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Abstract

For a safety-critical system, a system whose consequences of failure might be very
high, it is not possible to rely upon testing to provide the necessary verification. Confi-
dence in the software has to be achieved by a variety of verification techniques. Neverthe-
less, testing can yield valuable information about a system, and those who will eventually
use it expect a system to have been tested.

As part of a research program, we are developing the software for an experimental
safety-critical application and we have begun consideration of how the software should be
tested. Of particular interest are the issues of the role of testing in the verification process
and techniques for testing complex safety-critical systems.

The target safety-critical application provides many challenges for a test system. The
application software is quite complex, being based on a distributed architecture and utiliz-
ing significant amounts of “off-the-shelf” software. Both of these architectural decisions
were essential to meet the functional requirements of the system. Complexity also comes
from the application devices that include a complex X-ray imaging system and high-
energy electrical devices that cannot be made available for testing on a routine or extended
basis. Any testing strategy must also account for the interactive nature of the system and
the need for extensive operator direction. Finally, correct operation of the system is diffi-
cult to assess because a variety of complex calculations are required to perform the neces-
sary control.

In this paper, we describe the approaches we have developed to system-level testing
of this application. We discuss the overall test harness structure including the mechanisms
for synthetic input generation from both the operator and the peripheral devices. Error
detection is based on systematic application of reversal checks throughout the software.
The potential benefits and difficulties with this approach are discussed. Finally, we present
our approach to test case selection. The goal of the selected test cases is to permit rigorous,
if narrow, results to be concluded about the software with feasible numbers of test cases.
In this way we hope to establish useful system-level properties by testing.
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I  Introduction

Computing systems in which the consequences of failure can be very high are termed

safety-critical. Many such systems exist in application areas such as aerospace, defense,

transportation, power-generation, and medicine. Public exposure to these safety-critical

systems is increasing rapidly, and, since the correct operation of these systems depends on

software, the possibility of serious damage resulting from a software defect is consider-

able and growing.

In most cases, it is not possible to rely upon testing to provide the necessary verifica-

tion of the software in a safety-critical application. Testing aimed at providing assurance

that a statistical dependability metric (such as mean time to failure) has been achieved is

infeasible [3]. The possibility of a failure going unobserved during testing also exists and

this increases the difficulty of using testing as a verification technique [1]. Nevertheless,

testing can yield valuable information about a system, and those who will eventually use a

system expect it to have been tested.

We are engaged in a case study in software development in which we are developing

the software for an experimental safety-critical application. The application is in the med-

ical domain with the potential for human injury or equipment damage in the event of fail-

ure. Although we intend to exploit a variety of approaches to verification as development

proceeds, we have begun consideration of how the software should be tested. Our research

goals in the area of testing are: (a) to determine what role testing should play in the devel-

opment of such a system; (b) to determine what rigorous conclusions can be drawn about

the software through a test process; and (c) to determine how to test a relatively complex

system in the most effective way.

The issues raised by the testing of this application are considerable for the following

reasons:

• Despite the extremely undesirable complexity that it introduces, the system uses a

distributed architecture and depends upon significant amounts of “off-the-shelf”

software that is not under our control.

• The application uses a complex X-ray imaging system and high-energy electrical

devices that cannot be made available for testing on a routine or extended basis.

• The system is interactive and requires extensive operator direction via a graphic

user interface. The “operator” in this case is a physician.
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• Correct operation of the system is very difficult to determine because a variety of

complex calculations are required to perform the necessary control. The applica-

tion has all the appearances of being untestable [4].

In this paper, we describe the approaches we have developed to system-level testing of

this application. In the next section, we summarize the application and describe the key

issues faced in testing the software. In section III, we discuss the overall test harness struc-

ture including the mechanisms for synthetic input generation from both the operator and

the peripheral devices. The error detection mechanism is described in section IV. In sec-

tion V, we discuss our approach to test case selection and in section VI we present our con-

clusions.

II  The Application

The case study in which we are presently engaged isThe Magnetic Stereotaxis System

(MSS). This is an investigational device for performing human neurosurgery being devel-

oped in a joint effort between the Department of Physics at the University of Virginia and

the Department of Neurosurgery at the University of Iowa [5].

The system operates by manipulating a small permanent magnet (known as a “seed”)

within the brain using an externally applied magnetic field. By varying the magnitude and

gradient of the external magnetic field, the seed can be moved along a non-linear path and

positioned at a site requiring therapy, e.g., a tumor. The magnetic field required for move-

ment through brain tissue is extremely high, and, in the MSS, the required field is gener-

ated by a set of six superconducting magnets that are located in a housing that surrounds

the patient’s head. Fig. 1 shows how the system is organized.

A key element of the device is the imaging subsystem. It uses two X-ray cameras posi-

tioned at right angles to detect in real time the locations of the seed and of X-ray opaque

markers affixed to the patient’s skull. The X-ray images are not displayed. Instead, they

are processed by the imaging subsystem so as to locate the objects of interest in a canoni-

cal frame of reference, and this information is used to display graphic representations of

the seed and skull markers on pre-operative magnetic resonance (MR) images. The MR

images are the primary source of information used by the surgeon for making control deci-

sions.

The MSS has the potential for being used for hyperthermia by radio-frequency heating

of the seed from an external source or for chemotherapy by using the seed to deliver drugs
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to a site within the brain. The MSS concept promises to be far less traumatic to the patient

than present invasive approaches to such treatments. The state of the MSS is that the con-

cept is fully defined, the majority of the basic research in physics is complete, and a fully

functional prototype is being used for demonstration and evaluation.

Failure of the MSS control software could have serious results. The most obvious

problem that comes to mind is a software defect that moves the seed in an undesired man-

ner and damages critical brain tissue. Less obvious is the possibility of one of the six elec-

tromagnets or an associated power supply failing so that the magnetic field suddenly

becomes distorted. In this case, the software is expected to act quickly to shut down the

remaining magnets in order to stop seed motion and prevent patient injury. Other rela-

tively obscure but very serious problems include the fact that the entire system depends on

the correct operation of the imaging system which itself depends on the X-ray cameras

being correctly calibrated. Calibration is a complex software function and a small error in

calibration leads to a large error in position estimation. Any such error leads to incorrect

information being displayed to the surgeon, and the possibility of subsequent harm to the

patient is high. Finally, there are regions of the magnetic field in which the seed can accel-

erate once motion begins making appropriate control very difficult. This has to be detected

X ray
source

Phosphor screen

Fig. 1.View of MSS from above patient’s head.

Patient’s head

Camera

Coil



Page 4

and prevented by the software.

With these and many other possibilities for harm, and the entire system depending on

correct software, we began the case study with the assumption that an extremely simple

software system with minimal functionality would be used. The simpler the system the

better the chance of getting it right. In practice, however, a simple system is out of the

question because the application requires several high-resolution graphic displays and

these depend upon extensive computation for data generation. Present displays include the

operator display containing the MR images and various control panels, a field display that

provides a visualization of the magnetic field updated in real time to show the field being

applied to the patient, and an engineering display that presents status information for use

in monitoring the system. In addition, although not presently implemented, a three-dimen-

sional display of the brain reconstructed from a set of MR “slices” is expected to be

needed before the system can be used routinely for human therapy.

This demand for computation and display has forced the use of a distributed architec-

ture. This in turn has forced the use of a substantial amount of “off-the-shelf” software to

perform routine operating system and network functions. How such a system will be veri-

fied or even if it can be is a complex issue that we address elsewhere [6]. In this paper, we

are concerned with questions of how such a system might be tested.

The overall software architecture of the system is shown in Fig. 2. It consists of a con-

trol program that interfaces with the various peripherals and the display programs. Com-

munication between these programs is over a local-area network. Each program executes

on a separate computer running Unix and the network links are Unix socket connections.

The graphic user interfaces are implemented using X Windows.

The key issues facing us in testing this system are:

• How can test case execution be automated and operated in a self-contained,

closed-loop fashion? The system is interactive and expects the surgeon to enter

requests by depressing buttons, selecting objects, and manipulating input widgets

(e.g., “sliders”) on a graphic user interface. In addition, the images come from a

complex imaging system built of special purpose hardware. The cameras yield X-

ray images that are noisy, suffer from severe radial distortion, and have signifi-

cantly different exposures at the center of the image than the edges.

• What test inputs should be used? There are, of course, an arbitrary number of pos-
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sible combinations of seed positions, desired moves, etc.

• How can we determine whether the “outputs” are correct?

• Since the concern here is safe operation rather than availability or reliability, what

role, if any, can testing play in rigorous verification that safety requirements are

being met?

In general, this system poses significant challenges in the area of system testing. We

anticipate that the experience gained in addressing them will yield valuable insights into

testing complex systems.

III  The Test System Structure

Important goals in any system-level testing activity are to have the entire software sys-

tem operating and to disturb the software as little as possible. In testing this system, we

have to be able to execute tests with all of the subsystem programs running, with the net-

work operating, and with image and operator input data from the expected operational

profile. We also have to be able to execute the software with as little change as possible

from its operational form.

Superconducting
Electromagnets

Fig. 2. Distributed MSS software architecture
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There are many different forms of test case that will be executed. One of the most

important and elaborate is a complete surgical procedure. Such a test case consists of cali-

bration of the imaging system followed by an arbitrary number of moves of the seed

within the operating region. To support this and other forms of system test, we have devel-

oped a test system structure that is shown in Fig. 3 and consists of the following:

• the complete MSS software system with two modifications, and

• a test harness that is responsible for selecting test cases and sequencing test events,

and that contains an image generation subsystem that produces synthetic X-ray

images and a simulator for the superconducting coils.

Fig. 3. System architecture with test harness
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The first modification to the software system was the replacement of the device driv-

ers for the X-ray system and superconducting coils so that test inputs and outputs could be

dealt with. The second modification was the addition of a small module in the operator

display to permits synthetic operator commands to be entered.

The test harness operates as a separate program on a different computer from the rest

of the system. It communicates with the software under test via two socket connections.

One of these connections is used to transfer synthetic images to the replacement X-ray

device driver. The second is used to transmit operator commands that the test harness

determines to be part of a test case to the operator display. The most significant aspects of

the test harness are the image generation and operator command entry systems, and they

are described below.

Image Generation System

Our initial approach to image generation was to build hardware to provide realistic

digital images. This hardware operated with visible light rather than X rays and was built

to 1/2 scale. High-precision placement stages were used in all three dimensions to locate

the objects in positions known to within 1/10 of a millimeter. Testing of the imaging sys-

tem in the MSS software was then performed by moving the objects using the placement

stages.

This approach was highly unsatisfactory for a number of reasons. First, it was pain-

fully slow and completely dependent on human operation. This is not an approach that is

conducive to high-volume testing. A second significant reason for rejecting the approach

was that the visible light sources and cameras were not able to produce images with the

same distortions, backgrounds, and noise levels as the X-ray systems.

The present system uses synthesized images that are produced as follows. The desired

object positions in the canonical coordinate system are generated initially by the test har-

ness as part of a test case. The projections of the objects onto the two camera sensing sur-

faces are then computed and used to place correctly located shadows onto the two digital

images. These projections take into account a multitude of deviations from perfect posi-

tioning of the real equipment. The X-ray sources, for example, are not located precisely on

a line perpendicular to the center of the camera. Once the projections have been generated,

realistic distortions are applied to the images, and finally the images are mixed with real

backgrounds taken from the real X-ray system to produce extremely high-fidelity syn-

thetic images.
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The Control Program’s interface with the synthetic image generator is identical to the

real X-ray system down to the level of the device driver. The synthetic images arrive over

a socket connection whereas the real X-ray images arrive via a custom communications

system.

Operator Command Generation

Normally, operator commands are entered using a mouse. Therefore, testing the sys-

tem under operational conditions would seem to require a human operator. This is unsatis-

factory because it is difficult to repeat and because it is very slow.

An approach used in some testing systems is known as “record-playback”. Human

mouse activity is essentially recorded in a file and the mouse input for a system can be

directed to this file to permit mouse activity to be played back. Although useful, this

approach does not permit high volume testing because test cases cannot be easily synthe-

sized. Generating suitable mouse actions requires the generator to know the entire geome-

try of the screen at the pixel level.

Our original approach to dealing with this aspect of testing (which fortunately we did

not implement) was to replace the X Windows system with a set of identical facilities that

did nothing but keep the rest of the application happy. Thus, requests by the application to

draw anything would be acknowledged but ignored. Inputs would be generated at the

command level rather than the screen-pixel level, so that realistic inputs could be synthe-

sized faithfully, easily, and in high volume.

Apart from the considerable effort involved in building such as system, it is not a good

solution because it fails to test any of the X-Windows software that the application is

using. Given the goal of testing as much of the application as possible, this is hardly a sat-

isfactory approach.

Our current approach provides a level of input control that allows command-level

inputs from the Test Harness, keeps all the displays operating, and leaves X Windows in

place. It operates as follows. A relatively small addition has been made to the Operator

Display program that will be used during testing and will remain present but inactive dur-

ing operation. This addition accepts high-level directions from the Test Harness that are in

the form of high-level action requests such as “push the calibrate button”. The modifica-

tion to the Operator Display is referred to as the Pseudo User because that is its role. It

transforms the high-level directions either into X events that it injects into the event
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queue, or, if necessary, it calls the associated call-back functions.

IV  Error Detection

For any reasonable operator request, determining whether the system’s action are “cor-

rect” is very difficult. For example, the “input” will take the form of a present seed posi-

tion known up to the resolution of the imaging system, and a direction and distance that

the surgeon wishes to move the seed. The “output” will be a set of currents to be applied to

the superconducting coils. How can we possibly know whether these are the correct cur-

rents? This problem is made significantly worse (if that is possible) by the fact that there

are an infinite number of combinations of currents in the six coils that produce the same

force on the seed.

For this application, we are fortunate in having found what appears to be a workable

approach to this problem. The approach is to use reversal checks across the entire applica-

tion. A reversal check is a calculation that takes the output of some computation and

regenerates the associated input. If the regenerated input matches the actual input up to the

limits imposed by numerical error then there are only two possibilities: either the output is

correct or the forward and reverse calculations contain faults that are the inverses of each

other. Even if the latter were the case, it is unlikely that they would be the exact inverses of

each other. By exact inverse, we mean that the faults do not permit a failure to be detected

on any test case whatsoever. In other words, for a fault to go undetected, the forward com-

putation would have to fail in such a way that when its output is used as the input for the

reverse computation, that computation fails in such a way that its output is indistinguish-

able for the original input. And this must occur on every test case for which the system’s

outputs are in fact wrong. This seems unlikely and so provided sufficient test cases are

executed, the probability of detecting the faults can be raised to an acceptable level [2].

We have determined that the entire MSS computation sequence that effects coil con-

trol can be covered by reversal checks and we are in the process of implementing them. It

is not possible to discuss the details of this coverage here because of space limitations.

Instead, we describe the reversal checks used in two major subsystems.

Imaging System

The imaging system accepts as input two X-ray images and locates within them sev-

eral objects of interest. From the location of the objects in the image and using previously-

obtained calibration data, the imaging system determines the location of the objects in the
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canonical three-dimensional coordinate system.

Recall, however, that in the test system, the images are synthesized. Synthesis is done

from object-location data that is generated as part of the test case, and this object-location

data is with reference to the canonical coordinate system. Thus, the imaging system is ana-

lyzing images in an effort to determine the very data that was originally part of the test

case. The correctness check is, therefore, merely to compare the output of the imaging

system with the initial test case data. The sequence of steps is shown in detail in Fig. 4.

Coil Current Calculation

The computation of the required currents through the superconducting coils is a sur-

prisingly difficult task. The difficulty arises because the input to the computation is a

required force. The output is a six-element vector, the six coil currents, but the currents

selected have to be as close as possible to the last currents used in order to minimize the

necessary changes. There is no known way to compute the currents in any optimal sense

and so various complex approximations are used.

Fortunately, the force produced by a set of six currents passing through coils in a

known geometric configuration, i.e. the reverse computation, is easily and exactly com-

Image Generation

Fig. 4. Reversal check testing of imaging system.
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putable. Thus, in this case, the reversal check is merely to compute the force that would be

produced by the set of six currents determined by the system and compare the value with

the desired force.

We find the application of reversal checks to the entire system to be an appealing

approach to error detection. Determining rigorously whether the systematic use of reversal

checks as an error detection mechanism is indeed an approach with quantifiable benefits is

the subject of ongoing research. We note the additional benefit that many of the reversal

checks can be (and will be) employed as execution-time assertions. In particular, the

reversal check on the current calculations will provide run-time assurance that the differ-

ence between the actual and requested force on the seed will be within a specified toler-

ance.

V  Test Case Selection

The test system as described so far is operational and will enable the execution of very

large numbers of test cases without human intervention and with considerable confidence

in the system’s ability to detect failure when it occurs. Given that situation, which test

cases should be run?

The research showing that verification of safety-critical systems by testing is infeasi-

ble would seem to imply that testing has no real value for safety-critical systems such as

the MSS [3]. That result, however, applies to functional correctness. In other words, run-

ning sufficient tests to ascertain that a program’s output is correct with a high degree of

statistical confidence requires an infeasible number of tests. For safety-critical applica-

tions, however, we believe that testing to demonstrate useful system properties, no matter

how limited, is also valuable and is feasible. It is feasible because for many useful proper-

ties, what amounts to exhaustive testing can be employed. With the MSS, although we

cannot possibly demonstrate functional correctness with a feasible number of tests, we can

show some useful if very narrow properties. We give some examples of this idea in this

section.

Imaging System

The imaging system is complex and knowing that it locates objects correctly and

within required accuracy bounds is a useful property. We believe that this property can be

established by high-volume testing. The approach we intend to undertake with the imag-

ing system is to place an object in the field of view and move it systematically throughout
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the entire operating region, i.e., raster scan the object through the operating region.

Although we speak of objects and motion here, recall that the images are synthesized, and

so the raster scanning referred to is in fact performed by a set of nested loops.

Since the images are digital, there is a minimum distance that an object has to move in

order for the move to be detectable. If we move the target object at the resolution limit, we

are guaranteed to achieve exhaustive testing of the imaging system’s ability to determine

the position of an object in the field of view. The estimated time required to perform these

tests is only on the order of hours.

Although this is a useful property, it is by no means a complete test of the imaging sys-

tem, and it is important to keep this in mind. This set of test cases does not test, for exam-

ple, the imaging system’s ability to detect objects in the presence of noise, its ability to

distinguish between multiple objects, and so on. However, exhaustive testing of the form

described above provides assurance that one aspect of image processing is being per-

formed correctly.

Coil Current Calculation

In a similar fashion to the imaging system testing, we can apply exhaustive testing to

the coil current calculation to show a narrow but useful property. The current calculation is

based on a desired force and present seed location. As noted above, the seed location can

be varied systematically over the operating region. During testing, the seed is positioned at

small intervals (e.g., 0.5 mm) on a three dimensional grid. During operation of the system,

the seed position is always rounded so that it matches these tested locations. In addition,

for each possible seed location, a finite number of movement directions and a similarly

limited number of force magnitudes have been established. Although generally real-val-

ued quantities, the operational force direction and magnitude are deliberately constrained

to be discrete for the express purpose of permitting exhaustive testing. Thus, the coil cur-

rents for all possible combinations of seed location, force direction and force magnitude

can be computed and the total number of tests is bounded. The estimated time required to

perform these tests is on the order of hundreds of hours. The result is that all possible

movements that can be requested during a surgical procedure can be evaluated during the

exhaustive testing.

The rounding of the seed position and establishment of discrete movement requests

are certainly not functional requirements of the system, but are design decisions made to

enable exhaustive testing to assure a valuable safety property. The adjustments in the seed
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position are on the order of the resolution of the imaging system and are significantly

smaller than the spacing of points used to compute the force on the seed. The discretiza-

tion of the force direction and magnitude is at or below the level of discretization already

present in graphics-based input widgets. As a result, these minor restrictions will have no

adverse impact on the functional or safety properties of the system while permitting the

assurance of a significant safety property.

VI  Conclusions

Assurance of dependability in complex safety-critical systems is difficult. No one ver-

ification technique is sufficient, and in particular, testing has been convincingly shown to

be insufficient for demonstrating functional correctness in nontrivial applications. How-

ever, in spite of its limitations, testing can play an important role in demonstrating impor-

tant properties of safety-critical systems.

We have described an approach to testing a safety-critical system that permits the

entire system to be tested without human intervention and with a comprehensive approach

to error detection. Closed-loop operation of the test system is accommodated by the use of

simulated devices and the introduction of a Pseudo User that provides the means for

injecting synthetic operator commands into the system. Error detection is effected through

the use of reversal checks. The reversal check should be an effective error detection tech-

nique for the MSS because of the improbability of an exact match of the forward and

reverse calculation and because of the high volume testing supported by the test system.

Although the described system is operational, it has not yet been used to perform any

extensive testing. We have established the manner in which the testing will be conducted

and the feasibility of the approach.

Test cases identified for the MSS will enable the rigorous demonstration of important

properties of the imaging system and current calculation algorithms. The test cases utilize

reversal checks for error detection and rely on exhaustive sets of inputs. Exhaustive test-

ing is enabled by appropriate discretization of several real-valued quantities. Although the

complete set of safety properties of the MSS (or any other system) will need to be estab-

lished by a range of verification techniques, we assert that testing will play an important

role in demonstrating a subset of safety properties — properties that might otherwise be

very difficult to establish with other verification techniques.
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