

The subset encoding method can fully exploit the
character-OR ability of STEs by encoding a sequence of
data into a subset of characters which are then put in
a single self-loop STE. Effectively, the subset encoding
method encapsulates a short transition history using only
one STE, allowing that STE to match on a sequence of
characters rather than being limited to matching on just
one character. From here, we can adapt the method to
find solutions which best fit the characteristics of individual
applications by analyzing tradeoffs among input stride, input
rate, and alphabet size.

Furthermore, the subset encoding method improves the
space efficiency and the degree of parallelism. This results
in smaller automata structures with fewer states and con-
nections, enabling more automata to be placed on the AP
by reducing routing complexity. For example, we apply the
subset encoding to traditional Hamming distance automata
and Levenshtein automata. The large structures required
for these automata make it very difficult or sometimes
impossible to place and route on the AP. We show that
after applying the subset encoding method, the automata
structures become highly compressed and thus require sig-
nificantly fewer routing resources on the AP.

Experimental results show that by applying the subset en-
coding method, the space efficiency of these automata can be
improved from 3x to 192x for different application scenarios.
We can also use multiple-stride in the subset encoding to
increase the input rate. As a result, overall performance
on the AP can be significantly improved. This encoding
technique will impact future decisions in the design of the
AP or other automata-based co-processors.

II. RELATED WORK

The input stride technique was discussed in Becchi’s
Ph.D. thesis [8]. The input stride technique can compress
multiple input characters into a single byte, e.g. compress-
ing four DNA characters to one byte. This technique can
increase the input rate, but it may make automata more
complicated, thus difficult to route. In this paper, we consider
the input stride as one of the design parameters of the subset
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encoding method, and we combine the stride technique with
the subset encoding for more efficient hardware utilization.

A bounded Hamming distance automaton on the AP was
described by Roy and Aluru [3] for solving the DNA motif
searching problem. For hamming distance (I, d), that is to
match a pattern of length ! with at most d substitutions, this
traditional design needs (2d + 1)l — 2d* STEs. Without the
subset encoding, the capacity of each STE is not efficiently
utilized. In addition, they estimated the capacity assuming
the STE utilization efficiency is 80%, but the actual routing
results for large ! and d might be much worse. In this
paper, we introduce new subset-encoded Hamming distance
automata which only use 2d 4+ 2 STEs when the pattern is
within the STE capacity, and we show that the new design
can achieve higher pattern density.

The Levenshtein Automaton is an elegant solution for
computing edit distance. It is based on dynamic program-
ming and uses e-transitions. However, when implement-
ing the Levenshtein Automaton on the AP, many addi-
tional STEs and connections are required for processing *-
transitions and e-transitions, which makes the routing very
inefficient. For example, Tracy [7] showed a straightforward
implementation of the Levenshtein automata on the AP, but
the degree of parallelism was quite limited due to the low
routing efficiency. In this paper, we introduce the subset-
encoded Levenshtein automata, which allow us to separate
the large automata into pieces so as to improve the routing.

III. SUBSET ENCODING METHOD

In this section, we introduce details of the subset encoding
method based on the AP. We discuss the AP architecture,
tradeoffs between encoding and matching, the problem re-
duction, and a model for analyzing tradeoffs among design
parameters such as stride, alphabet size, and the way of
encoding. The overhead of encoding is also discussed in
this section.

A. The Matching Mechanism of the AP

Figure 3 shows the memory-based architecture of the AP.
Each 8-bit input character is decoded as a memory row
address. Each 256-bit column in memory represents the
matching characteristics of an STE. If a memory cell is set to
1, then the input character for that cell’s row matches with
the STE for its column. STEs are connected by a routing
matrix, and some Boolean logic gates and counters are
added for extending matching efficiency. Since the matching
behavior and routing are represented separately, the user can
update the character matching table without reconfiguring
the connections. We utilize this feature to gain a performance
benefit when the AP has insufficient hardware capacity for
all patterns we wish to match against. In this case, we
perform our computation by making multiple passes on the
input data, each time reusing the same automata structures
but with different matching characters.

The current AP generation is defined by the following
hardware hierarchy:
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Figure 3. The architecture of one AP block. Each row corresponds to one
8-bit input character, each column corresponds to one STE. If a memory
cell is set to 1 then the input character for its row matches with the STE
for its column.

o Each board has 32 chips assembled into 4 ranks with
8 chips each.

o Each chip has 2 cores. Automata transitions are not able
to span between cores, making the core the limitation
on automaton size.

e Each core has 96 blocks. These blocks are connected
by an inter-block routing matrix, supporting automata
transitions among different blocks.

o Each block has 256 STEs (32 of which can report
off board), 12 reconfigurable Boolean elements, and 4
threshold counters. These are all connected by an intra-
block routing matrix, supporting automata transitions
between components within that block.

In summary, each AP board can match an input byte stream
in parallel over 1.5 million STEs at an input rate of 133MB/s.

Each AP board is also equipped with an on-board FPGA.
Micron has not yet indicated support for users to place func-
tions on the FPGA, but ideally, this acts as an accelerator for
potential preprocessing/postprocessing of AP input/output
and provides a way to dynamically interact with the AP
without CPU intervention.

B. Redefining Regular Expression Matching Toward Better
AP Design

The regular expression matching problem, the general
problem which the AP aims to accelerate, seeks to determine
whether or not a given input string belongs to the set
of strings as defined by a given regular expression. A
proper solution to this problem requires answering correctly
for every possible input string, in other words the regular
expression matching problem is a decision problem.

We observe that the encoding function needs not be
onto, in other words not every string is necessarily a valid
encoding of some possible input strings. For such strings,
the acceptance behavior of the automaton is undefined. In
order to solve this new “promise” problem (where the input
is promised to be a valid encoding of some strings), the
automaton only needs to behave correctly on valid input
strings and may behave arbitrarily on all other inputs [9].

The freedom to behave arbitrarily on some input strings
results in greater freedom in automaton design.This is re-
sponsible for the improved automaton efficiency provided
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Figure 4. The model of the subset encoding method

by the subset encoding. The freedom in matching behavior
allows for design flexibility in other parameters, such as
automaton size, automaton connectivity, or input rate.

C. Modeling Subset Encoding

The core idea of the subset encoding method is to convert
subsequences of the input sequence into subsets of charac-
ters. This then allows a single STE, whose only operation is
to match on a subset of characters, to match subsequences of
characters. There are many ways one can do this encoding
depending on certain design parameters. We provide a model
of our method (Figure 4) which shows how to encode a
string into subsets of characters considering tradeoffs among
design parameters such as stride, input rate and alphabet
size. A taxonomy of design parameters are listed as follows.

1) Characteristics of the input stream

- A: The size of the application data’s alphabet (X)

2) Characteristics of the AP hardware

- N: The number of bits in each AP character

- 2N: The number of memory cells in one STE

3) Encoding Design choices

- M,m;: Partition the 2V memory cells into M bit
groups, where each group M; has m; bits

- k;: Choose k; bits from group M;, which has (7}%)
different encoding

- s;: Map s;-stride characters (consider s; consecutive
characters as atomic) to group M;

- F: A mapping from s;-stride application data to k;-
subset of groups M;, represented as a positive integer.
For a sequence of characters the offsets of related bit
groups should be added with the final encoding.

F = (ZS; — ({07 .ee 7]:.”’1' - 1})) T oﬁseti (1)

where the offset of the i-th bit group is:
offset; = Z;Q?Od M)-1 m; ()



In summary, we encode offset information together with
the input data so that a specific character will only
match with its corresponding bit group. The offset will
roll back to zero when it exceeds the length of the
longest pattern.
All of the above encoding design choices may be made
independently under the following constraints.

4) Constraints
- The total number of bits in all bit groups are bounded
by the number of memory cells in each STE:
il mi < 2N 3)

- When picking k; bits out of m; bits, maximum value
of (7,';) occurs when k; = m;/2. So it must hold that:

- When mapping from s;-stride characters to k;-subset of
m; bits, we need to ensure that the number of subsets
exceeds the number of all possible s;-stride characters:

Az < () 5)

5) Encoding results

- The capacity of a single STE, i.e. how many original
input characters can be encoded in one STE:

Capacitygpp = Zij\ial S 6)

- The actual input rate after encoding, i.e. how many
original input characters can be processed per second:

ZM—I A
i=0 Si
M—1
Yoico ki

In practice, we can pick constant numbers for stride s;,
subset size k; and bit group size m;. As a result, we can

apply the subset encoding method and analyze the encoding
performance with the following steps:

InputRate 5., coded = x InputRate ,p  (7)

1) Determine the characteristics of the input data and the
AP hardware, such as the input alphabet size A and
the number of bits 2%V in each STE.

2) Choose design parameters, including stride s, bit
group size m, and subset size k, such that A% < (7:)

3) Design a constant-time encoding function to map each
s-stride input character to a k-subset out of m bits, and
add bit group offsets to the final encoding.

4) Calculate capacity and input rate. After encoding, an
STE can contain s x 2%V /m original input characters,
and the actual input rate will be s/k times the input
rate of the AP.

D. Subset Encoding Examples

In this subsection we show two examples of encoding
following the above procedure. One example encodes DNA
characters with 4 memory cells each, and the other example
encodes English lowercase letters with 8 memory cells each.
As a result, an 8-bit STE can contain 64 DNA characters or
32 English letters.
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|A|T|G|C|A|T|G|C|m|Origina]inputdata

Design choices:
Stride = 1; Mapping to 4 choose 1, because 4C1 = 4 >= |Alphabet|*"% = 4
Actual mapping: {A, T, G, C}—{0, 1,2, 3}

| \0 | \S | \10 | \1S | \16 | 21 | 126 | \31 | | Encoded byte sequence

Memory bits of an STE
splitted into bit groups

CLoToTo) eeTeTo] [eTo [ To] [eToTo W] GToTo To] [
0 1 2 3 4 5 6 17

8 9 10 11 213 14 15 16 17 18 19

@ Bit offsets

‘ A character set {0, 5, 10, 15, 16, 21, 26, 31, ...}

‘ Encoded pattern

Figure 5.  The ‘11 subset encoding for DNA characters. The DNA
sequence “ATGC...” is encoded into a byte sequence “\0\5\10\15...”
and a set of characters {0,5,10,15.... } Matching is done by putting the
set of characters in a self-loop STE and streaming the set of characters.

b

a c d e | .. | Original input data

Design choices:
Stride = 1; Mapping to 8 choose 2, because sC> = 28 >= |Alphabet|*"% = 26
Actual mapping: {a, b, c, ..., 2} —{{0,1}, {0,2}, {0,3}, ..., {4.7}}

<

| \0 | \1 || \8 |\10 || \16|\l9 ||\24 | \28 || \32 | \37 H:' Encoded byte sequence
Memory bits of an STE
splitted into bit groups

Clifofofofofofo] [efofuofo o ofof [afefo]u].]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 6 17 18 19 ..

@ Bit offsets

‘ A character set {0, 1, 8, 10, 16, 19, 24, 28, 32, 37, ...} ‘ Encoded pattern

Figure 6. The (g) subset encoding for English lowercase letters. The

string “abede...” is encoded into a byte sequence “\0\1\8\10...” and a
set of characters {0,1,8,10.... }.

DNA Characters:

1) The alphabet size of DNA is A = 4. Assuming we
have a pattern of length 64, we can map a single-
stride DNA character to (}) (1 bit is enabled for every
group of 4 bits in the STE memory column), as shown
in Figure 5.

2) Design choices under the constraint A% < (ZL) Stride
s = 1, bit group size m = 4, subset size k = 1. A
single STE can contain 2%V /m = 64 bit groups, and
the pattern has M = 64 bit groups.

3) The encoding function F' can be a one-on-one map-
ping: F = {{A,T,G,C} — {0,1,2,3}} + offset,
where for the n-th DNA character, offser =
(n mod M) x 4 = (n mod 64) x 4.

4) As a result, the capacity of a single STE is 28/4 = 64,
and the input rate after encoding is s/k = 1/1 = 1x,
the same as the input rate of the AP.

English Lowercase Letters:

1) The alphabet size of English lowercase letters is A =
26, so assuming we have a pattern of length 32, we
can map a single-stride English letter to (g) where
Al =26 < (g) = 28, as shown in Figure 6.

2) Design choices under the constraint A® < (7'): Stride
s = 1, bit group size m = 8, subset size k = 2. A
single STE can contain 2%V /m = 32 bit groups, and



Table I
SUBSET ENCODING TRADEOFF EXAMPLES - DNA (,,,Cy, = (’;:))

Stride  Encoding  STE Capacity  Input Rate  Efficiency Factor
1 256C1 1 1.0x 1.0
1 14C1 64 1.0x 64.0
2 16C1 32 2.0x 64.0
2 7C5 72 1.0x 72.0
2 6C'3 84 0.67x 56.0
4 256C1 4 4.0x 16.0
4 24C2 40 2.0x 80.0
4 13C3 76 1.33x 101.3
4 11C4 92 1.0x 92.0

125 256C127 125 0.98x 123.0

the pattern has M = 32 bit groups.

3) The encoding function F' maps each character to
a 2-subset out of 8 F = {{a,b,c,...,2} —
{{07 1}7 {07 2}7 {07 3}7 ceey {4a 7}}} + Offset’
where for the n-th character in the input stream,
offset = (n mod M) x 8 = (n mod 32) x 8.

4) As a result, the capacity of a single STE is 2%/8 = 32,
and the input rate after encoding is s/k = 1/2 = 0.5x.
So we encode 32 English lowercase letters in one self-
loop STE in exchange for halving the input rate.

E. Subset Encoding Tradeoff Analysis

There are many tradeoffs among the alphabet size of
application data, input stride, input rate, and subset encoding
complexity. We can analyze these tradeoffs based on the
model of the subset encoding method.

From equation (5), given the alphabet size A of the
application data, the stride s is bounded by bit group size
m and subset size k. A larger stride s means faster input
rate, but we need to choose larger k£ and m to satisfy the
constraint. However, when m is increased, we must put
fewer bit groups in an STE. When £ is increased, the input
rate decreases and the complexity of encoding is increased.

Table I shows how strides and encoding approaches affect
the STE capacity and the input rate. Given a stride, we
may have many different encoding approaches to use. The
efficiency factor, which is the product of STE capacity and
the input rate, roughly indicates encoding efficiency. Subset-
encoded automata achieve better efficiency than traditional
multiple-input stride implementations [8], since traditional

designs only map 4-stride DNA characters to (2‘;)6),

FE. Encoding Overhead Analysis

Since we move some computational burden from the
matching phase to the encoding phase, there is encoding
overhead. To encode each character, we need to do a one-to-
one character-to-subset mapping and add the bit group offset
to the encoding. For small subset size k, the mapping can be
done through simple arithmetic calculation or table lookup.
However, if k is large, it may be difficult to efficiently map
input data to subsets, and the encoding rate may be slower
than the input rate of the AP.

As long as the rate of data encoding is greater than the
input rate of the current AP hardware (133 MB/s) then the
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Figure 7. Exact DNA string matching on the AP. (a) Traditional
implementation: n STEs for n DNA characters with 1x input rate. (b) 4-
stride implementation: n/4 STEs for n DNA characters with 4x input rate.
(c) Subset-encoded implementation: n/64 STEs for n DNA characters with
1x input rate, where .S; is an subset-encoded pattern. The choice of dashed
output transition depends on the length of pattern modulo STE count.
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Figure 8. Sliding windows in matching applications. Matches can occur
on any sliding window.

encoding step is effectively “free” when pipelined with the
input stream on either a CPU or FPGA. Our experiments
show that we can easily compute the subset encoding of
DNA sequences at a rate of more than 140 MB/s with a
C program on a 2.7GHz single-threaded CPU. The subset
encoding on CPU can be pipelined with the AP by splitting
the input sequence into chunks and sending encoded chunks
to the AP through PCle interface. In the case that the same
input will be used many time with the same encoding, we
can even store the encoded DNA sequences so that we do
not need to encode them multiple times.

IV. SUBSET-ENCODED AUTOMATA DESIGNS

In this section, we introduce some automata designs ap-
plying the subset encoding method, including exact match-
ing automata, Hamming distance automata, Levenshtein
automata and Damerau-Levenshtein automata.

A. Exact String Matching

The exact string matching problem determines if a given
input string is exactly the same as a given pattern. Traditional
designs put string patterns in singly linked STE chains and
use each STE to match with one character or one stride of
characters, as shown in Figure 7 (a) and (b).

In many applications, we need to determine whether a
pattern matches with any substring in a long input sequence.
In this case, it is important to support a sliding window
matching procedure. As shown in Figure 8, a sliding window
is a fixed length window which, as it moves over the
input stream, defines a substring to match against the given
pattern. The AP simulates NFA transitions in lock-step,
which means each input character can only match with
successors of currently activated STEs, and there are no e-
transitions. Thus, a singly linked STE chain can match with a
longer input sequence in a pipelined way and produce results
on every cycle. In other words, we can get the matching



Figure 9. Traditional Hamming distance automaton (8, 3) for matching
the 8-character pattern “ATGCATGC” with bounded Hamming distance 3

results of every sliding window of the length of the pattern
along the entire input sequence.

However, the character-OR ability of STEs are not ef-
ficiently utilized, especially when sliding windows are not
required, or when the application alphabet size is very small.

If we apply the subset encoding method, we can compress
a sequence of data into one STE, as shown in Figure 7 (c).
For longer patterns, we can use multiple STEs to construct a
loop structure, then put the first character into the first STE,
and put the second character into the second STE, etc. On the
current generation of the AP up to 64 DNA characters can
be encoded into one STE, so we need /64 STEs for n con-
secutive DNA characters. As a result, for those applications
in which sliding windows are not required, we can place
64x more patterns than straightforward implementations and
16x more patterns than 4-stride implementations on the same
amount of hardware.

For supporting sliding windows, we need to replicate the
subset-encoded automata multiple times. As a result, in some
cases the encoded automaton may have more states than
the traditional automaton. Even in this case the encoded
automaton may still have a routing advantage. We discuss
this in detail in Section IV-C.

B. Subset-encoded Hamming Distance Automata

Traditional Hamming distance automata designs [3] use
(2d + 1)l — 2d? STEs for bounded Hamming distance (I, d).
An example of Hamming distance (8, 3) is shown in Figure
9. This automata structure supports sliding windows over
the input stream. However, for large ! and d, the resulting
automata are difficult to route on the AP, achieving only
16% STE utilization for the (60, 10) case.

A subset-encoded Hamming distance automaton for (I,
3) is shown in Figure 10. For Hamming distance d, we
construct a d-level ladder structure to match input strings
with patterns within distance d. The STEs in upper row are
self-loop STEs containing an encoded pattern so that they
remain activated as long input characters match with the
patterns. The lower row of STEs capture mismatches. As
a result, when a substitution occurs, the leftmost activated
self-loop STE will be turned off, and the activation state will
move one step right. If the number of substitutions is < d,
this automaton will accept the input string. Otherwise, the
activation chain will exit this structure, thus all STEs will
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Distance =2 Distance = 3

Distance = 0 Distance = 1

Figure 10.  Subset-encoded Hamming distance automaton (8,3) for
matching an input string with a pattern of length 8 within bounded
Hamming distance 3. Each mismatch will make the leftmost activated
state move one step right. S is the subset-encoded pattern, B is a bit
group for controlled beginning, and E is another bit group for controlled
reporting. For example, a pattern “ATGCATGC” will be encoded as S =
{0,5,10,15,16,21,26,31}, and B can be the eighth bit group {28,29,30,31 },
and E can be the first bit group {0,1,2,3}. The “*’ is the “any character”
wild card symbol used by the AP.

be shut down before reaching the end of the input and there
will be no report at the end.

Compared to the straightforward Hamming distance au-
tomata in Figure 9, which needs (2d + 1)! — 2d* STEs,
the subset-encoded Hamming distance automata only use
2d + 2 STEs for Hamming distance (/,d) when | < 64.
This new subset-encoded automata design can significantly
reduce the automata size, improving routability in hardware.
For example, for Hamming distance (64, 10), the traditional
solution needs 1144 STEs, while the subset-encoded solution
only uses 22 STEs, which is a 52x improvement.

The above subset-encoded Hamming distance structure
(which only decides whether the input was within distance
d of the pattern) can be easily extended for calculating
the actual Hamming distance (which finds the number of
substitutions required to transform the input into the pattern).
To do this, we link extra reporting STEs to the self-loop
STEs in the upper row of Figure 10 to find the actual number
of substitutions. Alternatively we can use the threshold
counters with the subset-encoded automata to count the
Hamming distances. The counter solution uses fewer STEs
than the former solution. However, since counters are a
scarce resource on the AP (there are 768 counters per core)
they are best used for large distance d.

C. Hamming Distance Automata with Sliding Windows

Many pattern matching applications, such as DNA align-
ment, require matching a long input sequence with some
short patterns and determine the start positions of all match-
ing subsequences. A single subset-encoded Hamming dis-
tance automaton cannot naively support this sliding window
approach, since we reuse STEs for a sequence of input data.

To support sliding windows, we replicate the subset-
encoded Hamming distance automata, as shown in Figure
11. The key ideas for supporting sliding windows include:
1) Replicate the subset-encoded Hamming distance automata
[ times. 2) Each replicated automaton contains a unique
shift of the given pattern. For example, the result of shifting
pattern “cocice...c;,” one step right is “c,cocy...c—17. This
shifted pattern can match with string “cocjcs...c,,” starting
from different positions. 3) Using characters from a particu-
lar bit group in starting and reporting STEs to control when
to start matching and when to report.
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Figure 11. A subset-encoded Hamming distance automaton modified to
support a sliding window. This is achieved by replicating a subset-encoded
Hamming distance automaton with shifted encodings of the same pattern.
Sri: Encoded shifted patterns. B;, E;: Characters from specific bit groups
for controlled starting and reporting
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Figure 12.  Subset-encoded Hamming distance automata with 1-to-many
encoding. Two consecutive mismatches may only increase distance by 1

As shown in Section V-A, we can place up to 192x more
subset-encoded Hamming distance automata on the AP. In
the sliding window case, we can still place up to 3.2x more
patterns than traditional Hamming distance automata, even
if we replicate the subset-encoded automata [ times.

D. One-to-Many Encoded Hamming Distance Automata

A one-to-many encoding (stride s = 1, subset size & > 1)
will decrease the input rate (since the encoded data is longer
than the application data), but it can allow us to encode
even more characters into each STE, because according to
Equation 5, a larger k£ will allow us to decrease m. For
example, if we map English lowercase letters to 1-subsets
of 26 bits, we can only encode 9 English letters into one
STE. But if we map them to 2-subsets of 8 bits, we can
encode 32 English letters into one STE.

Because each input character is encoded to multiple bytes,
multiple mismatches related to the same original input
character should only increase Hamming distance by 1. For
example, we can encode letter “a” to “0, 17, when we input
“0, 2” (the encoding of letter “b”), there is one mismatch,
while when we input “1, 2” (the encoding of letter “h”) there
are two mismatches. However, both cases should increase
distance by 1. As a result, we need extra STEs to delay the
activations to correctly count the Hamming distance.

Figure 12 shows the one-to-many subset-encoded automa-
ton for Hamming distance (32, 1) of English lowercase letter
patterns. The ladder structure is similar to Figure 10, except
we put the 2-subset encoding of characters into two STEs.
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Figure 13. 2-stride subset-encoded Hamming distance automa-
ton. Where S is the encoded pattern and Sy—; contains all
neighbors with distance . The 2-stride mapping function can be
F={{AA, AC, AG, AT,CA, ...TT} — {0,1,2,3,4, ..., 15} + offset}.
For a 2-stride character “AA”, S = {AA}, Sq=1 = {AC, AG, AT, CA, GA,
TA}, and S4—2 = {CC, CG, CT, GC, GG, GT, TC, TG, TT}

For example, ‘a’ will be encoded as a 2-subset {0, 1}. Then
we put ‘0’ in the first STE, and ‘1’ in the second.

E. Multiple-Input Stride Hamming Distance Automata

When patterns are too short to fully utilize an STE, we
can use multiple-input stride to increase the input rate and
encode more data into each STE. As the dual to one-to-
many encoding, a single mismatch with multiple-input stride
encoding may represent multiple substitutions between the
input sequence and the pattern. For example, if we encode
2-stride DNA characters “AC” into a single encoding “1”, a
mismatched input “2” (encoding of “AG”) should increase
Hamming distance by 1, while another mismatched input
“15” (encoding of “TT”) should increase Hamming distance
by 2. Thus, when a mismatch occurs, we need to distinguish
the actual Hamming distance. The subset encoding method
can conveniently support this by separating encoded alphabet
into multiple sets according to actual Hamming distances.

Figure 13 shows an example of encoding 2-stride DNA
characters into ('’). We can encode 32 DNA characters into
one STE and achieve a 2x input rate increase. We map the
16 combinations of two DNA characters to numbers from 0
to 15. For each specific combination of two DNA characters,
we use two STEs to separate the distance-1 neighbors and
distance-2 neighbors. If a distance-1 mismatch occurs, we
move one step to the right on the ladder structure, and if a
distance-2 mismatch occurs, we move two steps to the right.

F. Subset-encoded Levenshtein Automata

The Levenshtein distance or edit distance is the minimum
number of edits that can convert one string to the other.
An edit can be an insertion, a deletion, or a substitution. In
practice, the edit distance can be used in DNA alignment
or spell correction. A classic dynamic-programming-based
Levenshtein automaton is shown in Figure 14 (a). When
implementing Levenshtein automata on the AP, we need to
use extra STEs and more connections to support *-transitions
and e-transitions, and we need to propagate the start and
accept states along the e-transitions, as in Figure 14 (b).
As a result, the large automata structures make routing very
inefficient, or even impossible [7].

By applying the subset encoding method, we can de-
sign smaller Levenshtein automata which can significantly
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Figure 14. Classic Levenshtein automata for pattern “ATGC” within edit
distance 2. (a) Traditional NFA representation. Insertions are captured by
vertical *-transitions. Substitutions are captured by diagonal *-transitions.
Deletions are captured by diagonal e-transitions. Tuples in states are
(character offset, edit distance). (b) Homogeneous Levenshtein Automata
on the AP. Many transitions are merged together for simplifying the figure
(though we can not merge them on the AP). Notice that the starting and
accepting states are propagated because of the e-transitions. This structure
is routing-intensive due to the large number of transitions.
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Figure 15. A subset-encoded Levenshtein automaton for edit distance < 2.
S, Sri, Sri are subset-encoded patterns where Sr; and Sg; represent
automata shifted ¢ characters left and right respectively. A deletion can be
captured by jumping from S to its left-shifted pattern Sz,, while an insertion
can be captured by jumping from S to its right-shifted pattern Si after
a substitution. d represents edit distance; ins represents an insertion; del
represents a deletion; sub represents a substitution

@ M(8,) 6 (+) x/\a
@) —~—6)—®
© (8, s

@

ORORD,

Figure 16. Separated subset-encoded automata for each type of edit. (a) 1
substitution. (b) 1 insertion. (c) 1 deletion. (d) A combined subset-encoded
automaton for any 1 edit. We create a subset-encoded automaton for higher
edit distance by connecting the output of this widget to three next-level
widgets. One each for shift left, shift right, and no shift.

increase the routing efficiency. The subset-encoded Lev-
enshtein automata are adapted from the subset-encoded
Hamming distance automata. The key idea is that a deletion
can be captured when an activation transfers to a left-shifted
pattern, and an insertion can be captured when an activation
transfers to a right-shifted pattern after a substitution.

A subset-encoded Levenshtein automaton within distance
2 is shown in Figure 15. For patterns that fit into one STE,
the total number of STEs only depends on the distance. As
a result, this new design can achieve higher utilization and
pattern density on the AP.

The subset-encoded Levenshtein automata provide two
levels of separation: 1) Using separated automata to support
sliding windows. 2) Using separated automata to recognize
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Figure 17. Basic structure of the subset-encoded Damerau-Levenshtein
automata. A transposition of adjacent characters should only increase
distance by 1. AND gates are used for properly capturing transpositions.
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different edits. The three separated subset-encoded Leven-
shtein automata for one substitution, insertion and deletion
are shown in Figure 16 (a), (b) and (c) respectively. We
combine these three types of automata together to construct
a widget for edit distance 1, as shown in Figure 16 (d). We
create a subset-encoded automaton for higher edit distance
by connecting the output of this widget to three next-
level widgets: one each for shift left, shift right, and no
shift. Compiling results for the subset-encoded Levenshtein
automata are shown in Section V-C.

G. Subset-encoded Damerau-Levenshtein Automata

The Damerau-Levenshtein distance is an extended version
of edit distance that considers the distance of transposition
of adjacent characters as a singular edit. We modify the the
subset-encoded Levenshtein automaton to support Damerau-
Levenshtein distance by adding AND gates. The idea here
is that if a single edit can be considered as any of an
insertion, deletion, or substitution then that edit could also
be considered a transposition. The basic structure of the
subset-encoded Damerau-Levenshtein automata is shown in
Figure 17. While traditional Levenshtein automata will count
transposition as distance 2, this new structure uses AND
gates (supported on the AP using Boolean elements) to
increase distances by only 1 for transposition.

H. Supporting General Regular Expressions

Besides the automata designs shown in previous sections,
there are many other ways to design automata with the
subset encoding method, which provides a huge potential
to improve the space efficiency. For example, the subset
encoding method can support general regular expressions
with a large alphabet size, such as 4-byte characters, because
we can map these characters of large alphabet size to subsets
which can be put in one STE. In addition, the wild card
character “.” (or “*” on the AP) can be represented by setting
all bits in a bit group to 1. The OR operation in regular
expressions is implemented by setting unions of subsets to
1, though ambiguities arise from one-to-many encoding.

V. EXPERIMENTAL RESULTS

To evaluate the efficiency and performance of the pro-
posed subset encoding method, we show both compiling
results and running time of DNA k-mer searching using real-
world data. The compiling results of automata are collected
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Table II Table IV

COMPILING RESULTS OF HAMMING DISTANCE AUTOMATA COMPILING RESULTS OF LEVENSHTEIN AUTOMATA
D SE4 C307d X30,d X1 /30 C60,d X60,d X1 /60 Levenshtein d=1 d=2 d=3 d=4
1 3072 120 25.6x 0.9x 60 51.2x 0.9x Traditional (64, d) 24/core 10/core 6/core failed
2 1536 50 30.7x 1.0x 16 96.0x 1.6x SE (64, d) 1536/core  288/core  128/core 48/core
3 1536 24 64.0x 2.1x 12 128.0x 2.1x SE (64, d) sliding 24/core 4.5/core 2/core 0.75/core
4 960 24 40.0x 1.3x 8 120.0x 2.0x
5 | 90 16 | 60.0x  2.0x 6 | 1600x  2.7x ubiquitous, as it is essential to many biological applications.
2 322 1(2) %:g: %éz 2 igg:gi géi In this subsection we demonstrate the contribution of the
s | 576 9 64.0x  2.1x 4 144.0x  2.4x subset encoding technique for a 2-stride Hamming distance.
9 480 9 53.3x 1.8x 4 120.0x  2.0x We estimate the AP’s execution time for matching 20,000
10 | 480 6 80.0x  2.7x 3 160.0x  2.7x 25-mers with 200 million DNA sequences in Table III.

— D: Hamming distance

— SEg4: # of subset-encoded Hamming-dist automata per core

— C30,d, Cgo,q: # of traditional Hamming-dist automata (30, d) and
(60, d) per core

— X30,d» X60,4: Speedup of the subset encoding method on (30, d)
and (60, d)

— Xi1/30- X1/60: Speedup of the subset encoding method when
replicate [ times to support sliding window

Table III
DNA HAMMING DISTANCE ON 200MB INPUT AND 20,000 25-MERS

D | Cg5,4 Timey | SE2;  Times X PatMaN  Bowtie
1 144 4.5s 1536 4.5s 1.0x 106s 353s

2 64 7.5s 1536 4.5s 1.7x 1080s 841s

3 32 15.0s 1008 6.8s 2.2x >2hr 1731s
4 32 15.0s 672 9.8s 1.5x >9hr -

5 24 21.0s 480 12.8s 1.6x - -

— D: Hamming distance

— Ca5 4: # of traditional Hamming-dist automata (25, d) per core

— Time;: Solving time of traditional automata

— SE24: # of 2-stride subset-encoded Hamming-dist automata per core
— Timesz: Solving time of 2-stride subset-encoded automata

— PatMaN, Bowtie: Solving time of PatMaN and Bowtie

from the Micron AP SDK compiler. The AP execution time
is derived using the 133MB/s input rate and the compiling
results. Single-threaded CPU experiments are run on servers
with 3.3GHz Intel(R) i7-5820K CPU and 32GB RAM.

A. Compiling Results for Hamming Distance Automata

To demonstrate the benefit of the subset encoding method,
we first compare the compiling efficiency between the tradi-
tional Hamming distance automaton and the subset-encoded
Hamming distance automaton on (30, d) and (60, d) (Table
II). Traditional implementations use the structure shown in
Figure 9. The subset-encoded Hamming distance automata
use the more succinct ladder structure shown in Figure 10.

For Hamming distance (I,d), we need to replicate the
subset-encoded automata to support the sliding windows, as
shown in Figure 11. Compiling results show that even if
we replicated the subset-encoded automaton [ times (thus
divide the number of patterns by [), we can still place up to
3.2x more patterns on the AP. If the sliding window is not
required, scaling is unnecessary, thus subset encoding can
place up to 192x more patterns than traditional solutions.

B. DNA k-mer Searching

The problem of matching DNA/RNA k-mers against
reference sequences to identify regions of similarity is

Since we can encode 64 DNA characters into one STE
using a (‘11) encoding and 25-mers are relatively short, they
can not fully utilize all memory cells in each STE. Thus,
using the subset encoding method, we make a tradeoff
among input rate and the length of patterns that can be
encoded into one STE. We use a 2-stride subset encoding,
which maps pairs of DNA characters to subsets of ('°). As
a result, we can encode up to 256/16 « 2 = 32 characters
into one STE and get 2x input rate at the same time.

The capacity and processing time of the AP are shown
in Table III. The AP processing time is calculated by
200MB/133MB/sxpass, where pass is the total number of
20,000 patterns divided by the number of patterns that can be
placed on an AP board. Results show that the 2-stride subset-
encoded Hamming distance automata can be up to 2.2x
faster than traditional Hamming distance automata solutions.

The AP solution is more suitable for application scenar-
ios in which reference sequences are frequently changed,
because it takes DNA reference sequence as input. For
comparison, we list the single-threaded running times of two
well-established CPU DNA aligning tools (PatMaN [10] and
Bowtie [11]) on this same problem.

C. Compiling Results for Levenshtein Automata

Traditional Levenshtein automata on the AP have very
low STE utilization efficiency. According to the results
from the Micron AP SDK compiler, we can only compile
24 traditional instances of (64, 1) in an AP core with
25.8% STE utilization, 10 instances of (64, 2) with 17.5%
utilization, and 6 instances of (64, 3) with 13.3% utilization.
In addition, on the current AP generation, the fan-in of each
STE is bounded by 16. As a result, traditional Levenshtein
automata for edit distance > 4 fail to compile due to the
intensive transitions caused by e-transitions.

The subset-encoded Levenshtein automata mitigate this
routing problem by factoring the large automaton structure
into smaller pieces. Table IV shows the compiling results of
traditional Levenshtein automata versus the subset-encoded
Levenshtein automata. We can see that the subset encoding
method can provide capacity for up to 64x more Levenshtein
automata for applications without sliding windows. It also
makes edit distance d > 4 feasible on the AP, which was
not possible to route using the traditional structure.



Table V
TRADEOFF BETWEEN AP SYMBOL SIZE AND THE NUMBER OF STES
c 4 6 8 10 12 14 16
n 393216 98304 24576 6144 1536 384 96
n' 3145728 786432 196608 49152 12288 3072 768

— c: The symbol size of the AP

— n: The number of STEs on one current AP core

— n/: The number of STEs on one AP core with 8x semiconductor
technology scaling

VI. FURTHER DISCUSSION
A. Technology Scaling of the AP

The current AP generation we are working on is based on
50nm technology, while the state-of-the-art DRAM is using
20nm technology, which is three generations ahead (37nm,
25nm, 20nm). Thus, if we normalize the AP to the state-of-
the-art semiconductor technology and assume there is a 2x
improvement on capacity per node, we can place 8x patterns
on a future generation of the AP with 20nm technology.

B. Impact on the Architecture of the AP

This new subset encoding technique brings up interesting
considerations for the design of future AP architectures.
There is a tradeoff between the native symbol size (i.e., how
large the alphabet is) and the number of states. In Table
V, we show how the AP symbol size affects the number
of STEs in one AP core. We assume the total number of
memory cells are constant, and consider two scenarios: the
current generation, and projecting an 8x increase in capacity
after semiconductor technology scaling. Since Micron has
not published details of its routing matrix, we assume the
fraction of area of the routing matrix is fixed. We can see
from the table that small symbol sizes benefit applications
with small alphabet size by providing more STEs, such as
DNA applications. Large symbol sizes benefit applications
that have larger alphabet sizes or long patterns without
requiring sliding windows since they allow for a larger
character set to be represented in one STE, and thus longer
sequences by subset encoding. Note that the aspect ratio
of the DRAM structures must also be taken into account.
DRAM banks with high aspect ratios are not efficient, so
the two ends of the scale in Table V may not be practical,
because they would lead to very wide or very tall banks.

In addition, the subset encoding method can take ad-
vantage of the on-board FPGA for preprocessing or post-
processing. We can stream in the original data to the FPGA
on the AP board, so that we do not need to preprocess the
application data on CPU.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we present the subset encoding method and
related automata designs for improving the pattern density
on the Automata Processor. The proposed method is a
general method that can take advantage of the character-
OR ability of STEs on the AP, and it relieves the prob-
lems of limited hardware capacity and inefficient routing.
Experimental results show that after applying the subset

10
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encoding method on Hamming distance automata, we can
place up to 3.2x more patterns on the AP if sliding window
is required, and 192x more if sliding window is not required.
For Levenshtein distance, the subset encoding splits the
Levenshtein automata into small chunks and makes them
routable on the AP, allowing higher edit distance to be sup-
ported. In addition, the subset encoding method influences
future decisions in the design of the AP or other automata-
based co-processors. This idea of encoding sequences of
data into subsets before doing NFA matching can also be
applied to CPU, GPU or FPGA regular expression matching
implementations. By doing problem reductions, we may be
able to utilize those hardware accelerators more efficiently.
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