| mplementation of the Legion Library

Adam J. Ferrari, Mike Lewis, CharlesL. Viles
and
Anh Nguyen-Tuong, Andrew S. Grimshaw

The Legion Research Group*
Technical Report CS96-16
Department of Computer Science
University of Virginia
DRAFT: 11/26/96

Abstract

Legion is a multi-year ébrt to design andubld scalable meta-computer soétve. Leion pro-
vides the softare “glue” for seamless irgeation of distrilnted, heterogeneous haraw and
software components. Much of this “glue” is prded in Lagion’s run-time libraryIn this docu-
ment we preide a detailed description of the implementation of thgidrerun-time libraryThe
library is designed and implemented as a layered, configurableaseftnotocol stack. This
design, coupled with arvent-based mechanism for idayer communication, enables a consid-
erable flgibility and extensibility. In this document, we first present the library irgeef and

shav how the library can be used “as is”, without internal modificatioa.tién sha how to
modify or add functionality to the librar¥inally, we pravide qualitatve descriptions of v the
library could be gtended to encompass programming styles and methods besides the object-ori-
ented, macro data-fiostyle that is Lgion’s initial taget.

1. Introduction

The Legion project at the Umersity of Mrginia (http://legion.virginia.edu/) attempts todcilitate

the integration of disparate, disttiibed, and heterogeneous system components into a single vir-
tual meta-computeilhe Legion project does not specifically prescrib&gystem components
should be implemented - only the functionality of these components and through this functional-
ity, some of the interactions between themwHEle@r, our goals are much ger than the simple
specification of component functionality: some issues can onlydmieed with a wrking sys-

tem. From our perspees, the importance of aokking implementation cannot beerystated. In

this paper we describe the initial implementation of thgidre Run-time Library (hereaftethe
“Library”).

This paper is specific in its thrust in the fallog ways. W focus narnely on the design and
implementation of the LibraryMe do not attempt to describe theglan project in its entirety

1. This work partially supported by ARPA(Navy) contract # N66001-96-C-8527, DOE grant DE-FD02-
96ER25290, and DOE contract Sandia LD-9391.

(see [4]) nor do we describe a complete implementation of a system that wiieaahief
Legion’s objectves. The purpose of this paper is to describe our initial implementapeni-e
ence with the Library and to document its state as of mieMber 1996The implementation
will continue to evolve.

This report tagets those who wish to use the Library tddbtheir avn services/applications or
those who intend to modify or augment the Library in saasibn. Accordinglythis document

is more a manual than a pap&fter a short introduction into the g®n project and its goals, we
introduce seeral key concepts of the Library and its implementation in Section 2. These concepts
are necessary to understanavtibe library vorks and thus to unlock theXibility it provides. In
Section 3, wexplain in detail hav to use the Library as is, i.e without internal modification. Sec-
tion 4 describes Woto modify or tend the Librarys capabilities. @ illustrate the Libraryg flex-
ibility, we describe he it might be modified to accommodate simple message passing, acti
messages, and multiple threads. The Appendisgh complete translation of a C++ based
Legion object that uses the Library to accept metheodations and to return results. The Appen-
dix also includes detailed intades for seeral of the important C++ classes in our implementa-
tion of the Library

On-line documentation about the implementation (including codegikhle athttp://legion.vir-
ginia.edu/.

1.1 TheLegion Vision

Legion is an ambitious project.&hope to reolutionize high-performance distribed computing
by providing unified access to distribed, heterogeneous computational resources where such
access has prmusly been impossible oxemely dificult. Our orerall vision is shaped by the
following ten objecties:

e Scalability

» High Performance

» Ease of use

» Extensibility

* Persistent object space

* Security

* Multi-language support

» Exploitation of resource hetero-geneity
e Site Autonomy

* Fault-tolerance.

The Legion Library implementation is aa« component for achieng extensibility, and is vital in
a number of other areas, especialigurity, ease of use, andfault-tolerance. More detail on the
Legion vision and objeates can be found in [4].

2. Basics

This section describes some of the most fundamental aspects of the. dibeanyodules, classes,
and concepts described in this section pgevthe librars implementation, and must therefore be

familiar to you before we describe the rest of the library.

2.1 LegionBuffersand packability

A Legion buffer, represented by the C++ object classLegi onBuf f er, isthe fundamental data
container in the Legion Library. A Legionl buffer exports operations to read and write data from
and to alogical buffer. Instances of different kinds of Legi onBuf f er s export the same inter-
face and perform the same basic function, but can have different characteristics from one another.
For example, one Legi onBuf f er may copy the data it containsinto heap-allocated memory,
another may simply maintain pointersto the data, and athird may read and write its data from and
to afile. Further, Legi onBuf f er s may also choose to compress or encrypt data, or both. To
define its characteristics, each Legi onBuf f er containsalegi onSt or age, aLegi on-
Packer,alegi onEncrypt or,alLegi onConpr essor, and Met aDat a.

2.1.1 LegionStorage

A Legi onSt or age determines how the datais stored. One type of Legi onSt or age pro-
vided inthe Library isLegi onSt or ageScat , which storesits data as alinked list of pointers
to chunks that contain the data. A Legi onSt or ageScat can be configured to copy the data
into chunks that it allocates, or to maintain pointers to data “ owned” by other parts of the library.
Another type of Legi onSt or age isalLegi onSt or agePer si st ent , which storesdatain
afile. Different Legi onSt or ages will have unique characteristicsin terms of performance
and even operation. For instance, selecting aLegi onSt or ageScat that does not copy its data
may be efficient, but extra care must be taken not to delete data “ out from under” the buffer, leav-
ing dangling pointers.

Although alLegi onSt or age exportsfunctionsto directly access abuffer’s data (Section 8.4.2),
these functions typically should not be called directly by the user of aLegi onBuf f er. Instead,
the user should call the functions in the interface provided by the Legi onPacker portion of a
Legi onBuffer.

2.1.2 LegionPacker

A Legi onPacker determinesthe dataformat conversion operations, if any, that are performed
on the contained data when it is written to and read from the buffer. Legi onPacker isthe pri-
mary mechanism in the Library for dealing with the fact that machines with different architec-
tures, which store datain different formats (i.e. big vs. little endian, 32-bit vs. 64-bit words, etc.),
need to communicate with one another. The Library supports three different equivalence classes
of architectures, whichwecall Al pha, Spar ¢, and x86. For efficiency reasons, L egion assumes
a“receiver makesright” [11] data conversion policy, where the sender of a message (i.e. the orig-
inal creator of aLegi onBuf f er) packs the messagein its own native format, and the receiver
of the message is responsible for converting the data to the format appropriate for the architecture
onwhich it resides. Thus, the Library provides six different types of packers of the form

Legi onPacker X2Y, where X and Y are two different members of { Spar c, Al pha, x86}.
None of the six packers does any conversion when writing to the buffer, but each convertsdatain
the appropriate way when reading from the buffer. Legi onPacker X2Y is appropriate to use
when the datais stored in format X, but the machine currently holding the buffer uses format Y.
When the datais aready stored in the appropriate format for the architecture on which it is being
read, or when data conversion is done outside aLegi onBuf f er, Legi onPacker Def aul t

can be used to ensure that no dataversion will tale place on reads from thafter.

The interbce preided by a LgionPacker consists of functions of the form

put _zzz(zzz *source, int how _many)
and

get _zzz(zzz *source, int how_many)

wherezzz names a basic C++ data type, ¢bar,short,ushort,i nt,| ong, ul ong,

f | oat, ordoubl e. Thus, d.egi onPacker exportsput _char (),get _char (),

put short(),get _short (), etc. ‘Sour ce” points to an array offfow_nany” instances
of typezzz. Theput _zzz() function copies this data into thafter after first performing the
appropriate data cgarsion operation if it is necessary for the typé®fi onPacker that is
instantiated. Thget _zzz() function fills the complementary role, first eenting the data and
then coping it intosour ce.

The code xample in Figure 1 illustrates the use of ki onPacker interface of d_egi on-
Buf f er. It also uses theeek() function—which is actually part of tHeegi onSt or age
interface (Section 8.4.2)—to ‘nend” the logical position within theuffer back to the kgnning.

2.1.3 LegionEncryptor

A Legi onEncr ypt or determines the encryption and decryption algorithms)ifthat are
applied to the data. The Library currently yides onlyLegi onEncr ypt or Def aul t , which
defines empty encryption and decryption operations.

2.1.4 LegionCompr essor

A Legi onConpr essor determines the compression and decompression algorithms, if an
that are applied to the data. The Library currentlyioles onlyLegi onConpr essor De-
faul t, which defines empty compression and decompression operations.

2.1.5 MetaData

Eight bytes of “meta-data”, three of which are currently used, are associated and carried with each
Legi onBuf f er. The meta-data indicates the format in which the data is stored, and the algo-
rithms, if ary, that were used to encrypt and/or compress the data. The meta-data fieklsesd v

that are supported by the Library are defined in the Appendix.

2.1.6 Packability

Legi onBuf f er s enable the concept of “packable” classes in the Libfagjass is packable if
it is derved from the abstract base claggyi onPackabl e (not to be confused withegi on-
Packer), and thereforexports the functions

pack(Legi onBuf fer & b)
and

unpack(Legi onBuf fer & b)

Bothpack() andunpack() take a single reference parameter that nankesga onBuf f er .
Thepack() function of a packable class writes its state intd_#ng@ onBuf f er in such a\ay
that theunpack() function of the same class can read it out. The state is typically written to and

read from the buffer using the LegionPacker part of aLegionBuffer interface, which
encapsul ates the data format conversion operations.

Suppose class Alpha (Figure 2 - top) is packable and exports the C++ == operator. If Alpha is
implemented correctly, then the code in Figure 2 - bottom should print “ OK”.

Classes are made packable for two reasons, (1) so they can be passed between heterogeneous
architectures within aLegionBuffer , and (2) so they can be written to aLegionBuffer as
part of a“save state” operation (Section 3.6). Since these two operations are so fundamental and
common to the Library, many parts of the Library only operate on packable classes. For instance,
many of the templated data structures are packable, and require the ability to call the pack()
member function of the contained data. Further, on a L egion object method invocation, each func-
tion parameter is passed within aLegionBuffer , so the easiest and “best” way to allow an
object to be a parameter of afunction isto make its class packable.

Making a class packable, i.e. implementing the pack() and unpack() functionsfor aclass, is
generally quite easy. The LegionBuffer exports storage operations for the primitive C++
types (Section 2.1.2). For complex types, when aclass X contains an instance of another packable

/l Use the default constructor to declare a new empty

/I LegionBuffer, which will be configured to contain the
/I default storage, packer, encryptor, and compressor.
LegionBuffer buffer;

/I Declare and initialize data to write into the buffer.
char *in_string = “Hello World”;
intin_int_array[5] = {100, 101, 102, 103, 104};

buffer.put_char(in_string, 11); I Insert the string.
buffer.put_int(in_int_array, 5); Il Insert the integers.
buffer.put_char(&in_string[6], 1); /I Insert a single char.
buffer.put_int(&in_int_array[3], 1); Il Insert a single int.

/I “Rewind” the buffer back to the beginning so we can read
// out the data we just wrote in.
buffer.seek(BEGINNING, 0);

/I Declare data structures to read the buffer data into.
char out_string[12];

int out_int_array[5];

char out_char;

int out_int;

/I Data must be read out in the same order it was put in,
/I but not necessarily the same way.

buffer.get_char(out_string, 6); /I Read 1st 6 chars.

for (j = 6;) <11, j++) /I Read the next 5,
buffer.get_char(&out_string[j], 1); // one at a time

out_string[11] = \0’

buffer.get_int(out_int_array, 5); /l Read the integers.

buffer.get_char(&out_char, 1); // Read the single char.

buffer.get_int(&out_int, 1); /I Read the single int.

Figurel. Using the LegionPacker interface.

/1 A generic, packable class
class Alpha : public LegionPackable {
private:
/1 private data
public:
/1 constructors and menber functions

int operator==(Alpha &other_alpha);

pack(LegionBuffer &Ib);
unpack(LegionBuffer &lb);
b
Alpha *A, B;

LegionBuffer buffer;

A = new Alpha(/* appropriate initial values */);
A->pack(buffer);

buffer.seek(BEGINNING, 0);
B.unpack(buffer);

/1 Make sure we unpacked into B exactly what we packed in A
if (*A==B)

printf("OK\n");
else

printf(“Bad news\n”);

Figure2. Declaration and use of a packable class.

classY, X'spack() function can ssmply contain acall to Y’spack() function. Thus, if Y is
packable, X does not need to know the datatypesthat Y containsin order to pack Y aspart of X's
state. Consider the simple example of atemplated array class depicted in Figure 3. Notice that the
Array class can be made packable even though it doesn’t know the type of the elementsit con-
tains. Array only requires that the contained elements are themselves packable.

template<class T>
class Array : public LegionPackable {
private:
T *array_data;
int num_elements;
public:
/Il “unpack” construct
Array(LegionBuffer &Ib) {
unpack (Ib);
}

/1l Other constructors, functions, and destructor go here

/1 Pack Array up. Assunes the elenments are thensel ves packabl e
int pack(LegionBuffer &Ib) {
Ib.put_int(&num_elements, 1);
for (int j=0; j<num_elements; j++)
array_datalj].pack(lb);
}

/1 Unpack the array in the sane order they were packed.
int unpack(LegionBuffer &Ib) {
if (array_data)
delete array_data;

Ib.get_int(&num_elements, 1);
array_data = new T[num_elements];

for (int j=0; j<num_elements; j++)
array_data[j].unpack(lb);
}
h

Figure3. A packable template class whose data members are themselves packable.

LegionBuffer isitself apackable class. Thus, one LegionBuffer can be contained
(packed) in another. Thisis shown at the top of Figure 4. If datais packed as a LegionBuffer, it
should be unpacked as one. Thus the data that was packed in Figure 4 (top) cannot be unpacked
correctly as using the code in Figure 4 (middle). This code will compile and run, but it will not
have the desired effect of unpacking the 10 characters—"HelloWorld ”—that were packed into
the buffer. Thisis because LegionBuffers prepend “user data’ with meta-data. Therefore,
hello_world_buf contains meta-data at the beginning of the buffer, and between “Hello
and “World ”. The correct way to unpack the datais given in Figure 4 (bottom).

LegionBuffer hello_buf;
char *hello = “Hello”;
hello_buf.put_char(hello, 5);

LegionBuffer world_buf;
char *world = “World”;
world_buf.put_char(world, 5);

LegionBuffer hello_world_buf;
hello_buf.pack(hello_world_buf);
world_buf.pack(hello_world_buf);

char hello_world[11];
hello_world[10] = \0’;

hello_world_buf.seek(BEGINNING, 0); /1 “Rewind” the buffer.

/I Try (unsuccessfully) to unpack all 10 characters at once.
hello_world_buf.get_char(hello_world, 10);

/I Declare two separate LegionBuffers for unpacking the two
/I buffers that were packed into hello_world_buf.
LegionBuffer outl, out2;

hello_world_buf.seek(BEGINNING, 0); // “Rewind” the buffer.
outl.unpack(hello_world_buf); /' Unpack hello_buf into outl.
out2.unpack(hello_world_buf); /' Unpack world_buf into out2.

char hello_world[11];
hello_world[10] = \0’;

outl.get_char(hello_world, 5); /I ' Unpack “Hello”.
out2.get_char(&hello_world[5], 5); /' Unpack “World".

/I This line will print “Helloworld”.
printf(hello_world);

Figure 4. Packing a Legion Buffer into another Legion Buffer (top). An incor-
rect (middle) and correct(bottom) method for unpacking are given as well.

LegionBuffers pack and unpack their bytes raw (without data format conversion) so that
each buffer maintains its own meta-data. This means, for example, that aLegionBuffer cre-
ated on an x86 architecture can be contained in aLegionBuffer ~ whose other dataisin
Alpha format. When the contained buffer isunpacked, aLegionBuffer with appropriate data
conversion operations will be instantiated; when the bytes are read out, the data will wind up in
the correct format for the architecture of the machine on which the data resides.

2.2 Reference Counting and Memory M anagement

The template class UValL_Reference , in concert with the class
UValL_ReferenceCountingObject , Isthe Library’s mechanism for autométic reference
counting and safe dynamic memory management. The mechanism isintended for heap allocated

C++ objects. It keeps track of references to each object that is“ shared” by different parts of the
library, and automatically deletes the object when all meaningful referencesto it have disap-
peared. Each reference counting object—i.e. each instance of a class derived from

UValL_Ref er enceCount i ngGObj ect —maintains an integer that indicates the number of
UVaL_Ref er ences that “point to” that object. When anew reference is made to point to an
object, the reference count within that object is incremented automatically. When a

UValL_Ref er ence gets overwritten with another value, or when alocal variable

UValL_Ref er ence falls out of scope, the reference count in the object to which the reference
pointsis automatically decremented. When the reference count fallsto zero, the object is automat-
icaly deleted. All of this happens without any intervention by the programmer or user of
UvalL_Ref er ences.

The decision to include an automatic reference counting mechanism in the Library was motivated
by two observations. (1) memory copies are expensive and often hinder the performance of mes-
sage passing code, and (2) keeping track of shared pointers and deciding which parts of the code
are responsible for deleting which chunks of heap-allocated memory is extremely error prone and
difficult to document effectively. Hopefully the automatic mechanism will combine the better
performance that comes from avoiding memory copies with the safety and correctness that comes
from not having to worry about managing dynamically allocated memory. Obvioudly, the auto-
matic reference counting mechanism introduces some overhead over simple pointer copies. We
believe the benefits outweigh these costs.

To bea*“casual user” of UVaL_Ref er ences, you need only remember one simple rule of
thumb and two simple exceptions:

UValL _Reference Rule of Thumb:

Read ‘UvaL_Ref erence<X> t” as “X *t” and then teat the variablé exactly as if it
were in fact a C++ pointer to clask.

Just about every operator that islegal on a pointer to a C++ object has been overloaded to work
correctly for UvaL_Ref er ences. The examplein Figure 5 showsthat UvaL_Ref er ences
can be used just as C++ aobject pointers would be. The implementation of the MyRCOclassin Fig-
ure 5 is unimportant beyond the fact that it is derived from

UValL_Ref er enceCount i ngObj ect and implementsthe functions that are used to illustrate
the point.

Exceptionsto the Rule of Thumb:

1. Never delete the memory that aUValL_Ref er ence “pointsto.” The memory will be
deleted when al references to the memory have been overwritten or go out of scope.

2. DonotuseaUvalL_Ref erence aoneasaboolean. “i f (t)...” will not compile,
but“if (t !'= NULL)...”and"if (!t)...” will work asexpected.

UValL_Ref er ences can also refer to non-heap-allocated memory, i.e. global and local vari-
ables. To insure that these objects are not automatically explicitly deleted by the mechanism, the

/I Definition and implementation of class MyRCO, which is

/I a reference counting object by virtue of

// being derived from class UValL_ReferenceCountingObject.

class MYRCO : public UvaL_ReferenceCounti nglbj ect {

private:
int contained_val;
public:

M/RCO() {contained_val = 0;}
M/RCO(i nt val) {contained_val = val;}

int set_value(int val) { return (contained_val = val);}
int get_value() {return (contained_val);}
i nt operator==(M/RCO &ot her _rco) {

return (contained_val == other_rco.contained_val);}
int operator!=(M/RCO &ot her_rco) {
return (contained_val != other_rco.contained_val);}

~M/RCQ() {printf(“Destructor called\n”);}
b

/I Create three new reference counting objects, pointed to by
/I variables a, b, and c. Notice that type (MyRCO *) is
/l automatically cast correctly to type UValL_Reference<MyRCO>.

UValL_Ref erence<MyRCO> a = new MYRC(O(1) ;
UWalL_Ref erence<MyRCO> b = new MyRC((2) ;
UalL_Ref erence<MyRCO> ¢ = new MyRC((3) ;

/I Show that * and -> work just like pointers.
a->set _val ue((*a).get _value()); //nochange tothe object

c = g

/I The object to which c originally pointed now has no more
Il references to it. Therefore, that object’s destructor will

// be called automatically. The object to which a points,

/I now has two references to it, a and c.

a = b;
/I The object to which a pointed is not automatically deleted
/I because c still points to it.

/I All of the print statements below will be executed.

/I Comparing objects is still different from comparing pointers.

if (*a == *b) printf(“a and b refer to objects whose values are ==.\n");
if (*a!=*c) printf(“a and c refer to objects whose values are !=.\n");
if (a ==0Db) printf(“a and b point to the same object.\n");

if (a!=<c) printf(“a and ¢ do not point to the same object.\n");

/l Make a and c point to objects that contain the same value.
c->set _val ue(a->get _val ue());

if (*Ya == *c) printf(“Now a and ¢ point to objects whose values are ==\n");
if (a!=¢c) printf(“a and ¢ still do not point to the sane object.\n");

Figure 5. Example declaration of areference counting object and its use with UVal_ References.

10

programmer should call the function makeNonHeapRef er ence() on the reference.

2.3 Legion Object Identifiers (LOIDs)

Naming in Legion occurs at two levels. All objects are named by a Legion Object Identifier
(LOID), but Legion will use standard protocols and the communication facilities of host operating
systems to support communication between Legion objects. Since LOID’s have meaning only at
the Legion level, Legion provides a mechanism by which LOID’s can be bound to “low-level”
names—obj ect addresses—that have meaning to the underlying protocols and communication
facilities. A Bindingisan <LOID, object address> pair. Binding <X, Y> indicates that the object
named by LOID X currently resides at the physical address indicated by object address Y. The
Library provides classesfor LOID’s, object addresses, and bindings. A mgjority of library users
will deal with naming only at the level of LOID’s, leaving object addresses and bindings to the
low-level library code. Therefore, we describe only the Legi onLO D classin detail in this sec-
tion.

2.3.1 LegionLOID

In the Library, aLOID isrepresented by the classLegi onLO D. A LOID contains atypefield,
followed by avariable number of variable size fields. Thefirst field indicates the Legion domain
in which the LOID was created, the second field is the class identifierthe third field is the
instance numbethe forth is a public key. The type, domain, and class identifier fields must be
present. An empty instance number indicates that the LOID names a L egion class object, and
empty public keys are allowed for less security conscious objects. A LOID may be appended with
any number of other fields, each of whose size and meaning are dependent on the LOID type.

Legi onLO Disintended to be the base class for derived LOID classes that implement different
types of LOIDs. We imagine that the classes that implement each LOID type will enforce differ-
ent properties having to do with the structure, content, and meaning of the various fields of the
LOID. Therefore, Legi onLO Dis not intended to be instantiated directly when the internal
fields of the LOID are being used and interpreted; instead the appropriate derived class should be
instantiated. So far, we have not implemented any derived classes that enforce special properties
about the fields of the LOID. Until we do, the Legi onGener al Pur poseLO Dclass can
manipulate all the fields of the LOID without enforcing any structure or special meaning to the
fields.

To show how to build a general purpose LOID, we give the code for afunction called

make | oi d() (Figure6). As parameters the function takes a string that represents the class
identifier of the object, and an integer that represents the instance number of the object. The func-
tion buildsa L OID that names an object inthedomain UVaL_Legi onDonai n_Virginia (a
library-defined constant), with class identifier and instance number assigned to the values passed
as parameters, and with an empty public key. The function returnsaUValL_Ref er ence toa
Legi onLO D.

Assuming that function make_| oi d() exists, the example in Figure 7 shows some of the func-
tionality of LOID’s.

11

Legi onLA D *

make_| oi d(char *cl assnanme, int instance_nunber) {
int i;
short *fld_sz; // WII carry the field sizes
char **fld_val; // WII carry the field val ues

/1l Create new structures to fill in an pass to the constructor.
fld_val = new (char *)[4];
fld_sz = new short[4];

/1 Field O : Domain
fld_sz[LEG ON_DOVAI N_FI ELD] = strlen(UvaL_Legi onDomai n_Virginia) + 1;
fld_val [LEG ON_DOVAI N_FI ELD] = UvalL_Legi onDomai n_Virgi ni a;

/!l Field 1 : dass ID

if (classnanme != NULL)
fld_sz[CLASS | D_FIELD] = strlen(classnane) + 1;
el se

fld_sz[CLASS | D FIELD] = 0;
fld_val [CLASS ID FIELD] = (char *) classnane;

/!l Field 2 : Instance Nunber

if (instance_nunber == 0) {
f1d_val [| NSTANCE_NUM FI ELD] = NULL;
fld_sz[| NSTANCE_NUM FI ELD] = O;

}
el se {
char tenp_i nuni20];
sprintf(tenp_i num "% ", instance_nunber);
fld_val [| NSTANCE_NUM FI ELD] = tenp_i hum
fld_sz[I NSTANCE_NUM FI ELD] = strlen(tenp_i nunj;
}
/! Create a new LOD by passing the fld_sz and fld_val
/1 arrays to the constructor. This illustrates the use

/1 of the nmost general constructor---but others do exist.
Legi onLAO D *rval = (Legi onLA D *)
new Legi onGener al PurposeLO D(1, 4,fld_sz,fld_val);

/1 Fld_val and fld_sz can be deleted since the
/1 constructor copies the data in.

delete [] fld_val;

delete [] fld_sz;

/!l Return the new Legi onLO D.
return(rval);

Figure 6. Creating aLegionLOID.

2.4 Events

The Library isimplemented as a configurable protocol stack. A layer of the stack communicates
with other layers through an event mechanism. The basic ideais straightforward. If layer A

12

LegionLA D *a, *b, *c, d;

/I Use the function defined above to create two new LOID’s
a make_| oi d(“Cl ass Nane”, 0);

b make_| oi d(“Cl ass Nane”, 1);

/I The copy constructor is overloaded.
¢ = new Legi onLA D(*a);

/I == and != operators are overloaded.
if ((*a == *c) & (*a != *b))
printf(“== and != are overl oaded\n”);

/I A special EmptyLOID type is defined. This is useful for sending
/l empty LOID’s as parameters and return values.
if (d.is_enpty())
printf(“LOD s are enpty if they have not been initialized\n”);

// LegionLOID’s are packable.
Legi onBuffer buffer;
b- >pack(buffer);
buf f er. seek(BEA NNI NG 0);
d. unpack(buffer);
f (*b == d)
printf(“LAO D s are packable.\n");

I/l is_class() indicates whether or not an LOID refers to a
I/l Legion class object.
if (a->is_class())

printf(“lf the class identifier of an LOD is enpty\n”,

then the LODrefers to a Legion class.\n");

if (!'b->is_class())

printf(“lf not, then the LOD doesn't refer to a Legion
class.\n");

// Finally, LOID’s can be printed neatly, showing only
// the class id and instance number fields.
fprintf(stderr,”LAD b: “);

b->show() ;

fprintf(stderr,”\n");

Figure7. Thefunctionality of Legion LOIDs.

wishes to communicate with layer B, then A announcesalegi onEvent . EachLegi onEvent
has atag that denotesalLegi onEvent Ki nd, thekind of eventitis. Each Legi onEvent Ki nd
has one or more associated event handlers which may be called whenever an event of that kind is
announced. Handlersfor aparticular Legi onEvent Ki nd are given apriority that determines
the order in which the handlers are called when an event of that kind is announced. A Legi on-
Event can carry arbitrary data and this is the method by which data is passed and transformed
from layer to layer. So if layer B has registered a handler for the kind of event that layer A has
announced, then layer B will get that event. We describe the configuration and flexibility of
Legion Events in much greater detail in Section 4.

13

2.5 Legion M essage Database

Each Legion object services requests for member function invocations and returns the results of
these invocations. The parameters to these functions as well as the requests themselves arrive in
Legion Messages. A complete method invocation may involve composing a number of Legion
Messages. Since these messages may arrive from different locations and at different times, par-
tially complete requests are kept in part of the Legion Message Database called the Invocation
Matcher. Once a complete method invocation is composed, it becomes a Legion Work Unit and is
promoted to the Invocation Sore. The invocation store is essentially alist of method invocation
requests that are ready to be invoked.

Each object has a server loop that continuously checks the invocation store for ready work units,
extracts them if they are available, and performs the requested invocation. A partial interface to
the C++ classLegi onl nvocat i onSt or e isgivenin Figure 8.

2.6 Legion Program Graphs

A program graph represents a set of method invocations on Legion objects and the data depen-
dencies between invocations and objects. The program graph is a data-flow graph whose nodes
represent method invocations and whose arcs represent data dependencies between the method
invocations. This computation model is exactly the one described in [3], so we omit a detailed
description.

Suppose objects A and B each export methodsopl1() and op2() . Figure 9 shows a simple user
program and the resultant data dependencies. It is clear from the code that the parameters to both
A. opl() andB. opl() areavailablelocally. We call these constant parameters. On the other
hand, the parametersto A. op2() arenot availablelocally because they are the results of method
invocations that are executed elsewhere. These are invocation parameters

7T This class rnplements the "datatbase” for ready
/1 work units and stores the results from method
/1 invocations on other Legion objects
cl ass Legi onl nvocationStore {
public:
/1 Accept function invocations for the given fcn
int enable_ function (int function_nunber);

/1 Check to see if there are any ready work units
int any_ready();
int any_ready_for_func(int function_nunber);

// Renpbve the next work unit fromthe store

UVaL_Ref er ence<Legi onWor kUni t > next _mat ched() ;
UWVal_Ref erence<Legi onWor kUni t > next _mat ched_for_func(int function_nunber);

Figure8. Selected elements of the LegionlnvocationStore interface.

14

/] The “user” code a b
main () {

iz-m a=10, b =15 x, vy, @) 1

MyQhj ect A, B
X A opl(a);

y = B.opl(b); A op}
z = A op2(x, V);
printf (“%\n”, z);])
} to invoking object

Figure 9. Example user code and the program graph derived from thte data dependencies.

3. UsingtheLibrary

This section describes how to use the Library “asis’, without internal modification. We begin by
describing the class Legi onLi br ar ySt at e, which encapsul ates start-up and initialization
routines and provides a public interface to an object’s L egion related state. We then explain how a
method invocation isimplemented in the Library. Finally, we describe the Library interface from
the invoker and invokee perspectives.

3.1 Initialization and Library State

TheLegi onLi br ar ySt at e C++ object class provides the interface to important parts of an
object’s Legion related state information. This state include the object’s own LOID, the LOID of
the object’s class, and so on. Legi onLi br ar ySt at e also provides implementations of key
object control mechanisms such as object creation, activation, deactivation and deletion. Finally,
theLegi onLi br ar ySt at e interface providestheCl assOF () operation, which encapsul ates
the mechanism by which the class object LOID of a given object can be obtained based on the
object’'s LOID. We will now examine each of these general features of the Legi onLi braryS-
t at e classin more detail.

The primary function of the Legi onLi br ar ySt at e object classisto encapsulate the internal
state of the Legion library and to provide programmers with the public interface to this state. A
single global object of theclassLegi onLi br ar ySt at e named Legi on isincluded as part of
the Library. Before using any of the Library features (for example, invoking a method on a
Legion object), the Library state should beinitialized using thei ni t () function.

Legion.init();

Thisfunction initializes severa different parts of the Library, including the LOID of Legion
Class, initializing the Legion program graph layer (Section 3.4), and initializing the Legion invo-
cation matcher and invocation store (Section 2.5). After this call, the object can enable or disable
functionsin the invocation store, set itsown LOID if it needs to, and perform any user initializa-
tion that must be performed before any methods are serviced (or any messages are sent or
received by the object). After calling Legi on. i ni t (), the object cannot yet invoke or service

15

methods. These services require a second initialization phase which is encapsulated in the
Accept Met hods() member function of the Legi onLi br ar ySt at e class.

Legi on. Accept Met hods() ;

After making this call, the object can both accept and invoke methods. Consequently, basic object
control mechanisms such as object creation and Cl assOf () (which rely on the ability to
invoke methods on remote objects) are also enabled. The reason for atwo-phase initialization for
the Library is ssmply to de-couple method service configuration from the enabling of method
arrival events.

To summarize, the Library initialization should proceed as follows:

1. CdlLegion.init().Thisinitializesvarious data structuresin the library.

2. Enable acceptable methods (i.e. function numbers) in the objects invocation buffering
mechanism (the Legion invocation store). Thisis accomplished by calling Legi onl n-
vocati onStore. enabl e_function(int) for each method the object will be
exporting.

3. If methods will be serviced by an event handler, add this event handler for Met ho-
dReady events. This event handler should contain code to extract work units from the
invocation store and call the appropriate method implementations based on incoming
function numbers.

4. Call Legi on. Accept Met hods() . Thiscall initializes the L egion message passing
system and notifies the object’s creator (i.e. its class) that the object is up and ready to
accept method requests.

5. Start the server loop. The details of this depend upon how work units are being extracted
from the invocation store. Two options are described in Section 3.5.1.

Oncethe Legion library stateisfully initialized, the object can use Legi on object to determine
itsown LOID, the LOID of itsvault, the LOID of LegionClass, and so on. For example:
UValL_Ref erence<Legi onLO D> MyLO D, Vaul t LA b

M/LO D = Legi on. Get \yLO D() ;
Vaul t LO D = Legion. GetVaultLO IX);

In addition to these basic state accessor functions, the Legi onLi br ar ySt at e class aso pro-
vides an interface to anumber of key system services such as object creation, activation, deactiva-

16

tion, and deletion. An example is given in Figure 10.

test _obj ect _control (char *class_id)

{
WalL_Ref erence<Legi onLO D> test Cbj 1, testbj2;

/] Create an object of the specified class
testbj1 = Legion. Createhject(class_id);

/'l Create an object of the same class as testCbj1
testbj 2 = Legi on. Create(hj ect (testhjl);

/1l Test object deactivation and activation
Legi on. Deact i vat eChj ect (test Obj 1) ;
Legi on. Acti vat eCbj ect (test Ooj 1);

/] Test object deletion
Legi on. Destroy(Obj ect (t est Cbj 2) ;

Figure10. Exampleuse of object Legion of class LegionLibraryState.

An object can also use the LegionLibraryState interface to report to its class when it plans to
delete itself without having been requested to do so by the class. For example, an object before
exiting could execute:

fprintf(stderr,”Problem- this object nust exit\n");
Legi on. Del eteSel f();
exit(1);

Beyond object control services, the Legi onLi br ar ySt at e class encapsulates the important
Legion Cl assOF () operation, which can be used to determine the LOID of a class object based
on the LOID of one of itsinstances, or based on just a classidentifier (that part of an LOID that
indicates an object’s class). For example:

UValL_Ref er ence<Legi onLA D> f oo, classOf Foo;
/l...set foo to sone LAOD of interest (not shown)...

cl assOf Foo = Legi on. d assO (fo00);

Note that unlike simple state accessors such as Get MyLO X) , object control methods such as
Createbject () andd assOf () al result in Legion method invocations, and thus the cost
of these member functions are non-trivial.

3.2 Legion messages

L egion objects communicate with one another via method invocation and return values. To
invoke methods and return results, Legion objects send messages to one another in a standard

L egion message format. A Legion message can carry (1) part (or all) of a method invocation, or
(2) the function return value that resulted from an invocation, or (3) areturn value for an out or in/
out parameter. Every Legion message contains, in order, source and destination LOID’s, a func-

17

tion number, the number of parametersto expect, a computation tag, alist of parameters, a contin-
uation list, and an environment.

Source L OID: The source LOID names the sender of the message.
Destination LOID: The destination LOID names the object to which the message is being sent.

Function number: The function number field should contain an integer that is packed in the data
format of the architecture of the machine from which it was sent. If the message is intended to
implement a method invocation, the packed integer should match some function number in the
public interface of the object to which the message is being sent. If the message is the “filled-in”
value of an out or in/out parameter or anormal return value, then the packed integer should be the
constant LEG ON_RETURN_FUNCTI ON_NUMBER.

Computation tag: A single method invocation can be split up into several Legion messages
which can come from different sources (see Section 3.4). A Computation Tag is along integer,
packed in the message sender’s data format, that uniquely identifies a computation, or method
function invocation. The computation tag should be assigned by the invoker. Messages that carry
function return values and filled in out andi n/ out parameters should contain the same compu-
tation tag as the messages that carried the invocation that generated the results. The invoker
matches on the computation tag when awaiting results.

Although a computation tag is simply along integer, the Library provides a C++ class called
Legi onConput at i onTag that encapsulates the integer and exports appropriate functions on
computation tags. The Library also providesaclasscaled Legi onConput at i onTagCGener -
at or that can be used to generate random computation tags. Typical use of these two classesis
shown in the example shown in Figure 11.

Parameter sto expect: The “parametersto expect” field should contain an integer packed in the
sender’s data format, that indicates the total number of parameters that are being passed in the
function invocation of which this message is part. If the message is part of areturn value, this

/'l Declare a new conputation tag generator.
Legi onConput at i onTagGener at or gen;

/! Declare variables to point to conputation tags.
UValL_Ref er ence<Legi onConput ati onTag> t 1;
WVal_Ref er ence<Legi onConput ati onTag> t 2;

/1 Get the next two tags fromthe generator.
tl gen. next _tag();
t2 gen. next _tag();

/1l Print the values of the tags.
printf(“Tag 1 is: %\n", tl1->get_value());
printf(“Tag 2 is: %l\n”, t2->get_value());

/1 Sampl e out put
/l Tag 1 is: 2023717593
/1l Tag 2 is: 1683023

Figure11. Useof Legion computation tags.

18

field isignored.

Parameter list: If the message is part of an invocation, the parameter list contains the values of
the parameters contained in the message. The parameter list is packed as an integer that indicates
how many parameters are present, followed by the parameters themselves. Each parameter con-
tains an integer that indicates the number of the parameter followed by aLegi onBuf f er that
contains the value of the parameter. Return values are passed back in a parameter list aswell. The
C++ object classesLegi onPar anet er and Legi onPar anet er Li st implement parame-
ters. The code in Figure 12 builds a parameter list that contains two parameters, an integer and a
14-element character string.

/1 Declare the variables to be packed into a paraneter |ist.
int int_paraneter;
char string_paraneter|[14];

/1 Initialize the variables appropriately.
int_paraneter = 7;
sprintf(string_paraneter,”Hello, Wrld.”);

/'l Create a LegionBuffer to hold the integer paraneter.
UValL_Ref erence<Legi onBuf fer> | b1,

I bl = new Legi onBuffer();

| bl->put _int (& nt_paraneter, 1);

/'l Create a LegionBuffer to hold the string paraneter.
Wal_Ref er ence<Legi onBuffer> | b2;

| b2 = new Legi onBuffer();

| b2->put _char (string_paranmeter, 14);

/] Create paraneters out of the buffers.
WValL_Ref erence<Legi onPar anet er > par ami;
paraml = new Legi onParaneter(1, |bl);
UValL_Ref erence<Legi onPar anet er > par an;
paranm? = new Legi onParaneter(2, |b2);

/!l Create a new paraneter |ist.
WVal_Ref erence<Legi onPar anet er Li st> pli st;
plist = new Legi onParaneterList();

/1 Finally, insert the paraneters into the parameter |ist.
plist->insert(param);
plist->insert(paran?);

Figure12. Example use of LegionParameterList and L egionParameter.

Continuation list: A Continuation List describes where results should get forwarded. A continu-
ation contains a computation tag and result number, which together identify areturn value. It also
contains the LOID, function number, and parameter number to which the result should be sent.
The continuation list describes where all the results of a particular computation should be for-
warded. The motivation for continuation lists arises from the macro data-flow programming
model that istheinitial Legion target. In this paradigm, results from method invocations are sent
directly to other invocations that use these results as parameters. These data dependencies are

19

determined through analysis of the program code. See [3] for more information. LegionProgram
Graphs are the representation of these data dependencies and are described in Section 3.4. For fur-
ther information, refer to the on-line documentation.

Environments: An environment isalist of environment items, each of which is a <tag, type,
value> triple. The tag is astring that names the item. The type is an integer whose value corre-
sponds to one of the well-known environment types, and which determines how the value field
should be interpreted. For further information, refer to the on-line documentation.

The Legi onMessage classimplements Legion messages in the Library. Its most useful con-
structor takes parameters that correspond to all of the constituent parts described above. Thus, an
instance of Legi onMessage can be created as shown in Figure 13.

/1 Declare variables for the Legi onMessage’'s constituent
Il parts.

UVaL_Ref erence<Legi onLO D> source_LO D

UValL_Ref erence<Legi onLO D> destinati on_LO D

int function_nunber;

int paranmeters_to_expect;

WValL_Ref erence<Legi onConput at i onTag> conput ati on_t ag;
Wal_Ref er ence<Legi onPar anet er Li st > paraneter_|ist;
UWValL_Ref erence<Legi onConti nuati onLi st> continuation_list;
UValL_Ref er ence<Legi onEnvi ronnent > envi ronment ;

/1 Initialize the constituent parts appropriately (not shown).

/1l Create a new Legi onMessage fromthe constituent parts.

Legi onMessage *nsg;

nsg = new Legi onMessage(source_LO D, destination_LO D,
function_nunber, paraneters_to_expect, conputation_tag,
paraneter _list, continuation_list, environment);

Figure13. Example creation of a Legion message.

Although Legi onMessage provides a mechanism for implementing method invocation in the
library, Legi onPr ogr am& aph (described in tSection 3.4) provides a higher level abstraction
that issimpler to use.

3.3 Overview of Method | nvocation

Suppose Legion object A (the invoker) invokes a member function on Legion object B (the invo-
kee). This method invocation proceeds through the invoker and invokee as shown in Figure 14.
The invoker builds a L egion message containing salient information about the member function
invocation. Typically, the Legion program graph interface builds this message. The Legion mes-
sage is then passed to the Legion Message Layer, which binds the LOID of the recipient to a par-
ticular address. The binding process is akey aspect of Legion and is described in considerable
detail elsewhere ([7]). The outcome of the binding processis a <L Ol D-ObjectAddress> tuple
called a“binding.” The binding represents the logical name and current physical address of the
referenced object. The message and its binding are then passed to the Data Delivery Layer. The
data delivery layer linearizes the message for transport over the wire, uses the object address to
create a physical connection to the referenced object, and sends the message.

20

On the receiving side, the data delivery layer of the destination object unpacks the data back into
anew instance of Legi onMessage and passes the message up to the message layer. The mes-
sage layer then inserts this message into the Legion Message Database (Section 2.5). Conceptu-
ally, the Legion message database is divided into two parts. The “bottom” part, called the Legion
Invocation Matcher, manages the list of partially complete method invocation requests for the
Legion object’. A method invocation request is partially complete if one or more of it's parame-
tersare missing. The “top” part of the database, the Legion Invocation Store, maintains two sepa-
ratelists. Thefirst list contains complete method invocation requestsi.e. requests with a complete
parameter set and that have passed all security checks. The second list contains return values the
object has seen as aresult of it’s own method invocations on other Legion objects. So, aLegion
message is inserted into the Legion invocation matcher. As soon as al parameters are present, the
message becomes a Legion Work Unit and is bumped up to the invocation store.

Within each Legion object isa server loop that periodically checksthe Legion invocation store for
ready work units. A Legion work unit is similar in composition to a Legion message, but by defi-
nition contains all information needed to perform a method invocation and forward the results to
the proper place. When awork unit is ready, the object removes it from the invocation store and
ascertains which it method is being called. The object then calls this method with the supplied
parameters, packs up the results (if any) into a L egion message, marks the message as containing
aresult, and inserts the message into the L egion message layer. The Legion message transport
mechanism then takes over.

When the return result reaches its destination, it is handled like any other Legion message until it
reaches the invocation store. The invocation store examines the contents of the work unit, realizes
that it isareturn result and not a method request, and inserts it into the separate list for return val-
ues. These values are then available to the original invoking object through the program graph
interface.

1. A method invocation request can be partially complete because the parameters to the invocation may be
coming from objects dispersed throughout the running Legion system.

21

g e @ "

Program
Graph
Invocation Invocation
Matcher Matcher
: v A
Legion Message Legion Message
Data Del i\'/ery Data Del ivery '

| ¢ B

Figure14. The path through the Library for a method invocation that returns aresult to the
caller. Below the dotted line is considered the Library’s domain. Application code must inter-
face with the library at the four marked points.

An application program must interface with the Library at four different points (Figure 14).
1. Making an invocation request

2. Removing an invocation request for execution
3. Returning the results of an invocation
4. Getting areturn result.

We handle 1 and 4 together in Section 3.4, and 2 and 3 in Section 3.5.

3.4 Thelnvoker: Invocation Requests and Return Results

The most straightforward mechanism by which to make an invocation request is to build a pro-
gram graph (Section 2.6) using the interface provided by the C++ object class Legi onPr o-

gr anty aph. It isalso possible to interface directly with the Legion Message Layer if so desired,
though we do not document this method here.

Salient parts of the Legi onPr ogr anm(ar aph interface are given in Figure 15. A fuller descrip-
tion of the interface constituents appears in the Appendix.

22

cl ass Legi onProgranG aph {
public:
/1 these nethods are for making invocation requests
UValL_Ref er ence<Legi onl nvocati on>
add_i nvocat i on(UvaL_Ref er ence<Legi onl nvocati on> inv);
Par anmet er St at us
add_const ant _par anet er (UVaL_Ref er ence<Legi onl nvocati on> target,
UVal_Ref er ence<Legi onPar anmet er > par anet er,
i nt param nunber);
voi d add_resul t _dependency(WalL_Ref er ence<Legi onl nvocati on> inv,
i nt param nunber);
i nt execute(Legi onlnvocation *inv);

/1 these nethods are for nanagi ng return val ues
UValL_Ref er ence<Legi onBuf f er >

get _val ue(UvaL_Ref erence<Legi onl nvocati on> inv, int param nunber);
int release_val ue (UvaL_Ref er ence<Legi onl nvocati on> inv, int param nunber);
int release_all _values();

Figure15. Some elements of the Legi onPr ogr anGr aph interface

Now we can show the necessary library calls to implement the example given in Figure 16.

Sart-up. Thecall toLegi on. i ni t () initializes various data structuresin the Library.
Legi on. Accept Met hods() iscalled because the invoking object may itself be accepting
member function requests from other objects.

Object creation. ThecallstoLegi on. Cr eat e(bj ect () create the two objects of interest and
return LOIDs to these objects. Given these LOIDs, local handles for the objects are created.

Member function invocation. For each method, we use the object’s local handle to create an invo-
cation.! We can then add the invocation to the program graph using add_i nvocat i on() .
Every added invocation becomes a node in the program graph. To create arcs, parameters must
first be packaged into instances of Legi onPar anet er (see Figure 12). Once packaged, they
are added to the graph using add_const ant _par anet er () . Internal arcsin the graph must
be handled differently, because they represent values that are not locally available—they have not
been computed yet. Internal arcs are added using add_i nvocat i on_par anet er () .Oncea
program graph is constructed, the execut e() member function must be called. Calling exe-
cut e() causes every node in the program graph to be packed up as a L egion Message and
shipped to the appropriate object for execution. Results from this remote execution then become
available and are automatically sent to the objects that require them. In the example, the return

1. A Legion invocation identifies a particular invocation on one of an object’s member functions.
An invocation contains a computation tag that identifies it within Legion for the duration of the
invocation’s existence. An invocation is obtained through a Legion Core Handle. Core handles
export functions that allow programmers to ask for invocations and to obtain a description of the
corresponding object’s interface. A handle can be thought of as alocal representation of an object
and as a generator of invocations for that object.

23

/! The “user” code a b
main () {

int a =10, b =15, x, v,
Z,

My Cbj ect A B;

X A opl(a);

y = B.opl(b);

z A op2(x, y);

printf (“%\n”, 2z);

to invoking object

/1 The corresponding calls to the library to inplenent the “user” code
mai n() {

}

UValL_Ref er ence<Legi onl nvocati on> invl, inv2, inv3;
UValL_Ref er ence<Legi onBuf fer> buffer;

UValL_Ref er ence<Legi onPar anet er > parm

int a =10, b = 15;

/1 Start-up
Legion.init();
Legi on. Accept Met hods() ;

/1 Cbject creation

UValL_Ref er ence<Legi onLA D> A_name, B_nane;

A nane Legi on. Creat eChj ect (MY_OBJECT_CLASS I D);
B _name Legi on. Creat eChj ect (MY_OBJECT_CLASS I D);

/1 Menber function invocation

Legi onProgranG aph G Legi on. get WLO X)) ;

Legi onCor eHandl e A _handl e(A_nane), B_handl e(B_nane);
invl = A handl e.invoke(OP1_FUNC NUM 1, 1);

G add_i nvocation(invl);

parm = make_paraneter (a, 1);

G add_constant _paraneter (invl, parm 1);

inv2 = B handl e.invoke(OP1_FUNC NUM 1, 1);
G add_i nvocation(invl);

parm = make_paraneter (15. 1);

G add_const ant _paraneter (invl, parm 1);

/1 Return value retrieval

inv3d = A handl e.invoke(OP2_FUNC_NUM 2, 1);

G add_i nvocation(invl);

G add_i nvocati on_paraneter (invl, inv3, 1, 1);
G add_i nvocati on_parameter (inv2, inv3, 1, 2);
G execute(inv3);

buffer = G get_val ue(inv3, UVAL_METHOD RETURN_VALUE);
int z;

buffer.get _int (&, 1);

printf (“%\n”, 2z);

Figure 16. Sample user code (top-l€ft), the corresponding program graph (top-right), and the library
calls needed to implement it (bottom). In thiscase make_par anet er () takesan integer, wrapsit upin
alLegi onBuf f er, then wraps the buffer inalLegi onPar anet er.

24

values fromA. op1() and B. op1() are forvarded directly téA so thg can become the param-
eters toA. op2() .

Return results. Getting return &lues that are results of methoddoation requests is straightfor-
ward. TheLegi onPr ogr anGr aph class has a method callgdt _val ue(), which tales the
parameter number of the resudtive as one of its guments. If the result is uvalable, then

get val ue() blocks. The constativaL_METHOD RETURN_VALUE can be passed to

get _val ue() to obtain the returnalue of the function call. The constant also ssras the
parameter number (position of the parameter in the function signature) for in/out parameters. By
default, the return alues of all method wocations are returned to thevarker. For in/out parame-
ters,add_result _dependency() (not shavn) must be used toplicitly ask for the param-
eter to be returneddd_r esul t _dependency() must be calletteforeexecut e() is

called on the program graph that contains the associated methodtian. Otherwise the param-
eter will not be returned and a callget _val ue() for that parameter will block indefinitely

3.5 Thelnvokee: I nvocation Execution and Result Return

The Library announcesMethod Ready event each time a ready methogtanation request is
inserted into the wocation store. Each request is maintainedlasga onWor kUni t , a class
similar in structure th.egi onMessage, but with additional semantics, namely that all parame-
ters for the particular method are present. The general algorithm for gettgg an-

Wor kUni t out of the database andiarking the requested method is as fafo

1. Remore the vork unit from the imocation store
2. Construct and perform the requested metheddation.

3.5.1 Removing the L egion Work Unit

User code can rerae work units from the imocation store in at least ondifferent ways, each of
which require a seer “loop” that continuously checks thesatation store for readyavk units.
Both mechanisms require a serloop’ which continuously checks thevocation store for
ready vork units. One mechanism is to supply arglster an gent handler foMet hodReady
events. The code for the handler and theeselaop then look lik that in Figure 17 -top. The
other mechanism, illustrated in Figure 17 - bottom does not require the user to supggtan e
handler Instead, the user checks thedoation store each time through the seteop.

3.5.2 Constructing the Method I nvocation

Once a wrk unit is remeged from the imocation store, it needs to be unpadko a form suitable
for method irvocation. There must be specific code to do this for each public method in the
invoked object. Figure 18 contains arample ivocation construction. The sequence is function-
ally the same as sawstubs in RPC. First ascertain the requested method, thevereaxh
parameter from the evk unit based upon the particular requested method. Each parameter is
returned as a lggonBuffer, so these need to be unpedhko get the actual parameters for the
method ivocation. Once this is done, then the method can be caleedikC++ member func-
tion.

For methods that va return results, thesalues must be sent to the list of objects defined in the

25

i nt Met hodReadyHandl er (Legi onEvent *event) {
Wal _Ref er ence<Legi onWor kUni t > wu;
i f (LegionlnvocationStore->any_ready()) {
wu = Legi onl nvocati onSt or e- >next _mat ched();
i nvoke_net hod(wu) ;
}
}

voi d server_loop() {
Legi onEvent Myr . server Loop() ;

}

voi d server_loop() {
while (TRUE) {
Legi onEvent Myr. fl ushEvents(); // causes all events to be handl ed
while (LIS->any_ready()) {
wu = LI S->next _nat ched();
i nvoke_met hod(wu) ;

}

Legi onEvent Myr . bl ockFor Event Avai | abl e(); // bl ocks on any event

Figure17. Two mechanismsto get aready work unit out of the invocation store. One method (top) isto
supply an event handler that is called whenever a MethodReady event is announced. The accompanying
server loop is quite short. The other method (bottom) is to have alonger server loop that checks the invo-
cation store whenever any event occurs. In this case, no event handler is needed.

Legi onCont i nuat i onLi st part of the work unit from which the method invocation was
constructed. The most straightforward way to do thisis asfollows. For each return result, allocate
anew Legi onBuf f er and insert the return value into the buffer. Then call

Legi on. ret urn() withthe buffer, continuation list, and number of the return value as argu-
ments. This sequenceisillustrated at the bottom of Figure 18.

A complete example of a C++ class, it's trandation into the appropriate Library calls, and some
sample method invocations are given in the Appendix.

3.6 Legion Object Persistent Representations

L egion objects are endowed with a persistent representation in which they can store volatile state
in the event that they must be deactivated during the operation of the system [7]. Objects might
also use their persistent representation to store data structures that are too large to contain in vola-
tile storage (e.g. a“file” object need not keep its entire state, including the contents of thefile, in
memory). The persistent representation of an object is referred to as a Legion Object Persistent
Representation, or OPR. In this section we examine the Library interface to manipulating object
persistent representations.

The most basic interface to aLegion OPR is provided by the Legi onOPR class. Instances of the
classLegi onOPR are constructed based on a Legion OPR Address, a description or pointer to a
Legi onOPR. This construction is taken care of internally by the library implementation. At the

26

/1 Each object nmight have a functio like this to figure out
/1 which nenber function to call.
i nvoke_met hod (UvalL_Ref erence<Legi onWor kUni t > wu) {
switch (wu->get_function_nunber()) {
case SAMPLE_OP_FUNCTI ON_NUMBER:
sanpl e_op_wr apper (wu) ;
br eak;
/1 cases for other methods go here

}

/1 assune this nethod has two paraneters, an int and a fl oat
voi d sanpl e_op_wr apper (UVaL_Ref erence<Legi onWor kUni t > wu) {
float float_parm
int int_parm return_val ue;
UValL_Ref er ence<Legi onBuf fer> buffer;

/1 unpack the paraneters

buf fer = wu->get_paranmeter(1);
I b->get _int(& nt_parm 1);

buf fer = wu->get _paraneter(2);
| b->get _int (&l oat_parm 2);

/'l invoke the method
return_value = sanple_op (int_parm float_parnj;

/1 Return results to whonmever has asked for them

buf fer = new Legi onBuffer();

buf fer->put _int (& eturn_value, 1);

Legi on. return(METHOD_RETURN VALUE, wu->get_continuation_list(), buffer);

Figure 18. An example method construction, invocation, and return once awork unit
has been removed from the invocation store. Other code structures are possible.

time of activation, objects are passed aLegi onOpr Addr ess by the responsible L egion Host
object so that they can locate and access their persistent representation. When the Library isini-
tialized, the OPR Address is automatically converted into aLegi onOPRinstance using get Le-
gi onOPR() . The programmer can then accessthe Legi onOPR instance for a Legion object
using the Get OPR() method of the Legi onLi br ar ySt at e object class (Section 3.1). For
example:

UValL_Ref er ence<Legi onOPR> nmyOPR;
nmyOPR = Legi on. Get OPR() ;

The interface to the OPR provides two key functions that provide access to the two basic forms of
an OPR: linearizedand inflated For the purposes of object migration, the persistent representa-
tion of an object can be gathered into alinearized form, suitable for transport. The Legion applica-
tion programmer will typically have no use for the linearized form of the OPR, which can be
accessed viatheget Li near i zed() method on the Legi onOPR class. The more important
form of the OPR for the applications programmer is the directly manipulatable form, the inflated
form. Theinflated form of aLegi onOPRis encapsulated by the Legi onPer si st ent -

27

Buf f er Di r class. Asitsnameimplies, theLegi onPer si st ent Buf f er Di r isadirectory
of Persistent Legi onBuf f er objects. Theinflated form of the OPR is accessed viatheget | n-
fl at ed() method ontheLegi onOPR class. For example:

UVaL_Ref er ence<Legi onPersi stent BufferDi r> nySt at e;
nyState = nyOPR getlnflated()

TheLegi onPer si st ent Buf f er Di r classimplements an association set that maps null ter-
minated character stringsto objects of the Legi onBuf f er class and subdirectory objects of the
Legi onPer si st ent Buf f er Di r class. Objects of this class can be thought of as directories
in afile system that contain string named files (persistent Legi onBuf f er s) and subdirectories
(Legi onPer si st ent Buf f er Di r s), although the implementation of these objects need not
be based on afile system. Some elements of the interface to the Legi onPer si st ent -

Buf f er Di r classare givenin Figure 19. It contains methods to determine the number of con-
tained buffers and subdirectories, to determine if a given string maps to a contained buffer or
subdirectory, to access, add to, or delete from the contained buffers and subdirectories by name,
and to iterate over the contained buffers and subdirectories.

/1l CGet the OPR representation
WValL_Ref erence<Legi onPersistentBufferDir> nyState;
nyState = nmyOPR get | nfl ated()

/1 Check the contents of a directory
if (myState. NunSubdirs() == 0) return -1;
if (! nyState.lsContainedSubdir(“State”)) return -2;

/1 Access a subdirectory
WalL_Ref erence<Legi onPersi stent BufferDi r> subDir;
subDir = nyState. GetSubdir(“State”);

/] Access a contained buffer
WVal_Ref er ence<Legi onBuf f er > nyDat a;
myData = subDir. GetBuffer(“My Data”);

Figure19. Sampleinvocations on an object of class LegionPersistentBufferDir.

The Legion bufferscontainedinLegi onPer si st ent Buf f er Di r objectsare persistent. That
is, these buffers are based on storage that is contained in the object’s persistent representation and
will thus persist after the object is deactivated. Thus, in manipulating these buffers, the object is
directly manipulating its persistent state. Of course, this does not imply any changesto the

Legi onBuf f er interface. Data structures that were rendered packable for the purposes of trans-
port in Legion messages are equally packable into the Legion buffers obtained as part of the
object’s OPR. The implementation of an object’s SaveSt at e() method istypically a sequence
of pack() operations on the data structures that make up the object’s state, many of which
already needed to be packable (or made up of packable constituents) for the sake of method ser-
vice and invocation.

During the operation of a Legion object’'s SaveSt at e() method, or for the purposes of taking
checkpoints, the programmer may need to capture the state of the Library. This functionality is

28

provided through the saveSt at e() method ontheLegi onLi br ar ySt at e class. To save
the state of the Legion library, the programmer simply writes:

Legi on. saveState();

To recover the state from the persistent representation, a complementary r est or eSt at e()
operation is provided, e.g.:

Legi on.restoreState();

4. Modifying the Library

One of the major design objectives of Legion isto provide an extensible system - it must be easy
for future implementorsto insert modulesinto the Library. To enable this extensibility the Library
provides

1. alayered design and implementation, and
2. astandard mechanism for inter-layer communication.

Thelayered design of the Library isdepicted in Figure 20. The“client” side (left) isthe“invoker”,
the code that i s requesting amethod invocation on some Legion object. The“server” side (right) is
the “invokee”, the Legion Object upon which the method invocation has been made. Whileitis
convenient to think of the library in terms of clients and servers, it is artificial in that the full
library functionality is provided to both parties. In many cases an object’s role changes as execu-
tion progresses. Sometimes clients are servers and vice versa.

Client Server
Program Graph Message Database
Legion Message Legion Message
DataDelivery DataDelivery
Transport Level Communication Protocol
Figure 20. Thelayered design of the Legion Library.

4.1 Implementing the Legion Configurable Potocol Stack

AsFigure 20 illustrates, the Legion protocol stack supports a variety of functions. One of our
goals in designing the protocol stack was to allow modules to be added and configured easily, an
approach similar to that used in the x-Kernel [6]. The problem with the traditional approach to
building protocol stacksisthat each layer in the stack explicitly calls the layer below or above.

29

This static coupling makes it difficult to dynamically configure the stack.

To provide adynamically configurable stack, we have chosen awell understood technology [1],
events, and have applied it to enable flexibility and extensibility. Four main classes implement
events: Legi onEvent , Legi onEvent Ki nd, Legi onEvent Handl er and Legi on-
Event Manager .

When an event has occurred, we “announce” an event to an Event Manager. The event manager,

an instance of classLegi onEvent Manager , notifiesinterested parties, i.e. Legion Event Han-
dlers, of the event. An event manager may notify an event handler using one of two policies: the
handlers can be notified immediately or at alater time.

To be notified of an event, event handlers register themselves with a Legion Event Kind, an event
template that contains an unique tag and a default list of handlers. Since there may be more than
one event handler per event kind, we associate a priority with the handler at the time of registra-
tion. In our scheme, a handler with alower priority number is executed before a handler with a
higher priority number. Not all event handlers associated with a L egionEvent are guaranteed to be
executed because an event handler is allowed to prevent the execution of subsequent handlers.

TheclassLegi onEvent Ki nd serves as atemplate for instances of classLegi onEvent (Fig-
ure 21). When an event is created, it obtainsalist of Legi onEvent Handl er s from its corre-
sponding Legi onEvent Ki nd. This allows users to modify the behavior of the protocol stack
without having to change existing modules. To enable inter-layer communication, Legion events
may also carry arbitrary data. This data can be update, modified, and transformed in essentially
arbitrary ways by the event handlers that process each event.

A Legion event handler takes as its sole argument areference to the Legi onEvent that it is ser-
vicing. Thus, each Legi onEvent Handl er associated with aparticular Legi onEvent may
inspect and modify the data carried by the Legi onEvent . In general, thisis how information is
shared between various Legi onEvent Handl er s.

4.2 Interfaces

4.2.1 LegionEventKind, LegionEvent and L egionEventHandler

Usersmay add Legi onEvent Handl er s toalLegi onEvent Ki nd. WhenalLegi onEvent
iscreated, it will obtain its unique event identifier and alist of Legi onEvent Handl er s from
its corresponding Legi onEvent Ki nd. Legi onEvent Handl er s are ordered and the han-
dlers with lower numbered priorities have higher precedence. An example of aevent handler is
givenin Figure 22.

A Legion event maintains alogical pointer to the currently executing Legi onEvent Handl er.
This allows the event to suspend the execution of its event handlers and to resume that execution
at alater time.

There are no restrictions on the code implementing aLegi onEvent Handl er . In particular, a
an event handler may

1. Inspect and modify the data field of the incoming event

30

cl ass Legi onEventKi nd {

public:
/1 Construct a new event kind and give it a unique identifer
Legi onEvent Ki nd(i nt ki nd);

/1 Add and del ete handl ers

/1 Note that handlers are added in priority order

i nt addHandl er (Legi onEvent Handl er, Legi onEvent Handl erPriority);
i nt del et eHandl er (Legi onEvent Handl er) ;

}s

cl ass Legi onEvent : public UvalL_Reference {

public:
/1 Construct an event using a LegionEventKind as a tenplate
Legi onEvent (Legi onEvent Ki nd&) ;
Legi onEvent (Legi onEvent Ki nd&, void * data);

/1 Addi ng and del eting handl ers
i nt addHandl er (Legi onEvent Handl er, Legi onEvent Handl erPriority);
i nt del et eHandl er (Legi onEvent Handl er);

/1 Setting and getting the data associated with the Legi onEvent
voi d* getData();
voi d set Dat a(voi d*)

/'l 1nvoking event handlers
Legi onEvent Handl er St at us cal | Next Handl er (UvaL_Ref er ence<Legi onEvent > ev);
voi d cal | Remai ni ngHandl er s(UvaL_Ref er ence<Legi onEvent > ev);

Figure21. Some elements of the LegionEventKind and LegionEventInterface

/1 Signature of a Legi onEvent Handl er
t ypedef Legi onEvent Handl er St at us
(*Legi onEvent Handl er) (UvValL_Ref er ence<Legi onEvent >)

/1 Exanple of a valid Legi onEvent Handl er
Legi onEvent Handl er St at us nyHandl er (UVaL_Ref er ence<Legi onEvent > nyEvent) {
/1 arbitrary code

}

Figure22. LegionEventHandler

2. Inspect and modify the list of handlers contained in the incoming event
3. Create and announce new events
4. Prevent the next handlers from being executed

5. Savethe current event

31

cl ass Legi onEvent Manager {
public:
/1 There are two ways to announce an event
/1 (1) Legi onEvent AnnouncelLater - Defer execution of the handlers

/1 (2) Legi onEvent AnnounceNow - | nmedi ately invoke the handl ers
announce(UvVaL_Ref er ence<Legi onEvent >,
Legi onEvent Quei ngDi sci pl i ne queueEvent = Legi onEvent Announcelater);

/1 flush all events fromthe queue and execute the handlers
unsi gned fl ushEvents();

/1 blocking call that returns only when there are events in the queue
unsi gned bl ockFor Event Avai | abl e();

/1l the server |oop repeatedly calls bl ockForEvent Avail abl e and flush Events
unsi gned serverLoop();

Figure 23. Some Elements of the LegionEventManager Interface

4.2.2 LegionEventM anager

When users wish to notify the system that something of interest has occurred, they must announce
alLegi onEvent toalLegi onEvent Manager (Figure 23). The LegionEventManager is
responsible for deciding when to execute the handlers associated with an event. In our current
implementation, there are two ways of announcing events to an event manager. Depending upon
the chosen method, the event manager will either invoke the handlers immediately, or will defer
the execution of the event handlers and store the LegionEvent in an internal queue.

Thefl ushEvent s() method isused to execute all pending events. The bl ockFor Even-
t Avai | abl e() method isused to block the thread of control until there are some pending
events available. Finally, theser ver Loop() method repeatedly callsbl ockFor Even-

t Avai | abl e() followed by f | ushEvent s().

4.3 Default Protocol Stack

Thelist of default Legi onEvent Ki nds and their associated Legi onEvent Handl er s is
shown in Table 1. These implement the protocol layers shown in Figure 20.

Table 1: Default LegionEventKind and L egionEventhandlers

. : : Description of
L egionEventKind L egionEventHandler . P
LegionEventHandler
Sending Object
LegionEvent_MethodSend LegionDefault_Can_| Determines whether to allow the
outgoing method invocation [10].
L egionDefaultM ethodSendHandler Generatesa
LegionEvent_MessageSend for each
method invocation

32

Table 1. Default LegionEventKind and L egionEventhandlers

LegionEventKind

LegionEventHandler

Description of
LegionEventHandler

LegionEvent_MessageSend

msg_layer_MsgSnd_handler

Binds the destination LOID into an
Object Address

data_delivery_MsgSnd_handler

Sends L egionMessage over the wire

LegionEvent_MessageComplete

data_delivery_MsgComplete_handler

Indicates that the message has been
successfully sent.

LegionEvent_MessageError

data_delivery_MsgError_handler

Indicates that the data delivery layer
was unable to send the message

msg_layer_MsgError_handler

Indicates that the message was not
sent successfully

Receiving Object

LegionEvent_MessageReceive

data_delivery_MsgRcv_handler

Extract message from the transport
layer.

msg_layer_MsgRcv_handler

Unpack the datainto aLegi on-
Message and cache the sender’s
object address.

L egionDefaultM essageHandl er

Inserts the message into the Invoca-
tion Matcher. If this LegionMessage
completes a partial method invoca-
tion, then generate a
LegionEvent_MethodReceive event.

LegionEvent_MethodReceive

LegionDefault May |

Determine whether to alow the
incoming method invocation [10].

LegionDefaultWorkUnitHandler

Stores incoming method invocation
in the Invocation Store. Generates a
LegionEvent_MethodReady event.

LegionEvent_MethodReady

LegionM ethodDispatcherMonitors M
ethodReadyHandler

Enforce monitor semantics on
incoming method invocation

UVal_ObjectMandatory_L egionMeth
odinvoke

Invoke the actual function

LegionEvent_MethodDone

LegionM ethodDispatcherMonitors M
ethodDoneHandler

Indicates that a method has been
complete. Generate a
LegionEvent_MethodReady event if
there are pending methods.

On the sending side, the program graph layer generates a
Legi onEvent _Met hodSendEvent . The security handler Legi onEvent _Can_| may dis-
allow the remote method invocation [10]. If it doesn't, then afollowing handler generates a
Legi onEvent _MessageSend event for each method invocation. Once the message has been
successfully sent, the data delivery layer generatesalegi onEvent _MessageConpl et e

event.

33

On the receiving side, the data delivery layer will generate a

Legi onEvent _MessageRecei ve onceit has successfully assembled a complete message.
The Legi onDef aul t MessageHand| er isthelast handler for the event

Legi onEvent _MessageRecei ve and generatesalegi onEvent _Met hodRecei ve
once the invocation matcher has assembled a complete method invocation. The first handler for
Legi onEvent _Met hodRecei ve isasecurity handler and implements access control on this
object [10Q]. If the security handler grants access, the method invocation is deposited into the

L egionlnvocationStore, and we generate aLegi onEvent _Met hodReady event.

4.4 Adding new functionality to the L egion protocol stack

To add functionality to the existing stack, users may either defineanew Legi onEvent Ki nd or
may register their own handlers with one of the predefined event kinds. The latter option isthe
simpler method for adding functionality.

Defining anew event kind consists of creating an instance of the classLegi onEvent Ki nd with
aunigue identifier. For example:

Legi onEvent Ki nd Legi onEvent _Foobar (Uni queldentifier);

Once the event kind has been defined, creating and announcing a LegionEvent is shown below:

Legi onEvent nyEvent (Legi onEvent _Foobar);
Legi onDef aul t Event Myr. announce(nmyEvent) ;

Adding a handler to an existing event kind is best illustrated through an example. In this example
we show how auser can add a security layer to encrypt outgoing messages and decrypt incoming
messages. We first define the handlersencr ypt i onHandl er (), decr ypti onHandl er ()
and register them with the appropriate Legi onEvent Ki nd (Figure 24).

For encryption, we would like the encryption handler to be the last handler called when sending a
message. For decryption, we would like the decryption handler to be the first handler called when
amessage is received. There ordering constraints are realized by registering encr ypt i onHan-
dl er () with ahigh numbered priority and decr ypt i onHandl er () with alow numbered
priority. The new protocol stack isnow shown in Figure 25.

5. Diversity and Extensibility

The Library can be used to support adiverse array of programming models and styles, or to
extend existing support for basic programming models. The flexible Legion event mechanism is
the key Library feature that enables diversity and extensibility. By adding to or replacing the event
handlers that comprise the Legion protocol stack, a programmer can achieve many different
library configurations that implement different method invocation semantics, security protocols,
communication mechanisms, object instantiation environments, and other important elements of
the desired programming model. In this section, we examine a number of possible Legion proto-
col stack configurations that implement some well known programming models, including active
messages, path-expressions, and basic message passing. These examples show how the Library
can be used to support programming models beyond the basic remote procedure call and macro-
dataflow/program graph based styles implemented by the default library configuration.

/1 Declaration of the encryption handler
Legi onEvent Handl er St at us encrypti onHandl er (UvalL_Ref er ence<Legi onEvent > ev) ({
/1 extract the LegionMessage fromthe data field of the event,
/1 encrypt the nessage, and
/1 allow the next handler to be called.
return TRUE;

}

/1 Declaration of the decryption handl er
Legi onEvent Handl er St at us decrypti onHandl er (UVaL_Ref er ence<Legi onEvent > ev) {
/1 extract the Legi onMessage fromthe data field of the event,
/'l decrypt the nessage, and
/1 allow the next handler to be called.
return TRUE;

}

/1
/! Register the handlers with the appropriate Legi onEventKi nd
/1

/1 The encryptionHandl er should be the | ast handl er before the
/1 message is sent by the data delivery |ayer
Legi onEvent _MessageSend. addHandl er (encrypti onHandl er, encryptionPriority);

/1 The decryptionHandl er should be the first handler called
/1 after the nessage is delivered by the data deliver |ayer
Legi onEvent _MessageRecv. addHandl er (decrypti onHandl er, decryptionPriority);

Figure 24. Adding encryption and decryption capahilities to the protocol stack

Sender Receiver
Program Graph Message Database
Legion Message Legion Message
Data Delivery Data Delivery
Security:Encryption Security:Decryption
Transport Level Communication Protocol

Figure 25. Legion protocol stack with encryption and decryption added

5.1 Active M essages

The active messages programming model [9] is amessage passing schemethat isintended to inte-
grate communication and computation in order to increase the compute/communicate overlap,

35

thereby masking the latency of message passing and increasing performance. The basic idea
behind active messages is ssmple. Messages are prepended with the address of a handler routine
that is automatically invoked upon receipt of the message. Active messages are not buffered and
explicitly received, asis common with standard message passing interfaces. Instead, the receiving
process invokes the handler routine specified for the message immediately upon message arrival.
The handler may execute as a new thread of control, or may interrupt the running computation.
The job of the active message handler isto incorporate the received message into the on-going
computation.

A Legion version of active messages could be constructed by making Legion methods serve as
message handlers, and by replacing the Legion “method ready” event handler with one that cre-
ates a new thread to service incoming methods instead of buffering them in an invocation store.
Pseudo-code for such a method invocation handler is given in Figure 26.

This “method ready” event handler would need to be registered with the “method ready” event
kind. The code to do this might look like:

Legi onEvent _Met hodReady. addHandl er (Acti veMessageMet hodHandl er, 1. 0) ;

Thisline of code would need to be executed before any methods arrived at the object. This can be
achieved by placing thisline of code before any callsto Legi on. Accept Met hods() .

The effect of this new “method ready” event handler isto provide an active messages style pro-
gramming model. In some ways, the model supported here is more genera than the traditional
active messages model. For example, if amethod (i.e. a handler) required two messages from dif-
ferent sources for activation, this requirement would be enforced by the Legion invocation
matcher. Programs might be entirely composed of standard single-token active messages, provid-
ing a programming model as flexible as the original [9]. On the other hand, programs might also
include multi-token active messages, for amore general programming model that might best be
called “active methods’.

5.2 Path Expressions
The various method invocation semantics covered thus far have offered a“one sizefits all” con-

int ActiveMessageMet hodHandl er (UVaL_Ref er ence<Legi onEvent > ev) {
/1 Extract the work unit fromthe event
Legi onMet hodEvent St ruct ure *nes;
mes = (Legi onMet hodEvent Structure *)ev->getData();
UValL_Ref er ence<Legi onWbr kUni t > wu = nmes->work_uni t;

/1 Spawn a thread with the appropriate start-up function
/1 based on the function nunber associated with the nethod
switch (wu->get_function_nunber()) {
case METHOD1_FUNCTI ON_NUVBER:
pthread_create(& hr_id, & hr_attrib, methodl, wu);
} // Simlar cases for other nethods...

Figure 26. An example method handler for implementing active messages.

36

currency control mechanism. For example, the supported remote procedure call model allows
exactly one method to be serviced at atime by a given object. The active messages approach, on
the other hand, allows any number of operations of all typesto be active at the same time in the
same object. A more general approach to customizing the concurrency control requirements of
operations on an object can be designed based on path expressions [2]. Path expressions permit
the programmer to specify 1) sequencing constraints among operations; 2) selection (mutual
exclusion) between operations; and 3) allowable concurrency between operations. These concur-
rency control primitives let programmers maintain the sequential consistency of their programs
and at the same time indicate potential concurrency to a run-time environment.

Path expression based method sequencing could be implemented for Legion objects, again by uti-
lizing the inherent configurability of the Library’s protocol stack. Aswith active messages, sup-
porting a different method invocation semantic requires replacing the Legion “method ready”
event handler. In this case, the method ready handler must examine the function numbers of avail-
able operations and determine if they may be safely fired given the ordering constraints specified
by the program’s path expressions. If a method can be safely fired, a new thread is created and
allowed to run, starting at the entry point for the given member function (as in the active messages
case). On the other hand, if the ordering constraints of a newly arrived method are not satisfied,
the method must be buffered (e.g. in alibrary-provided invocation store) and later extracted and
fired when safe. This need to defer the firing of methods requires that code be executed whenever
methods complete execution. One possible way to satisfy this requirement isto use

Legi onEvent _Met hodDone event kind, and announce events of this kind when methods
complete execution. A handler for this event kind can then be used to re-evaluate buffered meth-
ods with respect to the path expression ordering constraints whenever a running operation com-
pletes.

To examine the implementation of the scheme in more detail, we assume a path expression run-
time support class, Pat hExpr essi onManager , that exports methods to specify the ordering,
selection, and sequencing constraints of operations (i.e. Legion method function numbers). This
class would also support methods to determine if a given method is safe to fire, and to determine
which (if any) methods are ready to be fired upon the completion of arunning operation. Thefirst
modification we must make to the Library configuration isto add a new “method ready” event
handler that might look like that of Figure 27.

This method handler would need to be registered with the Legion method ready event kind, asin
the case of the active messages handler. The other requirement of our path expression solution is
that code be executed upon method completion in order to re-eval uate the safety of firing buffered
methods. To accomplish this, we use “method done” events that must be announced whenever a

method is finished running. A handler (Figure 28) must be registered with the

Legi onEvent _Met hodDone event kind that triesto fire any runnable buffered methods.

Legi onEvent _Met hodDone. addHandl er (Pat hExpr Met hodDoneHandl er, 0. 0);

Finally, an event of this type would need to be announced upon the completion of each method by
the object. The data for the event would need to be set to reflect the function number of the com-
pleted method.

UValL_Ref er ence<Legi onEvent > done = new Legi onEvent (Met hodDone) ;

37

done. setData((void *)ny_functi on_nunber);
Legi onEvent Manager Def aul t . announce(done) ;

Theresult of this configuration of the Library would be a run-time environment that could be used
to support path expression style method invocation semantics. This run-time system might be
used explicitly by a programmer, or might be the target of a compiler that accepted a Path-Pascal
like implementation language for Legion methods.

5.3 Message Passing

Thus far, the programming models we have examined have been variations of an object-based

i nt Pat hExpr Met hodHandl er (UValL_Ref er ence<Legi onEvent > ev) {
/1 Extract the work unit fromthe event
Legi onMet hodEvent Structure *nes;
mes = (Legi onMet hodEvent Structure *)ev->getData();
Wal_Ref er ence<Legi onWor kUni t> wu = nes->work_unit;

int function_nunber = wu->get_functi on_nunber();
i f (Pat hExpr essi onManager . canFi re(functi on_nunber)) {
/1 W can safely fire this nethod now
Pat hExpr essi onManager . runni ngQper ati on(functi on_nunber);
swi t ch(function_nunber) {
case METHOD1_FUNCTI ON_NUVBER:
pthread_create(& hr_id, & hr_attrib, methodl, wu);
} // Simlar cases for other nethods...
} else {
/1 Buffer this method until ordering constraints are net
Legi onl nvocati onSt or eDef aul t - >i nsert (wu) ;

}

Figure 27. Anexample method handler for implementing path expressions.

i nt Pat hExpr Met hodDoneHandl| er (UVaL_Ref er ence<Legi onEvent > ev) {
int done_function_num = (int)ev.getData();
Pat hExpr essi onManager . conpl et edOper at i on(done_functi on_nun;

whi | e (Pat hExpressi onManager. anyReady()) {
int function_num = Pat hExpr essi onManager . next Ready() ;
UValL_Ref er ence<Legi onWor kUni t > wu;
wu = Legi onl nvocati onSt oreDef aul t - >next _mat ched_f or _func(function_num;
Pat hExpr essi onManager . r unni ngOper ati on(functi on_nunj;
swi tch(function_num {
case METHOD1_FUNCTI ON_NUMBER:
pthread_create(& hr_id, & hr_attrib, methodl, wu);
} // Simlar cases for other nethods...

Figure 28. One possible handler for MethodDone events in an implementation of path expressions.

38

method-invocation-oriented model. Thisis natural given the object oriented nature of the Legion
system. However, Legion can support alternative programming models such as message passing
or distributed shared memory. In this section, we examine the ways in which the Legion library
can be configured to support a message passing model. We describe how Legion can be uses as
run-time support to implement a message-passing interface such as MPI[5] or PVM[8]. These
systems allow asynchronous send and receive operations - messages are buffered until explicitly
requested at the receiving process, and send operations are permitted to return before the destina-
tion process has received the message.

One possible implementation of such a message passing system would be to construct a message
passing Legion base class which exportsasingle messageDel i ver () method. The parame-
ters to this method could be an integer message tag and an un-interpreted string of bytes contain-
ing the message. The operation of thesend() library function would simply involve invoking
thenessageDel i ver () Legion method on the intended destination LOID. The implementa-
tion of themessageDel i ver () Legion method would simply accept and buffer the received
message in an internal message queue. Ther ecei ve() library function would then consist of a
loop that could check the message queue for the desired message tag, dequeue and return it if
available, or block for anmessageDel i ver () invocation if not.

Although the above solution is very simple to implement using the available library support
mechanisms, it has the potential drawback of incurring the cost of the mechanism associated with
method invocation (e.g. token matching, additional event handlers, etc.), while only requiring the
very simple support needed for message passing. An aternative implementation strategy is to
insert ahandler lower in the Legion library protocol stack. The natural place for such a message
passing handler would be at the Legion “message receive’ event layer. Here, a handler could be
inserted to capture messages with certain desired function numbers (i.e. a special “message pass-
ing” function number), and enqueue the message contents on a message queue for use by the mes-
sage passing library. Messages with other function numbers (for example, those associated with
object mandatory methods[7]) would be allowed to continue up the protocol stack and through the
normal method invocation mechanism. In this scheme, the send() library operation would con-
struct aLegi onMessage object containing the message contents and reflecting the appropriate
agreed upon function number. This Legion message would be added to aLegi onMessag-
eEvent St ruct ur e, which would be placed into anew Legi onEvent of thekind

Legi onEvent _MessageSend. Thisevent would be announced and the message would be
sent. Ther ecei ve() operation would simply loop, examining the message queue utilized by
the message receive handler described above, and blocking for available events. Thus, in this
scheme, the overhead of the standard L egion method invocation mechanism is avoided for low-
level message passing traffic.

Although this scheme could improve performance, it has serious security ramifications. If mes-
sages are caught before the token matching process, the automatic Mayl () method will not be
invoked and the object’s security may be compromised. While this may be acceptable for certain
performance-critical, security-optional applications, the first message passing implementation
described would be more suitable for balanced security/performance applications.

39

10.

11.

. References

B. Bershad et al. Extensibility, Safety, and Performance in the SPIN Operating System. In
15th Symposium on Operating System Principles, 1994.

R. H. Campbell and A. N. Habermann. The Specification of Process Synchronization by Path
Expressions. Lecture Notes in Computer Science, No. 16, Springer Verlag, pages 89-102,
1973.

Andrew S. Grimshaw, Jon Weissman, W. Timothy Strayer. Portable Run-Time Support for
Dynamic Object-Oriented Parallel Processing. ACM Transactions on Computer Systems,
14(2), 1996.

Andrew S. Grimshaw, William A. Wulf. Legion - A View from 50,000 Feet. In Proceedings
of the Fifth IEEE International Symposium on High Performance Distributed Computing.
|EEE Computer Society Press, Los Alamitos, California, August 1996.

W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Programming with the
Message Passing Interface,MIT Press, 1994.

N. C. Hutchinson and L. L. Peterson. The x-Kernel: An Architecture for Implementing Net-
work Protocols. |EEE Transactions on Software Engineering, 17(1):64-76, 1991.

Mike Lewis, Andrew S. Grimshaw. The Core Legion Object Model. In Proceedings of the
Fifth IEEE International Symposium on High Performance Distributed Computing. |EEE
Computer Society Press, Los Alamitos, California, August 1996.

V.S. Sunderam. PVM: A Framework for Parallel Distributed Computing. Journal of Concur-
rency. Practice and Experience, 2(4):315-339, December 1990.

Thornsten von Eicken, David E. Culler, Seth C. Goldstein, and Klaus E. Schauser. Active
Messages: A Mechanism for Integrated Communication and Computation. In Proceedings of
the International Symposium on Computer Architecture, pages 256-266, May 1992.

William A. Wulf, Chenxi Wang, Darrell Kienzle. A New Model of Security for Distributed
Systems. University of Virginia, Department of Computer Science Technical Report CS-95-
34, August 1995.

H. Zhou and A. Geist. Receiver Makes Right Data Conversion in PV M. In Proceedings of
14th International Conference on Computers and Communications, Phoenix, AZ, pp. 458-
464, March 1995,

40

7. Appendix A - Example Trandlations

The most up-to-date version of these trandations are also available at http:/legion.virginia.edu/.

7.1 Example 1 - The Smple Class

The first exampleis anonsense classin that it does no meaningful computation. However, it exer-
cisesthe full functionality of the library and also illustrates how our compiler will generate trans-
lations. We give the C++ class, its trandation, and a sample program that illustrates how we
invoke methods.

To write the trand ation, we define awrapper class called Legi on_Si npl e. Thiswrapper con-
tains a protected data member that is an object of the C++ class being translated. We call thisthe
wrapped object. For each member function in the wrapped object we define a corresponding
member functioninLegi on_Si npl e. Thejob of these member functionsisto take awork unit,
build the corresponding call to the wrapped object’s member function, execute the call, and pack-
age up any return values (much like a server stub in RPC implementations).

Legi on_Si npl e aso contains additional member functions to figure out which wrapper mem-
ber function should be called (i nvoke_net hod()), to indicate to the invocation store which
member functions will be accepted (enabl e_f uncti ons()), and to perform the server loop
(accept _nmenber functions()).

7.1.1 Simple.h & Simple.c

/1 A very sinple class definition
#i fndef _H Sinple_
#define _H Sinple_

#i ncl ude <stdi o. h>

class Sinple
{
int data;
public:
Si mple() ;
int opl(int foo);
int op2(int & oo, int &bar);

/1 A very sinmple class definition
#i fndef _C Sinple_
#define _C Sinple_

#i ncl ude <stdio. h>
#i ncl ude “Sinple.h”

Sinmple::Sinmple() {
data = 0;
}

Si npl e::opl(int foo) {

41

data = foo;

}

int

Sinple::op2(int & oo, int &bar) {
foo = dat a*dat a;
bar = dat a+dat a;
return foo+bar;

}
#endi f

7.1.2 Smpletrans.h & Simple.trans.c

%o -----mmmm - - Sinple.trans. h-----------mmomm %
/I Legion ‘wrapper’ class definition for the Simple class

#i fndef _H Sinple_trans_

#i ncl ude <stdio. h>

#i ncl ude “I egi on/ Legi on. h”

#i ncl ude “Sinple.h”

#define SI MPLE_OBJECT_CLASS_ID “Sinple”

#define SI MPLE_OP1_FUNCTI ON_NUVBER 1
#def i ne SI MPLE_OP2_FUNCTI ON_NUVBER 2

/I class Legion_Simple
cl ass Legion_Sinple
{ .
private:
/I the object being wrapped
Si npl e *obj ect;

/I For generating methodDone events
virtual void generate_MethodDoneEvent ();

public:
Legi on_Si nmpl e();
~Legi on_Si npl e();

I/ wrapper member functions for each member function in ‘object’
voi d Legi on_opl(UVaL_Ref erence<Legi onWor kUni t > wu) ;
voi d Legi on_op2(UvaL_Ref er ence<Legi onWor kUni t > wu) ;

[/l auxiliary member functions needed
virtual void enabl e_functions(LegionlnvocationStore *);
virtual int invoke_mnethod(WalL_Reference<Legi onWor kUnit> wu);
virtual void accept_menber_functions();
b
#endi f

R Sinple.trans. C--------------mmao %
/I The ‘wrapper’ class definition
#ifndef _C Sinple_trans_

#i ncl ude <stdio. h>

#i ncl ude <uni std. h>
#i ncl ude “I| egi on/ Legi on. h”

42

#i nclude “Sinple.trans. h”

/1 This is the wapped object
static Legion_Sinple *w apper;

/1 This is the event handl er for invoking a nethod
static int Legi onMet hodl nvoke(UvVaL_Ref er ence<Legi onEvent >) ;

e e e
/'l Cenerates a Met hodDone event. Should be called right after the call

/1 to the wapped object’s nmenber function.

voi d

Legi on_Si npl e: :

gener at e_Met hodDoneEvent ()

{
UVaL_Ref er ence<Legi onEvent > net hodDoneEvent ;
met hodDoneEvent = new Legi onEvent (Legi onEvent _Met hodDone, (void *) NULL);
Legi onEvent Manager Def aul t . announce(met hodDoneEvent, Legi onEvent AnnounceNow) ;
}
R R R

/1 Allocates the wapped object and enables the correspondi ng
/1 functions in the invocation store.

Legi on_Si npl e: :

Legi on_Si npl e()

{
obj ect = new Sinple();
wrapper = this;
enabl e_functi ons(Legi onl nvocati onStorelLL_Default);
}
R

/1 De-allocates the wapped object
Legi on_Si npl e: :
~Legi on_Si npl e()
{
del et e object;
wr apper = NULL;

e
/'l wrapper menber function for wapped. opl()
voi d
Legi on_Si npl e: :
Legi on_opl(UVaL_Ref er ence<Legi onWor kUni t > wu)
{
/1 get the paraneter fromthe work unit
int parmnt;
Wal _Ref er ence<Legi onBuffer> | b;
I b = wu->get _paraneter(1);
| b->get _i nt(&parm, 1);

/'l I nvoke the wapped nenber function
int result = object->opl(parntl);
gener at e_Met hodDoneEvent () ;

/!l Return the result.
UVal_Ref erence<Legi onBuf fer> return_| b;

43

/1
/1

return_|I b = new Legi onBuffer();
return_| b->put _int(&esult, 1);
Legi on_ret urn(UvaL_METHOD _RETURN_VALUE, *(wu->get_continuation_list()),

wr apper nenber function for wapped. op2()

voi d
Legi on_Si npl e: :
Legi on_op2(UVaL_Ref er ence<Legi onWor kUni t > wu)

{

/1
I
I

int

/1 get the paraneters fromthe work unit and unpack them
int parnl, parn®;

Wal _Ref er ence<Legi onBuffer> | b;

I b = wu->get _paraneter(1);

| b->get _int(&parm, 1);

I'b = wu->get _paraneter(2);

| b->get _i nt(&parnk, 1);

/'l invoke the requested function
int result = object->op2(parnl, parnR);
gener at e_Met hodDoneEvent () ;

/] Return all results. In this case, there are three of them
/1 (return value and two in/out paraneters).

Wal_Ref erence<Legi onBuffer> return_| b;

return_I b = new Legi onBuffer();

return_|l b->put _int(&esult, 1);

Legi on_return(UvaL_METHOD RETURN VALUE, *(wu->get_continuation_list()),
return_I b = new Legi onBuffer();

return_| b->put _int(&parnt, 1);

Legion_return(l, *(wu->get_continuation_list()), return_lb);
return_I b = new Legi onBuffer();

return_| b->put _int (&arnm2, 1);

Legion_return(2, *(wu->get_continuation_list()), return_|lb);

I nvokes the appropriate method based on the function nunber in
the supplied work unit.

Legi on_Si npl e: :
i nvoke_met hod(UVaL_Ref er ence<Legi onWor kUni t > wu)

{

switch (wu->get_function_nunber()) {

case S| MPLE_OP1_FUNCTI ON_NUVBER:
Legi on_opl(wu);
br eak;

case SI MPLE_OP2_FUNCTI ON_NUMBER:
Legi on_op2(wu) ;
br eak;

defaul t:
fprintf(stderr,”Legi on_Sinple::invoke_nethod()\n");
fprintf(stderr,”This object does not export function nunber %\ n”,

wu- >get _function_nunber());

exit(0);
br eak;

return_Ilb);

return_|l b);

N LR R R R R R R
/1 This is the server |oop.

/1 Event Myr. serverLoop() continuously flushes events and then

/1 blocks waiting for events to becone avail abl e.

voi d

Legi on_Si npl e: :

accept _menber _functions()

{
Legi onEvent Manager Def aul t . server Loop();
}
I e
/1 Enabl e the wapped object’s functions. The LIS nust be explicitly
/1 told which functions to accept. There will eventually be some
/1 object mandatory functions in here too.
voi d

Legi on_Si npl e: : enabl e_functi ons(Legi onl nvocationStore *LIS)
{
/1 Enabl e the function nunbers that | can handle...
Legi onl nvocati onSt or eLL_Def aul t - >enabl e_f uncti on(
SI MPLE_OP1_FUNCTI ON_NUMBER, DEFAULT_PRI ORI TY);
Legi onl nvocati onSt or eLL_Def aul t - >enabl e_f uncti on(
S| MPLE_OP2_FUNCTI ON_NUMBER, DEFAULT_PRI ORI TY);

/1 Register my event handler...
Legi onEvent _Met hodReady. addHandl er (Legi onMet hodl nvoke, 1.0);

e e
/1 This is the event handler that get called on a MethodReady event.

/1 A MethodReady event is generated every tine a ready invocation is

/1 inserted into the invocation store.

static int

Legi onMet hodl nvoke(UvaL_Ref er ence<Legi onEvent > event)

{
Wal _Ref er ence<Legi onBuffer> | b;
int paraneter;
i f (LegionlnvocationStorelLL_Default->any_ready()) ({
UValL_Ref er ence<Legi onWor kUni t > wu;
wu = Legionl nvocati onStoreLL_Defaul t->next_mat ched();
wr apper - >i nvoke_net hod(wu) ;
}
return O;
}
e
int
main (int argc, char **argv)
{
Legion.init();
wr apper = new Legi on_Si npl e();
Legi on. Accept Met hods() ;
wr apper - >accept _nmenber _functions();
}
#endi f

45

7.1.3ex1l Simple.c

R exl Sinmple.c--------------- %
#i ncl ude <stdi o. h>

#i nclude “Sinple.trans. h”
#i ncl ude “l egi on/ Legi on. h”

/'l Make a Legi onParaneter fromthe supplied arguments
UValL_Ref er ence<Legi onPar anet er >
make_i nt _paraneter (int parmyval ue, int parm nunber)

{
UValL_Ref erence<Legi onBuffer> | b;
UWVal_Ref erence<Legi onPar anet er > parm
I'b = (LegionBuffer *) new Legi onBuffer();
| b->put _i nt (&armval ue, 1);
parm = (Legi onParaneter *) new Legi onPar anet er (par m nunber, |b);
return parm

}

int

nmai n(i nt argc, char **argv)

{

/] Variables for the ‘user’ code
int a =10, b = 15;
int x, vy, z;

/1 Initialize legion state

/1 Al of the below to get a random instance nunber
int my_instance_nunber;

struct tinmeval tv;

getti neof day(&t v, NULL) ;

srand(tv.tv_sec N tv.tv_usec);

ny_instance_nunber = rand() " tv.tv_sec ™ tv.tv_usec;

/'l Initialize Legion Library
Legion.init();

/1 Manufacture ny own |oid because |’ma comand |ine object
Legi on. Set \yLO D(nake_| oi d(UvaL_CLASS | D COWANDLI NE, ny_i nstance_nunber));

[l Tell ny creator |'mready to go
Legi on. Accept Met hods() ;

/] Create an enpty program graph

Legi onProgranG aph G Legi on. Get WLO X)) ;

/'l Create a couple of ‘Sinple objects

UValL_Ref erence<Legi onLO D> A nane, B _nane;

A nane = Legion. Creat eObj ect (SI MPLE_OBJECT_CLASS | D);
B nane = Legi on. Creat eObj ect (S| MPLE_OBJECT_CLASS ID);

/1 Get handl es for each object
Legi onCor eHandl e A_handl e(A_name), B_handl e(B_nane);

/1 First call: x = A opl(a);

46

/1 invoke()'s signature is invoke(function_num numparnms, numresults);
WaL_Ref erence<Legi onl nvocati on> i nvl;

invl = A handl e.invoke(SI MPLE_OP1_FUNCTI ON_NUMBER, 1, 1);

G add_i nvocation(invl);

UValL_Ref er ence<Legi onPar anet er > par ni;

parnl = neke_int_paraneter(a, 1);

G add_constant _paraneter (invl, parnl, 1);

/1 Second call: y = B.opl(b);

UWValL_Ref er ence<Legi onl nvocati on> i nv2;

inv2 = B handl e. i nvoke(SI MPLE_OP1_FUNCTI ON_NUMBER, 1, 1);
G add_i nvocation(inv2);

WValL_Ref er ence<Legi onPar anet er > par n2;

parn?2 = make_int_paraneter(b, 1);

G add_constant _paraneter(inv2, parn, 1);

/] Third call: z = A opl(x, Yy);

/1 Both paraneters are values yet to be conputed,

/'l so they must be invocation paraneters.

UVal_Ref er ence<Legi onl nvocati on> inv3;

inv3 = A handl e. i nvoke(SI MPLE_OP2_FUNCTI ON_NUMBER, 2, 3);

G add_i nvocation(inv3);

G add_i nvocati on_paraneter(inv3, invl, 1, UvaL_METHOD RETURN VALUE);
G add_i nvocation_paraneter(inv3, inv2, 2, Ual_ METHOD RETURN VALUE);

/1 W specifically ask for the in/out paranmeters. Don’'t
/1 get them otherw se.

G add_resul t _dependency(inv3, 1);

G add_resul t _dependency(inv3, 2);

[l printf (“%\n", 2z);
/] We need ‘z’, so we nust execute
G execute();

/] and wait for the return.

UValL_Ref erence<Legi onBuffer> | b;

Ib = G get_value (inv3, Wal_METHOD RETURN_VALUE) ;
| b->get _int(&z, 1);

printf (“z is%\n", z);

/1 Since we asked for them we can get the other val ues too.
G rel ease_all _val ues();

Ib = Gget_value (inv3, 1);

| b->get _int(&, 1);

printf (“x is %\n", x);

Ib = Gget_value (inv3, 2);

| b->get _int(&, 1);

printf (“y is %\n", y);

Legi on. Destroy(Obj ect (A_nane) ;
Legi on. Destroy(Cbj ect (B_nane) ;

8. Appendix B - Interfaces

This section provides selected parts of the interface from selected objects that make up the Library

implementation.

47

8.1 LegionProgramGraph

UWvalL_Ref erence<Legi onl nvocati on> add_i nvocation ()
Par amet ers: UValL_Ref er ence<Legi onl nvocati on>

Add an irvocation to the program graph. Returns theaation if successful, NULL if
not.

Par armet er St at us add_const ant _par aneter ()
Par amet ers: WValL_Ref er ence<Legi onl nvocati on> tar get
UVal_Ref erence<Legi onPar anet er > par anet er
i nt paraneter_nunber

Adds the gren parameter to the specifiedtanation as the ‘parameter_numbdemparam-
eter The parameter islaegi onPar anet er, which means that it contains an already
computed glue. The other possible is that it is avoication parameteihis means that

the parameter itself islaegi onl nvocat i on, thus representing a computation that has
yet to be performed.

Par amet er St at us add_i nvocat i on_par anet er ()
Par anet ers: UVal_Ref er ence<Legi onl nvocati on> source
WVal_Ref er ence<Legi onl nvocati on> t ar get

i nt source_paraneter_nunber

i nt target_paraneter_nunber

Adds the gren source parameter as a parameter to tles gaget parameteihis call
creates what is called.&gion Continuation, and adds the continuation to the continuation
list for the source paramet&/hen an imocation request isventually eecuted, the vo-
kee must knev where to send the results of theeeution. Each continuation identifies a
destination LOID to which a result should be sent.

voi d add_result_dependency()

Par amet ers: UValL_Ref er ence<Legi onl nvocati on> source
i nt paramet er _nunber

The current implementationvedys sends the returialae of a method request back to the
invoker. If the invoker wishes to recee other resultalues that e.g. might correspond to
in/out parameters to the methosanation, then thosealues must bexglicitly asked for
using add_result_dependgnt@his call then creates agienContinuation corresponding
to the requested parameter

UValL_Ref er ence<Legi onBuf f er > get _val ue()
Par anet ers: UValL_Ref er ence<Legi onl nvocati on> i nv
i nt paraneter_nunber
Gets the specified returmlue for the gien Legionlnvocation out of the program graph.
This is essentially a call through the program graph to the underlying message database. If
the result is not\vailable, get_glue blocks until it is. A LgionBuffer is returned.

i nt execute()
Paraneters: None

Takes the program graph rooted at thevpted invocation and fire it dfto be executed.
Does not block.

48

8.2 L egionl nvocationStore

i nt enable_function ()
Paranmeters: int func_num
int priority

Enables the supplied function so that the LIS will accept method requests for it. Method
requests for disabled functions are not accepted. High valuesfor pri or i t y mean high
priority.
i nt any_ready()
Par amet ers: None
Checks to seeif any method requests are ready.
int any_ready_for_func()
Parameters: int func_num
Checksto see if any method requests for the given function are ready.
Wal_Ref erence<Legi onWor kUni t > next _nat ched()
Par anet ers: None
Returns the next work unit. The priority scheme is obeyed.
UvalL_Ref erence<Legi onWor kUni t > next _matched_for_func()
Paranmeters: int func_num
Returns the next work unit with the given function number.
int set_priority ()

Paranmeters: int func_num
int priority

Sets the priority for the given function number.
int insert()
Par anet ers: UValL_Ref er ence<Legi onWor kUni t > new_wor k_uni t

Inserts the provided work unit into the invocation store. Thiswork unit may be a method
request or it may be aresult from a previous method invocation.

UValL_Ref er ence<Legi onWor kUni t > get _return_val ue()
Par anet ers: UValL_Ref er ence<Legi onConput ati onTag> t ag
i nt parameter_numnber

Returns the work unit with the given tag and parameter number. Typically, thisfunctionis
called by a higher layer (e.g. LegionProgramGraph) which will unwrap the returned work
unit to get the parameter inside.

int release_return_val ue()
Par anet ers: UValL_Ref er ence<Legi onConput ati onTag> t ag
i nt paramet er_numnber

Deletes the work unit that matches the supplied tag/parameter_number pair.

int release_all _return_val ues()
Par aneters: None

Deletes al return values from the invocation store.

49

8.3 LegionWorkUnit

int get _function_nunber()
Par aneters: None

Returns the target function number for the work unit.

UValL_Ref er ence<Legi onCont i nuati onLi st> get_conti nuation_list()
Par amet ers: None

Return the continuation list for the results of thiswork unit.

UValL_Ref er ence<Legi onBuf f er > get _paraneter ()
Paraneters: int paraneter_nunber
Returns the given parameter as a LegionBuffer. NULL if the parameter is not in the work
unit.

8.4 L egionBuffer

8.4.1 Constructors

Legi onBuffer()
Par amet ers: None
Creates an empty buffer withalLegi onSt or ageScat storage, and default implementa-
tions of the packer, compressor, and encryptor function sets.

Legi onBuffer()
Par amet ers: UWValL_Ref er ence<Legi onSt or age>

Wraps adefault buffer around a given storage object. It uses default implementations for
the packer, encryptor, and compressor.

Legi onBuffer()
Par anet ers: Legi onMet aDat a et adat a

Creates anew empty Legi onBuf f er withalLegi onSt or ageScat default storage
implementation. It instantiates packer, encryptor and compressors based on the metadata

Legi onBuffer()
Par amet ers: UWValL_Ref er ence<Legi onSt or age>
Legi onMet aDat a net adat a

The full featured constructor wraps a specified storage in a buffer appropriate for the
given metadata, selecting the right packer, compressor, and encryptor implementations.

8.4.2 Operations on the associated L egionStor age

A Legi onSt or age exports member functionsto read and write untyped characters from and to
alogical buffer. These operations are also exported by Legi onBuf f er, but the user should be
warned that the “better” way to put datainto a buffer is through the Legi onPacker interface;
read()andwrite() will not perform appropriate data format conversions, but put _i nt ()
andget _i nt () will.

size_t read()
Par ameters: size_t numbytes
voi d *data

50

Reads num_bytes bytes from the buffer starting at the current location of the buffer
pointer. Copies the bytes into the space pointed to by data_dest. Returns the number of
bytes actually read, and positions the buffer pointer immediately after the last byte that
wasread. Read() will not read past the end of the buffer.

size t wite()
Paraneters: size_t numbytes
void *data

Writes num_bytes bytes pointed to by data into the buffer starting at current position of
the buffer pointer (overwriting existing data). Returns the number of bytes actually writ-
ten, and positions the buffer pointer immediately after the last byte that was written. Writ-
ing past the end of the buffer causesit to expand.

size_ t seek()

Paranmeters: seek _start whence
i nt bytes_away

Changes the position of the buffer pointer. “Whence” can be BEGINNING (0), CUR-
RENT (1), or END (2), and bytes away tells how many bytes away from whence to set
the pointer. Seeking past the end of the buffer causes it to expand and to be filled with
NULL bytes. Seeking to negative logical positions the buffer does not cause the buffer to
expand; the buffer pointer is placed at logical position O.

size t size()
Par amet ers: None
Returns the current size of the buffer in bytes.

size_t current_byte()
Par amet ers: None
Returns the number of the byte to which the buffer pointer currently points.
Current _byte() returns0when the buffer pointer is at the beginning of the buffer,
andcurrent _byte() ==si ze() when the buffer pointer is at the end of the buffer.

char *linearize()
Parameters: int pack netadata=0
Returns a pointer to the beginning of the buffer’s data. This pointer is guaranteed to point
to datathat is contiguous in memory. Depending on the implementation of the
Legi onSt or age, thisfunction may or may not need to return a pointer to a copy of the
data.

voi d set Met aDat a()
Par armet ers: Legi onMet aData nd
Sets the meta data associated with the Legi onSt or age.

Legi onMet aDat a get Met aDat a()
Par amet ers: None
Returns the meta data associated with the Legi onSt or age. Thisisuseful for instantiat-
ing an appropriate Legi onBuf f er based on agiven Legi onSt or age.

8.4.3 Operations on the associated L egionPacker

A Legi onPacker exports operations for packing and unpacking the basic C++ data types into
and out of aLegi onBuf f er inaparticular dataformat. A Legi onPacker exports

51

put ZZZ() andget ZzZ() foral ZZZin{char,short,ushort,int,| ong,ul ong,
fl oat,doubl e}.

size_t put_ZzZ()
Paranmeters: ZZZ *source
i nt how_nmany
Assumesthat “sour ce” pointsto an array of “how_many” instances of type ZZZ. Cop-
iesthisdatainto the buffer after first performing the appropriate data conversion operation
if necessary and appropriate for the type of Legi onPacker that isinstantiated.

size t get ZZZ()
Parameters: ZZZ *source
i nt how_many
Assumesthat “sour ce” points to enough space for an array of “how_many” instances
of type ZZZ. Copies the next data from the LegionBuffer into this space after first per-
forming the appropriate data conversion operation if necessary and appropriate for the
type of Legi onPacker that isinstantiated.

8.4.4 Operations on the associated L egionEncryptor

Since no encryption algorithms have been implemented, the current encryption operations,
encrypt () anddecode(), are merely placeholders until the right set of encryption opera-
tions are defined.

8.4.5 Operations on the associated L egionCompr essor

Since no compression algorithms have been implemented, the current compression operations,
conpr ess() anddeconpr ess(), are merely placeholders until the right set of compression
operations are defined.

8.4.6 LegionPackable

i nt pack()
i nt unpack()
Paraneters: LegionBuffer & b
L egionBuffers are themsel ves packable.

8.4.7 Other functions

show()
Par amet ers: None
Prints the contents of the Legi onBuf f er tost der r. Thisis done however the associ-
ated Legi onSt or age seesfit.

8.4.8LegionLOID

LegionLOID isintended to be a base class for LOID’s that enforce a particular structure on the
fields of the LOID. An LOID contains four private data members, (1) an integer that holds the
type of LOID, (2) an integer that indicates how many fields the LOID contains, (3) an array
“field_size{]” of integersthat holdsthe sizesin bytes of the LOID fields, and (4) an array
“field_val ue[]” of pointersto the field data. Currently, the only derived classis called
Legi onGener al Pur poseLO D, which simply exposes the protected members to the public
interface.

52

Legi onLA D() (protected)
Parameters: int |type
Setsthe type to Itype, sets all other fields to zero.

Legi onLA D() (protected)
Paraneters: int |type,
short nfields

Setsthe typeto Itype. Sets num_fields to nfields. Allocates the field_size[] and
field_value[] arrays. Setsall field_size[]’sto 0, setsall field value[]’sto NULL.

Legi onLA D() (protected)
Paraneters: int |type,
short nfields,
short *fld_size

Setsthe typeto Itype. Sets num_fields to nfields. Allocates the field_size[] and
field_value[] arrays. Setsall field_size[]’s to the values contained in the fld_siz€[] array.
Allocates the field_value]] entries to the right size and zeros them out. This constructor
assumes the fld_size array has at least nfields elements.

Legi onLA D() (protected)
Paranmeters: int |type
short nfields
short *fld_size
char **fld_val ue

Setsthe type to Itype. Sets num_fields to nfields. Allocates the field_size[] and
field_value]] arrays. Setsall field_size[]’s to the values contained in the fld_size[] array.
Allocatesthe field_value][] entries to the right size and copies the values from fld_valu€[]
array into the field_value[] array. This constructor assumes that the fld_size[] and
fld_value[] arrays have at least nfields elements, and that each fld_value]i] points to at
least fld_size]i] bytes of space.

set_field_size() (protected)
Paranmeters: short field _num
short fsize

Sets the appropriate field_size element to fsize and makes sure that the corresponding
field_value element is at least fsize bytes. If it isnaot, it deletes the old field_value entry
and allocates a new one. Only derived classes should be allowed to call this member.

set _type() (protected)
Paraneters: int new type

Sets the type entry to be new_type. Can only be called from within the code of derived
classes.

Legi onLO ()
Paraneters: LegionBuffer & b

Legi onLO IX()
Paraneters: Legi onLO D &ot her LA D
These two constructors are public because neither allows the caller to violate the structure
of any particular type of LOID - both just copy the LOID from the parameter, either a
Legi onBuf f er or another Legi onLO D.

Legi onLO D()
Paraneters: None

53

Not avery useful constructor, so it prints awarning and assigns all data members to zero.
Useful constructors should at least say what the typeis.

Accessors
Methods for getting and setting the type and all field values, by field number and field
name, exist.

Over | oaded operators
The==,! =, and = operators are overloaded appropriately. An LOID is equal to another
only if al fields areidentical in size and value.

nt is_enpty()
Paramet ers: None

Returns 1 only if the LOID isof type UvaL_Legi onLO D_t ype EMPTY (zero).

nt is_class()
Parameters: None

Returns 1 only if the LOID seemsto refer to aclass object, i.e. theinstance number field is
empty.

nt sane_cl ass_as()
Par anmet ers: UVal_Ref erence<Legi onLO D> other | oid

Returns 1if thecl ass_i d field matches that of other_loid.

nt pack()
Par ameters: LegionBuffer &b

Type and num_fields are packed first, in network order. Next num_fields shorts are
packed, in network order. Next, num f i el ds values are packed.

nt unpack()
Par ameters: LegionBuffer &b

Thetype,num fields,andfi el d_si ze[] sareunpacked into host order. The
fiel d_val ue[] sareunpacked without switching the byte order.

nt show()
Paraneters: None

Prints the contents of the LOID to stderr for debugging purposes.

8.5 L egionM essage

Legi onMessage()

Par amet ers: UValL_Ref erence<Legi onLO D> src
UvalL_Ref erence<Legi onLO D> dest
int fnum
int parns_to_expect
UvalL_Ref erence<Legi onConput ati onTag> t ag
UvalL_Ref erence<Legi onPar anet er Li st> pli st
UvalL_Ref erence<Legi onConti nuati onLi st> | contLi st
UvalL_Ref erence<Legi onEnvi ronnent > | env

CreatesalLegi onMessage from the constituent parts passed as parameters.

Accessor functions
L egionM essage exports public member functions to get and set all of its constituent parts .

Over | oaded operators
The equality operators (== and ! =) are overloaded. Two Legi onMessages are deemed
equal only if each of the constituent parts are equal, as determined by the equality opera-
tors of their respective classes.

show()

Par amet ers: None
Prints the contents of the Legi onMessage tothest der r stream.

i nt pack()
Paraneters: LegionBuffer & b
i nt unpack()
Paraneters: LegionBuffer & b
LegionMessage is packable.

8.5.1 L egionPar ameter

Legi onPar anet er ()
Paraneters: int param nunber
UValL_Ref er ence<Legi onBuf fer> | b
Constructs a new parameter whose value is assumed to bein | b, and whose number is set
to par am _nunber.

O her constructors
The default constructor creates a parameter with a negative parameter number and an
empty Legi onBuf f er . A constructor that takes only a LegionBuffer as a parameter
unpacks the contents of the L egionParameter from that buffer. The copy constructor isalso
overloaded.

Accessor functions
Legi onPar amet er exports public member functions to get and set both the parameter
number and the buffer that contains the value of the parameter.

Over | oaded operators
The == operator is overloaded to return 1 when the parameter numbers are the same, and 0
otherwise.

show()

Par anmet ers: None
Prints the contents of the L egionParameter to the st der r stream.

i nt pack()

Par ameters: LegionBuffer &b
i nt unpack()

Par ameters: LegionBuffer &b

LegionParameter is packable.

8.5.2 LegionParameterList

Constructors
The default constructor creates an empty parameter list, and a constructor that takes a
Legi onBuf f er asan argument unpacks the contents of the Legi onPar anet er -
Li st from that buffer.

55

Set operations
Legi onPar amet er Li st isderived from templated class
UvalL_Packabl eSet _Li nkedLi st , and therefore exports the full interface of
UvalL_Packabl eSet .

Wal_Ref erence<Legi onPar aneter> find()
Par anmeters: int paraneter_nunber

Augmentsthe UvVaL_Set operationsto allow parameters to be looked up by number.
Returns areference to the parameter, if found, or anull reference if not.

show()

Par amet ers: None
Prints the contents of the Legi onPar anet er Li st to the stderr stream.

i nt pack()
Paraneters: LegionBuffer & b

i nt unpack()
Paraneters: LegionBuffer & b
Legi onPar anet er Li st is packable.

8.5.3 LegionComputationag

Legi onConput at i onTag smply maintainsaglorified interfaceto along integer. The Library
also contains aclass—Legi onConput at i onTagGener at or —that creates random compu-
tation tags. See the source code or on-line documentation for a description of that class.

Constructors
The default constructor createsalegi onConput at i onTag with an uninitialized ini-
tial value. A constructor that takesaLegi onBuf f er asan argument unpacks the con-
tents of the computation tag from that buffer.

Accessor functions
Legi onComput at i onTag exports public member functionsto allow the value of the
tag to be set and retrieved as along integer.

show()

Par anmet ers: None
Prints the contents of the Legi onConput at i onTag to the stderr stream.

i nt pack()

Par ameters: LegionBuffer &b
i nt unpack()

Par ameters: LegionBuffer &b

Legi onConput at i onTag is packable.

8.5.4 Other fields

A LegionMessage also containsaLegi onCont i nuat i onLi st,andalLegi onEnvi r on-
nment . A Legi onCont i nuat i onLi st issimply aUvaL_Packabl eSet of Legi onCon-
tinuations,andalLegi onEnvi ronnment isaUValL_PackableSet of

Legi onEnvi ronment | t ens. Please refer to the online documentation and source code for
the interface to these classes.

56

