
Performance Evaluation of the Late Delta
Cache Coherence Protocol

Bronis R. de Supinski
Craig Williams

Paul F. Reynolds, Jr.

Computer Science Report No. CS-96-05
March 13, 1996



0

Performance Evaluation of the Late Delta
Cache Coherence Protocol

Abstract

This paper presents the results of a simulation study designed to com-
pare the performance of the late delta cache coherence protocol and a con-
ventional directory based invalidation protocol. Delta cache protocols are a
highly concurrent directory based family of coherence protocols which
exploit an isotach logical time system to provide support for sequential
consistency and atomicity. The late delta protocol is an update based mem-
ber of this family of protocols. Our results demonstrate the efficacy of the
late delta protocol across a wide range of workloads. We show that this
protocol provides comparable performance to the conventional invalida-
tion protocol under workloads with no atomicity requirements and little
contention, but outperforms the conventional invalidation protocol as ato-
micity requirements and contention increase.



Performance Evaluation of the Late Delta Cache Coherence Protocol 1

1. Introduction

Cache memories have proven an effective technique to reduce memory latency in uni-
processors. In shared memory systems, the use of cache memories for shared data cre-
ates the potential for multiple copies of the same memory location to exist in the system
concurrently. The cache coherence problem is the problem of ensuring that the replicas of a
memory location provide a logically consistent view of the global address space. The
delta cache protocols [WRd95] are a novel and highly concurrent family of protocols which
solve this problem. This family of protocols exploit an isotach logical time system to pro-
vide support for sequential consistency and atomicity. We have conducted a perfor-
mance study comparing one of these protocols, the late delta cache coherence protocol to a
conventional directory based, invalidation protocol [CeF78, CKA91]. In this study, we
expected the late delta protocol to yield excellent performance for workloads with atom-
icity requirements without sacrificing sequential consistency despite the higher network
latencies required to maintain isotach logical time. Our results demonstrate that the late
delta protocol offers significant performance benefits.

Our results demonstrate the efficacy of the late delta cache protocol across a wide range
of workloads. Significant observations from our study include the following.

• The late delta protocol provides good performance when contention for
shared variables is high. The conventional invalidation protocol does not.

• As the number of processors increases, contention for shared variables
becomes more severe. The late delta protocol performs well as the number of
processors is increased. The conventional invalidation protocol does not.

• Hardware multicast significantly improves the performance of the late delta
protocol, but not that of the conventional invalidation protocol.

• The late delta protocol provides good performance under workloads with ato-
micity constraints. The conventional invalidation protocol provides good per-
formance only if lock contention is low.

In summary, the late delta protocol provides comparable performance to the conven-
tional invalidation protocol under workloads with no atomicity requirements or with lit-
tle contention, but outperforms the conventional invalidation protocol as atomicity
requirements and contention increase.

In the following section, we briefly describe the protocols we have simulated. In Section
3, we present our simulation methodology including a description of the synthetic work-
load we have developed to evaluate the performance of the delta cache protocols. This
workload model encompasses previous synthetic workload models but also provides
explicit modeling of data dependence and atomicity requirements. We then present our
performance study comparing the late delta protocol to the conventional protocol.



Performance Evaluation of the Late Delta Cache Coherence Protocol 2

2. Protocols Simulated

We present an evaluation of systems which implement the late delta protocol and a con-
ventional invalidation protocol. All of the systems we have simulated are organized in a
standard dance hall topology. Processing elements are connected to memory modules by
a multistage interconnection network (MIN). The networks are composed of standard
2X2 crossbar switches, which have been simulated in detail. For the simulations of the
late delta protocol, we have used the switch algorithm of network I1 described in a pre-
vious performance evaluation of isotach networks [RWW92].

Delta cache protocols use the properties of an isotach logical time system to provide sup-
port for sequential consistency [Lam79] and atomicity without the use of locks or other
special synchronization constructs. The protocols rely on the interconnection network to
maintain isotach logical time. The routing algorithm of the switches of a MIN can be
modified slightly to maintain isotach logical time. A previous study [RWW92] has
shown that these modifications result in higher raw network latency. To capture this cost,
we have modelled the interconnection network explicitly in this study. Members of the
delta cache family of protocols support multiple concurrent readers and writers and
allow the pipelining of memory accesses. The late delta protocol is an update based
member of this protocol family. A full description of the protocol is available in [WiR90].

We compare the performance of an isotach system which employs the late delta protocol
to maintain coherence to systems which maintain cache coherence with a conventional
directory based invalidation protocol. Existing directory based update protocols either
sacrifice sequential consistency [DKC93] or require expensive techniques, such as two
phased locking to propagate the updates [WiL92]. We expect the late delta protocol to
provide excellent performance without sacrificing sequential consistency. Thus, the con-
ventional invalidation protocol provides the most reasonable existing comparison

Our conventional protocol is based on the protocol used in the Alewife machine
[CKA91]. We have modified the Alewife protocol slightly to simplify its simulation. In
the Alewife protocol, if an operation is received to a block for which there are unac-
knowledged invalidations, a “busy” response is returned to the requestor. In our con-
ventional protocol, operations which would receive a “busy” response are buffered at
the memory module (MM). Once the invalidation phase is complete, the MM executes
any buffered operations in the order in which they were received. A similar situation
arises when an MM receives a read request to a block for which there is an exclusive
copy. In this case, the MM requests that the writer share the block. The writer, which
retains a valid read-only copy, responds to this request by providing the value of the
block to the MM for distribution to any new readers. While the MM is awaiting the
value, it may receive additional operations. The Alewife protocol uses the “busy”
response for both read and write operations in this situation as well. In our conventional
protocol, if the MM receives an additional read operation, the requestor is added to the
directory. Once the MM receives the value from the writer, it multicasts the value to all
other processing elements (PE’s) in the directory. Any write operations are buffered
exactly as during an invalidation phase. Our conventional protocol is nearly identical to



Performance Evaluation of the Late Delta Cache Coherence Protocol 3

the Alewife protocol since the Alewife protocol essentially uses the network to do the
buffering of our conventional protocol. Our conventional protocol is more efficient for
concurrent reads and guarantees that a writer will not suffer from starvation. Although
our conventional protocol would pose implementation difficulties, it provides a realistic
upper bound for performance of conventional, directory based invalidation protocols.

The late delta cache protocol supports atomic execution of multiple operations to shared
variables; our conventional protocol does not. We have implemented a lock based mech-
anism to provide atomicity in the systems which use the conventional protocol. Lock
operations are performed in a separate synchronization memory space which is physi-
cally collocated with the memory modules. This memory has separate input and output
queues which are split from and merged with the streams of the actual memory module
at the network interface of the unit. Since locks are a critical resource for our conven-
tional systems in workloads with atomicity requirements, we assume the cycle time of
the synchronization memory is comparable to that of the cache memories. Requests for
locks which are currently held by another PE are queued at the synchronization memory.
When a lock release is received, outstanding lock requests are granted in the order they
were received. In order to assure freedom from deadlock, a PE can have no more than
one outstanding lock request at any time. Thus at most N - 1 lock requests can be buff-
ered at a synchronization memory. Therefore, this synchronization memory could be
realized in actual hardware. More importantly, we are primarily concerned with evaluat-
ing the performance of delta cache systems and so are motivated to provide efficient, if
not entirely realistic, support for locking in the conventional systems.

In our workload model, each process executes a sequence of critical sections. Access to
critical sections with possibly conflicting operations must be governed by a common
lock. PE’s must complete lock requests one at a time and in numeric order to prevent
deadlock. PE’s must obtain locks prior to executing the operations of critical sections
governed by the locks. Finally, a PE must determine when no violations of atomicity can
occur and thus it is safe to release the locks. These requirements increase programming
effort and reduce concurrency. In current multiprocessors, all of the synchronization
work required of the processing elements is performed by the processor itself, reducing
the cycles available to perform useful computation.

We have designed a novel synchronization coprocessor for conventional cache coherent
systems. This coprocessor allows increased pipelining of atomic actions and it removes
the burden of maintaining sequential consistency from the processor. Further, it halves
the main processor cycles required to provide atomicity in systems which use locks. For
its correct and efficient operation, we assume that private memory operations are distin-
guished from shared and that the last operation of an atomic action involving shared
data is marked accordingly. We assume that atomicity is provided through locks and that
the necessary lock request operations, which can be distinguished from other memory
accesses, are issued by the processor. Figure I provides a detailed diagram of our syn-
chronization coprocessor.



Performance Evaluation of the Late Delta Cache Coherence Protocol 4

The primary function of the synchronization coprocessor is to emit operations into the
network. The processor issues data and lock operations to the synchronization coproces-
sor. Cache misses to private data are buffered separately from all other operations issued
to the synchronization coprocessor. Operations to private data bypass the synchroniza-
tion coprocessor if they are found in the private data cache.

The synchronization coprocessor chooses from available operations to emit to the net-
work. The status flags of the coprocessor track the availability of operations present in its
buffers. Whenever operations in the unlock buffer are available and there is room in the
network, the synchronization coprocessor emits the head of the buffer into the network.
If operations in the unlock buffer are not available, the synchronization coprocessor ran-
domly chooses an operation to emit into the network from the head of either the private
buffer or shared buffer if operations are available in both. If operations are present in the
private buffer, they are available since no violations of sequential consistency or atomic-
ity can occur as a result of accesses to private data. The availability of operations in the
shared buffer is constrained to maintain sequential consistency and atomicity.

The availability of operations in the shared buffer is determined by the operations which
have been emitted from the buffer. When a lock request is emitted into the network, the
shared buffer becomes unavailable until the synchronization coprocessor receives the
corresponding lock grant. In addition, when the synchronization coprocessor emits a
lock request into the network, a lock release operation is enqueued in the unlock buffer.
If an operation to shared data is emitted into the network, then the shared outstanding
counter is incremented. If the shared data operation is the last operation of an atomic
action, the shared buffer becomes unavailable until the shared outstanding counter is
zero. The shared outstanding counter is decremented when operations are received from
the network at the cache for shared data.

When a shared atomic action is completed, as detected by the zeroing of the shared out-
standing counter, operations in the unlock buffer become available for emission into the
network. Once the unlock buffer is emptied, it again becomes unavailable until the next
shared atomic action is completed. By giving priority to lock release operations, the
coprocessor minimizes the blocking of other PE’s waiting for the locks it holds.

Processor

Input Buffer of
Network Switch

Private Buffer Unlock Buffer Shared Buffer

Private Cache

Shared Cache

Status Flags

Shared
Outstanding

Counter

Figure I: Synchronization Coprocessor



Performance Evaluation of the Late Delta Cache Coherence Protocol 5

We expected the synchronization coprocessor to improve the performance of the conven-
tional protocol for workloads with atomicity requirements. Since the processor is not
responsible for freeing locks, the number of processor cycles required for locking opera-
tions is halved. The processor can pipeline shared atomic actions since the synchroniza-
tion coprocessor maintains sequential consistency. Our results indicate that the
synchronization coprocessor can improve the performance of the conventional protocol.
However, since lock contention is not alleviated, the performance gains are small.

3. Simulation Methodology

In this section, we describe the method we have used to generate memory references for
our simulations, as well as other important details of our simulation methodology. A
variety of approaches have been used to evaluate cache coherence protocols. Several
researchers have modeled cache coherence protocols as Markov processes [DuB82] and
attempted to derive closed form solutions for these systems. Others have used mean
value analysis to compare protocols [VLZ88, BLA89, YBL89, ADT90]. Generally these
approaches have relied on system simulation to verify the models proposed. Much
research has been conducted using simulations to evaluate cache coherence protocols
directly. Researchers have used both synthetic workloads, generally based on the work-
load model developed by Archibald and Baer [ArB86], and memory traces to generate a
reference stream [EgK88, BMR89, MiB92, ASH88]. Still others have simulated an entire
computer system in software [CKA91] or used the execution driven approach, where
actual programs are run on the host computer and memory references are trapped to a
memory hierarchy simulation as necessary [DGH90, CDK94].

We have evaluated the late delta protocol and our synchronization coprocessor through
simulation using a synthetic workload. This is the most tractable and accurate approach
now available to us. The efficient support for atomicity provided by delta cache systems
eliminates the use of locks. Therefore, we have rejected trace based simulation for our
performance study since existing memory traces do not reflect the high level of concur-
rent access of overlapping atomic actions anticipated in isotach systems. We must delay
an execution driven evaluation of delta cache systems due to our current lack of both a
compiler for isotach based systems and body of programs which exploit the many novel
features of isotach systems. We are developing the needed compiler and will expand this
study to include execution driven evaluation of delta cache protocols. Synthetic work-
load generation remains an important tool for evaluating cache coherent systems since a
wide variety of workloads can be generated and evaluated quickly and easily.

3.1. Synthetic Workload Generation

We base the synthetic workload model used by our simulation upon a significant body
of research into the performance of cache coherence protocols. Archibald and Baer
[ArB86] compared a wide variety of bus based cache coherence protocols using a simula-
tion driven by a synthetic workload. Nearly all synthetic workload simulations of cache
coherence [e.g. LeR90, NaB93] have been based on this research. The remainder of this
subsection details the synthetic workload model we have used. Our model, which builds



Performance Evaluation of the Late Delta Cache Coherence Protocol 6

on that used in several previous studies, allows the evaluation of many important fea-
tures of delta cache protocols.

As in previous studies, we model the processors of cache coherent systems as simple
state machines. Processors spend some number of cycles “thinking,” that is, performing
useful computation. At the end of each think period, the processor instantaneously gen-
erates references, which it then issues subject to sequencing constraints. Once all refer-
ences have been issued and any data dependencies required for the next computation
period have been satisfied, the processor then begins a new think period. Our method
for determining data dependence constraints is explained in the following paragraph.
The sequencing constraints are system dependent. All of the systems which we evaluate
provide a sequentially consistent memory, although the manner in which this is
achieved varies. With the late delta protocol or our synchronization coprocessor, the pro-
cessor is not responsible for maintaining sequential consistency, which is guaranteed by
other features of the systems. With our conventional protocol, the processor must deter-
mine that no violations of sequential consistency can occur prior to issuing a set of refer-
ences. Think periods are traditionally expressed in processor cycles and drawn from
some distribution. We have drawn think period lengths from a truncated exponential
distribution with a mean of 2 processor cycles and a maximum of 5, typical of values
used in previous studies.

We have modified the traditional synthetic workload to model data dependencies. We
define the data distance of a read as the number of think periods before the reference is
required. We do not include write references in our data dependence model. Before a
think period is begun, the processor checks for any outstanding references which are
required for the computation of the upcoming think period. If so, the processor stalls
until the references return. Data distances are determined at the time the references are
generated and are selected from a truncated exponential distribution.

References can be either to private or shared data. References to private data must be
modeled since they comprise the overwhelming majority of all memory references. Since
cache misses for private data must cross the interconnection network and delta cache
systems require the use of isotach networks which have higher raw latency, private refer-
ence modeling is particularly important for an accurate comparison of delta cache sys-
tems to conventional cache coherent strategies. Previous studies have assumed that
cache performance for private data in multiprocessor systems is consistent with unipro-
cessor cache performance. Since we model separate data caches for private and shared
data [ADT90], this assumption appears particularly valid. We assume a warm start,
where a start up period elapses prior to performance measurement and eliminates the
effect of compulsory misses. This assumption allows the use of a constant private hit
ratio during any simulation run. Another important parameter for private cache behav-
ior is the percentage of blocks which are dirty upon replacement [ArB86]. The private
cache hit ratio is 0.95 with a probability of 0.3 that private cache victims must be written
back in all of our experiments. These values are consistent with those used by Archibald
and Baer [ArB86] and studies of uniprocessor cache performance.



Performance Evaluation of the Late Delta Cache Coherence Protocol 7

Since our goal is to determine the effect of shared cache activity on performance, shared
cache blocks must be modeled explicitly. Early research [DuB82] proposed that temporal
locality would be significantly reduced for shared data, and so proposed modeling
shared references with the uniform reference model. However, later studies have chosen
to model shared references with temporal locality by using a least recently used stack
model (LRUSM) [Spi77]. This assumption is supported by shared memory reference pat-
tern studies [AgG88]. This model allows cache blocks which have recently been selected
to be significantly more likely to be selected again, which is important if caching is going
to provide much reduction in memory latency. We have modified this approach to model
contention for shared variables directly. These modifications are detailed in Section 3.1.2.

In traditional synthetic workloads, two important input parameters for reference genera-
tion which we have maintained in our workload model are the probability that any
given reference is a write and the probability that any given reference is to shared data.
We have used a write probability of 0.3 throughout our experiments. Shared reference
pattern studies indicate that the vast majority of dynamic references is to private data
[DPS86, BaR89]. For this reason, we have parameterized our reference generation
method to keep the percentage of references to shared addresses low, typically about 5 or
10 percent of all references.

Previous synthetic workload models are not sufficient for evaluating the performance of
delta cache protocols, which provide support for atomicity and allow pipelining of
atomic actions. Few model atomicity requirements [LeR90]. Further, previous workloads
provided no direct method for manipulating the degree of contention for shared vari-
ables. We expect the effect of varying this contention to reveal significant differences
between the systems we are evaluating. When contention for shared variables is high,
invalidation protocols will perform poorly, while the highly concurrent nature of delta
cache protocols should provide good performance regardless of the level of contention.
To study the effect of atomicity constraints and contention for shared variables, we have
expanded the traditional synthetic workload model. We incorporated atomicity through
reference periods which generate batches of references and added a parameter to control
the degree of contention. The remainder of this section details these innovations.

3.1.1. Incorporating Atomicity

An important feature of the systems we have proposed is that they provide support for
atomicity. The basis of our atomicity model is derived from the critical section model
proposed by Min, Baer and Kim [MBK90]. In our model, a processor issues a batch of
one or more references after each think period. We have chosen to model the batches as
consisting entirely of either private or shared references. We have made this choice since
we assume conventional systems benefit by minimizing the size of shared atomic
actions, thus reducing the time that locks are held.

The mean sizes of the two types of reference batches are important factors in the behav-
ior of our synthetic workload. The size of each private batch is determined from a trun-
cated exponential distribution, the mean and maximum of which are simulation input



Performance Evaluation of the Late Delta Cache Coherence Protocol 8

parameters. As previously stated, we do not model private cache blocks explicitly.
Instead, we determine from the specified private hit ratio whether a given private refer-
ence is present in the local cache. If not, then it is located at any of the system memory
modules with uniform probability.

We model the composition of shared atomic actions explicitly. Each shared variable is
assigned to one or more atomic actions, with possibly some of the assignments being
read only. If the assignment is not read only, i.e. it is writable, then the type of access to
the variable is determined each time a reference to the atomic action is generated. The
assignment of shared variables to atomic actions is determined from a truncated expo-
nential distribution, subject to a parameterized constraint on shared atomic action size.
The probability that these assignments are writable is also an input parameter.

Through these parameters we can specify a variety of reference batch compositions. In
particular, we can specify a workload with no atomicity requirements. This workload
corresponds to that used in most previous cache coherence studies which used a syn-
thetic workload. We have performed extensive simulations with no atomicity require-
ments to demonstrate the efficacy of delta cache protocols even under workloads which
do not exploit all of their features.

The probability that a reference is to shared data and probability that a reference is a
write are input parameters to our workload model. Since our model can generate several
references at a time and some of the shared variable assignments may be read-only, we
cannot use these parameters directly. Instead, we use these parameters to calculate the
probability that a batch of references is to a shared atomic action and the probability that
a writable shared reference is a write. We have confirmed the resulting workload has the
desired proportion of writes and shared accesses.

Our conventional protocol, even when using the synchronization coprocessor, requires
locks to ensure that shared atomic actions are executed without conflicting, interleaved
accesses by other processors, i.e. atomically. Thus we must provide a reasonable method
for assigning locks to shared atomic actions. Given the composition of the shared atomic
actions, we can define a critical section graph [MBK90]. Each shared atomic action is a
node in this graph. The edges of the graph are determined by the possible conflicting
accesses of these atomic actions. Two atomic actions have possible conflicting accesses if
the set of writable variables of one intersects with the set of all variables of the other,
whether the variables are read only or writable. Using this critical section graph, atomic-
ity can be guaranteed using a variety of lock assignments. We have implemented two.
The super-critical section method finds the connected components of the critical section
graph and assigns a single lock to each. The other assigns a lock to each edge of the criti-
cal section graph. If the connected components are not well connected, then the edge
locking approach provides significantly greater opportunity for concurrency. However,
our initial results indicate that the cost of acquiring additional locks dominates any per-
formance gain resulting from this additional concurrency. Therefore, we report results
only for the super-critical section method.



Performance Evaluation of the Late Delta Cache Coherence Protocol 9

The stochastically generated sets of shared atomic actions can be saved and reused in
later runs. We have run extensive simulations using three different sets of shared atomic
actions. Each set has 8192 shared variables. CS Set I has a highly connected critical sec-
tion graph of 7634 atomic actions. Of these atomic actions, 7328 are in a single connected
component. The remaining 306 atomic actions are found in small components of 1 to 3
nodes. The mean size of an atomic action is 2.8 shared variables with no atomic action
accessing more than 6 shared variables. CS Set II has 2971 atomic actions which are pri-
marily found in many small connected components. There is one large connected com-
ponent with 954 nodes. However, no other component has more than 32 nodes and 1781
(60%) of the atomic actions are in components of 10 nodes or less. The mean size of a con-
nected component is 2.4 nodes. The mean size of an atomic action is 3.5 shared variables
with no atomic action accessing more than 6 shared variables. CS Set III has 7626 atomic
actions, 7304 of which are in 32 approximately equally sized components. The remaining
322 atomic actions are found in components of 1 to 3 nodes. The mean size of an atomic
action is 2.9 shared variables with none accessing more than 6 shared variables. For all
three sets, approximately 60% of the shared variable assignments are writable.

Atomic actions can be classified as either flat or structured. Structured atomic actions
have internal data dependencies while flat ones do not. Our simulations can generate
workloads with structured shared atomic actions through two parameters. One parame-
ter allows a write to a shared variable to have an internal data dependence on the previ-
ous value of the variable. Thus, the variable must also be read as part of the atomic
action and the read must return before the atomic action can complete. Additionally,
given that a shared atomic action contains both reads and writes, the writes may be
dependent upon the values returned by some of the reads. Thus, for mixed atomic
actions, each read may be required for an internal data dependence with some input
probability. For any reads which are not part of an internal data dependence, the data
distance is determined as described in the previous section. When these input parame-
ters are both zero, then the workload will consist entirely of flat atomic actions.

3.1.2. Modeling Contention for Shared Variables

Most previous synthetic workloads used to evaluate cache coherence protocols have not
directly modeled contention for shared variables. We have chosen to include a hot spot
model in our workload [PfN85]. Given that a processor is referencing a shared atomic
action, with some probability, the atomic action is the hot atomic action. The hot atomic
action changes during a simulation run. Periodically, a single atomic action for all pro-
cessors is chosen uniformly from the set of all shared atomic actions. To modify this to a
warm spot model, multiple atomic actions can be hot simultaneously. Given that a hot
atomic action is referenced, we choose from the set of hot atomic actions uniformly. This
method models contention for shared variables through the use of a single hot spot set
for all processors. Since our preliminary results indicate that increasing the size of the
hot spot set is analogous to decreasing the hot spot probability, we present results only
for a single hot atomic action.



Performance Evaluation of the Late Delta Cache Coherence Protocol 10

If a reference to a shared atomic action is generated and a hot spot atomic action is not
chosen, we use a LRUSM of all shared atomic actions to determine which atomic action
to reference. Given that a hot spot atomic action is chosen, it is possible to modify the
LRUSM stack to reflect this access. If the LRUSM stack were modified, then the probabil-
ity of selecting a hot atomic action would vary greatly with the recent history of shared
atomic action accesses. Further, since hot atomic actions would be likely to be near the
top of LRUSM stack, they would exhibit a cool down period after their hot spot period
has elapsed. The cleaner semantics have therefore motivated us not to modify the
LRUSM stack.

3.2. Statistical Methodology

Our primary performance metric is processing power [ArB86], which is the sum of the
utilization of all processors in the system. When designing a simulation for systems as
complex as cache coherent multiprocessors, an important consideration is how confi-
dence intervals will be gathered for the statistics of interest. In order to minimize the
number of runs required to gather these statistics since each run requires significant pro-
cessor time, we have adopted a fixed sample size procedure [LaK92]. This procedure
allows a single long simulation run to provide an accurate confidence interval for the
processing power metric.

We are interested primarily in the steady state performance of the systems, so the simu-
lation is run for a significant period of time prior to gathering statistics. This allows the
shared memory caches to be seeded and eliminates the initial transient behavior. Thus
our results apply to a warm start for these systems. A study of the cold start performance
of these systems would require that private references be modeled explicitly so that the
transient behavior of the entire system would be modeled.

The fixed sample size procedure employed in our simulation is the standardized time
series method. After the initial transient period, processing power estimates are gathered
periodically. The observations are grouped into batches. Using these batches we are able
to compute a confidence interval for the processing power of the system. The point esti-
mate of the system processing power is the grand sample mean of the observations.

4. Performance Evaluation

In this section, we present our initial performance study. All of our results are for sys-
tems connected in a dance hall topology by an equidistant multistage interconnection
network. We use a shared memory space of 8192 shared variables and a fixed shared
memory cache size of 1024 shared variables per processing element. All runs are for sys-
tems with 32 nodes, except where noted. Our simulation has considerable memory
requirements and obtaining reasonable confidence intervals requires long simulation
runs. For these reasons, we model a system with a relatively small shared memory space.
Sensitivity studies indicate that increasing the size of the shared memory space has little
effect on system performance. For simplicity, we assume each cache blocks holds exactly
one variable. Although this cache block size is unrealistically small, we expect increasing



Performance Evaluation of the Late Delta Cache Coherence Protocol 11

the block size to favor the late delta protocol since increasing the block size favors
update protocols [WLT93]. We first compare the sensitivity of the systems to contention
for shared variables. We then investigate the scalability of the protocols and the effect of
varying the probability of referencing shared data.

4.1. Varying Hot Spot Probability

Initially, we compare the behavior of the protocol variations when subjected to different
hot spot probabilities. The hot spot probability in this study is conditioned on a shared
atomic action being referenced. The probability that any given reference batch is to a hot
atomic action is the product of this probability and the probability that any given refer-
ence batch is to shared data. In all of our runs, this total probability, combined with the
low bandwidth requirements of the workload, is not large enough to create tree satura-
tion [PfN85]. Thus performance of the protocols is limited by the performance of the pro-
tocol under the amount of contention implied by the hot spot accesses.

We have performed all of our experiments which vary the hot spot probability with a
probability of any given reference being to shared data of both 0.05 and 0.1. Our results
demonstrate that contention for shared variables is dominated by the probability of
accessing the hot spot. In almost all cases, we found that halving the shared probability
was essentially equivalent to halving the hot spot probability. Therefore, we generally
omit our results for a probability of any given reference being to shared data of 0.1.

In the next section we present results for all systems under a workload with no atomicity
requirements. These results demonstrate that the late delta protocol combined with net-
works which provide hardware multicast results in a system which is insensitive to the
level of contention for shared variables. We then extend this result to workloads which
include atomicity requirements and demonstrate that the late delta cache protocol exhib-
its little sensitivity to the atomicity requirements of the workload. Also, our experiments
demonstrate significant sensitivity to both contention for shared variables and atomicity
requirements in systems which use the conventional invalidation protocol.

4.1.1. Software Multicast Versus Hardware Multicast

The cache coherence protocols that we are evaluating employ multicast messages. These
multicasts can be implemented whether or not the underlying network provides multi-
cast support. If the underlying network does not provide multicast support, then the
multicasts must be implemented as a series of sequential messages, which we refer to as
software multicast. We first compare system performance under a workload with no ato-
micity requirements using networks with and without hardware multicast support. The
results of this experiment are shown in Figure II. All systems with software multicast
suffer significant performance degradation as the hot spot probability is increased. Our
experiments with a hardware multicast facility confirm that the facility improves perfor-
mance for all of the systems. However, the systems which employ the conventional pro-
tocol still exhibit significant sensitivity to contention for shared variables, whereas the
late delta protocol suffers almost no performance degradation as the hot spot probability



Performance Evaluation of the Late Delta Cache Coherence Protocol 12

is increased. We observe that, in isotach systems, software multicast significantly
decreases the overall rate of logical time to real time. With software multicast, each mul-
ticast results in a stream of messages which effectively stagnate the flow of logical time.
Although a similar effect occurs with the conventional protocol, the impact on logical
time results in a system-wide performance loss, compared to the local effect observed
with the conventional protocol. The dramatic improvement of the late delta cache proto-
col with hardware multicast results from the removal of the system-wide effect of the
software multicast scheme.

To determine the cause of the performance degradation with software multicast seen in
all protocols, we examined the access latencies. We define the access latencies as the time
elapsed from when the processor issues the access until it is completed at the PE. We
measure access latencies for both shared and private accesses. We found that the com-
parative performance of the protocols reflected the access latency of shared operations,
with the increase for the late delta protocol being significantly less than that with the
conventional protocol. However, there was virtually no change in the private access
latency with the conventional protocol, while a significant increase was observed for the
late delta protocol. The increase in private access latency for the late delta protocol indi-
cates a global effect of increasing the hot spot probability.

(a) Software Multicast

Processing Power vs. Hot Spot Probability

0.0 0.2 0.4 0.6 0.8
Hot Spot Probability

0.0

10.0

20.0

30.0

P
ro

ce
ss

in
g 

P
ow

er

Conventional
Synchronization Coprocessor
Late Delta

Figure II: Processing Power with No Atomicity Requirements

(b) Hardware Multicast

0.0 0.2 0.4 0.6 0.8
Hot Spot Probability

0.0

10.0

20.0

30.0

P
ro

ce
ss

in
g 

P
ow

er

Conventional
Synchronization Coprocessor
Late Delta



Performance Evaluation of the Late Delta Cache Coherence Protocol 13

We consider multistage interconnection networks to support hardware multicast if they
allow a single message to be sent to multiple destinations. In such a network, additional
messages are created only when the multicast message is directed to destinations located
on different outputs of the switch. The multicast facility is thus envisioned as following a
fan out model. It should be clear that the various coherence protocols could all benefit
from a multicast facility being supported by the network. The conventional protocol has
two types of messages which can utilize a multicast facility. These are the invalidation
messages themselves and the message which grants read access to all processors which
have outstanding read requests to a block that had been held in exclusive mode. The late
delta protocol is an update protocol and the update messages are typically directed to
multiple destinations. Ultimately, nearly all messages which exercise the coherence pro-
tocols could utilize the multicast facility.

For the late delta protocol, software multicast causes a system-wide slowdown of logical
time which implies that hot spots result in significant non-local performance degrada-
tion. Hardware multicast eliminates this non-local effect. Performance gains from the
use of hardware multicast are limited for the conventional protocol since the effect of a
software multicast is primarily local. The primary cause of reduced performance for the
conventional protocol as the hot spot probability is increased is that writes require the
invalidation of all other cache copies. Thus when contention for shared variables is high,
as it is when the hot spot probability is large, most concurrent accesses to the same block
must be performed sequentially. As the hot spot probability increases, the expected
number of buffered operations to the block increases. Therefore, the number of network
round trips which precede the completion of operations increases significantly. Hard-
ware multicast does not address the cause of this problem and, therefore, does not
reduce the expected number of round trips. The late delta protocol combined with hard-
ware multicast provides consistent performance across workloads with a wide range of
hot spot access characteristics. The rest of our results assume hardware multicast sup-
port for both systems.

4.1.2. Workloads with Flat Atomicity Requirements

To explore the benefits of the support for atomicity provided by the late delta protocol,
we compare performance under workloads consisting of flat atomic actions. The late
delta protocol provides support for flat atomic actions without the use of locks or other
special synchronization constructs. For the conventional protocol, we used the super
critical section locking scheme described previously to provide atomicity guarantees for
operations to multiple shared variables. This scheme requires exactly one lock to be
acquired for atomic access to any atomic action for which conflicting accesses may occur.
Our results demonstrate that the late delta protocol provides excellent performance for
workloads consisting of flat atomic actions while lock contention can severely limit the
performance of the conventional protocol.

As stated previously, our performance metric is processing power. An important consid-
eration is what processor cycles to count in computing this metric. A question is whether
cycles used to issue lock operations should count. Technically, the processor is active



Performance Evaluation of the Late Delta Cache Coherence Protocol 14

during these cycles. However, the late delta protocol does not require these cycles to pro-
vide atomicity guarantees. With the conventional protocol, processors are not accom-
plishing useful work during these cycles. Instead, the cycles provide functionality which
the late delta protocol demonstrates can be achieved in other ways. Additionally, the
synchronization coprocessor relieves the processor of the burden of issuing lock release

(b) CS Set III(a) CS Set I

Processing Power vs. Hot Spot Probability

(d) CS Set II, Pshare = 0.1(c) CS Set II, Pshare = 0.05

Figure III: Processing Power with Flat Atomicity Requirements

0.0 0.2 0.4 0.6 0.8
Hot Spot Probability

0.0

10.0

20.0

30.0

P
ro

ce
ss

in
g 

P
ow

er

Conventional
Synchronization Coprocessor
Late Delta

0.0 0.2 0.4 0.6 0.8
Hot Spot Probability

0.0

5.0

10.0

15.0

20.0

25.0

30.0

P
ro

ce
ss

in
g 

P
ow

er

Conventional
Synchronization Coprocessor
Late Delta

0.0 0.2 0.4 0.6 0.8
Hot Spot Probability

0.0

5.0

10.0

15.0

20.0

25.0

30.0

P
ro

ce
ss

in
g 

P
ow

er

Conventional
Synchronization Coprocessor
Late Delta

0.0 0.2 0.4 0.6 0.8
Hot Spot Probability

0.0

5.0

10.0

15.0

20.0

25.0

30.0

P
ro

ce
ss

in
g 

P
ow

er

Conventional
Synchronization Coprocessor
Late Delta



Performance Evaluation of the Late Delta Cache Coherence Protocol 15

operations. Since counting these cycles would hide important differences between the
systems we are comparing, we have chosen not to do so.

We again compare the performance of the coherence protocols as a function of the prob-
ability of accessing a hot atomic action. Figure III shows the results obtained under
workloads with flat atomicity requirements for the three sets of atomic actions described
previously with a probability that any given reference is to shared data of 0.05. Accesses
to lock variables are not included in this probability. The late delta protocol offers good
performance across the full range of hot spot probabilities for all the sets of atomic
actions. For CS Set I, we see that the connectedness of the critical section graph results in
significant lock contention and therefore poor conventional protocol performance for all
values of the hot spot probability. The results for CS Set II demonstrate the sensitivity of
the conventional protocol to the probability of a shared access and so we also provide the
results for this set with a probability of a shared access of 0.1. With a value of 0.05 for this
probability and low hot spot probabilities, contention for the lock governing access to
atomic actions in the large component of the critical section graph is low. Thus proces-
sors can complete their accesses to the atomic actions governed by this lock without
degrading system performance. However, with the larger probability of a shared access,
contention for this lock results in poor performance for all hot spot probabilities. CS Set
III has 32 approximately equally sized components. Thus, for small values of the hot spot
probability, lock contention with 32 processors is low and thus system performance is
good. However, as the hot spot probability rises, most processors attempt to access the
hot atomic action concurrently. Since lock acquisition sequentializes these accesses, per-
formance again plummets. The late delta protocol does not suffer from these drawbacks.
Since isotach logical time enforces sequential consistency and atomicity while allowing
concurrent accesses including to the hot spot, we find the late delta protocol to be insen-
sitive to the hot spot probability.

Conventional systems generally provide guarantees of sequential consistency by limit-
ing the number of outstanding atomic actions to one per processor. However, the sys-
tems could assume that locks are released only when it is guaranteed that operations
cannot be observed out of order. Making this assumption allows conventional systems to
pipeline atomic actions in the network. We implemented conventional systems which
allow pipelining to determine the benefits of this assumption. We observed that allowing
pipelining increased lock contention, thus negating the benefits of the increased concur-
rency. Therefore, we do not present results from those experiments.

4.1.3. Workloads with Structured Atomicity Requirements

We expect a significant portion of the atomic actions of isotach programs will have inter-
nal data dependencies. To explore the effect of such dependencies, we modified our
workload to create structured atomic actions as described previously. We have per-
formed extensive simulations comparing the performance of the protocols under work-
loads with structured atomicity requirements. Our results demonstrate that allowing
internal data dependencies in atomic actions does not significantly alter the performance
of the protocols.



Performance Evaluation of the Late Delta Cache Coherence Protocol 16

For our structured atomicity experiments, we used a probability of 0.1 that a shared vari-
able being written is also read as part of the same atomic action. We assume that there is
always an internal data dependence on these reads. Additionally, given a read to a
shared variable as part of an atomic action which contains at least one write to some
other shared variable, all of our experiments use a probability of 0.5 that there is an inter-

(b) CS Set III(a) CS Set I

Processing Power vs. Hot Spot Probability

(d) CS Set II, Pshare = 0.1(c) CS Set II, Pshare = 0.05

Figure IV: Processing Power with Structured Atomicity Requirements

0.0 0.2 0.4 0.6 0.8
Hot Spot Probability

0.0

10.0

20.0

30.0

P
ro

ce
ss

in
g 

P
ow

er

Conventional
Synchronization Coprocessor
Late Delta

0.0 0.2 0.4 0.6 0.8
Hot Spot Probability

0.0

5.0

10.0

15.0

20.0

25.0

30.0

P
ro

ce
ss

in
g 

P
ow

er

Conventional
Synchronization Coprocessor
Late Delta

0.0 0.2 0.4 0.6 0.8
Hot Spot Probability

0.0

5.0

10.0

15.0

20.0

25.0

30.0

P
ro

ce
ss

in
g 

P
ow

er

Conventional
Synchronization Coprocessor
Late Delta

0.0 0.2 0.4 0.6 0.8
Hot Spot Probability

0.0

10.0

20.0

30.0

P
ro

ce
ss

in
g 

P
ow

er

Conventional
Synchronization Coprocessor
Late Delta



Performance Evaluation of the Late Delta Cache Coherence Protocol 17

nal data dependence on this read. If there is an internal data dependence on any read in
an atomic action, we assume that all writes of that atomic action are dependent on it.
These parameters resulted in approximately 40-50% of all shared atomic actions exhibit-
ing internal data dependencies.

With the conventional protocol, executing structured atomic actions is nearly identical to
executing flat atomic actions. With structured atomic actions, the processor must wait
until reads for which there are internal data dependencies return before it issues the
write operations. The conventional protocol could be modified to issue operations
acquiring write access to the variables which will be written when the reads are issued.
We have implemented this optimization although we have not yet tested it.

Allowing structured atomic actions under the late delta protocol required us to imple-
ment access sequences. Access sequences allow write operations to be split into two por-
tions. One portion, the SCHED, schedules the write in logical time, while the other, the
ASSIGn, actually provides the value of the write. We implement only structured atomic
actions which employ the time slice technique. This technique schedules all accesses of
the atomic action so that they all have the same effective execution pulse. Once all of the
reads on which internal dependencies return with substantiated values, then the values
for write operations can be computed and assigned. We have assumed a very basic
implementation for issuing SCHED’s and ASSIGN’s. We assume that the processor must
use two cycles to issue each SCHED/ASSIGN pair and that split operations are
employed only for internal data dependencies. We do not count cycles used to issue
SCHED operations in computing processor utilization for reasons similar to those which
led us to discard locking cycles.

We present the results obtained for workloads with structured atomicity requirements in
Figure IV. As expected, the results for the conventional protocol do not differ signifi-
cantly from those of workloads with flat atomicity requirements. The addition of internal
data dependencies does not significantly alter the lock contention exhibited by the work-
load. In examining the results for the late delta protocol, we again see consistent strong
performance for all sets of atomic actions regardless of the hot spot probability. The exist-
ence of internal data dependences requires the scheduling of writes without providing
the corresponding value. As the hot spot probability is increased, other processors
become more likely to require these unsubstantiated values at the beginning of their
think periods due to data dependencies between atomic actions, thus limiting the pipe-
lining of atomic actions. There is some drop-off in system performance for large values
of the hot spot probability with the late delta protocol for CS Set II with a probability of a
shared access of 0.1. However, this effect is limited as the protocol combined with access
sequences limits the restriction on pipelining to true data dependencies. We observe that
the late delta protocol allows the extraction of a higher degree of parallelism from these
workloads than the conventional protocol.



Performance Evaluation of the Late Delta Cache Coherence Protocol 18

4.1.4. Another Look: Varying the Atomicity Requirements

We have presented our results comparing the performance of the protocols for a given
workload. An interesting question is how a given protocol performs while varying the
workload. Figure V summarizes these results. Our results demonstrate that the late delta
protocol can offer good consistent performance, while the conventional protocol is
extremely sensitive to both hot spot probability and atomicity requirements.

We find that the conventional protocol offers consistently poor performance when the
hot spot probability is large. Careful coding may limit hot spot accesses in systems based
on this protocol. The differences in performance exhibited for the three sets of atomic
actions when the hot spot probability is low demonstrate that organizing data accesses
to use a large number of equally likely to be accessed locks is also essential.

The results for the late delta protocol are excellent. Not only is performance good under
any of the workloads, there is little variation between them. We theorize that perfor-
mance of the late delta protocol is primarily dependent on the mean and variance of the
size of atomic actions. The performance of the late delta protocol under workloads with
no atomicity requirements is about ten percent higher than under those with atomicity
requirements. The no atomicity workloads can be viewed as workloads of flat atomic
actions of one operation. We expect larger atomic actions to decrease the rate of logical
time with respect to real time, thus reducing performance. However, we expect small
atomic actions in most workloads and thus good system performance regardless of the
hot spot characteristics of the application.

(b) Late Delta Protocol(a) Conventional Protocol

Processing Power vs. Hot Spot Probability

Figure V: Affect of Atomicity Requirements within Protocol

0.0 0.2 0.4 0.6 0.8
Hot Spot Probability

0.0

5.0

10.0

15.0

20.0

25.0

30.0

P
ro

ce
ss

in
g 

P
ow

er

No Atomicity
CS Set I - Flat Atomicity
CS Set I - Structured
CS Set II - Flat Atomicity
CS Set II - Structured
CS Set III - Flat Atomicity
CS Set III - Structured

0.0 0.2 0.4 0.6 0.8
Hot Spot Probability

0.0

10.0

20.0

30.0

P
ro

ce
ss

in
g 

P
ow

er

No Atomicity
CS Set I - Flat Atomicity
CS Set I - Structured
CS Set II - Flat Atomicity
CS Set II - Structured
CS Set III - Flat Atomicity
CS Set III - Structured



Performance Evaluation of the Late Delta Cache Coherence Protocol 19

4.1.5. The Effect of Increasing System Size

The increased latency of isotach networks compared to conventional networks is an
important concern for delta cache systems. The results with 32 processors and no atomic-
ity requirements indicate that the pipelining of memory accesses and the increased con-
currency of the late delta protocol adequately compensate for this latency under small
systems even with workloads which do not exploit all of the features of the protocol,
such as atomicity support. However, the difference in network latencies increases with
increases in network size. Therefore, we compared the performance of the cache coher-
ence protocols as a function of hot spot probability in systems with 128 processors under
workloads with no atomicity requirements. Increasing the number of processors in the
system increases the amount of contention for shared variables created by a given hot
spot probability. Thus, the difficulties with contention for shared variables in systems
based on the conventional protocol become more important as system size is increased.
The late delta protocol begins to exhibit some sensitivity to contention for shared vari-
ables for large values of the hot spot probability, but still yields excellent performance.

In Figure VI, we show the results obtained with larger systems for probabilities of a
shared access of 0.05 and 0.1. The late delta protocol continues to offer excellent perfor-
mance with significant degradation only for the highest value of the probability of
accessing the hot spot and a probability of a shared access of 0.1. These results demon-
strate the resiliency of the late delta protocol and the unlikelihood of saturating the hot
spot memory module. Additionally, we find that the hot spot probability for which the

Pshare = 0.05

Processing Power vs. Hot Spot Probability

(b) Pshare = 0.1

Figure VI: Processing Power with 128 Processors

0.0 0.2 0.4 0.6 0.8
Hot Spot Probability

0.0

50.0

100.0

150.0

P
ro

ce
ss

in
g 

P
ow

er

Conventional
Synchronization Coprocessor
Late Delta

0.0 0.2 0.4 0.6 0.8
Hot Spot Probability

0.0

50.0

100.0

150.0

P
ro

ce
ss

in
g 

P
ow

er

Conventional
Synchronization Coprocessor
Late Delta



Performance Evaluation of the Late Delta Cache Coherence Protocol 20

conventional protocol is saturated is decreased significantly. We find that the conven-
tional protocol cannot provide adequate performance in large scale systems.

We have demonstrated that the late delta protocol offers good performance across a
wide range of the hot spot probabilities. For our remaining results, we fix this probability
at 0.1. Other than for CS Set I, the conventional protocol offers reasonable performance at
this value. For CS Set I, we found that the data layout was such that the conventional
protocol could never offer good performance. The remaining sections will explore the
performance of the protocols when two important system characteristics are varied - sys-
tem size and the probability of a shared access.

4.2. Scalability

In this section, we extend our study of the scalability of the protocols. We compare the
performance of the protocols under workloads with no atomicity requirements and with
structured atomicity requirements. We expect the conventional protocol to perform best
in relation to the late delta protocol under the no atomicity workloads since these work-
loads do not offer the late delta protocol the opportunity to use its efficient techniques
for enforcing atomicity.

The results of an initial study exploring the scalability of the protocols are presented in
Figure VII. For all of these curves, the probability that any given reference is to shared
data is 0.05. We include a curve showing the theoretical maximum performance corre-
sponding to a processor utilization of one for all processors in the system. With a small
number of processors, we find the performance of these protocols is nearly indistin-
guishable for each of the workloads. For the workloads with structured atomicity
requirements, we see that lock contention increases as the number of processors is
increased. The late delta protocol continues to provide good performance as the system
size is increased. The performance gain in going from 64 to 128 processors for the con-
ventional systems for CS Set III cannot justify the use of the additional processors, while
performance has declined on the same interval for the other sets of atomic actions.

The surprising result appears under the workload with no atomicity requirements.
Under this workload, we had expected the conventional protocol to slightly outperform
the late delta protocol for all system sizes. However, with a hot spot probability of 0.1
and probability of a shared access of 0.05, we find that for the conventional protocol
increasing the system from 64 to 128 processors actually decreases processing power.
Thus the late delta protocol, which demonstrates far greater resiliency to hot spot
accesses, significantly outperforms the conventional systems under a workload which
does not exploit the support for atomicity offered by isotach systems.

We observe that the performance of the conventional protocol is actually better with
structured atomicity requirements and the atomic actions of CS Set III than with no ato-
micity requirements. The primary cause for this apparent anomaly is that the synchroni-
zation memory is implemented at cache memory speeds while the directory is



Performance Evaluation of the Late Delta Cache Coherence Protocol 21

implemented at main memory speeds. Further, the lock protocol is optimized for the sin-
gle type of operation to lock memory, whereas the conventional coherence protocol must
support both reads and writes. Since CS Set III has 32 large, approximately equally sized
components, lock requests which are not for the hot atomic action do not significantly
increase contention. Thus when approximately equal amounts of contention are limiting

(b) CS Set I(a) No Atomicity

Processing Power vs. Number of Processors

0.0 50.0 100.0 150.0
Number of Processors

0.0

50.0

100.0

150.0

P
ro

ce
ss

in
g 

P
ow

er

Conventional
Synchronization Coprocessor
Late Delta

(d) CS Set III(c) CS Set II

Figure VII: Varying the Number of Processors

0.0 50.0 100.0 150.0
Number of Processors

0.0

50.0

100.0

150.0

P
ro

ce
ss

in
g 

P
ow

er

Conventional
Synchronization Coprocessor
Late Delta

0.0 50.0 100.0 150.0
Number of Processors

0.0

50.0

100.0

150.0

P
ro

ce
ss

in
g 

P
ow

er

Conventional
Synchronization Coprocessor
Late Delta

0.0 50.0 100.0 150.0
Number of Processors

0.0

50.0

100.0

150.0

P
ro

ce
ss

in
g 

P
ow

er

Conventional
Synchronization Coprocessor
Late Delta



Performance Evaluation of the Late Delta Cache Coherence Protocol 22

performance for both the no atomicity and atomicity workloads, the faster synchroniza-
tion memory combined with the efficient locking protocol can yield improved perfor-
mance. However, that this effect is not observed with CS Sets I and II where the existence
of one lock governing a significant portion of the shared atomic actions results in signifi-
cantly higher contention from the same parameters.

The data layout of CS Set III could be viewed as optimizing the application being mod-
elled for a system with 32 processors. It might be possible to recode the application for
the larger system, yielding 128 large components. Then we would expect the conven-
tional protocol again to provide good performance. However, this process is likely to be
difficult and time consuming. Further, despite there being more parallelism inherent in
the problem it is not clear that this system size specific targeting is always possible. Most
importantly, this exercise is unnecessary for the late delta protocol.

4.3. Varying the Probability of a Shared Access

Studies of reference patterns in shared memory multiprocessor indicate that the proba-
bility of any given reference being to shared data varies greatly among applications
[BaR89, DPS86]. Although this probability is low for most applications, it can be as high
as 0.25 or even 0.5 for some applications. Therefore, protocols which can provide consis-
tently good performance across a range of values for this probability are desirable.

With our workload model, there are two effects of increasing the probability of a shared
access which may reduce system performance. Since the shared hit ratio is typically
lower than the private hit ratio, increasing the proportion of shared accesses increases
the proportion of accesses that miss in the cache. This is particularly true for the late
delta protocol, since all writes to shared data must be sent to the memory module, which
distributes the updates required by the protocol. Since we count only operations which
are performed on the cache copy as cache hits, the late delta protocol has a maximum
shared hit ratio of 0.7 with a shared write probability of 0.3. This first performance
degrading effect of additional use of the network includes increased memory module
utilization, which we expect to be uniformly distributed across the memory modules.
The second effect involves hot spot accesses. When the probability of a shared access is
increased, the probability that any given reference is to the hot spot is increased a pro-
portionate amount. Thus, there is hot spot effect as well as a system-wide effect from
increasing the probability of a shared access.

We have conducted a set of experiments to investigate the performance of the conven-
tional protocol and the late delta protocol as a function of the probability of a shared
access. The results are presented in Figure VIII. In these experiments, we kept the hot
spot probability constant at 0.1. We observe that the late delta protocol offers greater
resiliency under this parameter. Even under workloads with no atomicity requirements,
the conventional systems cannot provide good performance when accesses to shared
data are frequent. Recalling the results from the experiments under which the hot spot
probability was varied, we hypothesize that the hot spot effect dominates the perfor-
mance of these systems when the probability of a shared access is high.



Performance Evaluation of the Late Delta Cache Coherence Protocol 23

The performance of the late delta protocol shows far greater sensitivity to the probability
of a shared access than to the hot spot probability. Recall that the performance of the late
delta protocol was nearly unaffected when the hot spot probability was increased. There-
fore, it is clear that the system-wide effect of an increased probability of a shared access
significantly affects the performance of the late delta protocol. We are currently consider-

(b) CS Set I(a) No Atomicity

Processing Power vs. Probability of a Shared Access

(d) CS Set III(c) CS Set II

0.00 0.10 0.20 0.30 0.40
Probability of a Shared Access

0.0

10.0

20.0

30.0

P
ro

ce
ss

in
g 

P
ow

er

Conventional
Synchronization Coprocessor
Late Delta

Figure VIII: Varying the Probability of a Shared Access

0.00 0.10 0.20 0.30 0.40
Probability of a Shared Access

0.0

10.0

20.0

30.0

P
ro

ce
ss

in
g 

P
ow

er

Conventional
Synchronization Coprocessor
Late Delta

0.00 0.10 0.20 0.30 0.40
Probability of a Shared Access

0.0

10.0

20.0

30.0

P
ro

ce
ss

in
g 

P
ow

er

Conventional
Synchronization Coprocessor
Late Delta

0.00 0.10 0.20 0.30 0.40
Probability of a Shared Access

0.0

10.0

20.0

30.0

P
ro

ce
ss

in
g 

P
ow

er

Conventional
Synchronization Coprocessor
Late Delta



Performance Evaluation of the Late Delta Cache Coherence Protocol 24

ing system design changes which will alleviate this problem. Nonetheless, the late delta
protocol significantly outperforms the conventional protocol under workloads in which
the proportion of shared accesses is high.

5. Conclusion

Delta cache coherence protocols are a highly concurrent family of directory based proto-
cols. These protocols allow pipelining of shared accesses and provide support for
sequential consistency and atomicity without the use of locks. These features of the pro-
tocol family are expected to result in consistently good performance, even for workloads
with atomicity requirements.

We have compared the performance of the late delta protocol, an update based member
of this protocol family, to that of a conventional invalidation protocol. An important
result of our study is that hardware multicast enhances the performance of the late delta
protocol. We expect this result to be true for all delta cache coherence protocols. We have
demonstrated that the late delta protocol has significantly greater resiliency to conten-
tion for shared variables. This resiliency to contention for shared variables has important
scalability implications. We have demonstrated that workloads which include atomicity
requirements have little effect on the performance of the late delta protocol while the
conventional protocol is severely hampered by these requirements.

We have augmented the conventional protocol with a synchronization coprocessor in an
effort to provide the benefits of the delta cache family of protocols to the conventional
protocol. Our study indicates that this coprocessor can provide small performance bene-
fits to the conventional protocol. However, it does not alter lock contention for work-
loads with atomicity requirements. Lock contention can be addressed through careful
coding and data layout. However, this is a time consuming process which yields perfor-
mance for a fixed number of processors. The late delta protocol does not suffer from
these drawbacks since its atomicity support eliminates the use of locks. Our study dem-
onstrates that the delta cache family of protocols is a promising technology which can
significantly improve performance of shared memory systems.

6. References

[AgG88] Agarwal, A. and A. Gupta, “Memory Reference Characteristics of Multipro-
cessor Applications under MACH,” Proceedings of the 1988 Sigmetrics Confer-
ence on Measurement and Modeling of Computer Systems, pp. 215-225, 1988.

[ASH88] Agarwal, A., R. Simoni, J. Hennessy and M. Horowitz, “An Evaluation of
Directory Schemes for Cache Coherence,” Proceedings of the 15th International
Symposium on Computer Architecture, pp. 280-289, 1988.

[ADT90] Algudady, M.S., C.R. Das and M.J. Thazhuthaveetil, “A Write Update Cache
Coherence Protocol for MIN-Based Multiprocessors with Accessibility Based
Split Caches,” Proceedings of Supercomputing ‘90, pp. 544-553, 1990.



Performance Evaluation of the Late Delta Cache Coherence Protocol 25

[ArB86] Archibald, J. and J.L. Baer, “Cache Coherence Protocols: Evaluation Using a
Multiprocessor Simulation Model,” ACM Transactions on Computer Systems,
Vol. 4, No. 4, pp. 273-298, 1986.

[BaR89] Baylor, S.J. and B.D. Rathi, “A Study of the Memory Reference Behavior of
Engineering/Scientific Applications in Parallel Processors,” Proceedings of the
1989 International Conference on Parallel Processing, pp. I-78-I-82, 1989.

[BMR89] Baylor, S.J., K.P. McAuliffe and B.D. Rathi, “Cache Coherence Protocols for
MIN-Based Multiprocessors,” RC15221, IBM Resear ch Report, 1989.

[BLA89] Bhuyan, L.N., B.C. Liu and I. Ahmed, “Analysis of MIN based Multiproces-
sors with Private Cache Memories,” Proceedings of the 1989 International Confer-
ence on Parallel Processing, pp. I-51-I-58, 1989.

[CeF78] Censier, L.M. and P. Feautrier, “A New Solution to Coherence Problems in
Multicache Systems,” IEEE Transactions on Computers, Vol. 27, pp. 1112-1118,
1978.

[CKA91] Chaiken, D., J. Kubiatowicz and A. Agarwal, “LimitLESS Directories: A Scal-
able Cache Coherence Scheme,” Proceedings of the 4th ASPLOS, pp. 224-234,
1991.

[CDK94] Cox, A.L., S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony and W. Zwaenepoel,
“Software Versus Hardware Shared Memory Implementation: A Case Study,”
Proceedings of the 21th International Symposium on Computer Architecture, pp.
106-117, 1994.

[DPS86] Darema-Rogers, F., G.F. Pfister and K. So, “Memory Access Patterns of Parallel
Scientific Programs,” RC12086, IBM Resear ch Report, 1986.

[DGH90] Davis, H., S.R. Goldschmidt and J. Hennessy, “Tango: A Multiprocessor Simu-
lation and Tracing System,” T ech. Rep. CSL-TR90-439 Stanford University,
Computer Systems Laboratory, 1990.

[DuB82] Dubois, M. and F.A. Briggs, “Effects of Cache Coherency in Multiprocessors,”
IEEE Transactions on Computers, Vol. 31, pp. 1083-1099, 1982.

[DKC93] Dwarkadas, S., P. Keleher, A.L. Cox and W. Zwaenepoel, “Evaluation of
Release Consistent Software Distributed Shared Memory on Emerging Net-
work Technology,” Proceedings of the 20th International Symposium on Computer
Architecture, pp. 106-117, 1993.

[EgK88] Eggers, S.J. and R.H. Katz, “Evaluating the Performance of Four Snooping
Cache Coherency Protocols,” Proceedings of the 15th International Symposium on
Computer Architecture, pp. 373-382, 1988.



Performance Evaluation of the Late Delta Cache Coherence Protocol 26

[Lam79] Lamport, L., “How to Make a Multiprocessor Computer that Correctly Exe-
cutes Multiprocessor Programs,” IEEE Transactions on Computers, Vol. 28, pp.
690-691, 1979.

[LaK92] Law, A.M. and W.D. Kelton, Simulation Modeling and Analysis, McGraw-
Hill, Inc., 1992.

[LeR90] Lee, J. and U. Ramachandran, “Synchronization with Multiprocessor Caches,”
Proceedings of the 17th International Symposium on Computer Architecture, pp. 27-
37, 1990.

[MiB92] Min, S.L. and J.L. Baer, “Design and Analysis of a Scalable Cache Coherence
Scheme Based on Clocks and Timestamps,” IEEE Transactions on Parallel and
Distributed Systems, Vol. 3, No. 1, pp.25-44, 1992.

[MBK90] Min, S.L., J.L. Baer and H.J. Kim, “An Efficient Caching Support for Critical
Sections in Large-Scale Shared-Memory Multiprocessors,” RC1531 1, IBM
Research Report, 1990.

[NaB93] Nanda, A.K. and Bhuyan, L.N., “Design and Analysis of Cache Coherent Mul-
tistage Interconnection Networks,” IEEE Transactions on Computers, Vol. 42,
No. 4, pp. 458-470, 1993.

[PfN85] Pfister, G.F. and V.A. Norton, “‘Hot Spot’ Contention and Combining in Multi-
stage Interconnection Networks,” IEEE Transactions on Computers, Vol. 34, No.
10, pp. 943-948, 1985.

[RWW92] Reynolds, Jr., P.F., C. Williams and R.R. Wagner, Jr., “Empirical Analysis of Iso-
tach Networks,” T ech. Rep. 92-19, University of Virginia, Department of Com-
puter Science, 1992.

[Spi77] Spirn, J.R., Program Behavior: Models and Measurements, Elsevier North-
Holland, Inc., 1977.

[VLZ88] Vernon, M.K., E.D. Lazowska and J. Zahorjan, “An Accurate and Efficient Per-
formance Analysis Technique for Snooping Cache-Consistency Protocols,”
Proceedings of the 15th International SYNP Computer Architecture, pp. 308-315,
1988.

[Wil93] Williams, C., Concurrency Control in Asynchronous Computations, Ph.D.
Thesis, University of Virginia, 1993.

[WiR90] Williams, C. and P.F. Reynolds, Jr., “Delta-Cache Protocols: A New Class of
Cache Coherence Protocols,” T ech. Rep. 90-34, University of Virginia, Depart-
ment of Computer Science, 1990.



Performance Evaluation of the Late Delta Cache Coherence Protocol 27

[WiL92] Wilson, A.W. and R.P. LaRowe, Jr., “Hiding Shared Memory Reference
Latency on the Galactica Net Distributed Shared Memory Architecture,” Jour-
nal of Parallel and Distributed Computing, Vol. 15, No. 4, pp. 351-367, 1992.

[WLT93] Wilson, A.W., R.P. LaRowe, Jr. and M.J. Teller, “Hardware Assist for Distrib-
uted Shared Memory,” Proceedings of the 13th International Conference on Distrib-
uted Computing Systems, pp. 246-255, 1993.

[YBL89] Yang, Q., L.N. Bhuyan and B.C. Liu, “Analysis and Comparison of Cache
Coherence Protocols for a Packet-Switched Multiprocessor,” IEEE Transactions
on Computers, Vol. 38, No. 8, pp. 1143-1153, 1989.



Performance Evaluation of the Late Delta Cache Coherence Protocol 28


