
Technical Report CS-2012-03

Cohesion: Keeping Independently-Moving Agents Close Together

Luther A. Tychonievich and James P. Cohoon
Department of Computer Science

University of Virginia
Charlottesville, VA 22903

Abstract

Many algorithms for groups of moving phys-
ical agents require that the agents remain
close enough together to coordinate coop-
eration. Most such algorithms do not pro-
vide facilities for maintaining inter-agent co-
hesion. Previous cohesion algorithms gen-
erally either supersede other mobility objec-
tives (flocking) or constrain an entire collec-
tive to act as a single entity (formations).
We present a framework for defining and
maintaining agent cohesion without other-
wise restricting agent behaviors. Our cohe-
sion framework is designed as a drop-in fil-
ter on agent behaviors, preventing cohesion-
breaking maneuvers without specifying par-
ticular behaviors for individual agents. The
cohesion framework has similarity to many
collision avoidance algorithms with respect
to its applicability in conjunction with task-
specific maneuvering algorithms. We prove
that our framework guarantees cohesion and
provide approximation techniques that en-
sure it is computationally tractable for broad
classes of agents. We demonstrate the versa-
tility of our approach by example.

1 Introduction

There is significant interest in decentralized artificial
intelligence (AI) for cooperative mobile agents, also
known as robot hives, swarms, or teams. A common
assumption in these tasks is that the agents remain a
single cohesive group. However, many agent behavior

University of Virginia Department of Computer Science

Technical Report #CS-2012-03.

Copyright

c� 2012 Luther A. Tychonievich and James

P. Cohoon.

selection algorithms are not presented with a guaran-
tee of cohesion. We have developed a technique for
generating algorithms that guarantee cohesion. Our
technique guarantees cohesion without imposing par-
ticular behaviors on individual agents. This separable
guarantee allows agent behavior algorithm designers
to ensure cohesion will be maintained without explicit
algorithmic design to achieve that end.

Cooperating mobile agents o↵er several advantages
over monolithic agents operating alone. Agent groups
are more robust to individual failures, can sense and
explore a larger region in parallel, and can work in
more constrained spaces than can larger agents. De-
centralization improves robustness and removes depen-
dence on a central coordinating entity. From ant hives
to economies to paired programming, there are count-
less examples of decentralized cooperating groups out-
performing individuals.

While many decentralized AI algorithms assume cohe-
sion, various approaches have been used to ensure con-
tinued cohesion. Flocking and formation algorithms
maintain connectivity by dictating significant portions
of each agent’s actions, hampering or preventing indi-
vidual behavior. Integrative approaches embed a guar-
antee of continued connectivity into the design of the
task-specific algorithms the agents execute. None of
these approaches provides a separable solution that
guarantees the cohesion of the group without dictat-
ing other aspects of individual agent behavior.

We present a technique for constraining agent be-
haviors to preserve cohesion. These constraints
prevent selection of behaviors that would result in
agents separating from one another without specify-
ing which cohesion-maintaining behavior each agent
selects. These constraints are built around a distance
metric based on possible future separation to ensure
that past decisions never inhibit current cohesion. We
provide tractable algorithms for evaluating the result-
ing predicates. We also present realizations of these
techniques for several common mobile agent designs.

Each element of our work is accompanied by proofs
that show the preservation of connectivity among all
agents.

2 Related Work

Many distributed AI algorithms assume that agents
remain within contact of one another. Others utilize
heuristic methods to (hopefully) reduce the likelihood
of separation. Integrative approaches incorporate co-
hesion into the design of tasks-specific algorithms, a
useful technique but one di�cult to transfer to new
problems.

Formations are a common approach for ensuring a col-
lection of agents acts together. By specifying the rela-
tive location of each agent, formations ensure cohesion.
Although some formations algorithms are decentral-
ized, all e↵ectively reduce the group to a single entity.

The quintessential cohesion algorithm is Reynold’s
Boids (Reynolds, 1987). Boids, like the many flock-
ing, herding, and swarming algorithms that have fol-
lowed it, provides a holistic model of agent behav-
ior which guarantees a group remains connected in
the absence of other maneuvering objectives (Yamins,
2005; Cucker and Smale, 2007). Many approaches have
augmented flocking algorithms with additional ob-
jectives (Gurfil, 2005; Astengo-Noguez and Velzquez,
2008); to our knowledge, none provides revised guar-
antees of cohesion.

Two basic approaches have been used to guarantee co-
hesion with additional objectives. One approach is to
switch from general unconstrained maneuvers to ma-
neuvers that reduce separation when an agent gets to
far from its fellows (Pereira, Das, and Kumar, 2003;
Vazquez and Malcom, 2004; Hsieh et al.). Switching
laws work well for highly maneuverable agents that
can maintain cohesion with limited e↵ort, but have not
been shown to scale well to non-holonomic agents. The
other leading approach is to design potential fields that
integrate both cohesion and mission objective goals
(Zavlanos and Pappas; Li et al., 2011). As with other
integrative approaches, these are di�cult to extend to
new scenarios without breaking existing guarantees of
cohesion.

Cohesion can be viewed as the dual of collision avoid-
ance. Collision avoidance seeks to ensure for all pos-
sible behaviors of all neighboring agents at all future
times that the separation between an agent and each
neighbor is larger than some cuto↵ value. Cohesion
tries to ensure the separation is smaller than a cut-
o↵ value instead. Many collision avoidance algorithms
apply heuristics with some additional padding; these
approaches are unsuited for the more constrained de-

cision space of cohesion. Even non-heuristic collision
avoidance algorithms generally consider only expected
neighbor behaviors because there is often no solution
to a universally-quantified collision avoidance. Cohe-
sion, being cooperative, can instead consider all per-
missible neighbor behaviors.

Two collision avoidance techniques are of particular
note. First, reciprocal velocity obstacles (van den
Berg, Lin, and Manocha, 2008; Snape et al., 2011) are
cooperative, using the fact that each agent is execut-
ing the same algorithm to streamline agent behavior.
A similar notion of reciprocity is central to our cohe-
sion algorithms. We utilize a more complicated model
of reciprocity than the simple geometric version devel-
oped by van den Berg, Lin, and Manocha that applies
to a broader class of agents; we also include a notion of
liveness to prevent future separation. Second, gener-
alized reactive navigation (Tychonievich, Burton, and
Tychonievich, 2009) includes mechanisms for explic-
itly considering all possible neighbor behaviors and a
generalized model of agent behavior. However, the
over-approximations in that work cause deadlock in
the more-constrained world of cohesion. We use a
more precise approximation of agent behavior than
Tychonievich, Burton, and Tychonievich and add a
notion of liveness and reciprocity.

3 Generalized Agents and Cohesion

Although our principal motivation for this work is en-
suring cohesion of mobile agents such as unmanned
vehicles or digital avatars, our approach is not lim-
ited to a physical mobility interpretation. We present
here a formal abstraction of agents and the cohesion
objective.

An agent is defined by a state s 2 S and a set of
achievable behaviors B. A particular behavior B 2 B
defines an evolution of the state of the agent, which
we could denote as a di↵erential or di↵erence equation
(e.g., ṡ = B(s)) or as an evolution function (e.g. s0 =
B(s,�t)). Each agent is assumed to be able to select
its own behavior, possibly with a time delay before the
new selection becomes active.

We use subscripts to denote the states obtained by
following a behavior: Bs is defined such that Bs(t) is
the state an agent initially in state s would achieve by
following behavior B for t seconds. Thus, Bs(0) is s
if B is defined at state s; note that not all behaviors
need to be applicable at all states. We call the set of
states for which a behavior is defined the domain of
the behavior.

Definition 1 (Live Behaviors). A behavior B is live

for s, where s is a state, if Bs(t) is defined for all

t � 0.

A behavior is live if it is live for all states in its do-
main.

A behavior is universal if its domain is the set of all
states. All universal behaviors are live.

Definition 2 (Distance). A function d : S⇥S ! R is
called a distance function if, for all states a, b, and
c: d(a, a) = 0, d(a, b) = d(b, a), and d(a, b) + d(b, c) �
d(a, c).

We speak informally of the notion of position.
Two states s1 and s2 represent the same position if
d(s1, s2) = 0. It may be possible to derive from S an
inner product space whose induced norm defines the
distance function. In such cases, the inner product
space formalizes the notion of position.

If available, our algorithms can benefit from the exis-
tence of a unique midpoint between two agents.

Definition 3 (Midpoint). A state m is a midpoint

between two other states a and b if d(a,m) = d(b,m) =
1
2d(a, b); it is a unique midpoint if, for any other
midpoint m0, d(m,m0) = 0.

Not all definitions of S and d will allow the definition
of a unique midpoint. All terms including midpoints
in our presentation are optional and may be ignored
without loss of correctness.

Definition 4 (Connected). Two agents with states a
and b are connected if the d(a, b)  r for some fixed
constant r.

A set of agents is connected if the graph with edges
between connected pairs of agents is a connected graph.

Definition 5 (Neighbors). Given three agents with
states a, b, and c, the agent with state c is said to be
between a and b if d(a, c) < d(a, b) ^ d(b, c) < d(a, b).

Two agents are neighbors if they are connected and
no third agent is between them.

Global cohesion requires that a set of connected agents
remain connected in all future times. Locally, cohesion
requires that each pair of neighbors remain connected
until the interposition of a third agent removes their
neighbor status.

Definition 6 (Local Cohesion). Local cohesion

holds between two agents when being neighbors at
time t implies being connected at time t + ✏ for all
su�ciently-small ✏.

Local cohesion is a stronger constraint than global co-
hesion. For example, a ring of agents my break into a
line while maintaining global, but not local, cohesion.

4 Constraints Providing Cohesion

We use the formalisms in the previous section to help
specify a family of cohesion-preserving behaviors. The
family is not complete; that is, there are cohesive be-
haviors not within this family. The incompleteness
is o↵set by requiring only local computation (in both
a spatial and temporal sense) with little or no inter-
agent communication.

Our proofs of cohesion are inductively structured: lo-
cally cohesive behavior must not break connection be-
tween neighbors in the short term, and after the short
term must be locally cohesive. The inductive step
requires several intermediate tools, which we present
first.

4.1 Null Trajectories and Halting Behavior

We define a set of “uninteresting” cohesive behaviors.
Depending on the nature of the agents in question,
these behaviors might correspond to standing still or
having all agents move in lock-step.

Definition 7 (Null Trajectory). A set of behaviors
N is called a null trajectory if both of the following
hold:

• All B 2 N are live (see Definition 1).

• The distance between any two agents following be-
haviors in N is monotonically non-increasing with
t.

Some null trajectories, like not moving, are trivial to
define. Others, such as all moving along a common
path, might require some kind of communication to
coordinate. Communication required to agree upon a
null trajectory is the only explicit communication used
in our work.

Null trajectories are live but not necessarily universal.
Allowing a restricted domain makes them easier to de-
fine, but also means they are not, in themselves, useful
as fall-back behaviors when other cohesion techniques
fail. The universal extension of a null trajectory is a
halting behavior.

Definition 8 (Halting Behavior). A halting behavior
H is a universal behavior (see Definition 1) such that,
for any initial state, after finite time the behavior be-
comes the null trajectory. Formally, H is a halting
behavior if

9t? � 0 s.t. 8s 2 S : HHs(t?) 2 N .

Universal null trajectories contain a halting behavior
as a subset. Otherwise, halting behaviors perform the

maneuvering required to enter a state in the domain
of the null trajectory.

We assume that, for any particular collection of agents,
some halting behavior is defined. Several examples of
halting behaviors are presented near the end of this
document.

In general, it need not be the case that agents con-
nected according to d have any behaviors in B that
will preserve cohesion. For example, agents passing
one another may not be able to turn around before
they stray more than r apart. Therefore, we use a
modified distance function to define connectivity.

dH(s0, s1) , d(Hs0 , Hs1).

By using dH is lieu of d, we are guaranteed that H is
always a cohesion-maintaining behavior. Thus there
is a cohesion-maintaining option for any dH -connected
agents.

4.2 Constraints on Behavior

We now present a predicate that ensures a particu-
lar behavior is consistent with local cohesion. To do
so, we first establish minimal assumptions about agent
behavior as well as some supporting notation.

We assume a t0 such that at any time t each agent is
guaranteed to be able to select a new behavior by time
t+ t0.

We introduce the following notation for constructing
behaviors out of individual pieces:

Definition 9. Let the notation t0[AB], where A and B
are behaviors, represent the piecewise-defined behavior

t0[
A
B]s(t) =

⇢
As(t) 0  t  t0
BAs(t0)(t� t0) t0 < t.

We define a conservative approximation of local cohe-
sion in terms of three predicates:

Adversarial: The agent remains near its neighbor,
no matter what its neighbor does.

8t � 0, B 2 B d
⇣
t0[

A
H]a(t), t0[

B
H]n(t)

⌘
 r. (1)

Halt-like: The agent remains as close to its neighbor
as it would have had it chosen the halting behav-
ior.

8t � 0, B 2 B

d
⇣
t0[

A
H]a(t), t0[

B
H]n(t)

⌘
 d

⇣
Ha(t), t0[

B
H]n(t)

⌘
.

(2)

Midpoint: The agent remains within r
2 of the mid-

point of the halting behaviors of it and its neigh-
bor.

8t � 0 d
⇣
t0[

A
H]a(t),m

�
Ha(t), Hn(t)

�⌘
 r

2
.

(3)

Definition 10. The local cohesion constraint for
a candidate behavior A of an agent in state a relative
to its neighbor in state n is a combination of (1), (2),
and, if a unique midpoint is defined, (3):

8t � 0, B 2 B

d
⇣
t0[AH]a(t), t0[BH]n(t)

⌘
 r

_ d
⇣
t0[AH]a(t), t0[BH]n(t)

⌘
 d

⇣
Ha(t), t0[BH]n(t)

⌘

_ d
⇣
t0[AH]a(t),m

�
Ha(t), Hn(t)

�⌘
 1

2r

(4)

Lemma 1.1. Any pair of dH-connected agents choos-
ing behaviors that satisfy (4) will remain connected
over t 2 [0, t0].

Proof. We consider each possible pairing of the predi-
cates each agent might satisfy.

Either satisfies Adversarial: Connection is main-
tained by definition of the predicate no matter
what the other agent is doing.

Both satisfy Halt-like: Since each agent is as close
to the other as they would be were they halting,
and since dH -connection implies they would be
connected if they were halting, then they must be
connected.

Both satisfy Midpoint: Sincem is unique and both
agents are staying within r

2 of it, by the triangle
inequality they are also within r of each other.

Midpoint and Halt-like: Call the agents satisfying
Midpoint Am and Halt-like Ah. Am stays within
r
2 of the midpoint m, and hence within r of HAh

.
Ah stays no farther from Am than does HAh

, so
d(Am, Ah)  r.

Theorem 1 (Local Cohesion). If each agents al-
ways selects a behavior that satisfies (4) for each
of its dH-neighbors, then all agents maintain local
dH-cohesion. Additionally, selecting such behaviors is
always possible.

Proof. The halting behavior is defined everywhere (see
Definition 8), and satisfies (2) (the second term of the
constraint), meaning a satisfying behavior is always
available.

By Lemma 1, we know that each pair of neighboring
agents will remain connected over the immediate time
window. Because a satisfying behavior is always avail-
able, each pair of neighboring agents will also remain
connected over the subsequent time window. Induc-
tively, local cohesion will hold for all future time.

5 Behavior Validation

Previous discussion did not impose any constraints on
the mathematical form of agent state and behaviors.
To obtain a computational realization of the local co-
hesion constraint we impose a minimal structure on
these parameters.

We consider behavior validation in the following dis-
cussion. We envision validation being combined with
a task-specific selection algorithm, either by the se-
lection algorithm generating candidate behaviors until
one is validated or by the addition of a separate search
function that seeks the “best” validated behavior.

In general, we do not expect dH and the conditions
of the local cohesion constraint to be tractably com-
putable in closed form. Where they cannot be com-
puted e�ciently enough for e↵ective behavior selection
we compute tight but conservative approximations of
the constraint. If we cannot prove that a behavior is
safe, we reject that behavior.

We now consider a computational approach to solving
(4). This approach first symbolically reduces the con-
straint to a system of polynomial inequalities and then
uses a numerical approach to solve that system.

5.1 Polynomial Approximation

Our computational approach takes as input a quan-
tified boolean expression of bounded-domain polyno-
mial inequalities. We outline how arbitrary piecewise-
smooth functions can be approximated as polynomial
inequalities.

piecewise expressions including addition, scaling, and
rational exponents of real-valued variables can be con-
verted to polynomial inequalities in closed form. Ra-
tional exponents can be removed by integer powers
and the possible addition of new terms; for example
a 

p
b becomes a2  b _ a < 0. Piecewise expres-

sions are re-written as disjunctions and expanded; for
example, ⇢

f1 g1
f2 ¬g1


⇢
p1 q1
p2 ¬q1

is re-written as

(¬g1 _ ¬q1 _ f1  p1) ^ (g1 _ ¬q1 _ f2  p1)

^ (¬g1 _ q1 _ f1  p2) ^ (g1 _ q1 _ f2  p2).

Absolute values, sign functions, and other piecewise
functions can be handled similarly.

For functions that include other operators, such
trigonometric functions, we utilize polynomial approx-
imation. It is well known that polynomials can be used
to approximate any smooth function to any arbitrary
level of precision over any finite interval, and that the
error of such an approximation is no more than cn

(n+1)! ,
where n is the order of the polynomial and c is propor-
tional to the roughness of the approximated function.
Algorithms and convergence analysis can be found in
any good approximation text (e.g., Sederberg (2012)
pp. 111–114).

5.2 Quantified Polynomial Inequalities

Boolean expression of multivariate polynomials under
universal and existential qualifiers have been investi-
gated at length by feedback control researchers. The
overview of computational approaches performed by
Dorato et al. indicates that the Bernstein branch-and-
bound (BBB) method is best suited for our needs (Do-
rato et al., 2000).

The basic steps of the BBB method are:

1. Rearrange the inequalities to each contain a single
polynomial, P  0.

2. Rewrite each polynomial in the Bernstein basis,
also called Bézier form.

3. The Bernstein coe�cients form conservative
bounds on the value of the polynomial; the poly-
nomial also interpolates the corner coe�cients.
Since our inequalities are all universally quanti-
fied, an inequality is satisfied if all coe�cients are
are nonpositive, violated if all any corner coe�-
cients are positive, and otherwise undetermined.

4. If the logical value of the boolean expression is un-
determined, then one or more variables’ domains
can be split using de Casteljau’s alogrithm. Each
split portion must be satisfied for the original ex-
pression to be satisfied.

Algorithms for conversion to Bernstein basis and
de Casteljau’s algorithm can be found in any text on
Bernstein polynomials (e.g., (Sederberg, 2012)).

Although the BBB method is numerically stable and
converges well for well-conditioned polynomials, there
are polynomials for which it converges poorly. All of
these poorly-convergent polynomials are “close to” un-
satisfied, in that some a small perturbation of coe�-
cients will yield an unsatisfied expression. If the BBB
method does not converge we halt it and conservatively
interpret the constraint as unsatisfied.

6 Example Realizations

We present three example algorithms created using our
technique for di↵erent definitions of agents.

Example 1 (Holonomic agent). A holonomic agent
is one that may freely move in any direction. First-
order holonomic agents in a Euclidean environment
can be modeled with state as position (~x) and a behav-
ior as a velocity vector ~v = @

@t~x, bounded by k~vk  s0,
for some maximum speed s0. In this case, a reasonable
null trajectory might be ~v = ~0. Since N is universal it
is also a halting behavior.

We have the following formula for t0[~vH]~x:

t0[
~v
H]~x = ~p =

⇢
~x+ ~vt 0  t < t0
~x+ ~vt0 t � t0

, ✏ = 0

The second piece (t � t0) doesn’t impact the distance,
since both agents are halting at that time. The equa-
tions we need to handle are:

H~x = ~x

t0[
~v
H] = ~x+ ~vt0

d(~x0, ~x1) = dH(~x0, ~x1) =
��~x0 � ~x1

��
2

d
⇣
t0[

~va
H]~xa

, t0[
~vb
H]~xb

⌘
= max

0tt0

���
�
~xa � ~xb

�
+

�
~va � ~vb

�
t
���
2

Because k~xk2 =
p
~x · ~x, we can convert the local co-

hesion constraint into an expression of polynomial in-
equalities as outlined above. For completeness, the
conversion results in the following predicate. Given an
agent with state ~xa and a potential behavior ~va, we
evaluate the following for each neighbor with state ~xn:

8t 2 [0, t0], vni 2 [�s0, s0]

s02 �
X

i

vni
2  0

_ (1):
X

i

�
xai � xni + (vai � vni)t

�2 � r2  0

_ (2):
X

i

�
xai�xni+(vai�vni)t

�2�
X

i

�
xai�xni�vnit

�2  0

_ (3):

X

i

✓
xai + vait�

xai + xni

2

◆2

� 1

4
r2  0.

If the above expression evaluates to true for each neigh-
bor then the agent can safely use ~va for at least the
next t0 seconds.

Example 2 (Accelerating agent). Second-order holo-
nomic agents control acceleration. A second order

agent’s state is position and velocity (~x,~v); a behavior

is an acceleration vector ~a = @
@t~v = 1

2
@2

@t2 ~x, bounded
by k~ak  a0 for some maximum acceleration a0. We
use as a null trajectory a constant velocity ~v;. A cor-
responding halting behavior is to accelerate toward ~v;.

We have the following formula for t0[~aH]~x,~v(t):

~aH =
(~v; � ~v � ~at0)a0

k~v; � ~v � ~at0k2

ta =
1

a0
k~v; � ~v � ~at0k2 + t0

~v(t) =

8
<

:

~v + ~at t  t0
~v(t0) + (t� t0)~aH t0 < t  ta
~v; ta < t

~x(t) =

8
<

:

~x+ ~vt+ 1
2~at

2 t  t0
~x+ ~v0t+

1
2~at

2
0 +

1
2 (t� t0)2~aH t0 < t  ta

~x(ta) + (t� ta)~v; ta < t

While ~v(t) is part of the state of the agent, only ~x(t)
figures in the distance computation. Because the ex-
pression d(t0[AH]a, t0[BH]b) contains two piecewise func-
tions, each with three pieces, we split each inequal-
ity in the local cohesion constraint into nine pair-
ings of pieces with appropriate guards. We then re-
move square roots and remove clauses that are triv-
ially true or trivially false before proceeding with the
BBB method. Although these steps are simple to fol-
low, they require significant space and are not included
here.

Example 3 (Car-like agent). Car-like agents are tra-
ditionally modeled as non-holonomic, unable to move
sideways. A car-like agent’s state is position, heading,
and speed (~x, ✓, s); its behavior is a forward accelera-
tion a, bounded by |a|  a0, and a signed curvature c,
bounded by |c|  c0.

Agent motion is defined by the following definite inte-
grals:

s(t) = s0 +

Z t

0
a(⌧)d⌧

✓(t) = ✓0 +

Z t

0
c(⌧)s(⌧)d⌧

~x(t) = ~x0 +

Z t

0
s(⌧)~f

�
✓(⌧)

�
d⌧,

with “forward” vector ~f(✓) , (cos(✓), sin(✓)).

We assume the null trajectory is a fixed heading ✓;
and speed s;, and use a halting behavior that inde-
pendently turns to that heading and accelerates to
that speed as quickly as possible. Since orientation
changes more rapidly at higher speeds, this halting
behavior might not be optimal. However, as long as
s; 6= 0, it does meet the requirements of a halting
behavior.

We assume that we can distinguish between ✓ and
✓ + 2⇡. This assumption allows us to ignore the dis-
continuity in the halting behavior at ✓;±⇡. We could
handle that discontinuity explicitly by adding addi-
tional pieces to each function; we do not do so here to
streamline our presentation.

We derive t0[
a,c
H]✓0,s0 in several steps, starting an ex-

pression for speed:

aH = sign(s; � s0 � at0)a
0

ta =
1

a0
|s; � s0 � at0|+ t0

a(t) =

8
<

:

a t  t0
aH t0 < t  ta
0 ta < t

s(t) =

8
<

:

s0 + at t  t0
s(t0) + (t� t0)aH t0 < t  ta
s; ta < t

Since the rate of rotation depends on both speed and
curvature, we derive several intermediary equations.
The orientation of the agent while it is both acceler-
ating and turning is ✓ah. It stops turning at time t1 if
it stops turning before it stops accelerating; otherwise
it stops turning at time t2.

✓(t0) = ✓0 + cs0t0 +
1

2
cat20

cH = sign(✓; � ✓(t0))c
0

✓ah
(t) = ✓(t0) + cHs(t0)(t� t0) +

1

2
ahcH(t� t0)

2

t1 = �cHs(t0)+

r
c2Hs(t0)2�2ahcH

�
✓(t0)�✓;

�

cHah

+ t0

t2 = t1 +
✓; � ✓ah

(ta)

s;cH

tc = max(t1, t2)

c(t) =

8
<

:

c t < t0
cH t0  t < tc
0 otherwise

There are two cases for ✓ depending on the relative
order of tc and ts, but both may be expressed in the
same piecewise equation because the third piece only
applies when ta < tc.

✓(t) =

8
>><

>>:

✓0 + cs0t+
1
2cat

2 t  t0
✓ah

(t) t0 < t  min(ta, tc)
✓; + s;cH(t� tc) ta < t  tc
✓; otherwise

The resulting formula for ~x is the integral of

s(⌧)~f
�
✓(⌧)

�
, which is a five-piece expression:

8
>>>>><

>>>>>:

�
s0 + a⌧

�
~f
�
✓0 + cs0⌧ + 1

2ca⌧
2
�

t  t0�
s(t0) + (⌧ � t0)ah

�
~f
�
✓ah

(⌧)
�

t0 < t  min(ta, tc)

(s;)~f
�
✓; + s;cH(⌧ � tc)

�
ta < t  tc�

s(t0) + (⌧ � t0)ah
�
~f(✓;) tc < t  ta

(s;)~f(✓;) max(ta, tc) < t

Because this expression cannot be integrated in closed
form, we apply a polynomial approximation of ~f to ob-
tain a piecewise-polynomial integral that we can solve
directly. The error terms are also polynomial. For ex-
ample, the error in the first piece is (s0"t +

1
2"at

2),
where " is the (constant) error of the polynomial ap-
proximation. We add these errors into the inequalities
(1), (2), and (3) to obtain conservative approxima-
tions. We then split the piecewise functions, square
roots (in t1), and sign dependence (in aH , ta, and cH)
to obtain a quantified boolean expression of polyno-
mial inequalities.

7 Uncertainty and Asynchrony

Thus far we have assumed precise knowledge of the
location of each agent and that all the agents make
periodic decisions simultaneously. We made these as-
sumptions in a conscious e↵ort to keep the presenta-
tion simple, but they are not required for our method
to work.

Any bounded uncertainty, be it in t0, d, or any other
constant, variable, or function we have discussed, can
be incorporated into our model by introducing a new
variable with the appropriate domain. For example, if
t0 is uncertain then we might write (1) as

8t � 0, B 2 B, 0  ta  t0, 0  tn  t0

d
⇣
ta[

A
H]a(t), tn[

B
H]n(t)

⌘
 r.

Uncertainty e↵ecting estimates of the current distance
between agents should also be interpreted conserva-
tively to select the maximal number of possible neigh-
bors.

Uncertainty need not be constant. For example, the
error expression for the position of an agent with im-
perfect actuators may increase as a function of dis-
tance traveled. As long as the uncertainty can be ex-
pressed in terms of piecewise-smooth functions over
bounded-domain variables, none of our presentation
need change to accommodate it.

There is one class of uncertainty that can render us
unable to guarantee cohesion. If agents are unable to
reliably reach a null trajectory even with appropriate
error terms on the distance function then no halting
behavior is possible and none of our guarantees hold.

8 Conclusion and Future Work

We have presented a framework for guaranteeing that
mobile agents remain within a fixed distance of one an-
other without requiring any particular model of agent
behavior and without constraining each agent’s be-
havior beyond the cohesion constraint. We have also
shown how this framework can be realized for three
common agent designs.

The most obvious extension of our work is to define
appropriate functions for other types of agents and
environments, including finding halting behaviors for
environments with static obstacles. We could also ex-
tend the technique to handle other maneuverability
constraints, such as collision avoidance. Such an ex-
tension would likely resemble the reciprocal velocity
obstacle technique (van den Berg, Lin, and Manocha,
2008) extended to arbitrary maneuvers and uncer-
tainty in a manner similar to the generalized reac-
tive navigation method (Tychonievich, Burton, and
Tychonievich, 2009).

We have presented techniques guaranteeing local cohe-
sion. While local cohesion guarantees global cohesion,
it is a tighter restriction and can result in the group
of agents getting stuck surrounding obstacles in the
environment. A more general solution to global cohe-
sion requires inter-agent consensus and is a subject of
ongoing research.

We have presented our processes at a fairly high level.
For implementation, we note that almost every ele-
ment of our design is highly parallel: we could eval-
uate many potential behaviors across many neighbors
simultaneously, even evaluating each linear inequality
in parallel.

We have taken a problem that is traditionally handled
either by heuristics or by significant over-constraint
and have developed an approach for resolving the
problem directly with general, proof-supported algo-
rithms. We expect that this approach to agent behav-
ior will be as beneficial to other researchers as are the
cohesion-guaranteeing algorithms we have developed.

References

Astengo-Noguez, C., and Velzquez, L. 2008. A vecto-
rial approach on flock tra�c navigation. In Artificial
Intelligence, 2008. MICAI ’08. Seventh Mexican In-
ternational Conference on, 300 –304.

Cucker, F., and Smale, S. 2007. Emergent behavior
in flocks. Automatic Control, IEEE Transactions on
52(5):852 –862.

Dorato, P.; Li, K.; Kosmatopoulos, E.; Ioannou, P.;
and Ryaciotaki-Boussalis, H. 2000. Quantified mul-

tivariate polynomial inequalities. The mathematics
of practical control design problems. Control Sys-
tems, IEEE 20(5):48–58.

Gurfil, P. 2005. Evaluating uav flock mission perfor-
mance using dudek’s taxonomy. In American Con-
trol Conference, 2005. Proceedings of the 2005, 4679
– 4684 vol. 7.

Hsieh, M. A.; Cowley, A.; Kumar, V.; and Taylor, C. J.
Maintaining network connectivity and performance
in robot teams. Journal of Field Robotics.

Li, X.; Su, D.; Yang, J.; and Liu, S. 2011. Connectivity
constrained multirobot navigation with considering
physical size of robots. In Proceedings of the Inter-
national Conference on Automation and Logistics,
24–29.

Pereira, G. A. S.; Das, A. K.; and Kumar, V. 2003.
Decentralized motion planning for multiple robots
subject to sensing and communication constraints.
In Proceedings of the 2003 International Workshop
on Multi-Robot Systems, 267–278.

Reynolds, C. W. 1987. Flocks, herds and schools: A
distributed behavioral model. In SIGGRAPH ’87:
Proceedings of the 14th annual conference on Com-
puter graphics and interactive techniques, 25–34.
New York, NY, USA: ACM.

Sederberg, T. W. 2012. Computer Aided Geometric
Design. Brigham Young University. http://hdl.
lib.byu.edu/1877/2822.

Snape, J.; van den Berg, J.; Guy, S.; and Manocha,
D. 2011. The hybrid reciprocal velocity obstacle.
Robotics, IEEE Transactions on 27(4):696 –706.

Tychonievich, L. A.; Burton, R. P.; and Tychonievich,
L. P. 2009. Versatile reactive navigation. In
IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2009 (IROS 2009), 2966–2972.
St. Louis, MO: IEEE.

van den Berg, J.; Lin, M.; and Manocha, D. 2008.
Reciprocal velocity obstacles for real-time multi-
agent navigation. In Robotics and Automation,
2008. ICRA 2008. IEEE International Conference
on, 1928 –1935.

Vazquez, J., and Malcom, C. 2004. Distributed multi-
robot exploration maintaining a mobile network. In
Proceedings of the 2nd International IEEE Confer-
ence on Intelligent Systems, volume 3, 113–118.

Yamins, D. 2005. Towards a theory of “local to global”
in distributed multi-agent systems (ii). In AAMAS
’05: Proceedings of the fourth international joint
conference on Autonomous agents and multiagent
systems, 191–198. New York, NY, USA: ACM.

Zavlanos, M. M., and Pappas, G. J. Distributed con-
nectivity control of mobile networks.

