PERFORMANCE ANALYSIS
OF DATA TRANSFER IN GM MAP

W. Timothy Strayer
Sharon K. Heatley
Alfred C. Weaver

Computer Science Report No. TR-87-18
October 22, 1987

This paper has been subrmitted to IEEE Networks Magazine, October 1987.

Performance Analysis of Data Transfer in GM MAP

W. Timothy Strayer*
Sharon K. Heatley**
Alfred C. Weaver*

*Computer Networks Laboratory, Department of Computer Science, University of Virginia,
Charlottesville, VA 22903.

**Institute of Computer Sciences and Technology, Systems and Network Architecture Division,
National Bureau of Standards, Gaithersburg, MD 20899,

The General Motors Manufacturing Automation Protocol (GM MAP) is being developed as an
attempt to standardize communications between intelligent manufacturing and controlling devices. Intel
Corporation has developed a communications board as a front-end processor 0 be used in Intel Multibus
computers, which with MAPNET2.1 software provides an implementation of MAP version 2.1. The Data
Link and the Transport Layers were studied through performance analyses. For the Data Link Layer we
measured the one way delay and the throughput for various packet sizes, We also measured the number of
messages that could be sent and received per second for a range of Data Link packet sizes. For the
Transport Layer we found a buffer configuration which optimized throughput and used it for experiments
that measured thronghput as the dependent variable. Throughput was measured with respect to TSDU
message size. The effects of decreasing the retransmission timer, varying the maximum Transport Protocol
Data Unit size, using multiple virtual circuits, and varying the maximum window size are described. One
way delay was measured with respect to the TSDU message size. Comparisons between the two layers
indicated that there are both benefits and drawbacks to using a front-end processor for commaunications,
largely due to message segmemntation,

1. MANUFACTURING AUTOMATION PROTOCOL

The deve}opment of the General Motors Manufacturing Automation Protocol (GM MAP)
is an event which will change the course of history with regard to factory automation. Before
1980, every plant or assembly line which GM built involved a control system which was
supplied by one of the major vendors of industrial automation equipment. However, these
products could not communicate across vendor boundaries unless someone (usually GM)
financed custom hardware and software to overcome the problem, To solve some of the
problems of interoperability, General Motors, working with Boeing Computer Systems,
developed the Manufacturing Automation Protocol (MAP) [GENES6] in an unusual attempt for

the end-user to dictate a standard o its vendors.

One of the goals of MAP is to provide a method by which any system frém any vendor
can be inserted into the MAP environment without hardware or softwan_e customization, similar
to the way that stereo components can be purchased independently, Plugged together, and still
be expected to interoperate. MAP is also desigﬁed to provide technical services to control
various intelligent devices in a consistent and cost-effective manner, contributing to the

automation of the factory floor.

Rather than being a set of newly invented protocols, MAP is primarily a collection of
existing national and international standards based on the Internationat Organization for
Standardization’s Open Systems Interconnection (ISO OSI) reference model as defined by
[Is07498). The reference model defines a seven layer hierarchy for providing functionality in a

modular fashion. The foliowing is a list of the QSI layers and the MAP standards adopted:

OSILAYER MAP VERSION 2.1 FUNCTIONS

7 - Application ISO 8649 Common Application Service Element (CASE)
ISO 8571 File Transfer, Access and Management (FTAM)

6 - Presentation Null

S5 - Session ISO 8327 Session Protocol Specification

4 - Transport ISO 8073 Transport Protocol Specification Class 4 (TP4)

3 - Network IS0 8473 Connectionless-Mode Nerwork Service (CLNS)

2 - Data Link IEEE 802.2 Link Level Control Class 1
| IEEE 802.4 Token Passing Bus Access

1 - Physical IEEE 802.4 Token Bus with Broadband (10 megabits/second) or
Carrierband (5 megabits/second) Modulation on Coaxial Media
The MAP network can be a collection of segments, some with MAP compatibility and
some without. Bridges, routers, and gateways provide access to stations on different segments
or different networks. Also, a provision is made for expedited communications using an
Enhanced Performance Architecture (EPA)., EPA bypasses the upper layers in the OSI modei

and provides application processes with direct access to the Data Link services.

GM MAP has been through several versions thus far and will undoubtedly continue to
change. Most commercial MAP hardware and software, including the system we tested,
conforms to MAP version 2.1. Some extensions were made in version 2.2; version 3.0 has been

circulated in draft form but is not expected to be established as the new specification until 1988,

2. ENVIRONMENT

The hardware consisted of two Intel 286/310 computer systems serving as nodes on a
MAP network. Each system contained one 6 MHz Intel 80286 microprocessor with 80287
math co-processor and one megabyte of RAM, operating over a Multibus. The MAP network

connection was provided by the Intel iSXMS554 COMMengine, which congisted of an Intel

80186 microprocessor, 256 kilobytes of RAM for use as a packet buffer, and the hardware for
the token bus interface. The COMMengines were connected to the bus (coaxial cable) by
multitaps. The other end of the bus was connected to an Industrial Networking Incorporated
(INI) head-end remodulator {INDUS5a,b). A custom-designed global synchronous clock

[FRAN86] provided a time reference accurate to 100 us,

The Intel computers used the iRMXS6 [INTE8S] real-time multi-tasking operating system.
MAP communications services were providled by MAPNET2.1 [INTE87a,b], Intel’s
implementation of MAP version 2.1, MAPNET2.1 software provided the OSI Application,
Session, Transport, Network, and Logical Link Control Layers. The iSXM554 hardware
provided the Medium Access Control (MAC) sublayer and the interface to the 10
megabit/second IEEE 802.4 token bus broadband network. The Intel product iNAS60
[INTE86a,b,c] provided a subset of the MAPNETZ.I services, specifically the Transport,
Network, and Logical Link Control Layers. iNA960 was the product actually used in the
experiments because it provided Transport and Data Link services in exactly the same manner
as MAPNET2.1 without the complication of the upper layers. Al the MAPNET?2.1 or iNA960

software resided on the front-end processor.

Our application processes, written: in ‘C’ and *PL/M’ and resident on the host processor,
communicated with MAPNET2.1 and with iNA960 using another Intel conventiqn called
Multibus Interprocessor Protocol (MIP) [INTES6c]. MIP allows the host processor (the 80286)
and the front-end processor (the 80186 on the iSXM554) to communicate request blocks by
simply passing pointers to shared memory via a Message Delivery Mechanism (MDM). If the
block to be transferred is not in shared memory, MDM will copy the block from host memory
into the front-end processor’s packet buffer. MIP isolates user tasks from the complexities of
communicating across the Multibus by handling the interaction between the host processor, the

front-end processor, and other intelligent Multibus devices. MIP supports functions which can

locate a port, attach/detach a task to/from a port, and transfer/receive a buffer to/from a port,

3. EXPERIMENTS

Since MAP is designed to operate on the factory floor, we developed a set of tests which
was intended to measure its performance characteristics. n MAPNET2.1, CASE and Session
Layer data transfer primatives map directly onto Transport Layer data transfer primatives. The
Transport virtual circuit service is built upon the datagram service of the Data Link Layer. For

these reasons our measurements were targeted toward the Transport and Data Link Layers.

The configuration of MAPNET2.1 (and the iINA960 subset) in common use is not totally
compliant with MAP 2.1; it permits Data Link packet sizes up to 1024 bytes, whereas MAP 2.1
specifies Data Link packet sizes up to 8000 bytes. A specially configured version of

MAPNET?2.1 has passed conformance testing,

Performance Measures

The External Data Link (EDL) is an interface used to access the services of the Data Link
Layer directly, allowing users to circumvent the Transport and Network Layers. A user of the
EDL accesses iNA960 through the general request block programmatic interface common to all
layers in MAPNET?2.1 and iNA960. Through request blocks, commands can be issued to
establish and terminate Data Link connections, transmit data, post receive buffers for incoming
data, configure the Data Link Controller, reassign an individual address for a node, and add and
remove multicast addresses to and from a list maintained by the data link node. We measured

several aspects of data transfer using this datagram service.

The transport user also accesses iNA960 through this programmatic interface. We used

the Transport Class 4 Virtual Circuit Service and measured several aspects of its performance

and error recovery mechanisms. We then made comparisons between the datagram service of
EDL and the virtual circuit service of Transpont, identifying some benefits and drawbacks to

using a front-end processor communications board.

One Way Message Delay

The total delay incurred for the delivery of one EDL messagé required timestamping that
message as it was transmitted and noting the time as it was receivéd. To eliminate any
queueing delays, one buffer was posted and one packet was sent for each run of the experiment.
This ensured that all resources were ready and waiting to service that one packet as it traversed
the network. Packet sizes ranged from 16 to 1024 bytes by powers of 2. Four runs of the
experiment were performed for each packet size, these delays were averaged and the results are
shown in Figure 1. There was a linear relationship between the packet size and the delay
suffered during transfer. For packets of length L, the end-to-end delay was approximately (8.5

+ L/125) milliseconds.

The delay which a Transport Service Data Unit (TSDU) message suffered as it traversed
the network was also measured. The TSDU message sizes ranged from 16 to 1024 bytes by
powers of 2 as in the EDL experiments and then from 928 bytes to 5569 bytes by multiples of
928 and those multiples plus one, The TSDU message size of 928 represents the largest amount
of data that could be transferred using a single 1024-byte Transport Protocol Data Unit (TPDU)
(the remaining bytes are reserved for upper layer headers). One transmit buffer and one receive
buffer were used. A delay of 100 milliseconds between the transmission of each TSDU
message ensured that all resources were ready and waiting to process that message, and that

- there would be no queucing delay.

As Figure 2 shows, delays increased linearly with TSDU message size until the TSDU
size exceeded 928 bytes. At 929 bytes, a penalty was assessed due to the overhead required to
segment the TSDU into two TPDUs. This penalty was repeated each time the TSDU size
exceeded a multiple of 928 bytes. The first division of a TSDU into two TPDUs cost about 20
milliseconds; further TSDU segmentation cost 5 to 15 milliseconds per additional TPDU

required.

Throughput

The EDL throughput was measured for packet sizes rflnging from 16 to 1024 bytes. One
hundred buffers were posted on the receiving node and 100 packets were sent sequentially from
the transmitting node. This throughput, therefore, was a measure of network efficiency with
respect to packet size, and did not necessarily represent the best possible throughput at the Data

Link Layer,

The timestamp of the first packet received was subtracted from the time the last packet
was received to obtain a total time to process the 100 packets. The total amount of data sent
(100 times the packet size) was divided by this total time to arrive at the throughput, shown in
Figure 3. There was a very strong dependency between the packet size and the throughput. For

packets of length L, throughput was approximately 65L. bytes/second.

A transport user buffer is a dedicated segment of user memory which held a message as it
was prepared for transmission. When the measurement program submitted a transmit request,
the buffer holding the packet to be transmitted was not used again until iNA9S60 released it. The
performance program used the multiple transmit user buffers for multiple transmit requests.

" Once that message had been acknowledged by the receiver, the user buffer was retumed to the

circulating queue of free buffers and reused.

By varying the number of transport user buffers allocated by the transmitter and the
receiver, the number of transmit and receive buffers needed to optimize throughput was
determined. The number of receive buffers was set to a high number (10) and the number of
transmit buffers was then increased from 1 to 10. The throughput was measured at each buffer
configuration. Seven transmit buffers resulted in the best throughput. Then the number of
receive buffers was decreased to one. Again, the throughput was measured at each buffer
configuration, The number of receive buffers which resulted in the best throughput was 5. This
configuration of 7 transmit and 5 receive buffers was used in all experiments measuring
throughput against another variable, and it was used to measure the impact of TSDU message
size on throughput. The range of the TSDU message size was the same as the range used in the

One Way Delay experiments.

As seen in Figure 4, throughput increased linearly for TSDU message sizes that were
equal to or smaller than 928 bytes. At a TSDU size of 929 bytes, throughput suffered due to the
overhead associated with segmenting one TSDU into two TPDUs. A decrease in throughput
was likewise observed whenever the TSDU size exceeded a multiple of 928 bytes. The curves
of the throughputs for each multiple of 928 (the peaks in the graph) and the multiples plus one
(the dips in the graph) were quadratic, with the two curves converging asymptotically to
approximately 72 .and 55 kilobytes/second, respectively. The difference between these two

values reflected the penalty for segmentation.

Number of Messages Per Second

The number of EDL messages per second was measured using 100 transmit and 100
receive EDL user buffers for maximum enqueueing. These EDL user buffers were represented
similarly to the transport user buffers. One hundred EDL. user buffers were used to enqueue 100

messages so that all of the messages could be transmitted at the peak rate, Figure § shows the

number of messages transmitted per second for various packet sizes, The peak EDL

transmission rate observed was 156 128-byte messages per second,

Because the obtimal configuration for the transport user buffem was found to be 7 transmit
and 5 receive user buffers, the number of messages per second for Transport Layer was a
function of the throughput. When throughput was optimized the number of messages per
second was optimized as well, Figure 6 shows the number of messages transmitted per second
for various TSDU sizes. The peak transmission rate observed for Transport was 56 16-byte

messages per second.

Retransmission Timer

The Network Management Facility (NMF) interface provided access to intra-layer
configuration parameters such as retransmission timeout interval. The actual retransmission
timer uses an adaptive algorithm, adjusting itself to the characteristics of the network. The user
of iINAS60 cannot set the aciual retransmission timer value, Instead, one supplies the Minimum
Retransmission Timer setting which is used as the minimum for the actual retransmission timer
setting at any point in time. Intel limits the Minimum Retransmission Timer value to no lower
than 100 milliseconds during configuration of iNA960. However, we used the NMF

functionality to reset this valye lower than 100 milliseconds,

The values of these related timer settings ranged from 5 milliseconds to 500 milliseconds.
The values at the high end of the range were chosen to show what would happen if the floor
(minimum) value of the retransmission timer was reasonably large. The values at the low end
of the range likewise show what would happen if the value was unreasonably small. Ten user
buffers were used by both the transmitter and the receiver to ensure that the hardware and

software tasks remained busy.

As the Minimum Retransmission Timer value was decreased, as shown in Figure 7, the
throughput remained mostly unaffected until the value was set ait 50 milliseconds. For values
above 50 milliseconds there were no retransmissions due to network error, so reducing the
minimum value of the retransmission timer did not affect throughput. Throughput peaked at 50
milliseconds and then dropped dramatically for lower values. At these points duplicate TPDUs
were being sent and rejected because the retransmission timer was expiring before the TPDUs
could be acknowledged. Thus we observed that 50 milliseconds was the lowest usable value
that could be'supplied to the Minimum Retransmission Timer for an unloaded network. We
concur with Intel documentation [INTE86a] that this value should never be set below 100
milliseconds for a geﬂeral purpose network. However, the implication of setting the Minimum
Retransmission Timer to a value no less than 100 milliseconds is that lost TPDUs are not
detected for at least one-tenth of a second. The default configured Minimum Retransmission

Timer value is 500 milliseconds.

Segmentation

The TPDU is the packet frame and consists of both data and headers. The Network
Management Facility allowed the user to specify a maximum TPDU size. iNA960, however,
uses the minimum of 1024 bytes (the maximum Data Link packet size allowed in our

configuration) and this maximum TPDU size as its actual TPDU size,

Figure 8 shows the relationship between throughput and TPDU size. Throughput is
defined as the rate of data delivery in bytes per second and excludes the bytes required for
framing. As TPDU size decreases, throughput decreases because the ratio of header bytes to

data bytes increases.

10

Virtual Circuits

We varied the number of virtual circuits, or connections, from 1 to 16 to observe its effect
on throughput. As seen in Figure 9, one virtual circuit provided the best throughput because it
required the least internal overhead. Even though multiple virtual circuits between two stations
provided additional avenues for transfer of data, all virtual circuits used the same physical
connection and thus overall throughput was not enhanced. In fact, there was the penalty of
maintenance overhead levied on the user of multiple virtual circuits (connections), reducing the

overall throughput.

The dramatic reduction in throughput for 3 virtual circuits was an anomaly, The
experimental evidence strongly suggested that this was a worst case occurrence. The
asynchronous characteristics of the communications between the host and the COMMengine,
the number and use of the intemal transmit and receive buffers, and the token bus access all
contribute to delays imposed by the system. We hypothesize that the poorer performance
observed for 3 virtual circuits was due to a worst-case alignment of these factors, although we

were unable to verify the hypothesis due to proprietary restrictions on the sofiware,

Window Size

In Transport Class 4, a window is an ordering of sequence numbers that are termed active,
The sequence number identifies and orders a particular TPDU so that the receiver may
reassemble multiple TPDUs into one TSDU. The window slides to incorporate new sequence
numbers as the TPDUs are acknowledged and their sequence numbers become inactive. Thus,
the size of the window dictates how many unacknowledged TPDUs a receiver is willing to
buffer. The receiver communicates this information via a credit field. The receiver can control

the flow of data by varying its window size and thus throttle the transmitter by reducing its

11

credit. A window size of 0 is called a closed window, and effectively shuts off the transmitter

until the window is reopened by the receiver.

The maximum window size was set using the Network Management Facility and
throughput was measured to show the impact of lowering the maximum window size. The
range of maximum window sizes was 1 to 15, where 15 was the default setting from the
iNA960 configuration. This configuration also prevented the window from closing, even when
this was appropriate. The decision not to allow the window 1o close was based on Intel’s
empirical data which showed better performance at the risk of losing messages due to lack of

resources [INTE86a].

As the receiver’s buffer space was filled with incoming TPDUs, the number of TPDUs
that it had room to receive decreased. To keep from being overrun, the receiver sent a "credit"
with the acknowledgements. This credit told the transmitter how many more TPDUs the
receiver was prepared to handle; it was in the range of 0 to the maximum window size, As the
maximum window size was decreased, the credit was likewise decreased. This caused fewer
TPDUs to be in the pipeline to the receiver and thus decreased the throughput. As Figure 10
shows, there appeared to be no effect when decreasing the maximum window size from 15 to 4,
but decreasing it from 4 1o 1 caused the throughput to suffer dramatically. This indicated that
the receiver could not handle TPDUs sufficiently fast for the additional credit greater than 4 to
matter. However, credit less than four caused the transmitter to throttle itself to having only

one or two TPDUs in the pipeline.

Layer Comparisons

There were benefits and drawbacks of using a front-end processor like the iSXMS554

COMMengine. Having the communications services provided by a front-end processor allowed

12

concurrency. The COMMengine and the host processor ran in parailel and interacted via the
Multibus. The host processor was not concerned with servicing the messages as they arrived
asynchronously from the physical network. More computing time could be dedicated to the

user application since the use of the network did not require CPU cycles.

However, the only means of access to the COMMengine and its software was through the
MIP interface across the Multibus, which was a botileneck. By accessing iNA960 through the
External Data Link interface, restrictions were placed on the size of the messages that could be
transmitted by the user application, Large messages had to be buffered in the host’s memory
and delivered to the EDL in smaller (1024 byte) segments. In this instance many small
fnessages were sent through the MIP interface, across the Multibus and to the COMMengine,

subsequently causing the throughput to suffer.

By accessing iNA960 through the Transp(_)rt Layer, large messages were delivered to the
front-end processor and stored there until they could be processed. iINA960 and the underlying
data link hardware worked most efficiently while there was data in buffers on the
COMMengine. When iNA960 was finished processing one large message, it could be sent
another to be stored in the on-board buffers, This increased throughput by decreasing the

number of interactions across the MIP interface.

Figure 11 shows that time-dependent messages should employ the EDL rather than the
Transport Layer. There was a constant cost of approximately 7.5 milliseconds associated with
using the additional functionality provided with the Transport layer, which may be too
expensive for short command/response or status/request messages. The bound 6n the message
size was 1024 bytes for the Data Link Layer. At Transport, the bound was 928 bytes before the
TSDU message was segmented into two TPDUs. For messages of length L and smaller than

928 bytes, the one way delay at transport was approximately (16.5+L/500) milliseconds; using

13

the EDL interface it was approximately (9+1/500) milliseconds.

Data Link provided better throughput for packets of the same size, as seen in Figure 12,
This was because the TSDU messages were all small enough to fit into one TPDU, so
segmentation was not an issue. For messages of length 928 bytes or shorter, the difference
between the throughputs reflected the difference between the overhead associated with a
relatively simple Data Link data transfer service and the overhead associated with a
complicated but reliable Transport data transfer service. Data Link, however, is restricted to
packets of size 1024 bytes or smaller. When messages are larger than 1024 bytes, the message

must be segmented.

When an application process uses Transport, it moves entire TSDUs onto the front-end
processor, then Transport segments the TSDUs into TPDUs as required. If the application
process uses EDL, the host must perform the segmentation and deliver packets no Iarger than
EDL is configured to accept. By forcing the maximum TPDU to be the same size as the Data
Link packet, we observed the difference between segmentation on the front-end processor by
Transport and segmentation on the host by the application process. In Figure 13, the throughput
for Transport is slightly greater than throughput for Data Link. This shows that an application
process cannot segment messages on the host as well as Transport can segment the messages on
the front-end processor. Thus, in ferms of performance, segmentation on the front-end

processor was more efficient.

4. CONCLUSION

The iSXM554 COMMengine provided a front-end processor which successfully off-
loaded the task of communications from the host. Its primary advantage was that it

transparently provided segmentation (the reduction of an arbitrary size TSDUs into multiple

i4

TPDUs). Even so, segmentation was expensive — the first segmentation increased end-to-end
delay by approximately 20 milliseconds and each additional segmentation added another 5 to 15
milliseconds. When using the largest TSDU not requiring segmentation (928 bytes), throughput
averaged 47 kilobytes/second; when using the smallest TSDU requiring segmentation (929

bytes), throughput dropped to 30 kilobytes/second.

Data Link supported a connectionless-mode (datagram) service for packets up to 1024
bytes. Transport used that underlying connectionless-mode service and added segmentation,
sequencing, acknowledgment, and reassembly to provide a connection-oriented (virtual circuit)
service. As expected, direct access to the Data Link Layer provided shorter one-way delays and
higher throughput than did direct access to the Transport Layer. For large messages, however,
sending one large TSDU to Transport and allowing it to perform segmentation was more
efficient than having the host perform segmentation and pass multiple smaller packets directly

to Data Link.

In terms of absolute performance, a two-station system with no other computational tasks
using the Data Link interface supported continuous transmission rates ranging from 156 128-
byte messages per second to 84 1024-byte messages per second. At Transport, it supported
continuous transmission rates ranging from 56 16-byte messages per second to 13 5000-byte
messages per second. When Transport was supplied continuously with large messages,
segmentation overhead limited the maximum throughput to approximately 72 kilobytes/second.
We confirm that Transport’s retransmission timer should not be set to less than 100
milliseconds; the implication is that lost packets will not be detected for at least 0.1 second
which could be very significant in real-time control systems. We observed that a window size
of 4 was sufficient to achieve maximum' throughput, and that using multiple virtual circuits

decreased data throughput due to circuit maintenance overhead.

15

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the technicat assistance and financial assistance of

Steve Alten and Matt Katzer at Intel Corporation; Kevin Mills, Dan Stokesberry and Tuan Ty at

the National Bureau of Standards; and John Delaat at the NASA-Lewis Research Center.

16

LIST OF FIGURES

Figure 1 - One Way Data Link Delay vs. Data Link Packet Size

Figure 2 - One Way Transport Delay vs. Transport Service Data Unit Sizes |

Figure 3 - Data Link Throughput vs. Data Link Packet Size

Figure 4 - Transport Throughput vs. Transport Service Data Unit Size

Figure 5 - Number of Messages per Second at Data Link Layer

Figure 6 - Number of Messages per Second at Transport Layer

Figure 7 - Transport Throughput vs. Setting of the Retransmission Timer

Figure 8 - Transport Throughput vs. Maximum Transport Protocol Data Unit Size
Figure 9 - Transport Throughput vs. Number of Virtual Circuits

Figure 10 - Transport Throughput vs. Maximum Window Size

Figure 11 - One Way Transport and Data Link Delay vs. TSDU and Data Link Packet Sizes
Figure 12 - Transport and Data Link Throughput vs. TSDU and Data Link Packet Sizes

Figure 13 - Transport and Data Link Throughput vs. TPDU and Data Link Packet Sizes

20

17

18 —
16 — i
14 -

One Way
Delay

(milliseconds) 12~

10
8 |
6

oo [|
0 64 128 256 512 1024

Data Link Packet Size (bytes) .
Figure 1 - One Way Data Link Delay vs. Data Link Packet Size

I8

105

90 |

75

One Way 60—
Delay

(milliseconds) 45 —

30 -

15 -

I] I } i I
0 512 928 1856 2784 3712 4640

Transport Service Data Unit Size (bytes)
Figure 2 - One Way Transport Delay vs, Transport Service Data Unit Sizes

i
5568

70

60

50

Throughput 40 —
(kilobytes
fsecond) 30 —
20 -

10

0- 1 i

T T
0 64 128 256 512 1024
: Data Link Packet Size (bytes)

Figure 3 - Data Link Throughput vs. Data Link Packet Size

19

75

60 —

Throughput 45+

(kilobytes
/second) 30 —

15 —

I i I ; ! |
512 928 1856 2784 3712 4640
Transport Service Data Unit Size (bytes)
Figure 4 - Transport Throughput vs. Transport Service Data Unit Size

1
3568

20

175 -
150 —

125

Messages |
per Second

75
50 —
25 ~

0

| I] I
0 64 128 256 512

Data Link Packet Size (bytes)
Figure 5 - Number of Messages per Second at Data Link Layer

1024

21

Messages
per Second

60

55 4
50 —
45 —
40 —
35

25 4
20

15] '——i—_i———-g
10

5 .

} I i ! i I I
512 928 1856 2784 3712 4640 5568

Transport Service Data Unit Size (bytes)
Figure 6 - Number of Messages per Second at Transpott Layer

22

i

1

72
70
68 — ,
Data
Throughput 66
(kilobytes ""
/second)
64
62 -
60 -}i‘
0

100

!
250

Retransmission Timer (millisecond)
Figure 7 - Transport Throughput vs. Setting of the Retransmission Timer

i
500

23

75

60

Data 45
Throughput
(kilobytes

/second) 30 —

15 —

1 ' ! |
0 128256 512 1024 2048

Maximum Transport Protocol Data Unit Size Setting (bytes)
Figure § - Transport Throughput vs. Maximum Transport Protocol Data Unit Size

Data
Throughput
(kilobytes
/second)

72

70 —

68 —

66

64

62 -

60

25

! I | I | T] 1
0 2 4 6 8 10 12 14 16

Number of Virtual Circuits
Figure 9 - Transport Throughput vs. Number of Virtual Circuits

75

70 "
65 -~
Pata 60 —

55
/second) 5p _|

Throughput
(kilobytes

45 -
40

35

3

Ei 3

0 2 4 6 8 10 12 14

Maximum Window Size
Figure 10 - Transport Throughput vs. Maximum Window Size

16

26

27

50
wmete—— T TANSPOIL /
40~ ~---®@~--~ DataLink I
One Way 30 —
Delay
(millisecond)) | |
e :
0gg-8----8--""""""" g----
0 | T I | |
v o2 928 1024
Packet Size (bytes)

Figure 11 - One Way Transport and Data Link Delay vs. TSDU and Data Link Packet Sizes

70
60 4 —a—— Transport -
so “ToB- Data Link e
Throughput 40
(kilobytes
fsecond) 30 -
20 —

10

: | i |
G o4 128 256 512 928 1024

Packet Size (bytes)
Figure 12 - Transport and Data Link Throughput vs. TSDU and Data Link Packet Sizes

80

70 et Transporn

60| ---@--- DataLink

50
Throughput

(kilobytes 40
fsecond)

—

20
10 —
0

1]] ! T
0 64 128 256 512 928 1024

Packet Size (bytes)
Figure 13 - Transport and Data Link Throughput vs. TPDU and Data Link Packet Sizes

ELEC86
FrRANS6
GENER6
IEEE84a
IEEES4b

IEEE8S

INDURSa
INDUSSD

INTESS
INTE86a
INTE86b

INTEB6C

INTES7a
INTES7b

1SO7498

ISO8072

BIBLIOGRAPHY

Electronic Industries Association IE-31 SP 1393A Working Group, RS-511
Manufacturing Message Service for Bidirectional Transfer of Digitally
Encoded Information, Draft 5, June, 1986.

Franx, C., "The Synchronous Clock System", Unpublished, July, 1986.

General Motors Manufacturing Automation Protocol Committee, GM
MAP Specification, version 2.2, 1986.

The Institute of Electrical and Electronics Engineers, Inc., IEEE Standard
802.1B Station Management, 1984.

The Institute of Electrical and Electronics Engineers, Inc., IEEE Standard
802.2 Logical Link Control, 1984. \

The Institute of Electrical and Electronics Engineers, Inc., IEEE Standard
8024 Token-Passing Bus Access Method and Physical Layer
Specifications, 1985.

Industrial Networking, Inc., "MAP/One Cable Starter Kit Installation
Guide", 1985. ,

Industrial Networking, Inc., "MHR-40 Head End Remodulator Installation
Guide", 1985.

Intel, "iIRMX86 Reference Manuals”, 1983,
Intel, "iNA960 R2.0 Configuration Guide”, Final Draft, December 1986.
Intel, "iNA960 R2.0 Installation Guide", Pre-Release, August 1986.

Intel, "INA960C R2.0 Programmer’s Reference Manual", Final Draft,
November 1986.

Intel, "MAPNET?2.1 User’s Guide", July 1987.

Intel, "The Big MAP Attack", Unpublished, March 1987,

International Organization for Standardization, Draft International
Standard 7498, "Information Processing Systems - Open Systems

Interconnection - Basic Reference Model"”, October 1984.

International Organization for Standardization, Draft International

30

ISO8073

1SO8326

1SO8327

1808473

ISO8571

ISO8602

ISO8649

IS08822

Standard 8072, "Information Processing Systems - Open Systems
Interconnection - Transport Service Definition”, June 1986.

International Organization for Standardization, Draft International
Standard 8073, "Information Processing Systems - Open Systems
Interconnection - Transport Protocol Specification”, July 1986.

International Organization for Standardization, Draft International
Standard 8326, “Information Processing Systems - Open Systems
Interconnection - Basic Connection Oriented Session Service Definition",
September 1986.

International Organization for Standardization, Draft International
Standard 8327, "Information Processing Systems - Open Systems
Interconnection - Basic Connection Oriented Session Protocol
Specification”, September 1986.

International Organization for Standardization, Draft International
Standard 8473, "Information Processing Systems - Open Systems
Interconnection - Data Communications Protocol for Providing the
Connectionless-Mode Network Service”, March 1986.

International Organization for Standardization, Draft International
Standard 8571, "Information Processing Systems - Open Systems
Interconnection - File Transfer, Access, and Management”, August 1986,

International Organization for Standardization, Draft International
Standard 8602, “Information Processing Systems - Open Systems
Interconnection - Protocol to Provide the Connectionless-Mode Transport
Service Utilizing the Connectionless-Mode or Connection Oriented
Network Service”, February 1986.

International Organization for Standardization, Draft International
Standard 8649, “Information Processing Systems - Open Systems
Interconnection - Service Definition for Common Application Service
Elements”, June 1986,

International Organization for Standardization, Draft International
Standard 8822, "Information Processing Systems - Open Systems
Interconnection - Connection Oriented Presentation Service Definition”,
July 1986.

3

