Unparsing FExpressions
With Prefix and Postfix Operators

Norman Ramsey
Dept of Computer Science, University of Virginia
Charlottesville, VA 22903

August 25, 1997

1 Introduction

Automatic generation of computer programs from high-level specifications is a
well-known technique, which has been used to create scanners, parsers, code
generators, tree rewriters, packet filters, dialogue handlers, machine-code recog-
nizers, and other tools. To make it easier to debug an application generator, and
to help convince prospective users that the generated code can be trusted, the
generated code should be as idiomatic and readable as possible. It is therefore
desirable, and sometimes essential, that the generated code use infix, prefix, and
postfix operators, and that they be presented without unnecessary parentheses.
Another helpful technique is to use a prettyprinter to automate indentation and
line breaking (Oppen 1980; Hughes 1995). This paper presents a method of
automatically parenthesizing expressions that use prefix, postfix, and implicit
operators; the method is compatible with automatic prettyprinting. The pa-
per also shows how to parse expressions that use such operators. The parsing
algorithm can be used even if operator precedences are not known at compile
time, which means that it can be used with an arbitrary number of user-defined
precedences.

This paper is a literate program (Knuth 1984); a single source file is used to
prepare both the manuscript and some parsing and unparsing code. Including
code provides a formal, precise, testable statement of the unparsing algorithm.
The code is written in the purely functional subset of Standard ML. I’ve chosen
to use ML for several reasons. Referential transparency makes the subset easy
to reason about, so we can show the correctness of simple unparsing algorithms.
It is possible to express some properties of the data as type properties, which
are checked by the compiler. Finally, I use SML’s parameterized modules to
make the code reusable in several different contexts—the code that appears in
the paper is the code used in the SLED compiler, for example. Readers not
familiar with ML may wish to consult Ullman (1994) or Paulson (1991) for an
introduction.

The paper presents two versions of the unparsing problem. The first part
handles infix operators only; this case is simple enough that we can prove the
correctness of the unparsing algorithm. We use the invariants and insights from
this proof to create an algorithm for a more general version, which handles prefix
and postfix operators, as well as non-associative infix operators of arbitrary
arity. The code for this version uses parameterized modules, which makes it
independent of the representation of the unparsed form.

2 Parsing and unparsing

Parsers and unparsers translate between concrete and abstract syntax. The
concrete syntax used to represent expressions is usually ambiguous; ambiguities
are resolved using operator precedence and parentheses. Internal representations
are unambiguous but not directly suitable as concrete syntax. For example,
expressions are often represented as simple trees, in which an expression is either
an “atom” (constant or variable) or an operator applied to a list of expressions.
We can describe such trees by the following grammar, written in extended BNF
(Wirth 1977), in which nonterminals appear in italic and terminals in slant
fonts:

expression = atom
| operator {expression}

LISP and related languages use a nearly identical concrete syntax, simply by
requiring parentheses around each application. The designers of other languages
have preferred other concrete syntax, using infix binary operators, prefix and
postfix unary operators, and possibly “mixfix” operators, as described by the
following grammar:

expression = atom

| expression infix-operator expression

| prefix-operator expression

| expression postfix-operator

| expression {nary—operator ewpression}

| other form of expression. ..
Even if the internal form distinguishes these kinds of operators, this grammar
is unsuitable for parsing, because it is wildly ambiguous. Grammars intended
for parsing use various levels of precedence and associativity to disambiguate.
Once precedence and associativity have been determined, they can be encoded
by introducing new nonterminals for each level of precedence. Users of shift-
reduce parsers can specify precedence and associativity directly, then have the
parser use them to decide shift-reduce conflicts.

The parsing problem is to translate from concrete syntax to internal repre-
sentation. The unparsing problem is to take an internal representation and to
produce a concrete syntax that, when parsed, reproduces the original internal
representation. That is, an unparser is correct only if it is a right inverse of

its parser. For example, if our internal representation is a tree representing the
product of z + y with z, we cannot simply walk the three and emit the concrete
representation z+y X z; we must emit (z+y) x z instead. We can produce correct
concrete syntax by following the LISP rule and placing parentheses around ev-
ery nonterminal ezpression, but the results are unidiomatic and unreadable. To
get readable results, we should use information about precedence, associativity,
and “fixity” of operators to unparse an internal form into concrete syntax. This
paper presents a general method of unparsing expressions with infix, prefix, and
postfix operators. It also supports a concrete syntax in which concatenation of
two expressions in the concrete syntax can be taken to signify the application of a
“juxtaposition” operator to the two expressions, and juxtaposition can be given
a precedence and associativity. For example, in Standard ML, juxtaposition
denotes function application, it associates to the left, and it has a precedence
higher than that of any explicit infix operator (Milner, Tofte, and Harper 1990).
In awk, juxtaposition denotes string concatenation, and it has a precedence
higher than the comparison operators but lower than the arithmetic operators
(Aho, Kernighan, and Weinberger 1988). The method described in this paper
can also be used to handle some mixfix operators by tinkering with the definition
of operator.

3 Parsing and unparsing with infix operators

Abstract and concrete syntax for infix operators

We begin by tackling the simpler case in which all operators are binary infix
operators. Type rator represents such an operator, which has a text represen-
tation, a precedence, and an associativity:
(infix)=

type precedence = int

datatype associativity = LEFT | RIGHT | NONASSOC

type rator = text * precedence * associativity

Precedence and associativity determine how infix expressions are parsed into
trees, or equivalently, how they are parenthesized. For example, if opera-
tor ® has higher precedence than operator @, then @y ® z =z @ (y ® z) and
zQ®ydz=(r®y)®z. When two operators have the same precedence, asso-
ciativity is used to disambiguate. If & is left-associative,z @y ® z = (z D y) D z;
if it is right-associative, t @y ® 2z =z @ (y ® z). Some languages have non-
associative operators; if @ is non-associative, then

(2@Y)Pz£cdyPz#z® (Y& 2),

and z @ y @ z may be illegal.
We use the type atom to refer to the atomic constituents of expressions.
Atoms appear at the leaves of abstract syntax trees and as the non-operator

tokens in concrete syntax. In most languages such constituents include identi-
fiers, integer and real literals, string literals, and so on. An expression is either
an atom or an operator applied to two expressions:
(infiz)+=
datatype ast = AST_ATOM of atom
| APP of ast * rator * ast

Type ast represents an expression’s abstract syntax tree.

An unparser takes a syntax tree and produces source code. For simplicity, we
treat source code as a sequence of lexemes, where a lexeme represents an atom,
an operator, or a parenthesis. Moreover, we undertake to emit only sequences in
which atoms and operators alternate, or in which parenthesized sequences take
the place of atoms. I call such a sequence an image, and I use a representation
that forces it to satisfy the following grammar:

image = lexical—atom{operatorlewical—atom}
lexical-atom = (ato1n|(image))

Here is the corresponding ML, in which the sequence in braces becomes the type
image’:

(infir)+=
datatype 1image = IMAGE of lexical_atom * image’
and image’ EOI

LEX_ATOM of atom
PARENS of image

EOI represents the end of the input, and PARENS represents an image in parenthe-
ses. This representation enforces the invariants that expressions and operators
must alternate, and that the first and last elements of an image are expressions.

| INFIX of rator * lexical_atom * image’
and lexical_atom =
I

Parsing infix expressions

To be correct, an unparser must produce a sequence that parses back into the
original abstract syntax tree. We will develop an unparsing algorithm by think-
ing about parsing. To understand how to minimize parentheses, we need to
consider where parentheses are needed to get the right parse. Suppose we have
an abstract syntax tree that has been obtained by parsing an image without
any parentheses. Then wherever the syntax tree has an APP node whose parent
is also an APP node, there are two cases: the child may be the left child or the
right child of its parent:

outer outer

Because this tree was obtained by parsing parenthesis-free syntax, either the
inner operator has higher precedence than the outer, or they have the same
precedence and associativity and the associativity is to the left (right) if the
inner is a left (right) child of the outer. We formalize this condition as follows:
(infix)+=
fun noparens(inner as (_, pi, ai) : rator, outer as (_, po, ao), side) =
pi > po orelse
Pi = po andalso ai = ao andalso ai = side

where pi, ai, po, and ao stand for precedence or associativity of inner or outer
operators. Readers familiar with the treatment of operator-precedence parsing
in Section 4.6 of Aho, Sethi, and Ullman (1986) may recognize that

noparens(i,0,LEFT) = >0
noparens(i,0,RIGHT) = o< i

We use noparens during unparsing to decide when parentheses are needed and
during parsing to decide whether to shift or reduce.

To prove correctness of the unparser, I introduce an operator-precedence
parser. The correctness condition is that for any syntax tree e,

parse (unparse e) = e.

The parser uses an auxiliary stack in which expressions and operators alterna-
tive. Unless the stack is empty, there is an operator on top.
(infix)+=
datatype stack = BOT
| RATOR of rator * ast * stack

Before giving the parser itself, I introduce a simplifying trick. Instead of treat-
ing “bottom of stack” or “end of input” as special cases, I pretend they are
occurrences of a phony operator minrator. minrator has precedence minprec,
which must be lower than the precedence of any real operator. Using this trick,
I can define functions that return the operator on the top of the stack and the
operator about to be scanned in the input.
(infiz)+=
val minrator = ("<phony minimum-precedence operator>", minprec, NONASSOC)
fun srator (RATOR ($, _, _)) = $
| srator BOT = minrator
fun irator (INFIX ($, _, _)) = $
| irator EOI = minrator

In the ML code, I use the identifier $ to stand for an arbitrary operator. Given
a stack stack and an input sequence of tokens ipts, we will sometimes write
@, for srator stack and @; for irator ipts.

We now have enough information to write an operator-precedence parser,
which continues parsing until the stack and input are both empty. The state
maintained by the parser includes a stack with an operator ®; on top, a current
expression e, and the input, which begins with the operator @;. At each step, the
parser may shift e and @; onto the stack, or it may reduce the stack, consuming
@, and the expression below it. Reducing @, creates a new APP node with
operator @, and it will eventually be a left descendant of @;. Shifting @;
guarantees that @; will be reduced before @;,, and that it will eventually be
a right descendant of @;. We choose whichever alternative is correct without
parentheses.
(infix)+=
exception Associativity (* raised if a + b + ¢ and + is nonassociative *)
local
exception Impossible
fun parse’ (BOT, e, EOI) = e
| parse’ (stack, e, ipts) =
if noparens(srator stack, irator ipts, LEFT) then (* reduce *)
case stack
of RATOR ($, e’, stack’) => parse’(stack’, APP(e’, $, e), ipts)
| BOT => raise Impossible (* BOT has lowest precedence *)
else if noparens(irator ipts, srator stack, RIGHT) then (* shift x)
case ipts
of INFIX ($, a, ipts’) => parse’ (RATOR($, e, stack), parse_atom a, ipts’)
| EOI => raise Impossible (* EOI has lowest precedence *)
else
raise Associativity
and parse (IMAGE(a, tail)) = parse’(BOT, parse_atom a, tail)
and parse_atom (LEX_ATOM a) = AST_ATOM a
| parse_atom (PARENS im) = parse im
in
val parse = parse
end

Making srator and irator return minrator for BOT and EOI guarantees that
we always shift when the stack is empty and reduce when there are no more
inputs. The conditions for shifting and reducing are mutually exclusive; we
exploit that fact in the proof of correctness.

Unparsing infix expressions

Before getting into the details of unparsing, we had best show how to make
images from atoms and how to put parentheses around an image to make it
“lexically atomic.”
(infiz)+=

fun image a

fun parenthesize image

IMAGE (LEX_ATOM a, EOI)
IMAGE (PARENS image, EOI)

We also have to be able to combine two images by putting an operator between
them:
(infiz)+=
local
fun append(EQI, image’) = image’
| append(INFIX($, a, tail), image’) = INFIX($, a, append(tail, image’))
in
fun infixImage(IMAGE(a, tail), $, IMAGE(a’, tail’)) =
IMAGE(a, append(tail, INFIX($, a’, tail’)))
end

To unparse an expression, we produce a fragment that contains not only
the image of the expression, but also the lowest-precedence operator used in
the expression. That operator tells us everything we need to know to decide
whether to parenthesize that expression when it is used.

We define the top-level operators of an image to be those operators that
appear outside of parentheses. If an image has any top-level operators, then
the top-level operators of least precedence must all have the same associativity,
which must be LEFT or RIGHT. Otherwise, one of those operators would have
to be in parentheses, which contradicts the assumption that they are top-level
operators. We use bracket(frag, side, rator) to parenthesize a fragment
frag that is to appear next to an operator rator, on the side labelled side:
(infix)+=

fun bracket((inner, image), side, outer) =
if noparens(inner, outer, side) then image else parenthesize image

Given the ability to bracket fragments, unparsing is straightforward. We create
another phony operator maxrator, having precedence maxprec, which must be
higher than the precedence of any true operator, so we can use it in fragments
made from atoms.
(infiz)+=
local
val maxrator = ('"<maximum-precedence operator>", maxprec, NONASSOC)
fun unparse’ (AST_ATOM a) = (maxrator, image a)
| unparse’ (APP(1, $, r)) =
let val 1’ = bracket (unparse’ 1, LEFT, $)
val r’ = bracket (unparse’ r, RIGHT, §)
in ($, infixImage(l’, $, r’))
end
in
fun unparse e =
let val ($, im) = unparse’ e
in im
end
end

The use of bracket maintains the precedence and associativity invariants of
the fragments. unparse first computes a fragment, then discards the operator,
leaving only the image.

Proof of correctness

Proving the simple unparser correct is not intrinsically interesting, but it helps
to formalize our insight about how the parser and unparser work together. The
most important part is Proposition 2, which gives the properties of the top-level
operators produced during unparsing.

We begin with a lemma stating that the operator produced with parse’
accurately reflects what’s in the accompanying image.

Definition 1 A fragment frag = (rator, im) is covered if and only if for all
top-level operators & in im,

prec @ > precrator A prec @ = precrator = assoc® = assocrator.

A covered fragment is tight if and only if there is at least one top-level operator
in im or rator = maxrator.

The intuition behind a covered fragment (rator, im) is that im can safely
appear next to rator without parentheses.
We can now show that bracketing and unparsing preserve tightness.

Lemma 1 (Bracketing lemma) If fragment £ is tight, then for any operator
rator and associativity a, bf = (rator, bracket(f, a, rator)) is covered.

Proof Let £ = ($, im). If the result of bracket is parenthesized, then bf is
trivially covered. Otherwise, noparens($, rator, a) holds, which means that

prec$ > precrator A prec$ = precrator = assoc$ = assocrator = a.

Since f is tight, for any top-level operator @;, in im, prec®;, > prec$ >
precrator. Moreover, if prec ®;, = precrator, then both are equal to prec$,
and by the tightness of £ they all have the same associativity. <&

Proposition 1 For any ezpression e, unparse’ e is tight.

Proof By structural induction. The base case is trivial.

For the induction step, we let e =1 @ r, and we prove tightness first.

The induction hypothesis and the bracketing lemma tell us that fragments
(#,1') and (®,r') are covered. By reasoning like that used in the bracketing
lemma, the fragment (&, infixImage(1’,®,r’)) is covered. Since @ is a top-level
operator in infixImage(1l’,®,r’), the fragment is tight. &

Proposition 2 If an expression e = APP(1,®,), then choose 1' and r' so we
can write unparse e = 1’ d r'.

1. If ® is non-associative, then every top-level operator in 1' and ' has a
precedence greater than that of &.

2. If & is left-associative, then every top-level operator in r' has a precedence
greater than that of &®.

3. If & 1is right-associative, then every top-level operator in 1' has a prece-
dence greater than that of @.

Proof Follows from tightness and from the definition of noparens, which forces
parenthesization unless top-level operators with the precedence of & are left-
associative in 1’ and right-associative in r'. O

We prove parse (unparse e) = e by structural induction on the expres-
sion e. To make the induction work, we’ll have to prove something a bit more
elaborate.

Proposition 3 (Correctness of unparsing) Let e be any expression. Choose
a and tail such that we can write IMAGE(a, tail) for unparse e. Let s be
a stack and i be an image sequence of type image’ such that, for any top-level
operator @' in tail,

noparens(®', srator s,RIGHT) and noparens(®', irator i, LEFT).
Then parse’ (s, parse_atom a, append(tail, i)) = parse’(s, e, 1i).
parse (unparse e) = e follows immediately by letting s = BOT and i = EOI.
Proof If e is an atom, we can write e = AST_ATOM a, and the proof is trivial:

unparse (ATOM a) = IMAGE (LEX_ATOM a, EOI)

parse’ (s, exp (LEX_ATOM a), append(EOI, i)) =
parse’ (s, ATOM a, i) = parse’(s, e, i)

For the induction step, e must have the form e = APP(1, &, r), and we can
choose 1’ and r’ such that unparse e = 1’ @ r'. Note that either

1’ = unparse 1 or 1’ = parenthesize(unparse 1).
In the latter case, 1' = IMAGE(PARENS(unparse 1),E0I), and

parse’(s, exp(PARENS(unparse 1)),i) = parse'(s,parse(unparse 1),1)
= parse'(s,1,i)
by the induction hypothesis, for any s and i. A similar argument applies to r'.

We can therefore apply the induction hypothesis to 1’ and r’ without worrying
if they have been parenthesized.

Let us write im = unparse e =1’ @ r’ and 1’ = IMAGE(aj, t1). Now con-
sider P = parse/(s, exp a;, t; @ r’ i), and let @' be any top-level operator in t;.
If & is non- or right-associative, then by Proposition 2, prec®’ > prec®,
and therefore noparens(®’, ®,LEFT). If & is left-associative, then by tightness
noparens(®’, ®, LEFT). In either case we can apply the induction hypothesis by
letting new i’ = &r’ i, concluding that P = parse’(s,1,®r’ i). By hypothesis,
noparens(®, srator s,RIGHT), so the parser shifts, and if r' = IMAGE(a,,t,) we
have P = parse’(®1 s, exp a,,t, i). Again we argue by case analysis on the as-
sociativity of @ that for any top-level operator &’ in t,, noparens(®’, &, RIGHT).
We reapply the induction hypothesis, this time letting new s’ = &1 s, conclud-
ing that P = parse’(®1 s,r,i). By hypothesis, noparens(®, irator i, LEFT),
the parser reduces, and we have

P = parse’(s,APP(1,®, 1), i) = parse’(s, e, i).

4 Adding prefix, postfix, and juxtaposition

Unparsing simple infix expressions is straightforward, but simple infix expres-
sions are inadequate for many real programming languages, including C and
ML. In this section, we add unary prefix and postfix operators, we add infix
operators of arbitrary arity, and we permit the juxtaposition of two expressions
to stand for the implicit binary operator juxtarator. Moreover, we use the
Standard ML modules system to generalize our idea of what an image is, so we
can produce output for a prettyprinter as well as just text.

Having prefix and postfix operators means that precedence alone no longer
determines the correct parse, because the order of two prefix or of two postfix
operators overrides precedence. For example, if Y and [] are prefix operators
and @ is an atom, then no matter what the precedences of " and [[, >_ [[@ and
I1>° @ are both correct and unambiguous, equivalent to > (][] @) and [[(}] @),
respectively.

Having infix operators of arbitrary arity enables us to broaden our view of
non-associative operators. For example, in both ML and C, the following three
expressions are all legal, but all different:

£((a, b), c) #£(a, b, c) #£(a, (b, <))

We can handle this situation by treating the comma operator as an n-ary infix
operator.
These changes lead to a new representation of expressions, in which operators
may be unary, binary, or n-ary.
(type of expressions)=
datatype ast = AST_ATOM of Atom.atom
| UNARY of rator * ast
| BINARY of ast * rator * ast
| NARY of rator * ast list

10

It will be convenient to treat NARY(&®, [el) as equivalent to e for any .

In this more general implementation, the atomic components of expressions
are not limited to strings, but may be any value of type Atom.atom. The
structure Atom need not be given at compile time; it is a parameter to the
unparser module, and its only obligation is to provide the following types and
values:

(properties of structure Atom)=
type atom
val parenthesize : atom list -> atom

The unparser takes an abstract syntax tree and produces a concrete represen-
tation of type atom list; if it needs to parenthesize such a list, it uses the
function Atom.parenthesize.

The user of the unparser can pick any convenient representation, e.g., strings
or prettyprinter directives. If juxtaposition is permitted, the user must also
supply juxtarator, the operator that is used implicitly when two expressions
are juxtaposed.

(properties of structure Atom)+=
type precedence = int
val juxtarator : atom * precedence * Assoc.associativity (* infix juxtaposition *)

Finally, we ask the user of the unparse to supply minimum and maximum prece-
dences, so we can continue to use the phony minrator and maxrator as sentinels.

(properties of structure Atom)+=
val minprec : precedence (* precedence below that of any operator *)
val maxprec : precedence (* precedence above that of any operator *)
val bogus : atom (* bogus atom used to construct phony operators *)

We use the new notion of fizity to distinguish prefix and postfix operators
from infix operators. Only infix operators have associativity.

(assoc.sml)y=
structure Assoc = struct
datatype associativity = LEFT | RIGHT | NONASSOC
datatype fixity = PREFIX | POSTFIX | INFIX of associativity
end

Operators have a concrete representation, a precedence, and a fixity. Juxtapo-
sition is always infix.

(general types)=
type precedence = int
type rator = Atom.atom * precedence * fixity
val juxtarator = let val (t, p, a) = Atom.juxtarator in (t, p, INFIX a) end : rator

11

In images, operators and atomic terms no longer alternate, but they are still
properly parenthesized:

1mage = {operator|lexical—atom}
lexical-atom = (ato1n|(image))

The corresponding ML types are:

(general)=
datatype image = IMAGE of lexeme list
and lexeme = EXP of lexical_atom
| RATOR of rator
and lexical_atom = LEX_ATOM of Atom.atom
| PARENS of image

where lexeme corresponds to (operator|lezical-atom).
The unparser should return a list of atoms, so here is a function that converts
an image into a list of atoms, using Atom.parenthesize for parenthesization.

(general)+=
local
fun image (IMAGE 1) = map lexeme 1
and lexeme (EXP a) = lexical_atom a
| lexeme (RATOR (atom, _, _)) = atom
and lexical_atom (LEX_ATOM atom) = atom
| lexical_atom (PARENS im) = Atom.parenthesize (image im)
in
val flatten = image
end

Parenthesizing general expressions

As in the simpler case, our strategy for developing an unparser begins with the
invariants that apply to an abstract syntax tree produced by parsing an image
without any parentheses. Here there are three cases to consider: an operator is
the left child of a binary infix operator, the right child of a binary infix operator,
or the only child of a unary prefix or postfix operator.

53] 2] 2]

@ S @I

(a) (b) (c)
Because these trees are obtained by parsing parenthesis-free syntax, in case (a),
noparens(®1, ®,LEFT); in case (b), noparens(®,, ®,RIGHT); and in case (c),

12

noparens(®’, ®, NONASSOC). As before, the rules for parenthesization are en-
capsulated in a noparens function.
(general)+=

fun noparens(inner as (_, pi, fi) : rator, outer as (_, po, fo), side)

These rules can be understood as follows:

If the inner operator has higher precedence, parentheses are never needed.

If a postfix operator appears to the left of an infix operator (a), it always
applies to the preceding expression, and parentheses are never needed.
Similarly when a prefix operator appears to the right of an infix opera-
tor (b).

In case (a), if @; has lower precedence than &, then parentheses are needed,
but if the two have the same precedence, then parentheses can be avoided,
provided both are left-associative. A similar argument applies to case (b)
when both operators are right-associative.

Finally, in case (c), if the precedence of @' is no greater than the prece-
dence of @, then parentheses can be avoided if and only if both operators
have the same fixity, i.e., both are prefix operators or both are postfix
operators. This is the case in the example of > [@ used to introduce this
section.

These rules for parenthesization, as embodied in the noparens predicate, are the
key to understanding both parsing and unparsing algorithms. The noparens
function is used in an unparser, which is given here, and in a parser, which
appears in Appendix A.

As before, the unparser needs auxiliary functions to manipulate images.
Because an image is now simply a list of lexemes, these functions are a bit
simplified.

(general)+=

fun image a
fun parenthesize image

IMAGE [EXP (LEX_ATOM a)]
IMAGE [EXP (PARENS image)]

fun infixImage(IMAGE 1, $, IMAGE r) = IMAGE (1 @ RATOR $:: r)
where @ is ML’s built-in append operator.
We use the same bracket to parenthesize sub-expressions.

(general)+=
fun bracket((inner, image), side, outer) =

if noparens(inner, outer, side) then image else parenthesize image

13

pi > po orelse (x (a), (®), or (<)
case (fi, side)
of (POSTFIX, LEFT) => true (* (a)
| (PREFIX, RIGHT) => true (* (b)
| (INFIX LEFT, LEFT) => pi = po andalso fo = INFIX LEFT (* (a)
| (INFIX RIGHT, RIGHT) => pi = po andalso fo = INFIX RIGHT (* (b)
I, NONASSOC) => fi = fo (* (c)
| _ => false

*)

*)
*)
*)
*)
*)

The structure of the unparser is as before:

(general)+=
local
val maxrator = (Atom.bogus, Atom.maxprec, INFIX NONASSOC)
exception Impossible
(function unparse’, to map an expression to a fragment)
in
fun unparse e =
let val ($, im) = unparse’ e
in flatten im
end
end

The unparsing function itself has new cases: the unary operator and the n-
ary operator. The unary operator appears before or after its operand, depending
on its fixity.

(function unparse’, to map an expression to a fragment)=
fun unparse’ (AST_ATOM a) = (maxrator, image a)
| unparse’ (BINARY(1, $, 1)) =
let val 1’ = bracket (unparse’ 1, LEFT, $)
val r’ = bracket (unparse’ r, RIGHT, $)
in ($, infixImage(1l’, $, r’))
end
| unparse’ (UNARY($, e)) =
let val e’ = bracket (unparse’ e, NONASSOC, $)
val empty = IMAGE []

val (_, _, fixity) = §
in ($, if fixity = PREFIX then infixImage(empty, $, e’)
else infixImage(e’, $, empty))

end
| unparse’ (NARY(_, [1))
| unparse’ (NARY($, [el))
| unparse’ (NARY($, e::es)) =
let val leftmost’ = bracket(unparse’ e, LEFT, $)
fun addOne(r, 1’) = infixImage(l’, $, bracket(unparse’ r, RIGHT, $))
in ($, foldl addOne leftmost’ es)
end

raise Impossible
unparse’ e

The case for the n-ary operator inserts the operator $ between the operands.
Because both LEFT and RIGHT are used in the arguments to bracket, operator
must be non-associative for the operands to be parenthesized properly. Of
course, this is the only case that makes sense, since a left- or right-associative
operator can always be treated as an infix binary operator—the n-ary case is
needed only for non-associative operators.

14

5 Application

Using the unparser to emit code is mostly straightforward. The New Jersey
Machine-Code Toolkit (Ramsey and Ferndndez 1995) uses the unparser to emit
C code. Most of the expressions in the C code come from solving equations
(Ramsey 1996). Internally, the toolkit represents expressions using a different
ML constructor for each operator; this representation facilitates algebraic simpli-
fication. Emitting C code therefore takes three steps: transforming the internal
representation of expressions to the simpler representation used by the unparser,
running the unparser to get input for a prettyprinter, and finally running the
prettyprinter to get C source code. The prettyprinter uses a model like that
of Pugh and Sinofsky (1987), but it uses a dynamic-programming algorithm to
convert to text.

Assigning precedence and associativity is done easily and reliably by putting
operators in a data structure that indicates precedence implicitly and fixity
(which includes associativity) explicitly. A fragment of the structure used for C
is

(L,-[">>", u<<u])’
(L, [n+n s n_n]) s
(L, [nly'n’ n/n’ n*n])’

where L is an abbreviation for Assoc.INFIX Assoc.LEFT. Precedence increases
as we move down the structure. This data structure is transformed into func-
tions Cprec and Cfixity that return the precedence and fixity of given opera-
tors. These functions are used in turn to define functions that create values of
type Unparser.ast, e.g.,

fun binary $ =
let val optext = pptext (" " =~ § ~ " ")
in fn (1, r) => Unparser.BINARY(1l, (optext, Cprec $, Cfixity $)
end

val />>/ = binary ">>"

where pptext turns a string into input for the prettyprinter.

Functions like />>/ can be declared infix in ML; by careful use of such
declarations, we can generate C code by using ML code that is reminiscent of
C code. For example, this code fragment transforms the toolkit’s internal repre-
sentation of a range test into the Unparser.ast representation of the ultimate
C code. The internal form U.INRANGE(e, {lo, hi}) represents the predicate
lo < e < hi, in which e is an arbitrary expression, and lo and hi are integers
known at transformation time.

15

, T)

(parts of transformation to C)=
fun exp(U.INRANGE(e, {lo, hi})) =
if lo + 1 = hi then exp e /==/ ppcon lo
else ppcon lo /<=/ exp e /&&/ exp e /</ ppcon hi

where ppcon converts an integer to a fragment of prettyprinter input, which is
of the proper type Atom.atom.

The fixity of operators is not always exactly what one might expect. For
example, the C operators . and ->, which are used to select members from
structures and unions, are superficially binary infix operators, but their right-
hand “arguments” are never expressions but identifiers, and semantically they
are more like unary operators. The unparser in fact treats them as unary postfix
operators, choosing the representation dynamically according to what member
is being selected. For example, we write

(parts of transformation to C)+=
| exp(U.SELECT (e, membername)) = exp e dot membername

where dot dynamically builds a postfix operator:

fun dot (e, tag) =
Unparser .UNARY((pp.te ("." ~ tag), Cprec ".", Assoc.POSTFIX), e)
infix 9 dot

Some fragments of C may be unparsed before others. For example, in trans-
lating array access, the subscript appears in square brackets, so it can be un-
parsed independently. The subscript operation itself is represented by the empty
string, but it is given its proper precedence and associativity, which, for example,
enable the unparser to produce either *p[n] or (*p) [n] as required.

(parts of transformation to C)+=
| exp(U.ARRAY_SUB(a, n)) =
let val index = pplist (unparse (exp n))
val subscript = pplist [pptext "[", index, pptext "]"]

in Unparser.BINARY(exp a,
(pptext "", Cprec "subscript", L),
Unparser.AST_ATOM subscript)

end

A similar trick is used to unparse function calls after applying an n-ary comma
operator to the arguments. The function pplist concatenates a list of pret-
typrinter atoms; it is also used to define the function parenthesize that is
passed to the unparser:

fun parenthesize 1 = pplist [pptext " (", pplist 1, pptext ")"]

Putting the unparser together with a simple prettyprinter can produce read-
able C code. Here is code that emits a Pentium instruction to call a procedure
identified by an indexed addressing mode:

if (Mem.u.Index8.index !'= 4)

16

if (!((unsigned)Mem.u.Index8.d < 0x100))
fail("Mem.u.Index8.d = Ox%x won’t fit in 8 unsigned bits",
Mem.u.Index8.d);
else
{
emit(7 | 156 << 4 | 1 << 3, 1);
emit(4 | 3 << 3 | 1<< 6, 1);
emit(Mem.u.Index8.ss << 6 | Mem.u.Index8.index << 3 |
Mem.u.Index8.base, 1);
emit(Mem.u.Index8.d & Oxff, 1);
}
else
fail("Conditions not satisfied for comnstructor CALL.Epod");

Without an unparser based on precedence and associativity, we would have
extra parentheses. Parenthesizing every expression is too awful to contemplate,
but we can see what happens if we parenthesize all non-atomic expressions:

if ((((Mem.u).Index8).index) != 4)
if (!((unsigned(((Mem.u).Index8).d)) < 0x100))
£fail((("((Mem.u) .Index8).d = Ox%x won’t fit in 8 unsigned bits"),
(((Mem.u) .Index8).d)));
else
{
emit ((((7 | (15 << 4)) | (1 << 3)), 1));
emit ((((4 | (3 << 3)) | (1 << 86)), 1));
emit ((((((((Mem.u).Index8).ss) << 6) |
((((Mem.u) .Index8).index) << 3)) |
(((Mem.u) .Index8) .base)), 1));
emit ((((((Mem.u) .Index8).d) & Oxff), 1));

}

else
fail(("Conditions not satisfied for constructor CALL.Epod"));

This code is ugly, but manageable. Code with more complicated expressions
quickly becomes unreadable. Luckily, just is it has been plugged into a rewritten
machine-code toolkit, the unparser in this paper can be plugged into any other
tool that needs to emit idiomatic code in a high-level language.

17

References

Aho, Alfred V., Brian W. Kernighan, and Peter J. Weinberger. 1988.
The AWK Programming Language.
Reading, MA: Addison-Wesley.

Aho, Alfred V., Ravi Sethi, and Jeffrey D. Ullman. 1986.
Compilers: Principles, Techniques, and Tools.
Addison-Wesley.

Hughes, John. 1995.
The Design of a Pretty-printing Library.
In Jeuring, J. and E. Meijer, editors, Advanced Functional Programming,
pages 53-96. Springer Verlag, LNCS 925.

Knuth, Donald E. 1984.
Literate programming.
The Computer Journal, 27(2):97-111.

Milner, Robin, Mads Tofte, and Robert W. Harper. 1990.
The Definition of Standard ML.
Cambridge, Massachusetts: MIT Press.

Oppen, Derek C. 1980 (October).
Prettyprinting.
ACM Transacations on Programming Languages and Systems, 2(4):465—
483.

Paulson, Laurence C. 1991.
ML for the working programmer.
New York: Cambridge University Press.

Pugh, William W. and Steven J. Sinofsky. 1987 (January).
A new language-independent prettyprinting algorithm.
Technical Report TR 87-808, Cornell University.

Ramsey, Norman and Mary F. Ferndndez. 1995 (January).
The New Jersey Machine-Code Toolkit.
In Proceedings of the 1995 USENIX Technical Conference, pages 289-302,
New Orleans, LA.

Ramsey, Norman. 1996 (April).
A simple solver for linear equations containing nonlinear operators.
Software—Practice & Experience, 26(4):467-487.

Ullman, Jeffrey D. 1994.

Elements of ML Programming.
Englewood Cliffs, NJ: Prentice Hall.

Wirth, Niklaus. 1977 (November).
What can we do about the unnecessary diversity of notation for syntactic
definitions?
Communications of the ACM, 20(11):822-823.

18

A A parser for general expressions

The parser shown here is the inverse of the unparser in the body of the pa-
per. It handles prefix, postfix, and infix operators, and it automatically inserts
juxtarator whenever two expressions are juxtaposed in the input. The parser’s
main data structure is a stack of operators and expressions satisfying these in-
variants:

1. No postfix operator appears on the stack.
2. If a binary operator is on the stack, its left argument is below it.

3. An expression on the stack is preceded by a list of prefix operators, then
either an infix operator or the bottom of the stack.

We encode these invariants in the type system only in part—the type system
does not actually distinguish prefix and infix operators, so the names prefix
and infixop' are abbreviations only.

(general)+=
type infixop = rator
type prefix = rator
datatype stack = BOT
| BIN of infixop * ast * prefix list * stack
type stacktop = (prefix list #* ast)

Again, we create the bogus operator minrator to appear on the bottom of the
stack:

(general)+=
val minrator = (Atom.bogus, Atom.minprec, INFIX NONASSOC)
fun srator (BIN ($, _, _, _)) = §
| srator BOT = minrator

The input we're parsing looks something like this:
image = {preﬁx}le:m'cal—atom{postﬁx} { [inﬁx] {preﬁx}lexical-atom{postﬁx}}

In parsing, we assume that we can distinguish prefix, postfix, and infix oper-
ators. If juxtaposition is forbidden, these restrictions can be relaxed somewhat;
it is then sufficient to be able to distinguish postfix from infix operators. The
adjustments needed are left as an exercise for the reader. This function identifies
prefix operators.

(general)+=
fun isPrefix (_, _, f) = f = PREFIX : bool

linfix is a reserved word in ML.

19

We use two parsing functions, parse _prefix and parse_postfix, depending
on whether we are before or after an atomic input. The overall structure of the
parser is

(general)+=
exception ParseError of string * rator list
local
exception Impossible
(general parsing functions)
in
val parse = parse
end

There are many cases. parse prefix saves prefix operators until reaching
an atomic input. It is not safe to reduce the prefix operators, because the
atomic input might be followed by a postfix operator of higher precedence. If
parse_prefix encounters a non-prefix operator or end of file, the input is not
correct. When parse_prefix encounters an atomic input, it passes input and
the saved prefixes to parse_postfix.

(general parsing functions)=
fun parse_prefix(stack, prefixes, RATOR $:: ipts’) =
if isPrefix $ then
parse_prefix(stack, $:: prefixes, ipts’)
else
raise ParseError("%s is not a prefix operator", [$])
| parse_prefix(_, _, [1) = raise ParseError ("premature EOF", [])
| parse_prefix(stack, prefixes, EXP a :: ipts’) =
parse_postfix(stack, (parse_atom a, prefixes), ipts’)

20

In addition to the stack and the input, parse_postfix maintains a current
expression e, and a list prefixes containing unreduced prefix operators that
immediately precede e. The general idea is that operators arriving in the input
must be tested either against the nearest unreduced prefix operator, or if there
are no unreduced prefix operators, against the operator on the top of the stack.
In the first case, the nearest unreduced prefix operator is called $, and it may be
compared with an operator irator from the input. If $ has higher precedence,
it is reduced, by using UNARY to apply it to the current expression e, and it
becomes the new expression. Otherwise, the parser’s behavior depends on the
fixity of irator; it may reduce irator, shift it, or insert juxtarator.

(general parsing functions)+=
and parse_postfix(stack, (e, $:: prefixes),
ipts as RATOR (irator as (_, _, ifixity)) :: ipts’) =
if noparens($, irator, NONASSOC) then (* reduce prefix rator *)
parse_postfix(stack, (UNARY($, e), prefixes), ipts)
else if noparens(irator, $, NONASSOC) then (* irator has higher precedence *)
case ifixity
of POSTFIX => (* reduce postfix rator *)
parse_postfix(stack, (UNARY(irator, e), $:: prefixes), ipts’)
| INFIX _ => (* shift, look for prefixes *)
parse_prefix(BIN(irator, e, $:: prefixes, stack), [], ipts’)
| PREFIX => (insert juxtarator)
else
raise ParseError
("can’t parse (%s e ’%s); operators have equal precedence", [$, irator])

If parse postfix encounters an atom in the input, it inserts juxtrarator no
matter what the state of unreduced prefixes, since consuming atoms is the
purview of parse prefix.

(general parsing functions)+=
| parse_postfix(stack, (e, prefixes), ipts as EXP _ :: _) =
(insert juxtarator)

The insertion itself is straightforward.

(insert juxtarator)=
parse_postfix(stack, (e, prefixes), RATOR juxtarator :: ipts)

21

The other major case for parse postfix occurs when there are no more
unreduced prefix operators. In that case, comparison must be made with srator
stack, the operator on top of the stack.

(general parsing functions)+=
| parse_postfix(stack, (e, prefixes as []),
ipts as RATOR (irator as (_, _, ifixity)) :: ipts’) =
if noparens(srator stack, irator, LEFT) then (* reduce infix on stack *)
case stack
of BIN ($, e’, prefixes, stack’) =>
parse_postfix(stack’, (BINARY(e’, $, e), prefixes), ipts)
| BOT => raise Impossible (* BOT has lowest precedence *)
else if noparens(irator, srator stack, RIGHT) then
case ifixity
of POSTFIX => (* reduce postfix rator *)
parse_postfix(stack, (UNARY(irator, e), []1), ipts’)
| INFIX _ => (* shift, look for prefixes *)
parse_prefix(BIN(irator, e, [], stack), [], ipts’)
| PREFIX => (insert juxtarator)
else
raise ParseError ("%s is non-associative", [irator])

When the input is exhausted, we reduce the prefixes, then the stack, until
we finally have the result.

(general parsing functions)+=
| parse_postfix(stack, (e, $:: prefixes), []) = (* reduce prefix *)
parse_postfix(stack, (UNARY($, e), prefixes), [])
| parse_postfix(BIN ($, e’, prefixes, stack’), (e, [1), [1) = (* reduce stack *)
parse_postfix(stack’, (BINARY(e’, $, e), prefixes), [])
| parse_postfix(BOT, (e, [1), [1) = e
We complete the parser with functions that parse an entire input, or an
input in parentheses.

(general parsing functions)+=
and parse(IMAGE(1)) = parse_prefix(BOT, [], 1)
and parse_atom (LEX_ATOM a) = AST_ATOM a
| parse_atom (PARENS im) = parse im

22

