Classification-Based Hybrid Branch Prediction

A Thesis
In TCC 402

Presented to
The Faculty of the
School of Engineering And Applied Science
University of Virginia
In Partial Fulfillment
of the Requirements for the Degree
Bachelor of Science in Electrical Engineering
By
Philo Juang
March 24, 2000
On my honor as a University student, on this assignment | have neither given nor

received unauthorized aid as defined by the Honor Guidelines for Papersin TCC
Courses.

Philo Juang
Approved
(Technical Advisor)
Professor Kevin Skadron
Approved

(TCC Advisor)
Professor Rosalyn Berne

© Copyright by Philo Juang, 2000

All Rights Reserved

GLOSSARY OF TERMS ... ottt et bbb et b e bt ar et e e e e e 1

A B ST R A C T ittt ettt et et e ettt e s e eeeseet et e saaaaeeesaaeeesaaseeesaasaeeesaaeeesaabetesaasaeeeaaaaaeeaareeesaareeeraaaeesrararanan 2
L. INTRODUGCTION .ottt ettt et e e e st eseesaeessaaeessateeesaasseessasseesaassesesaasseessaseeesaassesesassneessarenesan 3
R =TT N[0 o = = = T =R 3
1.2 PATH AND DIRECTION 1.uuutteiiieeiiiiieteetresssesisssestsesssesasssesseesssssassssssesssssssssesssssesssessssssesesssessssesesesssessssnes 3
1.3 CURRENT STATE OF RESEARCHuutttiiiiiiiiittetiiessiesiisbesteesssesassbasssesssssasssasesssesssasssssssesesssessssenssesssessssres 4
2. RATIONALE AND OBJIECTIVESttt sttt s st e st s s saae e s s sabe e e sennae e s sarees 5
2t R 7Ny 0 Y I OO 5
A O = N = o I LV =S 5
3. REVIEW OF RELEVANT LITERATURE ...t ettt s ae s s eaa e s 8
4, SIMULATION SETUP ..ottt ettt e et e s e e e s st e e e s e ate e s seaaeaesssbeessasensssaseneessbenasan 13
Nt Tl oS 15
R 00 [= = =SS 15
G T = = = TR 16
T 16
E R N = = TR 17
I I 1S =T 17
4.7 BRANCH PREDICTORS......ciiiiittttititeeiiisitteettesssesitbaeteesssesiaabaseeasssesssbbaseeesssessssbasseasssssaasbaseeesesssassbareness 18
5. IDENTIFY AND CLASSIFY BRANCH BEHAVIOR ..ottt e s reaee s ennen e 19
5.1 CONSTANT/ALMOST-CONSTANT BRANCHESociviiitiiestieiitesesseeessesessesessessssesssbessssesssessssessssessssessssens 19
5.2 INFREQUENT BRANGCHES......cctteititeiteesteeeitteesseeesseeassesessesaasesessesaasesessesansesessessasesessessnsessssessnsesessesensens 22
5.3 REPEATING PATTERNS.....coiiittttiiiie e e e ettt et e e e s e sttt e et e e e s s e s bt e et eesssesabbaseeaassesabbaseeasssesaabbeseeeseessasbanneesss 23
5.4 ITERATIVE BRANGCHESciiiiitttttiite e e ieitte et s e e s s esaabeeteeessassaabaseeesssesabbaseeesssesabbaaeeasssesaabbaseeeseessansbaranasas 26
6. MEASURE IMPACT OF NOT UPDATING THE GLOBAL HISTORY REGISTER................. 29
6.1 CONSTANT/ALMOST CONSTANT BRANCHES.....cctieiitieitieetiesstesseessstesssessssesssssssssssssssssssssssesssssssssesssns 29
6.2 INFREQUENT BRANGCHEScutttiitieiteeiiteesteeeiteesstessseesstessaseesssesassessssessnsessnsessssessssessssessnsesssessssessssessns 33
0.3 REPEATING PATTERNSttttiieieiiieittterteesssesbateretesssesasteretesssasssasaseeesssasasbasssasssasssbbasssesssessssbanseasseasas 35
6.4 I TERATIVE BRANGCHESuutttiiiiiiiiiiittiiete e s sesbateresesssessasbeeesesssassbabaeeseessassaabaseeesssasabbasesesssesassbaneeesesaes 36
7. MEASURE IMPACT OF NOT UPDATING THE PATTERN HISTORY TABLEcceovveee. 37
7.1 CONSTANT/ALMOST CONSTANT BRANCHES.....cctiiiitieittieitiesstiestessstesssessssesssesssssssssesssssssssessssssssenssns 37
7.2 INFREQUENT BRANGCHESotiiiiieitieiiteesteeeiteesateesseesateseseesateessseessteessseesaseessseessseassseesnsessssnssssesssenns 39
7.3 REPEATING PATTERNS.cutttiiiiiiiieittiiie e e e seeate e e e e s s sesaaabe et e e s s sassbabeeseesssassabbaeseesssessabbaseeesssessbbanesasseeas 41
T4 I TERATIVE BRANCHES.cutttiiiiiiiieitttiiee e e s sesbtte e e e e s s e sibbb e e e e e e s s esaba b e e e eeessassbbbaeeeeessassabbaeeeesssessbbaneeasseasas 42
8. MEASURE IMPACT OF ISOLATING BRANCHESFROM THE BRANCH PREDICTOR...... 46
8.1 CONSTANT/ALMOST CONSTANT BRANCHES......cciitiietiriitieeitesesteeessesessesessessssessbessssesssessssessssessssessssens 46
8.2 INFREQUENT BRANGCHES......cctteittteitteeiteeestteenseeessesassesessesensesassesensessssesansessssessasessssessnsessssessnsessnsesensenas 48
8.3 REPEATING PATTERNSciiiiettttiiiee et siittteeeeeessesastesesesssasasbeseeasssasabbaseeasssessssbaseeasssesaabbrseeesssssasbanneasss 51
8.4 ITERATIVE BRANGCHEScoiiittttiiite e i siittte it s e e st ettt ee e s e e s sesaaabe et eesssesasbbaaeeesssesssbbaaeeasssesabbsbeeeseessanbbananesss 51
0. SUMM ARY ettt ettt ettt ettt e e e ettt e e eea et e s seeeesaasteessaeseeessaseeesaasseessaaeeessaseeesaasseeesanaeeesaareeesaarreeeaanes 52
TO. CONCLUSIONS.. ...ttt ettt e e e e e s et e s e et e s saaeeesaaseeesaasaeessaaeessaseeesaasaeessaseessaseeesaaseeessareees 52

11. RECOMMENDATIONS FOR FUTURE RESEARCHcccccoiiiiiiiiiccee e 54

APPENDIX A : ANNOTATED BIBLIOGRAPHY ...ttt ettt ettt 56
AUGUSTUS UHT, VIJAY SINDAGI, AND SAJEE SOMANATHANccciieeeiitieeeecteeeeetteeeeeteeeeeareeeeeareeeeenbeeeenns 56
DOUG BURGER, TODD M. AUSTIN ... tiiieiitieeeeitieeeeeteeeeeteeeeestteeesessseessabeeesaasseeesassseassnbesasasssesesansesessnsenenan 56
EITAN FEDEROVSKY, MEIR FEDER, SHLOMO WEISS.......cciiiiitiieiieeitteeitteesteeestteesaeeesareessseesaseessnessnsessnneesas 56
I-CHENG K. CHEN, JOHN T. COFFEY, TREVOR N. IMUDGE..........ciciiiteeeeiteeeeeeeeeeeeeeeeeeveeeeessteseesaneeessnreeeenn 56
JOHN L. HENNESSY, DAVID A. PATTERSONuutiiiitiieeiteieeeeiteeeeeteeeeeteeeeessteessesseeasasbesesasssesesasseesesssesesanes 57
KIEVIN SKADRONeiiiittieeiiteteeeitteeeeetaeeesabeeeeaasseeesasseeaeastesaeaassesesassseasaabesasassesesassseasanbesasanssesesanneeasssenannn 57
LINLEY GWENNAP......uttiiitteeiteeestee ettt esteeseteeasteeeabeseaseeeabesesseeasesessseeasesessseeasseessseesseeesaseeaseeesaseenseeessteenneeesns 57
MARIUS EVERS, SANJAY J. PATEL, ROBERT S. CHAPPELL, YALEN. PATT .o 58
PO-YUNG CHANG, ERICHAO, TSE-YU YEH, AND YALE PATT oo 58
PO-Y UNG CHANG, MARIUSEVERS, AND YALE N. PATT ..ottt 58
SCOTT IMCFARLING ...ttt ittt ettt etee e etee et e e eteesbe e e steesbeesbeesabesabeesabeeaaseesabeesaseesabeesaseesabeeanseesateessseesateesnseesns 58

Glossary of Terms

Aliasing — the situation in which two branches, through hashing, happen to index into the
same entry in the branch predictor history tables

Branch — a programming construct in which the next instruction to be executed depends on

some condition

Direction —whether the condition evaluates true (taken) or false (not taken)

Dynamic Refer ences — the number of times a branch is executed during the course of a

running program

Path — the sequence of instructions following the execution of a branch

Pipelining — an implementation technique in whereby multiple instructions are overlapped in

execution

Pollution —a situation in which some trivial branches mask or inhibit the overall program

behavior conveyed by important, non-trivial branches

Profile — a statistical analysis of the behavior of a program

Speculative Execution — the processing of a sequence of instructions before it is known
whether they are needed

Static Footprint —the number of branches appearing in the code of a program

Super scalar — processors which can issue more than one instruction per clock cycle

Abstract

One of the largest limiting factors in microprocessor instruction execution throughput
is the existence of conditional branches in the instruction stream. Conditional branches
disrupt the normal control flow of a program by introducing irregularities; instead of a
natural, steady progression, conditional branches order the processor to “jump” to different
places in the instruction stream. These irregularities force the processor to stall while the
target to jump to is resolved.

The most common solution utilizes a branch predictor in conjunction with speculative
execution to accelerate processing. First, the branch predictor attempts to forecast where the
target of the branch is; it then immediately begins processing the instruction stream at that
target. When the real target is finally resolved, if the processor was correct, then the effects
of the disruption have been mitigated. Unfortunately, branch mis-predictions do occur, and
the penalty for mis-predicting may be very high.

Current branch predictors invest quite a bit of logic in sophisticated, genera purpose
constructs designed to handle all branches in the instruction stream. While effective, a more
efficient method of attack is to split the branches into distinct sets and direct them to a
specialized branch predictor most suited to that particular type. This paper proposes to
divide branches into sets based on complexity. Instead of one general purpose predictor, it is
expected that this hybrid branch predictor will produce higher accuracy with the same
amount of resources.

Furthermore, this thesis will show the impact of several classes of branches on the
overall accuracy of the branch predictor. These branches fall into several categories :
constant and almost constant, infrequent, repeating pattern, and iterative. These branches can
be accurately predicted with a smaller branch predictor than typical general purpose
predictors.

Each branch class will be removed from the instruction stream to examine its impact
on overal accuracy. It is anticipated that removing one or more of these classes will
improve overall accuracy. These types of branches will then be assigned a specialized
predictor. The combination of multiple specialized predictors should contribute not only to
improving the accuracy of their own branches but also in reducing the pollution of the
“normal” branch predictor.

1. Introduction

“Divide-and-conquer” is an oft-used strategy for solving a problem. By splitting up
the work, multiple entities can specialize in solving smaller parts of the problem. Often
times, this division of labor may prove more efficient than vesting increasing amounts of
effort into a general-purpose construct. An example of this lies in the field of branch
prediction. Modern branch predictors typically are general-purpose: one unit handles all
branches, from exceedingly simple to extraordinarily complex. As a result, newer designs
often incorporate more and more sophisticated branch predictors only to see diminishing

returns.

1.1 Branch effects

Branch effects occur when the path of an instruction stream forks, depending on some
value. Since the processor must wait until the branch instruction tests that value before
deciding which instruction to execute next, a "bubble" of lost time occurs before any further
instructions can be fetched. Fortunately, the processor need not wait for the branch to
complete execution : it may simply "guess' and begin executing one of the paths
speculatively. If it chooses correctly, then it has eliminated the bubble. If not, then it smply
discards the mis-speculated work and executes the other path, and is no worse off. A better
solution is not to simply guess but, rather, to predict which path the program will follow.
The more accurate the prediction, the fewer clock cycles worth of mis-speculated work need
to be discarded. The gains from predicting branch outcomes are so great that virtually every

modern processor includes branch prediction.

1.2 Path and Direction

When the instruction stream forks, two events may occur. If the value to be tested

evaluates true, the direction the processor takes is said to be “taken.” If the value evaluates

false, then the direction the processor takesis said to be “not taken.” The following sequence

of instructions that occursis referred to as the path.

In the event that the branch predictor is correct, it has attained a “hit.” If it is
incorrect, it has produced a “miss.” There are two types of hits and misses — address and
direction. An address hit occurs when the branch predictor correctly determines the target
address. When the branch predictor correctly predicts the direction, it has produced a
“direction hit.” For the remainder of the paper, prediction accuracy will refer to direction

accuracy; likewise, hits refer to direction hits.

1.3 Current state of research

Using a variety of sophisticated techniques, current branch predictors now achieve
90-95% prediction accuracies. Y et current branch predictors are general-purpose structures,
treating every branch the same. Branches that are ssmple and consistent are lumped in with
more complex ones, even though predicting simple branches consumes resources which may
be more profitably used to predict complex branches. The same is true of branches that are
inherently unpredictable. A general-purpose branch predictor therefore wastes much of its

sophisticated hardware on branches that cannot take advantage of it.

Rather than explore yet another, more sophisticated branch predictor, this work
explores whether the same quantity of hardware can be used more efficiently by classifying
branches according to their complexity. If the processor believes that it can predict a certain
branch easily, it is routed to a much simpler branch predictor. Harder branches are routed to
amore sophisticated branch predictor. Because the different predictors now only deal with a
specialized subset of branches, it is expected that their hardware will be used more
efficiently. Taken together, these predictors comprise a complexity-based hybrid branch
predictor.

2. Rationale and Objectives

Augustus Uht et al. speculate that "if branch effects could be eliminated, performance
[of microprocessors] could improve 25 to 158 times over that with sequential execution [1]."
While realization of such an improvement may be difficult, the amount of potential simply
cannot be ignored. Branch effects occur when the path of an instruction stream forks,

introducing irregul arities and unsteadiness into the instruction sequence.

2.1 Rationale

As branch effects are such a powerful lever on performance, much research has
already been done in improving performance. However, modern branch predictors typically
are general-purpose: one unit handles all branches, from simple to complex. As a result,
newer designs often incorporate more and more sophisticated branch predictors only to see
diminishing returns. Under the guidance of Dr. Kevin Skadron, this thesis explores a divide-
and-conquer approach to branch prediction, evaluating the benefits of complexity-based
hybrid branch prediction.

2.2 Objectives

Branches may be classified in four ways. Satic branches are particularly easy to
identify. These can be predicted by the compiler and need no hardware support. When the
compiler’s prediction is wrong, the program has encountered an exceptional condition for
which performance is not necessarily a concern. Easy-to-predict branches, the second
category, include branches such as loops that have very consistent behavior and hence
require only simple prediction hardware. Normal branches are less uniform, but are not

erratic. More sophisticated prediction hardware is successful with these branches. The last

category consists of the hard branches, which are so difficult to predict that they may ssimply

pollute the branch predictor’ s state and reduce overall prediction accuracy.

The processor can perform this categorization in several different ways. The first is
to use compiler hints. Asthe compiler must analyze the code anyway, it may be able to flag
a hint to the processor that a branch is very predictable. Some sophisticated architectures
already permit hints to be embedded in the program code [5]. However, these hints typically
are generated assuming the presence of a single, general-purpose branch predictor, and may

not be helpful when branches can be steered to one of several different predictors.

It may not always be the case that the compiler can categorize branches based on
analysis of the code alone. A second technique adds information from profile data —
statistical data gathered from prior executions of the program that conveys patterns of branch
behavior. This statistical data is then fed back into the compiler, which modifies the
executable accordingly. Profiles must typically be gathered for a range of program inputs; a

single run may be arogue, unrepresentative of typical program behavior.

Uht et al. [2] discuss the merits of using a different type of hybrid prediction,
consisting of component predictors that use different strategies but remain general-purpose.
In this organization, each component still predicts every branch, but the overall structure
learns which component performs best. Chang et al. [6] investigate a hybrid predictor more
in line with the approach proposed here. Their work identifies and filters out statically-
predictable branches reducing the number of branches that use the main, dynamic branch

predictor.

This project investigates the reliability of the proposed complexity-based branch
categories, as well as the feasibility of implementing the delicate hardware-software
interaction required to build an effective complexity-based hybrid predictor. The project
begins by characterizing, for a range of rea programs, the frequency of easy and hard
branches and their effects on performance. A loose definition of "hard" can be established

by analyzing the performance of current branch predictors on branches. Next, smulation of a

hybrid branch predictor attempts to discover the best combination of hardware- and software-
based techniques. Further work will investigate the possible overhead associated with this
organization, and explore whether the processor can further improve performance by

identifying a branch’s complexity using dynamic, run-time hardware.

3. Review of relevant literature

One of the core techniques in superscalar processing lies in exploiting the parallelism
in the instruction stream. Unfortunately, achieving this parallelism through analysis of the
instruction stream may be difficult to do. In particular, general purpose code typicaly
exhibits irregular control flow and substantial conditional branching. The effects of such
unsteady behavior, termed “branch effects,” is one of the largest impediments to the

performance of superscalar machines.

The most common technique used to combat branch effects is speculative execution.
In speculative execution, code is executed before the result of the branch is known. In order
to decide which path to speculatively execute, the processor must “predict” whether the
branch will be taken or not taken. If the processor has predicted incorrectly, the speculative
work is discarded. Each misprediction causes a loss in performance, as the processor must
recover and try again. Asaresult, most work has gone into units specializing in determining
the path of a branch, called branch predictors[5].

Branch predictors operate under stringent time and accuracy constraints. In pipelined
machines, the processor will fetch an instruction every clock cycle. Given this time
constraint, it is paramount that the branch be predicted in one clock cycle. If not, the
processor will stall. Worse yet, if the branch predictor is inaccurate, this forces the processor
to not only discard speculative work, but to restore the machine to the last known correct
(non-speculative) state. Naturaly, the consequences of a misprediction can potentially be
disastrous. Having a 5% misprediction rate (95% accuracy), for example, can penalize
performance by up to 32% [6]. As a result, a myriad of techniques have arisen in the
implementation of branch predictors. Uht et al. details these techniques in their paper; for

sake of brevity, these techniques will be briefly summarized [1].

The simplest form of branch prediction assumes that branches will either be always

taken (Intel 1486) or always not taken (Sun SuperSparc). These techniques only have an

accuracy of 40 to 60 percent, marginally better than pure guessing. A combination of these
forms produces the backward-taken forward-not-taken (BTFN) technique seen in the HP PA-
7x00 series. In this technique, backward branches are predicted aways taken and forward
branches always not taken. This combination improves branch prediction to 65 percent [1].
Along with semistatic prediction and eager execution, these techniques make up the common

“static” prediction techniques.

While static prediction techniques are relatively inexpensive, they also render the
predictor inflexible. If the predictor is consistently predicting incorrectly, it will continue to
predict incorrectly. Instead, if the processor detects that it is consistently incorrect, allowing
it to change its prediction will boost accuracy. These techniques are deemed “dynamic”

prediction techniques.

The simplest dynamic prediction technique uses a one bit counter. If the counter
holds a 1, the branch is predicted taken. Each time the result of the branch returns, however,
the counter is reevaluated. If the branch was taken, the counter becomes a 1; if not, the
counter becomes a 0. This technique, used in the DEC (Compag) Alpha 21064, has an
accuracy of 77 to 79 percent. Improving upon the one bit counter is the two bit counter. In
the one bit counter, one rogue result would result in the next prediction being incorrect.
Instead, the two bit counter relies on the most significant bit — a single spurious result will
not throw off the prediction. Thisimproves accuracy to between 78 and 89 percent. Two bit
counters are fairly popular — processors from the Mips R10000 to the Intel Pentium to the
IBM/Motorola PowerPC 604 use this technique [1].

The next step in branch predictor design is in the combination of the above
techniques. Recent research has looked into having a two-level adaptive branch predictor.
Thefirst level keeps a history of recently executed branches; the second, based on the pattern
in thefirst level, determines the likely direction of the branch [9]. This combination, used in
the Intel Pentium Pro and AMD K6, boosts accuracy to 93% [1]. While thisis an effective

technique, it isvery complex. Worse, it is expensive in terms of logic and silicon.

A different technique uses a combination of predictors instead of techniques. The
advantage is that the overall complexity is only determined by the most complex predictor.
The approach used by the DEC (Compaq) 21264 takes a local branch predictor and mates it
with a global one [8]. While the processor is running, the processor keeps a table on success
rates of each predictor on each branch. When a branch is encountered, the processor probes
both predictors. If both predictors come to the same prediction, that prediction is used. If
each predictor supplies a different prediction, the processor selects based on which predictor

has been more successful with this branch in the past [12].

The major disadvantage of DEC's selector technique is redundancy. Since both
predictors are general-purpose predictors, both will achieve high success rates with normal
branches. Only unique and/or difficult branches separate the predictors. This trandates into

wasted logic and higher silicon costs.

Instead, the next step in improving branch predictor design lies in multiple,
specialized branch predictors — “hybrid predictors.” Hybrid predictors are, theoretically,
more efficient in their use of silicon. In developing hybrid predictors, however, one must
decide on how to divide the branches between predictors such that 1) the predictor with the

best chance gets the branch, and 2) predictors do not overlap and interfere with each other.

The first constraint is obvious. The second, however, is more subtle. On the surface,
it would seem beneficial that correctly predicted branches be recorded in the pattern history
table. However, easily predicted branches may actually pollute the pattern history tables.
Chang et a. detail the effects of such interference in a two-level adaptive branch predictor.
By inhibiting easily predicted branches from polluting the pattern history table, the
misprediction rate for the gcc benchmark was reduced by 38% [11].

Fortunately, if multiple predictors have their own history tables, this problem can be

minimized at the cost of silicon and logic. The next issue to resolve how to divide the

available branches such that the predictor with the best chance gets the branch. Having

10

lopsided or unequal branch predictors is not an issue; rather, the problematic aspect in the

decision liesin determining the best place to draw the line.

One proposed division of labor is by branch classification. In branch classification,
branches are divided based on their behavior. A good scheme will group branches exhibiting
similar behavior together [10]. Using a profile-guided predictor to handle mostly one-
direction branches and two two-level adaptive predictors to handle mixed direction branches,
Chang et al. were able to achieve an accuracy of 96.91% on the gcc benchmark, besting the

previous high mark of 96.47% — reducing the miss rate by 12.5% in the process [10].

The above technique only filters out simpler, one-direction branches, reducing the
number of branches using the dynamic branch predictor. Another method, to be explored
during the life cycle of this project, is to classify branches by complexity rather than
behavior. By dividing branches based on relative difficulty, one can pair a smple branch
predictor with a complex branch predictor. In doing so, one gains more flexibility over a
profile guided with dynamic branch predictor setup, as long as both predictors remain

general.

In addition, as both predictors are dynamic, it is expected that the accuracy achieved
by this configuration will be better than one that combines static and dynamic branch
predictors. Profile-guided prediction has been used to some success — IBM/Motorola' s
earlier PowerPCs used this technique to attain 75% accuracy [1]. However, it must be noted
that IBM and Motorola's figures are for al branches — in the split profile-guided and
dynamic predictor method, the profile-guided predictor only handles static branches. This

ought to increase the accuracy considerably.

Profile guided and compiler assisted branch prediction is not a dead end technol ogy,
however. Research into Very Long Instruction Word (VLIW) machines rely heavily on
compilers to uncover paralelism [7]. Naturaly, branch prediction is part of the package.
The most visible research effort is in the Intel/HP Itanium (formerly Merced) processor.

Interestingly enough, the Itanium will combine compiler assisted branch prediction with

11

dynamic branch prediction [7]. The Itanium compiler evaluates branches during the
compilation process and attempts to provide a hint. At run-time, the hardware uses the hint
to decide whether to evaluate the branch with the compiler assist or to send the branch to the

hardware predictor [7]. The effectiveness of this technique is yet to be known.
References

[1] Augustus Uht, Vijay Sindagi, and Sajee Somanathan, "Branch Effect Reduction
Techniques,” 1997

[2] Doug Burger, Todd M. Austin, "The SimpleScalar Tool Set, Version 2.0," 1997

[3] Eitan Federovsky, Meir Feder, Shiomo Weiss, “Branch Prediction Based on Universal
Data Compression Algorithms,” 1998

[4] 1-Cheng K. Chen, John T. Coffey, Trevor N. Mudge, “Analysis of Branch Prediction via
Data Compression,” 1996

[5] John L. Hennessy, David A. Patterson, "Computer Architecture : A Quantitative
Approach,” Morgan Kaufmann Publishers, Inc., 1996

[6] Kevin Skadron, “Characterizing and Removing Branch Mispredictions.” Ph.D. thesis,
Princeton University, June 1999.

[7] Linley Gwennap, “Intel Discloses New |A-64 Features.” Microprocessor Report, March
8, 1999, pp. 16-19.

[8] Linley Gwennap, “Digital 21264 Sets New Standard,” Microprocessor Report, October
28, 1996

[9] Marius Evers, Sanjay J. Patel, Robert S. Chappell, Yale N. Patt, “An Analysis of
Correlation and Predictability : What Makes Two-Level Branch Predictors Work,” 1998

[10] Po-Yung Chang, Eric Hao, Tse-Yu Yeh, and Y ale Patt, "Branch Classification : a New
Mechanism for Improving Branch Prediction Performance,” 1998

[11] Po-Yung Chang, Marius Evers, and Yale N. Patt, "Improving Branch Prediction
Accuracy by Reducing Pattern History Table Interference,” 1997

[12] Scott McFarling, “ Combining Branch Predictors,” WRL Technical Note TN-36, Digital
Corporation, 1993

12

4. Simulation Setup

The benchmarks are run against the sim-bpred.c program provided by the
SimpleScalar test suite. The program has been modified to support the identification and
storage of constant and almost constant branches as well as the ability to fast-forward
through instructions. The initial code to support identification of constant branches was
contributed by Dr. Kevin Skadron and modified with help from Adrian Lanning. The fast-

forward code was contributed by Michele Co, and is used with minor modification.

Testing typically is performed in two stages. First, the modified sm-bpred (simb)
steps through the code normally and gathers statistics on all branches discovered in the
program. Each class of branch has its own “generator” program — this increases speed and
modularity. Rather than have one large, all-encompassing binary, each branch class has a

customized generator.

Branch Class Binary Additional Comments
baseline simb produces “standard” case accuracy
constant/almost constant simb2
infrequent simbinfq
“large” simbla for comparing 2-level and

bimodal prediction

repeating simbrep Requires itrepcombine.pl and

repeatpat.pl; feeds simblp

iterative simbitrep Requires itrepcombine.pl and

biaspatterns.pl; feeds simblp

Table 1.1 : Progams Used to Generate Profiles

During the second stage, a very similar sister program, ssmbwc, reads the data file
created by simb and stores the addresses of marked branches in memory. It then begins
execution, and upon discovering a branch, checks if the branch was marked. These marked
branches are then treated differently in the update stage of the branch predictor. With the
exception of repeating and iterative branches, the data file created by simb is a list of

13

address-direction pairs; the address is the address of the branch in decimal, while the

direction is the direction the branch usually takes.

The direction is present for completeness — in the actual execution of the program, the
direction element isignored. Instead, for the marked branches, the prediction is assumed to
be perfect. Since querying the branch predictor is non-volatile and does not affect branch
update, upon branch update the predicted direction fed to the branch predictor is the actual
direction, not the predicted direction. In this way, marked branches, to the branch update

mechanism, are seen as perfectly predicted.

Repeating branches and iterative branches are a separate case. Since the important
element is the number of taken branches or not taken branches before the pattern repeats
again, the second element is replaced by the count. Note that because the simbwc-derived
programs ignore the direction element, this data file will actually execute and correctly
simulate repeating branches and iterative branches being isolated or prevented from updating
the globa history; however, if the desired result of these tests is to determine the effect and

benefits of using aloop predictor, another simulator, simblp, must be used.

The loop predictor isimplemented by adding aloop count and a bias bit to the branch
table. The looping branches are then marked in the branch table, with the bias bit set to
indicate what form it takes. Norma branches ignore the loop count. In cases of

emergencies, loop prediction with fixed loop branches exactly correspond to the behavior of

preventing marked branches from updating the pattern history tables.

Desired Behavior Additional Comments
prevent updates to global history simbwc_pht allows updates to pattern history
prevent updates to pattern history simbwc_nopht allows updates to global history
isolate branches from predictor simbwc_i
loop prediction simblp uses standard branch update mechanism

Table 1.2 : New Branch Predictor Schemes

14

4.1 gcc

The gcc benchmark was the most extensively tested of the four selected out of the
speco5 suite. Gece is a commonly used compiler in use in many different operating systems.
A source file — typically in the C programming language — is taken as input and compiled
into binary machine code for execution on the target system. Gcc complements the
benchmark suite by providing a program in used for a very common purpose in developing
software — that of compiling to a binary. It istypically very large, and stresses the branch

predictor by having the largest static footprint of al the selected programs.

The test runs are not fast-forwarded, and are run to completion. The program ccl.ss

and the file cccp.i are required to duplicate the test runs.

The gcce test runs were invoked with these parameters: - qui et, -funroll -1 oops -
fforce-mem -fcse-fol | owjunps, - fcse-ski p- bl ocks, - f expensi ve-
optim zations, -fstrength-reduce, -fpeephole, -fschedule-insns, -finline-

functions, and -fschedul e-i nsns2.

4.2 compress

The second benchmark tested was the compress benchmark. Compressis afile used
to reduce the size of files by applying some sort of packing algorithm to the data. When
required, another program can apply the same algorithm in reverse to “uncompress,” or
expand, the packed data. Compress adds to the benchmark suite by providing a program that
spends the majority of its time in tight loops, applying the compression algorithm
sequentially to sections of the source data. While its static footprint is the smallest of the
group, each of the vital branches is executed quite a bit more than branches in other
programs, and is extremely data dependent — meaning for more variability and

unpredictability in their overall behavior .

15

Unlike the gcc benchmark, however, compress needs to be fast-forwarded to skip
over the generation of the random data to be compressed. The particular routine used was

compress.ss, on the file bigtest.in.

The compress test runs were invoked with these parameters : -fastfwd
1600000000, -max:inst 100000000.

4.3 perl

Perl was the next benchmark tested. Perl is an interpreter for the perl programming
language. A script, or in this case, the scrabbl.pl file—in plain text —is read and executed by
the interpreter. The scrabbl.pl script attempts to determine anagrams for a given set of letters
by matching the possible outputs to an English dictionary. Perl is a valuable addition to the
benchmark suite because unlike gcc and compress, perl’s strength lies in text parsing and
pattern matching. As this is a common use for computers, it is important to measure the

branch predictor’s performance on such applications.

Like compress, perl was fast-forwarded to skip over the initialization period. It was
also the shortest benchmark run, at 50,000,000 instructions. However, perl needs to be fast-
forwarded 1,950,000,000 instructions. To give perl a script to work with, scrabbl.pl was
paired with dictionary.

The perl test runs were invoked with these parameters : - fastfwd 1950000000,
max: i nst 50000000.

4.4 go

The setup for the go benchmark closely resembles the perl benchmark. Go is an
ancient board game, of which the computational complexity bests even that required by

chess. The object of the game is to capture as much “territory” as possible by surrounding it

16

with game pieces. Go is a good complement to the selection of benchmarks because it
simulates a highly computational game playing algorithm. Its static footprint is the second
largest in the group, and of all of the selected benchmarks, is the least predictable.

Like perl, go must be fast-forwarded. The simulation calls for fast-forwarding
3,900,000,000 instructions. The input file used was 9stone21.in.

The go test runs were invoked with these parameters: - f ast f wd 3900000000 -
max: i nst 100000000

4.5 ijpeg

The ijpeg benchmarks were fast-forwarded 823,000,000 instructions and ran for
50,000,000 instructions. ljpeg is an image processing program, another valuable
commonplace use of computation. Its behavior is somewhat like compress — the application

of some processing algorithm to pixelsin an image.

Theijpeg program, ijpeg.ss, was run against the input file vigo.ppm.

The ijpeg benchmarks were run with the following options : - f ast f wd 823000000,
-max: i nst 50000000, -image file, -conpression.quality 90, -
conpressi on. optim ze_coding 0, -conpression.snoothing factor 90, -
difference.inage 1, -difference.x _stride 10, -difference.y stride 10, -

ver bose 1, -GO findoptconp.

4.6 xlisp

The xlisp benchmark, li.ss, was run against the reference input files 9queens.Isp and
xitIsp. Xlisp is an interpreter for the lisp programming language. The interesting set of
capabilities that xlisp adds to the selection of programs is that lisp is a programming

language of which its structure is relatively easy for computers to parse and execute.

17

The resulting setup was fast-forwarded for 900,000,000 instructions and ran for
100,000,000 instructions.

The xlisp benchmarks were run with the following : - f ast f wd 900000000 -
max: i nst 100000000

4.7 Branch Predictors

Two branch predictors were used in each branch prediction scheme. The first, a
smaller two level adaptive branch predictor, had the following characteristics : a shift register
width of five bits coupled with an L2 size of 4096 counters. Naturally, this would require
that seven address bits would be required to be concatenated to the history to index into the

counters.

The second branch predictor was a larger two level adaptive branch predictor. It had
the following characteristics : a shift register width of eight bits and 32,768 counters in its
second level. Thiswould require seven address bits as well to be concatenated to the history

in order to index to the correct counter.

18

5. Identify and classify branch behavior

1
9 08 _ @ Number of constant branches
*E 0.6 . — H Volume of constant branches
§ 0.4 - — — 0 Number of infrequent branches
& 02 O Volume of infrequent branches
0 g g, T o > o
[} o —
> Eg = 2 X
(8]
Benchmark
Fig 1.1 Number of Constant and Almost Constant Branches
1
g 0.8 @ Number of repeating patterns
*E 0.6 m Volume of repeating patterns
§ 0.4] O Number of iterative branches
[| . .
a 02 IDE:I:I: |:| I O Volume of iterative branches
0 - 1
Q o » - o [=)] Q
%) Ew o o Q]
@ 8¢ 2 S El
Benchmark

Fig 1.2 Number of Repeating Patterns and Iterative Branches

5.1 Constant/almost-constant branches

Constant branches are defined as always taken or always not taken. In addition to
locating and identifying always taken or always not taken branches, the time allotted will

provide programming experience with using the SimpleScalar simulator.

Almost-constant branches only have one or two switches. These may be branches
that are always taken except for the last path, which is not taken, or branches that have an
exception in the middle. Furthermore, almost-constant branches may also be branches which

are always taken halfway, and then switches to aways not taken.

19

The gcc benchmark shows that 58.91% of unique branches in the program are
constant. However, this number is misleading. While a great mgjority of unique branches
are constant, a more detailed analysis shows that constant branches only make up 20.59% of
executed branches — that is, non-constant branches are executed a great deal more times than

constant branches.

The second benchmark, compress, shows even a greater divide — constant branches
make up 86.42% of the unique branches, but are only 20.36% of the executed branches.
However, compress is more data dependent than gcc, and this may change from test run to
test run.

Other benchmarks, namely, perl and especially go show different, more interesting
results. 77.94% of perl’s branches are unique, and they represent 40.18% of the number of
branches executed. Go’'s constant branches, however, are only 42.33% of the unique

branches; they make up even less of the total number of branches executed, or 8.83%.

Ijpeg and xlisp contribute some useful comparison data. In the case of ijpeg, 85.45%
of the branches are constant — similar to compress. In addition, 18.95% of ijpeg’s executed
branches are considered constant — again mirroring the makeup of compress. As a second
basis of comparison, 80.95% of the branches in xlisp are constant. Unlike ijpeg and

compress, however, 35.08% of xlisp’s executed branches are constant.

The first two results warrant some discussion. Gcc's constant branches averaged
around 2.6% misprediction rate; better for the bimodal predictors, but worse for the two level
adaptive predictors. A 2.6% misprediction rate may seem so insignificant as to not be worth
investigating, but these constant/almost-constant branches make up 20.59% of the total
number of branches. Even a percentage point improvement in the misprediction would make

agood impact on the overall branch prediction.

Compress exhibits a stranger result. The prediction rates for constant branches
hovered around 99.99999%; overall prediction rate, however, was 92.05% (89.15% for the

20

bimodal predictor). Further tests will be required to determine what, exactly, this may mean.
With 20.36% of the executed branches being executed at 99.99999% in both two level
adaptive predictors, this may mean that the non-constant branches are being predicted rather
poorly.

Go isthe most interesting result. While constant branches make up 8.83% of the total
guantity of branches executed, prediction rates for go are much worse than all the others — a
4.65% misprediction rate. Overall, go averaged 87.44% prediction accuracy, much less than
the 93.86% (gcc) to 97.14% (perl) of the other three benchmarks. Worse yet, in the smaller
branch predictor — with overall accuracy of 83.75% — amost constant branches are
mispredicted at a staggering 47.67%.

Constant and almost constant branches are somewhat easier than the others to identify
in developing a program. Some can be uncovered even in compiling — as in the case of many
error conditions — whereas the others rely on profiling. It can be argued, then, that the effort
required in profiling reduces the incentive to implement the following three branch

prediction schemes, especidly if the performance gain is small.

The counter argument, then, is that the majority of developers who value execution
speed aready perform profiling on their programs; gathering additional information about
branch behavior would not add much of an additional burden to the developer. In addition,
by not profiling, the branch predictor is realy not hurt any — rather than fully utilize the
newer, better branch prediction scheme, the constant and almost constant branches simply
fall back on the older, traditional al-in-one branch prediction scheme. Better yet, the
contents of this project reveal that the performance boost can be considerable, especialy in
the case of constant and almost constant branches. As these may be some of the easiest to
determine in the process of compiling and profiling, the amount of work for performance

gained iswell worth it.

21

5.2 Infrequent branches

Infrequent branches are defined as branches that occur less than one thousand times.
Infrequent branches contribute little to the overall patterns, and even may be detrimental to
accuracy. If infrequent branches do nothing except pollute the pattern history table, then
removing them will show further increases in accuracy. The two common configurations

described above will again be used to test the effectiveness of isolating these branches.

Execution of the gcc benchmarks shows that 59.48% of all branches in the program
are “infrequent” — that is, they are infrequently executed. Remember, however, that number
of unique branches in the program is not necessarily a good estimation of the impact of a
certain class of branch. Upon examining the total volume of branches executed, infrequently

executed branches make up a mere 0.93% of the instruction stream.

The ijpeg benchmark shows a somewhat similar makeup. The percentage of branches
in ijpeg that are classified as infrequent is significant — 86.73%. However, upon examining
the statistics of the overall instruction stream, only 0.84% of executed branches in ijpeg are

infrequent —an amost marginal amount.

Compress shows an even larger divide. While 83.54% of the branches are
infrequently accessed, infrequent branches are a virtually negligible 0.00352% of the number
of branches executed. Even if the misprediction rate was considerable — in compress’ case,
23.23% — even mispredicting every infrequent branch would make hardly an impact on the

overall prediction rate.

Perl and xlisp show results that are better than compress, but still almost insignificant
when taken with the overall volume of branches executed. In perl’s case, 11.17% of unique
branches are infrequently executed, but overall only 0.3% of all branches executed are
classified as infrequent. In xlisp, though 46.03% of branches in the program are infrequent,
these branches represent an almost trivial 0.074% of the executed branches in the instruction

stream.

22

Go is the only benchmark that has a significant amount of infrequently executed
branches. In go’'s case, 65.3% of branches existing in the program are classified as
infrequent. The volume of executed branches that are infrequent, however, is 3.24% —

somewhat small, but still significant in comparison to the other benchmarks in the group.

Infrequently executed branches are somewhat more difficult to determine in the
profiling process. For the case of loops with fixed iteration counts, the compiler can quickly
determine and flag the branch as such. However, for a program like compress, which is
dependent on a data file — which may be very long or very short — the determination becomes
much more difficult. If the same loop is applied to the length of the file, for example,
profiling a very small file would not be at all representative of the normal usage of the
program. As a counter argument, profiling a large file would eliminate some of the benefits
in performance, but for smaller files, the slight improvement in execution speed may not be

significant at all.

5.3 Repeating Patterns

1.2

——gcc
—l—compress

Percentage

perl

go
—X¥—ijpeg
—@—xlisp

Iteration Count

Fig 1.4 Distribution of Iteration Counts for Repeating Patterns

23

Branches that exhibit repeating patterns are defined as branches that aternate
between taken and not taken in regular, predictable patterns, i.e. a series of n taken branches
followed by m not taken branches, or vice versa, where n and m are greater than one, and
exceptions are made for the first and last iterations of the pattern. This pattern then repeats
for the duration of the program. Repeating pattern branches have a particularly beneficial
property in that branch predictors require less bits for predicting the direction of these
branches; rather than keep the entire pattern in a table, counters can represent the same
information. One possibility in devising a hybrid predictor may be to isolate repeating
patterns into a smaller, specialized repeating pattern branch predictor.

Repeating patterns are divided into two groups — fixed patterns and variable patterns.
In fixed repeating patterns, n and m never change — they are constant for the duration of the
program. Variable patterns have either n, m, or both n and m varying as the program is
executing. Naturally, the fixed repeating patterns are easier to predict, and will be the focus

in this project.

Repeating patterns have a significant representation in the volume of executed
branches in most of the benchmarks; however, due to their highly regular nature, they are
also fairly predictable. In compress, for example, repeating patterns make up 21.7% of
executed branches — a high representation for a program with only 1.64% repeating pattern
branches, of which half are fixed repeating patterns. The prediction rate for the repeating
patterns, however, is an excellent 99.991% for the larger branch predictor, and 99.9953% for

the smaller branch predictor.

Ijpeg displays similar characteristics. Of all executed branches in ijpeg, 19.03% fall
in the repeating pattern category, yet they are only 0.4% of all branchesinijpeg. All happen
to be fixed length repeating pattern, and are predicted with already high accuracy. The larger
branch predictor predicts the repeating patterns with 99.77% accuracy, whereas the smaller

branch predictor achieves a 99.61% accuracy.

24

Xlisp is the most extreme — 35.14% of all executed branches in xlisp are contained in
the repeating pattern branches, but they only make up 0.32% of the branches in xlisp’s code.
Interestingly enough, xlisp contains no fixed length repeating pattern branches. The
remaining variable patterns, though, are predicted with 99.912% accuracy in the larger

predictor, followed by 99.72% accuracy in the smaller branch predictor.

Perl’s makeup resembles xlisp. Of the static branches in perl, 0.57% are repeating
pattern, half of which have fixed repeating patterns. Those few repeating patterns, however,
consist of 41.44% of all executed branches. The prediction rate remains high — 99.35% for
the larger branch predictor and 97.56% for the smaller branch predictor.

Gcce and go are the ones to watch. Unlike the others, the branch predictors have more
difficulty predicting the repeating patterns in gcc and go. The larger branch predictor in gcc,
for example, achieves only a 97.67% accuracy, whereas the smaller branch predictor is
dightly worse, at 94.65%. Thisis significant, in that repeating patterns comprise 21.97% of
all executed branchesin gcc, and 1.93% of all branchesin the code. Included in the statistics

are the 1.11% of branchesin gcc that have fixed repeating patterns.

Go is somewhat similar. Unlike the other five benchmarks, repeating patterns make
up a great deal lessin go. Only 9.86% of its executed branches are repeating patterns, and
are predicted at a worse rate than gcc — 95.69% for the larger predictor, 92.77% for the
smaller one. 2.4% of branchesin go’'s code are repeating patterns, including the 1.25% that
have fixed repeating patterns.

25

5.4 lterative branches

—&—gcc
—ll— compress
perl
go
—¥—ijpeg
—@—xlisp

Percentage

T T T T T T T
L o} n o o (=]
M < i N n

100
500
1000}
infinite

Iteration Count

Fig 1.4 Cumulative Distribution of Fixed Length Iteration Counts

Iterative behavior is similar to repeating pattern behavior except that iterative allows
for only one exception in the pattern. For example, an iterative pattern may be a sequence of
four taken branches followed by a single not taken branch, followed by a second sequence of
five taken branches and a not taken branch. Similar to repeating pattern branches, an
iterative branch predictor history can be represented with counters. Iterative pattern
branches, however, require only one counter — repeating pattern branches usually require
more. A bias bit is also required to indicate whether it is of the form not taken, not taken,
taken, or taken, taken, not taken.

Furthermore, iterative branches are defined into two categories — fixed length patterns
and variable length patterns. Fixed length iterative patterns are branches that repeat the same
pattern for the duration of the program execution — an example would be a loop with a fixed
number of iterations. Variable length iterative patterns do not have a fixed constraint;

instead, they have patterns of varying lengths, however, they still follow the basic behavior

26

of an iterative sequence. The statistics generated show that for all iterative branches,
variable length iterative branches dominate over fixed length iterative branches in terms
representation in the benchmark programs as well as representation over al executed

branches.

As iterative branches are highly regular in nature and have comparatively low
unpredictability, the baseline two-level adaptive branch predictor should perform remarkably
well. Theinitial tests confirmed this behavior, and therefore it would appear that the benefits

are to be more geared toward area savings rather than branch predictor accuracy.

In general, iterative branches make up asmall portion of the benchmark programs. In
terms of execution volume, however, these branches comprise a surprising percentage of the
overall execution stream. In the benchmark gcc, for example, only 4.15% of the branches in
the program have an iterative behavior. Included in that count are fixed iteration count
branches, which make up 0.46% of gcc. In the overal instruction stream, however, 18.88%

of the branches are iterative.

Compress exhibits a similar makeup. While only 3.3% of branches existing in
compress are iterative, 16.16% of the executed branches are iterative in nature. Fixed
iteration count branches are 2.47% of branchesin compress code. In part due to their highly
regular nature, though, iterative branches are aready predicted extremely well. The iterative
branches in compress — executed many thousands of times — are predicted at 99.9955%

accuracy by the baseline two-level adaptive branch predictor.

Perl and xlisp produce similar statistics, though not as extreme as compress. In perl,
4.3% of unique static branches behave in an iterative fashion — including the 0.86% which
have afixed iteration count; in execution volume, however, these iterative branches comprise
26.93% of the total execution stream. Like compress, these branches are predicted extremely
well — 99.04% accuracy. In xlisp, a mere 2.54% of unique branches are iterative in nature.
Included are the 0.64% which have a fixed iteration count. Out of all executed branches in

xlisp, however, 21.67% are iterative, and are predicted at 99.44% accuracy.

27

The benchmark ijpeg shows a slightly different picture. Only 2.42% of the branches
in ijpeg are iterative — unlike the above four benchmarks, however, execution volume is not
quite as significant. Only 6.9% of executed branches in ijpeg behave in an iterative manner,
counting the 1.71% which are fixed iteration count branches. These branches are already

predicted at 99.54% accuracy.

The last and most interesting benchmark in this section isgo. Go, like ijpeg, is made
up of branches that are primarily not iterative — only 7.12% of branches in the program are
iterative — including the 1.72% which have fixed iteration counts — and correspond to merely
9.46% of executed branches. The striking statistic in this benchmark, however, is that
iterative branches are predicted at a comparatively poor 94.97% accuracy. Unlike the others,
improving the accuracy of iterative branches may in fact impact the overall accuracy a great
deal.

Iterative branches are also a bit more difficult than constant/almost constant branches
for the compiler to realize. Obviously, there are some branches which are not so subtle in
their behavior — loops with fixed iteration counts and no early exit, for example. The others
— branches which just happen to exhibit iterative behavior — are more difficult to spot. Even
profiling may not necessarily produce the best results. One set of inputs may cause a certain
branch to behave in an iterative fashion, but does not when every other set of inputs is
applied. Inthe same logic, profiling asmall, simple test run may completely miss whole sets

of branches that behave in an iterative manner.

28

6. Measure impact of not updating the global history register

The rationale for excluding certain classes of branches from updating the global
history register in atwo-level adaptive branch predictor is that while vital to the execution of
the program, certain classes of branches may not be productively contributing to the branch
predictor state. At best, the branches are benign. At worst, the branches are detrimental to
the prediction accuracy of the branch predictor. It is important to note that while certain
branches are prevented from updating the global history register, they are allowed to update
the pattern history tables.

6.1 Constant/almost constant branches

The class of branch that benefited the branch predictor most were those of constant
and almost constant branches. Better yet, some constant and almost constant branches can be
identified at compilation — those of error codes, for example, where one taken branch stops
execution of the program. By preventing these branches from updating the global history

register and encoding their behavior in the opcode, branch predictor accuracy improves.

In general, the number of constant branches in the program dwarfed the number of
almost constant branches —in fact, in the perl and xlisp benchmarks, there were no branches
that could be classified as “amost constant.” Furthermore, the smaller branch predictor

showed the larger improvement, on average, than the larger branch predictor.

29

compress

base, 4096 90.99% 90.77% 95.00% 83.75% 89.77% 95.49%

simbwc_pht, 92.21% 91.85% 96.49% 84.67% 90.10% 95.48%
4096

base, 32768 93.86% 91.81% 97.14% 87.44% 90.78% 96.95%

simbwc_pht, 94.41% 92.62% 98.04% 87.70% 91.17% 96.97%
32768

Table 2.1 : Branch Prediction Accuracy of Selected Spec95 Benchmarks

Gcec, for example, has a large static footprint — 20,687 branches in the program. In
the smaller branch predictor, gcc showed a tremendous improvement — from 90.99% to
92.21%, a boost of 1.22%. Go showed a similar improvement — up from 83.75% to 84.67%,

or an improvement of 0.92%.

An explanation of this can be found in the fact that the above two programs, with
relatively large static footprints, tend to have more branches aliasing and creating destructive
interference. With more hardware, the likelihood of interference is reduced, as seen in the
statistics for the larger branch predictor — gcc only improved 0.55%, while go only showed a
0.26% boost. Furthermore, it may be the case that constant and almost constant branches do
not contribute very worthwhile information to the branch predictor state. If they did, the
expectation is that branch prediction accuracy would decrease. With constant branches
making up some 20.59% of gcc's executed branches, a difference either way would make a

noticeable impact on overall branch prediction.

It may be argued, however, that since the method assumed all marked branches — in
this case, constant and almost constant — as correct, the performance increase is due solely to
that factor. Looking slightly ahead, if removing certain branches from updating parts of the
branch predictor was not helpful at all, then all three methods examined — preventing the
update of the global history, preventing the update of the pattern history, and isolating
branches completely — would return similar results. A quick glance ahead shows this to not

be true.

30

In addition, the dramatic rise in prediction accuracy of a benchmark such as go
cannot simply be explained away by assuming all the gain was due to counting previous
mispredictions as correct. Go contains only 8.83% constant branches, which are predicted
with 90.86% accuracy. An increase of 0.92% accuracy cannot be explained away by the
above. Furthermore, one would expect that if the above argument were the case, a similar,
albeit smaller, increase would be seen when the branch predictor was increased in size.
When using a considerably larger branch predictor, go's constant branches are predicted with
94.7% accuracy, yet the boost was only 0.26%. Since the accuracy was not changed a
considerable amount yet the improvement dropped dramatically, it can only be concluded
that the benefit came from increasing the size of the branch predictor — a theory advanced a

few paragraphs above this one.

The other benchmarks showed similar results. For example, compress's constant
branches make up 20.36% of all executed branches, and are predicted at virtually 100%
accuracy. If the theory were to uphold, then compress would see an increase as well, despite
the fact that it would not see a gain by counting previously mispredicted branches as correct.
For the smaller branch predictor, compress showed a 1.08% increase, from 90.77 to 91.85%
— a considerable improvement. Likewise, the larger branch predictor responded with an
increase of 0.81%, from 91.81% to 92.62%.

The improvement, however, is not due solely to the fact that more worthwhile static
branches can fit in the branch predictor. In fact, compress only has 243 static branchesin its
code — significantly less than gcc’'s 20,687 and go's 3,450. Instead, the increase is likely due
to the fact that some of these constant branches — already predicted at close to 100% — were
interfering with the more difficult to predict, non-constant branches. By preventing these
from updating the global history register, the branch predictor was better able to concentrate

on the remaining non-constant branches.

Per| showed similar and even more astounding results. The smaller branch predictor,

when executing perl, responded the most favorably — an increase of 1.49%, from an already

31

good 95% to 96.49%. Couple thiswith the fact that 40.18% of executed branchesin perl are
constant and are predicted with 98.13% accuracy, and one can easily see that the boost in
improvement comes from a source other than simply counting those few mispredicted
constant branches as correct. Better yet, when the larger branch predictor was tested, branch
prediction accuracy improved 0.9% — astounding in light of the fact that constant branches
were already predicted with 99.72% accuracy.

The remaining benchmarks, ijpeg and xlisp, showed somewhat interesting and
unexpected results. In ijpeg, the improvement in prediction accuracy was actually better in
the larger branch predictor than the smaller branch predictor. The volume of executed
branches that are constant in ijpeg is sizable — 18.95%, and are well predicted already —
99.47% in the smaller predictor and 99.65% in the larger predictor. When preventing the
constant branches from updating the global history register, though, prediction accuracy went
up 0.33% in the smaller predictor, but 0.39% in the larger predictor. The small fluctuations
may be attributed to simply the way branches hash into the predictor, but the fact remains
that a noticeable improvement in branch prediction accuracy was achieved by preventing

constant branches from updating the global history register.

Xlisp provided the only negative results. In the smaller branch predictor, accuracy
actually decreased by 0.01%, whereas the larger branch predictor only improved 0.02%.
While 35.08% of xlisp’s branches are constant — xlisp contains no amost constant branches —
prediction accuracy is already very good. The smaller branch predictor performs at 99.94%
accuracy, while the larger predictor shows 99.99% accuracy. It would seem that branch
prediction would increase at least a small amount; however, this proved not to be the case.
One conclusion that may be drawn is that preventing the branches from updating the global
history register does not actually decrease branch predictor performance — as 0.01% is

negligible — but in fact is beneficial for the majority of benchmarks.

32

6.2 Infrequent branches

As mentioned above, some types of branches may not contribute worthwhile
information to the branch predictor state. Indeed, for infrequent branches, when taken with
the program of the whole, do not represent a large portion of the instruction stream. From
preliminary results, the impact, if any, of preventing infrequent branches from updating the

global history register was minimal.

gcc ‘ compress perl go ‘ ijpeg xlisp
base, 4096 90.99% 90.77% 95.00% 83.75% 89.77% 95.49%
simbwc_pht, 4096 91.23% 90.77% 95.05% 84.78% 89.92% 95.49%
base, 32768 93.86% 91.81% 97.14% 87.44% 90.78% 96.95%
simbwc_pht, 32768 94.01% 91.81% 97.17% 88.10% 90.85% 96.96%

Table 2.2 : Branch Prediction Accuracy of Selected Spec95 Benchmarks

For rather large branch predictors, at least, the impact of reducing contention by
singling out infrequently executed branches is minimal. As infrequently accessed branches
are less likely to alias and destructively interfere with more important, often executed

branches in a comparatively large predictor, the impact is almost negligible.

For smaller branch predictors, however, where resources are more scarce, infrequent
branches can easily aias into another branch’'s resources and interfere with the branch
predictor's attempt to predict either branch. An example of this can be found in the
benchmark programs gcc and go. Compared to the other four benchmark programs, gcc and
go have arelatively large static footprint — that is, they have many more static branches in
their code than do other benchmark programs in the suite. Gcc and go have static branch
counts in the thousands (20,687 and 3,450, respectively), whereas the next closest benchmark
isijpeg, with amere 701 static branches.

33

With large branch predictors, more of the branches can fit into the branch predictor
storage tables. Unfortunately, not al processors can afford to devote large amounts of
silicon to the branch predictor. It is easy to see how programs such as gcc and go can
quickly fill up a smaller branch predictor, causing heavy aiasing and interference in the

branch predictor.

For the smaller two level adaptive branch predictor, the normal prediction accuracy
for gcc is 90.99%. When infrequently executed branches were blocked from updating the
global history register, prediction accuracy rose to 91.23% — a sSizeable improvement of
0.24%. Go shows an even larger improvement — from 83.75% in the baseline configuration

to 84.78% in the modified configuration, or an improvement of 1.03%.

Part of the improvement can be attributed to the fact that infrequent branches, for the
sake of calculations, are assumed to be perfectly predicted. In the smaller branch predictor,
gcc and go, in the baseline configuration, have a relatively poor prediction accuracy —
74.87% and 66.48%, respectively. However, it isimportant to note that while the accuracies
are poor, the volume of branches is small as well. As mentioned previously, infrequent
branches in gcc make up a mere 0.93% of the executed branches, while infrequent branches

in go are 3.23% of executed branches.

It may be argued again, then, that the performance improvement is not a function of
reducing the interference in the global history register, but rather a function of simply
counting all the mispredicted branches as correct. While the counter-arguments here are not
as strong as the ones in the constant branch section, take the statistics gathered from perl. In
perl, 0.3% of al branches executed are classified as infrequent. These branches are
predicted with 90.05% accuracy with the smaller branch predictor — significantly higher than
that of gcc. Furthermore, perl’s static footprint is significantly smaller than gcc’'s — perl has
only 349 static branches, compared to the 20,687 found in gcc. Perl, however, with the
smaller branch predictor, only shows a 0.05% prediction improvement, from 95% to 95.05%.
Even assuming a linear scaling, the estimated improvement comes nowhere near that shown

by gcc and go.

34

ljpeg shows similar results. Infrequent branches comprise only 0.8% of ijpeg’'s
executed branches, which are predicted with 90.23% accuracy. In addition, ijpeg’'s static
footprint is somewhat larger than perl’s — 701 static branches. The improvement in accuracy
totals 0.1%, from 89.77% to 89.87%.

Even the larger branch predictor exhibits a noticeable gain in prediction accuracy. In
go, prediction accuracy improves from 87.44% to to 88.10%, or a 0.66% gain in accuracy.
Gcc shows asmaller gain —from 93.86% to 94.01%, or again of 0.15%. In the larger branch
predictor, gcc predicts the infrequently executed branches with a 82.95% accuracy, while go
isdlightly worse at 80.65%.

In the larger branch predictor, perl shows a small improvement. What is the more
illustrative point in thisis that while perl improves from 97.14% to 97.17% accuracy, it must
be noted that the 0.3% of infrequent branches are already predicted at 99.03%. Simply
improving the prediction rate does not necessarily account for the 0.03% boost in
improvement, especially since preventing the branches from updating the pattern history

tables did not show the same improvement.

Compress and xlisp show no improvement. This can be attributed to the fact that
infrequently executed branches make up 0.00325% of branches executed in compress, and
0.074% of branches in xlisp. Furthermore, compress and xlisp have small static footprints —
243 and 315 branches, respectively — and therefore quite easily fit into even the smaller

branch predictor.

6.3 Repeating patterns

Since repeating patterns offer valuable state to the global history register, preventing
them from updating would only serve to impede branch prediction instead of help it. For this

35

reason, tests involving the prevention of repeating patterns from updating the global history

were not performed.

6.4 lterative branches

Iterative branches also contribute useful state to the global history register. Using the

same reasoning as with the repeating patterns, iterative branches were also not tested.

36

7. Measure impact of not updating the pattern history table

In certain cases, especially with programs with large static footprints, a situation that
may potentially decrease branch predictor performance occurs when two branches happen to
hash into the same second level bimodal counter. As the bimodal counter, used to record
pattern history, is useful only for one branch, three situations may occur. The first, and most
typical, is that the second branch to hash in destroys the bimodal counter state and decreases
branch predictor performance for both branches. The second is that the second branch
happens to do nothing — this may occur if the second branch just happens to mirror the
behavior of the first. The last situation, and usually least likely, is that the second branch

happens to increase in some way, branch predictor performance for both branches.

This project focuses on the first situation — the situation in which a second branch
hashes into the same bimodal counter and trashes the branch prediction for both branches.
Previous work done indicates that by inhibiting easily predicted branches from updating the
pattern history tables — reducing pollution — branch prediction accuracy is increased. In this
project, the “marked” branches are diverted to a smaller, specialized predictor, which is

assumed to be perfect in its prediction.

7.1 Constant/almost constant branches

As with the previous section, and in line with work done before, constant and almost
constant branches benefited the most from the modified branch prediction scheme. As
constant and almost constant branches are easily predicted, and may not offer much to the
branch predictor, preventing them from polluting the pattern history tables increases the

performance of most of the selected benchmarks.

37

base, 4096 90.99% 90.77% 95.00% 83.75% 89.77% 95.49%
simbwc_nopht, 4096 92.70% 90.77% 96.05% 84.88% 89.87% 95.51%
base, 32768 93.86% 91.81% 97.14% 87.44% 90.78% 96.95%
simbwc_nopht, 32768 94.63% 91.81% 97.32% 88.19% 90.89% 96.95%

Table 3.1 : Branch Prediction Accuracy of Selected Spec95 Benchmarks

Take, for example, gcc. With a large static footprint, gcc stands to suffer from alot
of collisons in the branch predictor. In its smaller configuration, the branch predictor
performs fairly well, achieving a prediction accuracy of 90.99%. When the constant and
almost constant branches are prevented from updating the pattern history tables, though, the
prediction accuracy increases to 92.7% — an improvement even larger than that seen when
protecting the global history register. The larger branch predictor sees a similar gain — from

93.86% to 94.63%, again besting the previous experiments.

In go, the smaller branch predictor sees the prediction accuracy increase from 83.75%
to 84.88%, an increase of 1.03%, greater than the 0.82% increase seen when filtering the
global history register. The larger branch predictor sees a similar gain, from 87.44% to
88.19%, or 0.75% — greater than the 0.26% seen by the previous experiment.

Again, the benefits of isolating constant and almost constant branches decrease as
branch predictors get larger — however, notice that the smaller branch predictor almost comes
within a percentage point of the large branch predictor in the modified branch prediction
scheme, with significantly less hardware. 1n addition, notice that the branch prediction rates
are al beneficial, yet different from the ones achieved when preventing branches from
updating the global history register — better, in fact. This would indicate that something
other than just counting marked branches which are mispredicted as correct is happening.

Moreover, the results are in line with implications from previous work done in this area.

38

Compress, ijpeg, and xlisp shardly gain any prediction accuracy at al. Compress, in
fact, stays the same — no gain whatsoever in both configurations. Xlisp, in the smaller branch
predictor configuration, only improves 0.02%, whereas in the larger branch predictor it stays
constant at 96.95%. It is quite likely that the branch prediction is slightly improved by virtue
of counting those mispredicted branches as correct, but what may be happening is that the
benefit is seen at thousandths or hundred-thousandths of a percentage point, and are gone

unseen by rounding off to the hundredths decimal place.

Ijpeg gains more than the compress or xlisp, but not by much. In the smaller branch
predictor configuration, ijpeg only improves 0.1%, from 89.77% to 89.87%. In the larger
branch predictor configuration, ijpeg gains dlightly less — 0.08%, from 90.78% to 90.86%.
What should be kept in mind, though, is that ijpeg, like compress and xlisp, have
significantly smaller footprints than the gcc and go and theoretically ought not to benefit as
much. Because there are less branches attempting to use the branch predictor, the possibility

for aliasing and branches hashing into the same countersis reduced.

Perl offersadightly differing viewpoint. Unlike compress, ijpeg, and xlisp, perl sees
some benefit in preventing branches from updating the pattern history tables. The increase,
however, differs from gcc and go in that the improvement is less than that seen in the
previous experiment of preventing those branches from updating the global history register.
In the smaller branch predictor, perl showed a 1.05% increase, from 95% to 96.05% —
significant, but considerably less than the 96.49% accuracy seen by previous experiments. In
the larger branch predictor, branch prediction increased only 0.18%, from 97.14% to 97.32%
— again, less than the 98.04% increase found in inhibiting branches from updating the global
history register.

7.2 Infrequent Branches

The second class of branches tested were infrequently executed branches. Note that

unlike constant and almost constant branches, infrequent branches actually make up very

39

little of the executed instruction stream. However, even reducing the pollution in the pattern

history tables only slightly can potentially benefit the branch predictor a great deal.

base, 4096 90.99% 90.77% 95.00% 83.75% 89.77% 95.49%
simbwc_nopht, 4096 91.27% 90.77% 95.03% 84.88% 89.87% 95.51%
base, 32768 93.86% 91.81% 97.14% 87.44% 90.78% 96.95%
simbwc_nopht, 32768 94.06% 91.81% 97.14% 88.29% 90.85% 96.96%

Table 3.2 : Branch Prediction Accuracy of Selected Spec95 Benchmarks

Go responded the most favorably to this modified scheme. With the smaller branch
predictor, go improved 1.29%, while the larger predictor improved 0.85%. In both cases the
results bested the results obtained when the branches were being prevented from updating the

global history register.

Gcce is another example of this, in the smaller branch predictor configuration. The
base prediction rate for gcc is 90.99%, but when infrequent branches are prevented from
updating the pattern history tables, the accuracy increases to 91.27% — an improvement of
0.28%, or dightly better than preventing branches from updating the global history register.
The larger predictor improves as well, from 93.86% to 94.06%, for a gain of 0.2%.

As before, the other four benchmarks showed little, if any, improvement at all.
Compress, in both configurations, showed no improvement in prediction accuracy. |jpeg and
perl showed marginal improvement. In the smaller predictor, ijpeg improved 0.1% while
perl improved a mere 0.03%. In the larger predictor, ijpeg improved 0.08% while perl
showed no improvement. Xlisp showed similar results — in the smaller predictor, there was

no improvement, whereas in the larger predictor, there was only a 0.01% increase.
Similar to the reasoning behind the constant and almost constant branches, gcc and go

stand to gain the most because of their larger static footprints. In addition, infrequently

executed branches make up a very small amount of the executed branches to begin with, so,

40

with the exception of go, large gains were not expected. Compress, for example, has only

0.00325% of executed branches classified as infrequent.

7.3 Repeating Patterns

The next set of branches to be tested were repeating patterns. As mentioned before,
only repeating patterns with fixed n and m iteration counts were tested. As a side effect,
though, to the strict adherence to only fixed n and m counts is the result that these branches
are very regular and thus, somewhat easy to predict. The benefits due to filtering out
repeating patterns are therefore dlightly smaller. One of the advantages, however, is that
repeating pattern branch predictors are much smaller — on the order of the logarithm of base
two — than similar local branch predictors. Instead of holding the entire history, only nand m

counters are needed, with perhaps a bias bit to indicate which pattern occursfirst.

‘ gcc compress perl go ijpeg ‘ xlisp
base, 4096 90.99% 90.77% 95.00% 83.75% 89.77% 95.49%
simbwc_nopht, 91.03% 90.77% 95.07% 83.78% 89.83% 95.49%
4096
base, 32768 93.86% 91.81% 97.14% 87.44% 90.78% 96.95%
simbwc_nopht, 93.88% 91.81% 97.18% 87.45% 90.79% 96.95%
32768

Table 3.3 : Branch Prediction Accuracy of Selected Spec95 Benchmarks

As can be seen from the chart above, gains were minimal across the board. Thisis
due in part to the high regularity of the repeating patterns — compress, for example, averages
over 99.99% for both of its branch predictors. Xlisp is much the same. Moreover, compress

and xlisp have small static footprints, and do not stand to gain very much to begin with.

Gcce, however, shows amarginal gain, as does perl. While the larger branch predictor

naturally benefits less than the smaller branch predictor, the overall gain is noticeably less

41

than the results from the other classes of branches. The benefits, then, appear to be more

located in the area savings.

Ijpeg shows a moderate improvement in the smaller branch predictor, but thisgainis
diminished to the point of almost nothing in the larger branch predictor. Like gcc, this may
be due to the fact that ijpeg’ s static footprint is somewhat larger than compress, xlisp, or perl.
Perl is an exception in that it has been responding quite well to the newer branch prediction

schemes almost across the board.

7.4 lterative Branches

The final branches to be tested with this branch prediction scheme were the iterative
ones. As iterative branches should contain a good deal of worthwhile state information for
the branch predictor, the only benefit would be in reducing the pollution in the pattern
history tables. Iterative branches are very regular to begin with; keeping the pattern history,
is not needed, especially with a loop counter branch predictor. Even with fixed length
iterative branches, bimodal predictors are guaranteed at |east one miss every time the pattern
repeats. Local history predictor are better, eliminating the miss for most short iteration
counts. Loop counter branch predictors, however, are even better than both in that they
eliminate the miss, making them more accurate than bimodal predictors, and can predict

iterative branches with much longer iteration counts than local history predictors.

It is important to note that in this project, the focus was on branches with fixed
iteration counts — branches that have variable iteration counts, while more numerous than
those with fixed iteration counts, are much more difficult to predict, even for loop counter
branch predictors. Since there is a significant deal of unpredictability in the length of the
iteration counts between patterns, only fixed iteration count branches were looked at.

Remember that iterative branches perform fairly well already; attempting to predict the

42

wildly variable iteration count branches with a less sophisticated loop counter predictor may,

in fact, be detrimental to performance. Preliminary results confirmed this suspicion.

43

base, 4096 90.99% 90.77% 95.00% 83.75% 89.77% 95.49%
simbwc_Ip, 4096 91.10% 90.77% 95.20% 84.07% 90.73% 95.49%
base, 32768 93.86% 91.81% 97.14% 87.44% 90.78% 96.95%
simbwec_Ip, 32768 93.95% 92.62% 97.29% 87.67% 91.61% 96.96%

Table 3.4 : Branch Prediction Accuracy of Selected Spec95 Benchmarks

ljpeg saw the largest increase in branch prediction accuracy. The larger branch
predictor saw an increase from 90.78% to 91.61%, while the smaller branch predictor
improved even more, from 89.77% to 90.73%. Both of these increases came despite the fact
that iterative branches were already being predicted at near 99% to begin with. Also posting
amoderate gain was perl, which saw its prediction accuracy rise, but not as much asin ijpeg.
In the smaller branch predictor, perl improved 0.2%, while in the larger branch predictor, the

improvement was only 0.15%.

Go produced more supporting evidence as well. The smaller branch predictor
responded quite well, improving prediction accuracy from 83.75% to 84.07% — an increase
of 0.32%. The larger predictor saw a somewhat smaller increase — from 87.44% to 87.67%,

or an improvement of 0.23%

Gcc saw asimilar, but less pronounced gain. Gec's smaller predictor saw an increase
of 0.11%, while the larger predictor improved 0.09%. One would expect, though, that a
benchmark with such as gcc, with alarge static footprint, would benefit more than the results
would show. Fixed iteration count branches only made up 0.4% of gcc’s code, however, and
much less than the 18.18% of executed branches, which included both variable iteration

counts as well as fixed iteration counts.

Compress and xlisp showed almost no gain at al. Iterative branches in compress
were already performing well, and preventing them from updating the pattern history table

appears to have no effect. The data shows somewhat that the iterative branches in compress

contributed more to the state of the machine than constant and almost constant branches did.

Xlisp was similar, except the larger branch predictor gained 0.01%.

It is aso true one of the bigger benefits of applying the loop counter prediction to
iterative branches is the savings in area — the increase in branch prediction accuracy for
iterative branches may, in fact, be only canceling out the decrease in the general branch
predictor. However, with the results shown above, it can easily be seen that moving iterative
branches out, at worst, does nothing to the existing branch prediction, and at best, such asin

ijpeg, improves branch prediction a great deal.

45

8. Measure impact of isolating branches from the branch predictor

The final modified branch prediction scheme removes marked branches from the
branch predictor update phase completely. By isolating marked branches, the branch
predictor now only has to deal with a smaller set of branches. If the marked branches are not
contributing worthwhile state to the branch predictor, than isolating them should have little
detrimental effect. On the contrary, by allowing the branch predictor to store more of the
important branches in its history, prediction accuracy should improve. Rather than add more
hardware to hold more history, this prediction scheme intelligently reduces the amount of
branches that need to be stored.

8.1 Constant/almost constant branches

The first class of branches tested were the constant and amost constant branches.
The previous two prediction schemes have shown that constant and almost constant branches
do not offer much worthwhile state to the branch predictor and can thus be isolated from the
branch predictor update phase. The prediction accuracy should rise; whether or not this

accuracy is greater than preventing branches from updating the global history or the pattern

history is not necessarily guaranteed.

base, 4096 90.99% 90.77% 95.00% 83.75% 89.77% 95.49%
simbwec_i, 4096 92.78% 91.85% 97.00% 84.97% 89.93% 95.49%
base, 32768 93.86% 91.81% 97.14% 87.44% 90.78% 96.95%
simbwc_i, 32768 94.75% 92.62% 98.13% 88.26% 90.86% 96.96%

Table 4.1 : Branch Prediction Accuracy of Selected Spec95 Benchmarks

Perl showed the most dramatic rise in branch prediction accuracy. In the smaller
branch predictor configuration, perl performs at 95% accuracy — when constant branches are

isolated from the branch predictor, though, prediction accuracy rises to 97%. What is

46

remarkable about thisis that constant branches — perl has no amost constant branches — are
already predicted at 98.23%. Better yet, with this modified prediction scheme, the smaller
branch predictor achieves almost the same prediction accuracy as the larger branch predictor.
The larger branch predictor benefits as well — an improvement of 0.99%, from 97.14% to
98.13%.

Mirroring this behavior is the gcc benchmark. Gcce, with the smaller branch
predictor, improves 1.79% — more than the previous two schemes achieved. In fact, with
considerably less resources, the smaller branch predictor, at 92.7%, by isolating constant and
almost constant branches, amost comes within 1% of the larger branch predictor, which
normally achieves 93.86% accuracy. For reference, the larger branch predictor improves to
94.75%, a 0.89% increase.

To better correlate the improvement in branch prediction accuracy, one must examine
the other benchmark with alarge static footprint — go. With the smaller branch predictor, go
showed an increase of 1.24% in prediction accuracy, while the larger branch predictor only
improved 0.72%. What is interesting to note in this case is that isolating the branches
completely did not show as much improvement as only preventing branches from updating
the pattern history table.

It is easy to see, then, that larger branch predictors gain much less than the smaller
branch predictor. As mentioned before, this is due primarily to the fact that larger branch
predictors have an easier time dealing with programs with a large static footprint — for
reference, 20,687 static branches in gcc, and 3,450 static branches in go. It would be
interesting, then, to examine the results from programs that have a significantly smaller
footprint — perl is a special case; in al three of the schemes it responded quite positively to

reducing the amount of branches accessing parts of the branch predictor.

Compress, for example, has the smallest footprint of all the six selected benchmarks —
only 243 branches. Unlike gcc and go, however, the smaller branch predictor did not gain a

large amount more than the larger branch predictor. In the case of compress, the smaller

47

branch predictor improved 1.08%, whereas the larger branch predictor gained 0.81% — a
stark contrast to gcc and go, where the larger branch predictor gained approximately half of
what the smaller branch predictor did.

Xlisp produced similar results. The smaller branch predictor improved 0.12%, while
the larger branch predictor followed closely with a0.11% improvement. Seeing as compress
and xlisp has similar static branch countsin their code — 243 for compress and 315 for xlisp —

the result is not especialy surprising.

The fina benchmark, ijpeg, had the most unusual results. Unlike the other five
benchmarks, the larger branch predictor actually improved more than the smaller benchmark.
The overall improvement, however, was still fairly close — 0.4% for the larger predictor and
0.33% for the smaller predictor.

8.2 Infrequent branches

Following the constant and almost constant branches are the infrequent branches. As
before, if a branch is infrequent, it may not be contributing worthwhile information to the
overall state of the machine. In this case, the branch would not impact the branch predictor
accuracy if isolated from the branch predictor itself, but even better, the removal of the

branches may in fact serve to lessen pollution in the pattern history tables and enhance the

history contained in the global history register.

base, 4096 90.99% 90.77% 95.00% 83.75% 89.77% 95.49%
simbwec_i, 4096 91.27% 90.77% 95.05% 84.97% 89.87% 95.61%
base, 32768 93.86% 91.81% 97.14% 87.44% 90.78% 96.95%
simbwc_i, 32768 94.05% 91.81% 97.17% 88.20% 90.89% 97.06%

Table 4.2 : Branch Prediction Accuracy of Selected Spec95 Benchmarks

48

An interesting situation occurred with the gcc and go benchmarks. While they
achieved the highest performance improvement, both shared an interesting fact — when tested
with the larger branch predictor, the highest accuracy was not in isolating the branches
completely, but actually in preventing the branches from updating the pattern history table.
Gcc, for example, predicted branches with 94.05% accuracy, a mere 0.01% behind its best
mark. Go showed similar results, posting at 88.20%, or 0.09% behind. In the smaller branch
predictor, gcc performed equally as well when completely isolated from the branch predictor,
at 92.07%, while go achieved an accuracy of 84.97% — dlightly less than the 85.04% seen
when reducing pollution in the pattern history table alone.

From the above results, it appears that infrequent branches — which are based on their
frequency of execution rather than their overall behavior — actually do add some worthwhile
state information to the branch predictor. The effects are more pronounced as the branch
predictor gets larger; remember that the larger branch predictor has a shift register
considerably wider than that of the smaller branch predictor, at eight bits as opposed to five.
Being that the larger branch predictor holds a longer history to begin with, the effects of
reducing pollution in the pattern history tables is offset somewhat by the negative impact of
removing branches with at least some important information about the overall state of the

machine.

It is worthwhile to note that the infrequent branches may span the whole range of
behavior — from constant, easy to predict branches to wildly varying, unpredictable branches.
Furthermore, being classified as infrequent does not assume that these branches are sprinkled
sparsely throughout the program. It is quite possible that some of the infrequent branches
may be concentrated in aloop, where they are not executed enough to escape the infrequent
classification, but are important enough to have a large effect on the branches executed in the
near time frame. Were the branches spread somewhat widely throughout the program, it is
likely that removing them from the global history register would impact the branch

prediction accuracy agreat deal less.

49

ljpeg and perl show a much smaller improvement — still greater than compress and
xlisp, which showed virtually no improvement at all. Thisis due in part to the fact that ijpeg
and perl are, in terms of volume of infrequent branches, right in the middle between gcc and
go — which have a larger volume of infrequently executed branches — and compress and
xlisp, which have amost none at all. It is aso important to note that gcc and go have
considerably larger static footprints than the remaining four benchmarks. Consequently, the

gcc and go should benefit a good deal more than the rest.

ljpeg, for example, showed a marginal improvement over the previous two branch
prediction schemes. In the smaller branch predictor, ijpeg improved only 0.04%, and only
0.01% over its previous best. The larger branch predictor produced similar results — an

increase of 0.08%, but only 0.01% over the other two branch prediction schemes.

Perl produced much of the same results. Like ijpeg, the improvement over the
normal branch prediction scheme was minimal — 0.05% in the smaller branch predictor, and
0.03% in the larger one. Worse yet, isolating branches shows no noticeable improvement
over simply preventing branches from updating the pattern history tables — both achieved the
same branch prediction accuracy, 95.05% in the smaller branch predictor and 97.17% in the

larger branch predictor.

Compress and xlisp saw no improvement at all. As compress, for example, has only
0.00325% of its executed branches as infrequent, the impact either way — beneficial or
detrimental — will not influence overall branch prediction accuracy. For all three prediction
schemes, compress did not respond whatsoever. Xlisp was much the same way. As opposed
to the previous two branch prediction schemes — which showed no improvement — isolating
infrequent branches actually produced a 0.01% improvement. This improvement, though, is

too minimal in comparison to the effort required.

50

8.3 Repeating patterns

Isolating branches from the entire branch predictor involves preventing the marked
branch from updating the global history register; since repeating patterns offer valuable state
to the global history register, this would only serve to impede branch prediction instead of
help it. For this reason, tests involving the prevention of repeating patterns from updating
the global history were not performed.

8.4 lterative branches

In the same reasoning as in repeating patterns, isolating branches would hurt the
branch predictor instead of help. Therefore, iterative branches were not tested in this portion

of the experiment.

51

9. Summary

Based on the available data, hybrid branch prediction seems to be a very rea
approach to designing new branch predictors. Given the data drawn from constant and
amost constant branches, coupled with the research previously done in this field, a
convincing argument can be made for designing the branch predictors around branch
classification. For the most part, this project focused on the impact of several classes of

branches, and the resulting increase or decrease in prediction accuracy.

In this project, two branch predictors were tested — both of which were two level
adaptive branch predictors, and one of which was considerably larger than the other. In
some cases, the smaller branch predictor, by simply filtering out certain classes of branches
to a “perfect” predictor, was able to amost achieve the performance of the much larger
predictor. Assuming the “perfect” predictor does not consume very large amounts of
hardware, a hybrid design would require less hardware yet perform at amost the same rate.
It may be implied, then, that a hybrid design with equal amounts of hardware would

outperform the standard generalized design.

10. Conclusions

Hybrid branch prediction, with the same amount of hardware, improves branch
prediction beyond that of a traditional all-in-one branch predictor. Even in the simple form
shown in this paper, implementing a hybrid in which one predictor handles easy to predict,
constant branches while the other is a traditional branch predictor shows a noticeable
increase in improvement. With considerably less hardware, the smaller hybrid almost

achieves the same prediction accuracy as the larger generalized two level branch predictor.

The mgor improvement comes from taking branches which may not offer a great

deal to the branch predictor state but may be polluting the pattern history tables or interfering

52

in the global history register. By taking these branches and diverting them to their own
specialized predictor, not only does their branch prediction accuracy increase, but in cleaning
up the pattern history tables and global history register, so does that of the general branch
predictor. Furthermore, not just any class of branch may be diverted to its own specialized

predictor.

Four major classes of branches were examined in this project — constant and almost
constant, infrequently executed, repeating patterns, and iterative branches. The largest gain
was seen in specially treating the constant and almost constant branches. As these branches
are extremely regular and often times infrequently executed, as in the case of one-time error
code checks, these branches do not offer much to the branch predictor. Instead, especially
with limited hardware, they tend to jam valuable resources better used for more difficult to

predict branches.

Infrequently executed branches saw a much smaller gain. In part, this may be due to
the fact that infrequently executed branches are not behavior based, but smply frequency
based. Furthermore, branches classified as infrequent were of such small amounts of the
total number of branches that their impact was likely to be small, and moreover mostly seen

only with the smaller branch predictors.

Repeating patterns and iterative branches saw a smaller gain as well. Since repeating
patterns and iterative branches are contributing worthwhile state to the branch predictor, they
were only tested in the scheme that prevents branches from updating the pattern history table.
As such, minute gains were seen in reducing the pollution in the pattern history tables

somewhat.

Of the two branch predictors, the smaller branch predictor saw the largest benefit.
This is to be expected, the smaller branch predictor has less resources available to it, and by
filtering out branches with no worthwhile state to contribute, the branch predictor can
concentrate on a smaller set of branches. In some cases, the branch predictor was able to

achieve within approximately 1% of a much larger branch predictor.

53

The filtering, however, must be carefully examined. It is not the case that any
random classification of branches can be chosen. In this paper, the branches that responded
the most favorably were those based on an easy to identify behavior — for example, constant
and almost constant branches. Those based on other criteria, such as frequency of execution
— infrequent branches — did not show as much improvement when removed from updating
certain parts of the instruction stream. Furthermore, the idea that marked branches should be
diverted to small, simple predictors places an upper limit on the complexity — aloop counter,
for example, is much easier to implement than a second, albeit small, two level adaptive

predictor.

Finally, branch classification can serve as a very rea possibility to implementing a
hybrid branch predictor. Through judicious use of profiling and additiona “hints’ provided
by the instruction set architecture, there already exists at least one method of static selection.
While this may not be the most effective way, the feasibility of implementing a hybrid
branch predictor is already not very far off.

11. Recommendations for future research

In this paper, the results discussed involved a simplistic “ perfect” predictor as well as
a more generalized two level adaptive predictor. In addition, the selection of whether
branches were to enter the perfect predictor or the general predictor was already determined
—inreal cases, this does not always happen. Future research may look at how branches can

be routed to the appropriate predictor, and the impact on performance this may have.

Furthermore, “perfect” predictors do not exist. Another avenue of research may
involve looking at how already existing predictors can be combined, such as bimodal and
two level adaptive predictors, or combinations of more than two branch predictors. This
project was limited in that if the branch class was not marked, it was thrown into the general

two level adaptive predictor. In a more complex and higher performing hybrid, this may

54

mean four or five branch predictors, each handling a special class of branch, with one default

branch predictor handling the more difficult branches.

Finally, the hybrid branch prediction scheme does not allow for branches to “float”
between predictors. If a branch predictor, originaly thought to perform well with a certain
branch, is performing quite badly, it will continue to perform quite badly. By allowing
branches to float between branch predictors, if a branch was originaly marked incorrectly,
some performance can still be salvaged, especially if another branch predictor quickly shows

its ability to correctly predict that branch.

55

Appendix A : Annotated Bibliography

Augustus Uht, Vijay Sindagi, and Sajee Somanathan

Augustus Uht, Vijay Sindagi, and Sajee Somanathan, "Branch Effect Reduction Techniques,"
Computer, 1997, pp. 71-81

Uht, Sindagi, and Somanathan give a solid overview of the current state of branch
prediction techniques. In particular, they concentrate on techniques used in commercial
processors. They have also included possible avenues of future research — techniques such
as hybrids and multiscalar branch prediction as well as announced techniques such as VLIW.

Doug Burger, Todd M. Austin

Doug Burger, Todd M. Austin, "The SimpleScalar Tool Set, Version 2.0," 1997

The SimpleScalar Tool Set is the basic manua for using the SimpleScalar
microprocessor execution simulator. The manual includes installation and basic operation.
In addition to the processing core, the SimpleScalar software packages includes many
default, basic simulators such as branch prediction (sim-bpred) and out-of-order execution
(ssm-outorder).

Eitan Federovsky, Meir Feder, Shlomo Weiss

Eitan Federovsky, Meir Feder, Shlomo Weiss, “Branch Prediction Based on Universal Data
Compression Algorithms,” Tel Aviv University, 1998

In this paper, Federovsky, Feder, and Weiss suggest applying data compression
algorithms to the field of branch prediction. They focus on two compression algorithms —
prediction by partial matching and context tree weighting. Finally, they produce as evidence
simulation results of their work.

I-Cheng K. Chen, John T. Coffey, Trevor N. Mudge

I-Cheng K. Chen, John T. Coffey, Trevor N. Mudge, “Analysis of Branch Prediction via Data
Compression,” University of Michigan, Ann Arbor, 1996

Another paper relating branch prediction and data compression, Chen, Coffey, and
Mudge address the theoretical basis behind branch prediction. Specifically, they concentrate
on proving that two-level branch predictors have theoretical grounding in the prediction by
partial matching algorithm used in data compression.

56

John L. Hennessy, David A. Patterson

John L. Hennessy, David A. Patterson, “Computer Architecture : A Quantitative Approach”, Morgan
Kaufmann Publishers, Inc., 1996

Possibly the premier book in computer architecture, Hennessy and Patterson provide
an excellent overview of the field of computer architecture, with a focus on microprocessors.
Their section on branch prediction provides fundamentals for the beginning of study in
branch predictors and speculative execution. Their updated second edition was published in
1996.

Kevin Skadron

Kevin Skadron, “Characterizing and Removing Branch Mispredictions.” Ph.D. thesis, Princeton
University, June 1999.

In this thesis, Skadron shows that branch prediction is the most important factor in
determining processor performance. Using the HydraScalar software suite, Skadron
demonstrates the effects of various branch predictor configurations. In addition, conflictsin
the state table is not the only contributor to branch predictions, but other less-studied sources.
He then proposes solutions for reducing three misprediction types : alloying, speculative
update with fixup, and multipath execution.

Linley Gwennap

Linley Gwennap, “Intel Discloses New 1A-64 Features.” Microprocessor Report, March 8, 1999, pp.
16-19.

Providing a high-level overview of Intel’s | A-64 architecture, Gwennap describes the
techniques used in Intel’s Itanium (formerly Merced) architecture. Of particular interest to
this proposal is the section on compiler-assisted branch prediction techniques. In addition,
Gwennap details how the Itanium incorporates both hardware and software branch prediction
techniques.

Linley Gwennap, “Digital 21264 Sets New Standard,” Microprocessor Report, October 28, 1996

Gwennap’s article on the Compag (formerly Digital) 21264 microprocessor is of
interest to this proposal mainly for his section on Digital’ s selector branch predictor. The
selector branch predictor is comprised of two branch predictors — one based on local history
and another based on global history. Gwennap describes the interaction and efficiency of the
two branch predictors working together.

57

Marius Evers, Sanjay J. Patel, Robert S. Chappell, Yale N. Patt

Marius Evers, Sanjay J. Patel, Robert S. Chappell, Yale N. Patt, “An Analysis of Correlation and
Predictability : What Makes Two-Level Branch Predictors Work,” University of Michigan, Ann Arbor, 1998

Evers, Patel, Chappel, and Patt investigate the behavior of branches — why branches
are predictable. They attempt to provide understanding on why branches are predictable, and
why current branch predictors cannot take advantage of this predictability. Specifically, they
concentrate on the two-level adaptive branch predictor.

Po-Yung Chang, Eric Hao, Tse-Yu Yeh, and Yale Patt

Po-Yung Chang, Eric Hao, Tse-Yu Yeh, and Y ale Patt, "Branch Classification : aNew Mechanism for
Improving Branch Prediction Performance," University of Michigan, Ann Arbor, 1998

In this paper, Chang, Hao, Yeh, and Patt explore a new technique in improving
branch prediction — branch classification. By associating a type of branch with a specialized
branch predictor, they show that their hybrid branch predictor surpasses any previous
designed. They implement and explore severa different types of designs and investigate
each design’s performance. Finally, they show that their best branch predictor involved
statically and dynamic predictor selection.

Po-Yung Chang, Marius Evers, and Yale N. Patt

Po-Y ung Chang, Marius Evers, and Yale N. Patt, "Improving Branch Prediction Accuracy by
Reducing Pattern History Table Interference,” University of Michigan, Ann Arbor, 1997

In this paper, Chang, Evers, and Patt describe the improvements in branch prediction
accuracy by removing easy to predict branches from entering the pattern history table.
Because easily predicted branches may pollute the table, Chang, Evers, and Patt show the
performance improvement that results from preventing easy to predict branches from
updating the pattern history table, thus creating interference.

Scott McFarling

Scott McFarling, “Combining Branch Predictors,” WRL Technical Note TN-36, Digital Corporation,

1993

McFarling, in histechnical note for Digital Corporation, explainsin detail the effects
of combining branch predictorsin Digital’s 21264 microprocessor. The 21264, which
incorporates both alocal history and a global history branch predictor, uses the combined
approach to great success. Here, McFarling describes the implementation and effectiveness
of the 21264 technique.

58

