
1

Implementation of the Legion Library

Adam J. Ferrari, Mike Lewis, Charles L. Viles
and

Anh Nguyen-Tuong, Andrew S. Grimshaw

The Legion Research Group1

Technical Report CS-96-16
Department of Computer Science

 University of Virginia
DRAFT: 11/26/96

Abstract

Legion is a multi-year effort to design and build scalable meta-computer software. Legion pro-
vides the software “glue” for seamless integration of distributed, heterogeneous hardware and
software components. Much of this “glue” is provided in Legion’s run-time library. In this docu-
ment we provide a detailed description of the implementation of the Legion run-time library. The
library is designed and implemented as a layered, configurable software protocol stack. This
design, coupled with an event-based mechanism for inter-layer communication, enables a consid-
erable flexibility and extensibility. In this document, we first present the library interface and
show how the library can be used “as is”, without internal modification. We then show how to
modify or add functionality to the library. Finally, we provide qualitative descriptions of how the
library could be extended to encompass programming styles and methods besides the object-ori-
ented, macro data-flow style that is Legion’s initial target.

1. Introduction
The Legion project at the University of Virginia (http://legion.virginia.edu/) attempts to facilitate
the integration of disparate, distributed, and heterogeneous system components into a single vir-
tual meta-computer. The Legion project does not specifically prescribe how system components
should be implemented - only the functionality of these components and through this functional-
ity, some of the interactions between them. However, our goals are much larger than the simple
specification of component functionality: some issues can only be examined with a working sys-
tem. From our perspective, the importance of a working implementation cannot be overstated. In
this paper we describe the initial implementation of the Legion Run-time Library (hereafter, the
“Library”).

This paper is specific in its thrust in the following ways. We focus narrowly on the design and
implementation of the Library. We do not attempt to describe the Legion project in its entirety

1. This work partially supported by DARPA(Navy) contract # N66001-96-C-8527, DOE grant DE-FD02-
96ER25290, and DOE contract Sandia LD-9391.



2

(see [4]) nor do we describe a complete implementation of a system that will achieve all of
Legion’s objectives. The purpose of this paper is to describe our initial implementation experi-
ence with the Library and to document its state as of mid-November 1996.The implementation
will continue to evolve.

This report targets those who wish to use the Library to build their own services/applications or
those who intend to modify or augment the Library in some fashion. Accordingly, this document
is more a manual than a paper. After a short introduction into the Legion project and its goals, we
introduce several key concepts of the Library and its implementation in Section 2. These concepts
are necessary to understand how the library works and thus to unlock the flexibility it provides. In
Section 3, we explain in detail how to use the Library as is, i.e without internal modification. Sec-
tion 4 describes how to modify or extend the Library’s capabilities. To illustrate the Library’s flex-
ibility , we describe how it might be modified to accommodate simple message passing, active
messages, and multiple threads. The Appendix gives a complete translation of a C++ based
Legion object that uses the Library to accept method invocations and to return results. The Appen-
dix also includes detailed interfaces for several of the important C++ classes in our implementa-
tion of the Library.

On-line documentation about the implementation (including code) is available athttp://legion.vir-
ginia.edu/.

1.1 The Legion Vision
Legion is an ambitious project. We hope to revolutionize high-performance distributed computing
by providing unified access to distributed, heterogeneous computational resources where such
access has previously been impossible or extremely difficult. Our overall vision is shaped by the
following ten objectives:

• Scalability
• High Performance
• Ease of use
• Extensibility
• Persistent object space
• Security
• Multi-language support
• Exploitation of resource hetero-geneity
• Site Autonomy
• Fault-tolerance.

The Legion Library implementation is a key component for achieving extensibility, and is vital in
a number of other areas, especiallysecurity, ease of use, andfault-tolerance. More detail on the
Legion vision and objectives can be found in [4].

2. Basics
This section describes some of the most fundamental aspects of the Library. The modules, classes,
and concepts described in this section pervade the library’s implementation, and must therefore be



3

familiar to you before we describe the rest of the library.

2.1 LegionBuffers and packability
A Legion buffer, represented by the C++ object class LegionBuffer, is the fundamental data
container in the Legion Library. A Legionl buffer exports operations to read and write data from
and to a logical buffer. Instances of different kinds of LegionBuffers export the same inter-
face and perform the same basic function, but can have different characteristics from one another.
For example, one LegionBuffer may copy the data it contains into heap-allocated memory,
another may simply maintain pointers to the data, and a third may read and write its data from and
to a file. Further, LegionBuffers may also choose to compress or encrypt data, or both. To
define its characteristics, each LegionBuffer contains a LegionStorage, a Legion-
Packer, a LegionEncryptor, a LegionCompressor, and MetaData.

2.1.1 LegionStorage
A LegionStorage determines how the data is stored. One type of LegionStorage pro-
vided in the Library is LegionStorageScat, which stores its data as a linked list of pointers
to chunks that contain the data. A LegionStorageScat can be configured to copy the data
into chunks that it allocates, or to maintain pointers to data “owned” by other parts of the library.
Another type of LegionStorage is a LegionStoragePersistent, which stores data in
a file. Different LegionStorages will have unique characteristics in terms of performance
and even operation. For instance, selecting a LegionStorageScat that does not copy its data
may be efficient, but extra care must be taken not to delete data “out from under” the buffer, leav-
ing dangling pointers.

Although a LegionStorage exports functions to directly access a buffer’s data (Section 8.4.2),
these functions typically should not be called directly by the user of a LegionBuffer. Instead,
the user should call the functions in the interface provided by the LegionPacker portion of a
LegionBuffer.

2.1.2 LegionPacker
A LegionPacker determines the data format conversion operations, if any, that are performed
on the contained data when it is written to and read from the buffer. LegionPacker is the pri-
mary mechanism in the Library for dealing with the fact that machines with different architec-
tures, which store data in different formats (i.e. big vs. little endian, 32-bit vs. 64-bit words, etc.),
need to communicate with one another. The Library supports three different equivalence classes
of architectures, which we call Alpha, Sparc, and x86. For efficiency reasons, Legion assumes
a “receiver makes right” [11] data conversion policy, where the sender of a message (i.e. the orig-
inal creator of a LegionBuffer) packs the message in its own native format, and the receiver
of the message is responsible for converting the data to the format appropriate for the architecture
on which it resides. Thus, the Library provides six different types of packers of the form
LegionPackerX2Y, where X and Y are two different members of {Sparc, Alpha, x86}.
None of the six packers does any conversion when writing to the buffer, but each converts data in
the appropriate way when reading from the buffer. LegionPackerX2Y is appropriate to use
when the data is stored in format X, but the machine currently holding the buffer uses format Y.
When the data is already stored in the appropriate format for the architecture on which it is being
read, or when data conversion is done outside a LegionBuffer, LegionPackerDefault



4

can be used to ensure that no data conversion will take place on reads from the buffer.

The interface provided by a LegionPacker consists of functions of the form

put_zzz(zzz *source, int how_many)

and

get_zzz(zzz *source, int how_many)

wherezzz names a basic C++ data type, i.e.char, short, ushort, int, long, ulong,
float, ordouble. Thus, aLegionPacker exportsput_char(), get_char(),
put_short(), get_short(), etc. “Source” points to an array of “how_many” instances
of typezzz.  Theput_zzz() function copies this data into the buffer after first performing the
appropriate data conversion operation if it is necessary for the type ofLegionPacker that is
instantiated. Theget_zzz() function fills the complementary role, first converting the data and
then copying it intosource.

The code example in Figure 1 illustrates the use of theLegionPacker interface of aLegion-
Buffer. It also uses theseek() function—which is actually part of theLegionStorage
interface (Section 8.4.2)—to “rewind” the logical position within the buffer back to the beginning.

2.1.3 LegionEncryptor
A LegionEncryptor determines the encryption and decryption algorithms, if any, that are
applied to the data. The Library currently provides onlyLegionEncryptorDefault, which
defines empty encryption and decryption operations.

2.1.4 LegionCompressor
A LegionCompressor determines the compression and decompression algorithms, if any,
that are applied to the data. The Library currently provides onlyLegionCompressorDe-
fault, which defines empty compression and decompression operations.

2.1.5 MetaData
Eight bytes of “meta-data”, three of which are currently used, are associated and carried with each
LegionBuffer. The meta-data indicates the format in which the data is stored, and the algo-
rithms, if any, that were used to encrypt and/or compress the data. The meta-data fields and values
that are supported by the Library are defined in the Appendix.

2.1.6 Packability
LegionBuffers enable the concept of “packable” classes in the Library. A class is packable if
it is derived from the abstract base classLegionPackable (not to be confused withLegion-
Packer), and therefore exports the functions

pack(LegionBuffer &lb)

and

unpack(LegionBuffer &lb)

Bothpack() andunpack() take a single reference parameter that names aLegionBuffer.
Thepack() function of a packable class writes its state into theLegionBuffer in such a way
that theunpack() function of the same class can read it out. The state is typically written to and



5

read from the buffer using the LegionPacker  part of a LegionBuffer  interface, which
encapsulates the data format conversion operations.

Suppose class Alpha  (Figure 2 - top) is packable and exports the C++ == operator. If Alpha  is
implemented correctly, then the code in Figure 2 - bottom should print “OK”.

Classes are made packable for two reasons, (1) so they can be passed between heterogeneous
architectures within a LegionBuffer , and (2) so they can be written to a LegionBuffer  as
part of a “save state” operation (Section 3.6). Since these two operations are so fundamental and
common to the Library, many parts of the Library only operate on packable classes. For instance,
many of the templated data structures are packable, and require the ability to call the pack()
member function of the contained data. Further, on a Legion object method invocation, each func-
tion parameter is passed within a LegionBuffer , so the easiest and “best” way to allow an
object to be a parameter of a function is to make its class packable.

Making a class packable, i.e. implementing the pack()  and unpack()  functions for a class, is
generally quite easy. The LegionBuffer  exports storage operations for the primitive C++
types (Section 2.1.2). For complex types, when a class X contains an instance of another packable

// Use the default constructor to declare a new empty
// LegionBuffer, which will be configured to contain the
// default storage, packer, encryptor, and compressor.
LegionBuffer buffer;

// Declare and initialize data to write into the buffer.
char *in_string = “Hello World”;
int in_int_array[5] = {100, 101, 102, 103, 104};

buffer.put_char(in_string, 11); // Insert the string.
buffer.put_int(in_int_array, 5); // Insert the integers.
buffer.put_char(&in_string[6], 1); // Insert a single char.
buffer.put_int(&in_int_array[3], 1); // Insert a single int.

// “Rewind” the buffer back to the beginning so we can read
// out the data we just wrote in.
buffer.seek(BEGINNING, 0);

// Declare data structures to read the buffer data into.
char out_string[12];
int out_int_array[5];
char out_char;
int out_int;

// Data must be read out in the same order it was put in,
// but not necessarily the same way.
buffer.get_char(out_string, 6); // Read 1st 6 chars.
for (j = 6; j < 11; j++) // Read the next 5,

buffer.get_char(&out_string[j], 1); // one at a time .
out_string[11] = ‘\0’
buffer.get_int(out_int_array, 5); // Read the integers.
buffer.get_char(&out_char, 1); // Read the single char.
buffer.get_int(&out_int, 1); // Read the single int.

Figure 1. Using the LegionPacker interface.



6

class Y, X’s pack()  function can simply contain a call to Y’s pack()  function. Thus, if Y is
packable, X does not need to know the data types that Y contains in order to pack Y as part of X’s
state. Consider the simple example of a templated array class depicted in Figure 3. Notice that the
Array  class can be made packable even though it doesn’t know the type of the elements it con-
tains. Array  only requires that the contained elements are themselves packable.

Alpha *A, B;
LegionBuffer buffer;

A = new Alpha(/* appropriate initial values */);
A->pack(buffer);
buffer.seek(BEGINNING, 0);
B.unpack(buffer);

// Make sure we unpacked into B exactly what we packed in A
if (*A==B)

printf(”OK\n”);
else

printf(“Bad news\n”);

// A generic, packable class
class Alpha : public LegionPackable {

private:
// private data

public:
// constructors and member functions

int operator==(Alpha &other_alpha);
pack(LegionBuffer &lb);
unpack(LegionBuffer &lb);

};

Figure 2. Declaration and use of a packable class.



7

LegionBuffer  is itself a packable class. Thus, one LegionBuffer  can be contained
(packed) in another. This is shown at the top of Figure 4. If data is packed as a LegionBuffer, it
should be unpacked as one. Thus the data that was packed in Figure 4 (top) cannot be unpacked
correctly as using the code in Figure 4 (middle). This code will compile and run, but it will not
have the desired effect of unpacking the 10 characters—”HelloWorld ”—that were packed into
the buffer. This is because LegionBuffers  prepend “user data” with meta-data. Therefore,
hello_world_buf  contains meta-data at the beginning of the buffer, and between “Hello ”
and “World ”. The correct way to unpack the data is given in Figure 4 (bottom).

template<class T>
class Array : public LegionPackable {
   private:
      T *array_data;
      int num_elements;
   public:
      // “unpack” construct
      Array(LegionBuffer &lb) {
        unpack (lb);
      }

      // Other constructors, functions, and destructor go here

      // Pack Array up. Assumes the elements are themselves packable
      int pack(LegionBuffer &lb) {
         lb.put_int(&num_elements, 1);
         for (int j=0; j<num_elements; j++)
            array_data[j].pack(lb);
      }

      // Unpack the array in the same order they were packed.
      int unpack(LegionBuffer &lb) {
         if (array_data)
            delete array_data;

         lb.get_int(&num_elements, 1);
         array_data = new T[num_elements];

         for (int j=0; j<num_elements; j++)
            array_data[j].unpack(lb);
      }
};

Figure 3. A packable template class whose data members are themselves packable.



8

LegionBuffers  pack and unpack their bytes raw (without data format conversion) so that
each buffer maintains its own meta-data. This means, for example, that a LegionBuffer  cre-
ated on an x86  architecture can be contained in a LegionBuffer  whose other data is in
Alpha  format. When the contained buffer is unpacked, a LegionBuffer  with appropriate data
conversion operations will be instantiated; when the bytes are read out, the data will wind up in
the correct format for the architecture of the machine on which the data resides.

2.2 Reference Counting and Memory Management
The template class UVaL_Reference , in concert with the class
UVaL_ReferenceCountingObject , is the Library’s mechanism for automatic reference
counting and safe dynamic memory management. The mechanism is intended for heap allocated

LegionBuffer hello_buf;
char *hello = “Hello”;
hello_buf.put_char(hello, 5);

LegionBuffer world_buf;
char *world = “World”;
world_buf.put_char(world, 5);

LegionBuffer hello_world_buf;
hello_buf.pack(hello_world_buf);
world_buf.pack(hello_world_buf);

char hello_world[11];
hello_world[10] = ‘\0’;

hello_world_buf.seek(BEGINNING, 0); // “Rewind” the buffer.

// Try (unsuccessfully) to unpack all 10 characters at once.
hello_world_buf.get_char(hello_world, 10);

// Declare two separate LegionBuffers for unpacking the two
// buffers that were packed into hello_world_buf.
LegionBuffer out1, out2;

hello_world_buf.seek(BEGINNING, 0); // “Rewind” the buffer.
out1.unpack(hello_world_buf); // Unpack hello_buf into out1.
out2.unpack(hello_world_buf); // Unpack world_buf into out2.

char hello_world[11];
hello_world[10] = ‘\0’;

out1.get_char(hello_world, 5); // Unpack “Hello”.
out2.get_char(&hello_world[5], 5); // Unpack “World”.

// This line will print “HelloWorld”.
printf(hello_world);

Figure 4. Packing a Legion Buffer into another Legion Buffer (top). An incor-
rect (middle) and correct(bottom) method for unpacking are given as well.



9

C++ objects. It keeps track of references to each object that is “shared” by different parts of the
library, and automatically deletes the object when all meaningful references to it have disap-
peared. Each reference counting object—i.e. each instance of a class derived from
UVaL_ReferenceCountingObject—maintains an integer that indicates the number of
UVaL_References that “point to” that object. When a new reference is made to point to an
object, the reference count within that object is incremented automatically. When a
UVaL_Reference gets overwritten with another value, or when a local variable
UVaL_Reference falls out of scope, the reference count in the object to which the reference
points is automatically decremented. When the reference count falls to zero, the object is automat-
ically deleted. All of this happens without any intervention by the programmer or user of
UVaL_References.

The decision to include an automatic reference counting mechanism in the Library was motivated
by two observations: (1) memory copies are expensive and often hinder the performance of mes-
sage passing code, and (2) keeping track of shared pointers and deciding which parts of the code
are responsible for deleting which chunks of heap-allocated memory is extremely error prone and
difficult to document effectively. Hopefully the automatic mechanism will combine the better
performance that comes from avoiding memory copies with the safety and correctness that comes
from not having to worry about managing dynamically allocated memory. Obviously, the auto-
matic reference counting mechanism introduces some overhead over simple pointer copies. We
believe the benefits outweigh these costs.

To be a “casual user” of UVaL_References, you need only remember one simple rule of
thumb and two simple exceptions:

UVaL_Reference Rule of Thumb:

Read “UVaL_Reference<X> t” as “X *t” and then treat the variablet exactly as if it
were in fact a C++ pointer to classX.

Just about every operator that is legal on a pointer to a C++ object has been overloaded to work
correctly for UVaL_References. The example in Figure 5 shows that UVaL_References
can be used just as C++ object pointers would be. The implementation of the MyRCO class in Fig-
ure 5 is unimportant beyond the fact that it is derived from
UVaL_ReferenceCountingObject and implements the functions that are used to illustrate
the point.

Exceptions to the Rule of Thumb:

1. Never delete the memory that a UVaL_Reference “points to.” The memory will be
deleted when all references to the memory have been overwritten or go out of scope.

2. Do not use a UVaL_Reference alone as a boolean. “if (t)...” will not compile,
but “if (t != NULL)...” and “if (!t)...” will work as expected.

UVaL_References can also refer to non-heap-allocated memory, i.e. global and local vari-
ables. To insure that these objects are not automatically explicitly deleted by the mechanism, the



10

// Definition and implementation of class MyRCO, which is
// a reference counting object by virtue of
// being derived from class UVaL_ReferenceCountingObject.
class MyRCO : public UVaL_ReferenceCountingObject {
   private:
      int contained_val;
   public:
      MyRCO() {contained_val = 0;}
      MyRCO(int val) {contained_val = val;}
      int set_value(int val) { return (contained_val = val);}
      int get_value() {return (contained_val);}
      int operator==(MyRCO &other_rco) {
         return (contained_val == other_rco.contained_val);}
      int operator!=(MyRCO &other_rco) {
         return (contained_val != other_rco.contained_val);}
      ~MyRCO() {printf(“Destructor called\n”);}
};

// Create three new reference counting objects, pointed to by
// variables a, b, and c.  Notice that type (MyRCO *) is
// automatically cast correctly to type UVaL_Reference<MyRCO>.
UVaL_Reference<MyRCO> a = new MyRCO(1);
UVaL_Reference<MyRCO> b = new MyRCO(2);
UVaL_Reference<MyRCO> c = new MyRCO(3);

// Show that * and -> work just like pointers.
a->set_value((*a).get_value()); // no change to the object

c = a;
// The object to which c originally pointed now has no more
// references to it. Therefore, that object’s destructor will
// be called automatically.  The object to which a points,
// now has two references to it, a and c.

a = b;
// The object to which a pointed is not automatically deleted
// because c still points to it.

// All of the print statements below will be executed.

// Comparing objects is still different from comparing pointers.
if (*a == *b) printf(“a and b refer to objects whose values are ==.\n”);
if (*a != *c) printf(“a and c refer to objects whose values are !=.\n”);
if (a == b) printf(“a and b point to the same object.\n”);
if (a != c) printf(“a and c do not point to the same object.\n”);

// Make a and c point to objects that contain the same value.
c->set_value(a->get_value());

if (*a == *c) printf(“Now a and c point to objects whose values are ==\n”);
if (a != c) printf(“a and c still do not point to the same object.\n”);

Figure 5. Example declaration of a reference counting object and its use with UVaL_References.



11

programmer should call the function makeNonHeapReference() on the reference.

2.3 Legion Object Identifiers (LOIDs)
Naming in Legion occurs at two levels. All objects are named by a Legion Object Identifier
(LOID), but Legion will use standard protocols and the communication facilities of host operating
systems to support communication between Legion objects. Since LOID’s have meaning only at
the Legion level, Legion provides a mechanism by which LOID’s can be bound to “low-level”
names—object addresses—that have meaning to the underlying protocols and communication
facilities. A Binding is an <LOID, object address> pair. Binding <X, Y> indicates that the object
named by LOID X currently resides at the physical address indicated by object address Y. The
Library provides classes for LOID’s, object addresses, and bindings. A majority of library users
will deal with naming only at the level of LOID’s, leaving object addresses and bindings to the
low-level library code. Therefore, we describe only the LegionLOID class in detail in this sec-
tion.

2.3.1 LegionLOID
In the Library, a LOID is represented by the class LegionLOID. A LOID contains a type field,
followed by a variable number of variable size fields. The first field indicates the Legion domain
in which the LOID was created, the second field is the class identifier, the third field is the
instance number, the forth is a public key. The type, domain, and class identifier fields must be
present. An empty instance number indicates that the LOID names a Legion class object, and
empty public keys are allowed for less security conscious objects. A LOID may be appended with
any number of other fields, each of whose size and meaning are dependent on the LOID type.

LegionLOID is intended to be the base class for derived LOID classes that implement different
types of LOIDs. We imagine that the classes that implement each LOID type will enforce differ-
ent properties having to do with the structure, content, and meaning of the various fields of the
LOID. Therefore, LegionLOID is not intended to be instantiated directly when the internal
fields of the LOID are being used and interpreted; instead the appropriate derived class should be
instantiated. So far, we have not implemented any derived classes that enforce special properties
about the fields of the LOID. Until we do, the LegionGeneralPurposeLOID class can
manipulate all the fields of the LOID without enforcing any structure or special meaning to the
fields.

To show how to build a general purpose LOID, we give the code for a function called
make_loid() (Figure 6). As parameters the function takes a string that represents the class
identifier of the object, and an integer that represents the instance number of the object. The func-
tion builds a LOID that names an object in the domain UVaL_LegionDomain_Virginia ( a
library-defined constant), with class identifier and instance number assigned to the values passed
as parameters, and with an empty public key. The function returns a UVaL_Reference to a
LegionLOID.

Assuming that function make_loid() exists, the example in Figure 7 shows some of the func-
tionality of LOID’s.



12

2.4 Events
The Library is implemented as a configurable protocol stack. A layer of the stack communicates
with other layers through an event mechanism. The basic idea is straightforward. If layer A

LegionLOID *
make_loid(char *classname, int instance_number) {
   int i;
   short *fld_sz; // Will carry the field sizes
   char **fld_val; // Will carry the field values

   // Create new structures to fill in an pass to the constructor.
   fld_val = new (char *)[4];
   fld_sz = new short[4];

   // Field 0 : Domain
   fld_sz[LEGION_DOMAIN_FIELD] = strlen(UVaL_LegionDomain_Virginia) + 1;
   fld_val[LEGION_DOMAIN_FIELD] = UVaL_LegionDomain_Virginia;

   // Field 1 : Class ID
   if (classname != NULL)
      fld_sz[CLASS_ID_FIELD] = strlen(classname) + 1;
   else
      fld_sz[CLASS_ID_FIELD] = 0;
   fld_val[CLASS_ID_FIELD] = (char *) classname;

   // Field 2 : Instance Number
   if (instance_number == 0) {
      fld_val[INSTANCE_NUM_FIELD] = NULL;
      fld_sz[INSTANCE_NUM_FIELD] = 0;
   }
   else {
      char temp_inum[20];
      sprintf(temp_inum,”%d”,instance_number);
      fld_val[INSTANCE_NUM_FIELD] = temp_inum;
      fld_sz[INSTANCE_NUM_FIELD] = strlen(temp_inum);
   }

   // Create a new LOID by passing the fld_sz and fld_val
   // arrays to the constructor. This illustrates the use
   // of the most general constructor---but others do exist.
   LegionLOID *rval = (LegionLOID *)
      new LegionGeneralPurposeLOID(1,4,fld_sz,fld_val);

   // Fld_val and fld_sz can be deleted since the
   // constructor copies the data in.
   delete [] fld_val;
   delete [] fld_sz;

   // Return the new LegionLOID.
   return(rval);
}

Figure 6. Creating a LegionLOID.



13

wishes to communicate with layer B, then A announces a LegionEvent. Each LegionEvent
has a tag that denotes a LegionEventKind, the kind of event it is. Each LegionEventKind
has one or more associated event handlers which may be called whenever an event of that kind is
announced. Handlers for a particular LegionEventKind are given a priority that determines
the order in which the handlers are called when an event of that kind is announced. A Legion-
Event can carry arbitrary data and this is the method by which data is passed and transformed
from layer to layer. So if layer B has registered a handler for the kind of event that layer A has
announced, then layer B will get that event. We describe the configuration and flexibility of
Legion Events in much greater detail in Section 4.

LegionLOID *a, *b, *c, d;
// Use the function defined above to create two new LOID’s
a = make_loid(“Class Name”, 0);
b = make_loid(“Class Name”, 1);

// The copy constructor is overloaded.
c = new LegionLOID(*a);

// == and != operators are overloaded.
if ((*a == *c) && (*a != *b))
   printf(“== and != are overloaded\n”);

// A special EmptyLOID type is defined.  This is useful for sending
// empty LOID’s as parameters and return values.
if (d.is_empty())
   printf(“LOID’s are empty if they have not been initialized\n”);

// LegionLOID’s are packable.
LegionBuffer buffer;
b->pack(buffer);
buffer.seek(BEGINNING, 0);
d.unpack(buffer);
f (*b == d)
   printf(“LOID’s are packable.\n”);

// is_class() indicates whether or not an  LOID refers to a
// Legion class object.
if (a->is_class())
   printf(“If the class identifier of an LOID is empty\n”,
          “   then the LOID refers to a Legion class.\n”);
if (!b->is_class())
   printf(“If not, then the LOID doesn’t refer to a Legion
class.\n”);

// Finally, LOID’s can be printed neatly, showing only
// the class id and instance number fields.
fprintf(stderr,”LOID b: “);
b->show();
fprintf(stderr,”\n”);

Figure 7. The functionality of Legion LOIDs.



14

2.5 Legion Message Database
Each Legion object services requests for member function invocations and returns the results of
these invocations. The parameters to these functions as well as the requests themselves arrive in
Legion Messages. A complete method invocation may involve composing a number of Legion
Messages. Since these messages may arrive from different locations and at different times, par-
tially complete requests are kept in part of the Legion Message Database called the Invocation
Matcher. Once a complete method invocation is composed, it becomes a Legion Work Unit and is
promoted to the Invocation Store. The invocation store is essentially a list of method invocation
requests that are ready to be invoked.

Each object has a server loop that continuously checks the invocation store for ready work units,
extracts them if they are available, and performs the requested invocation. A partial interface to
the C++ class LegionInvocationStore is given in Figure 8.

2.6 Legion Program Graphs
A program graph represents a set of method invocations on Legion objects and the data depen-
dencies between invocations and objects. The program graph is a data-flow graph whose nodes
represent method invocations and whose arcs represent data dependencies between the method
invocations. This computation model is exactly the one described in [3], so we omit a detailed
description.

Suppose objects A and B each export methods op1() and op2(). Figure 9 shows a simple user
program and the resultant data dependencies. It is clear from the code that the parameters to both
A.op1() and B.op1() are available locally. We call these constant parameters. On the other
hand, the parameters to A.op2() are not available locally because they are the results of method
invocations that are executed elsewhere. These are invocation parameters

// This class implements the “datatbase” for ready
// work units and stores the results from method
// invocations on other Legion objects
class LegionInvocationStore {
public:
  // Accept function invocations for the given fcn

int enable_ function (int function_number);

// Check to see if there are any ready work units
int any_ready();
int any_ready_for_func(int function_number);

// Remove the next work unit from the store
UVaL_Reference<LegionWorkUnit> next_matched();
UVaL_Reference<LegionWorkUnit> next_matched_for_func(int function_number);

}

Figure 8. Selected elements of the LegionInvocationStore interface.



15

3. Using the Library
This section describes how to use the Library “as is”, without internal modification. We begin by
describing the class LegionLibraryState, which encapsulates start-up and initialization
routines and provides a public interface to an object’s Legion related state. We then explain how a
method invocation is implemented in the Library. Finally, we describe the Library interface from
the invoker and invokee perspectives.

3.1 Initialization and Library State
The LegionLibraryState C++ object class provides the interface to important parts of an
object’s Legion related state information. This state include the object’s own LOID, the LOID of
the object’s class, and so on. LegionLibraryState also provides implementations of key
object control mechanisms such as object creation, activation, deactivation and deletion. Finally,
the LegionLibraryState interface provides the ClassOf() operation, which encapsulates
the mechanism by which the class object LOID of a given object can be obtained based on the
object’s LOID. We will now examine each of these general features of the LegionLibraryS-
tate class in more detail.

The primary function of the LegionLibraryState object class is to encapsulate the internal
state of the Legion library and to provide programmers with the public interface to this state. A
single global object of the class LegionLibraryState named Legion is included as part of
the Library. Before using any of the Library features (for example, invoking a method on a
Legion object), the Library state should be initialized using the init() function.

Legion.init();

This function initializes several different parts of the Library, including the LOID of Legion
Class, initializing the Legion program graph layer (Section 3.4), and initializing the Legion invo-
cation matcher and invocation store (Section 2.5). After this call, the object can enable or disable
functions in the invocation store, set its own LOID if it needs to, and perform any user initializa-
tion that must be performed before any methods are serviced (or any messages are sent or
received by the object). After calling Legion.init(), the object cannot yet invoke or service

// The “user” code
main () {

int a = 10, b = 15, x, y,
z;
MyObject A, B;
x = A.op1(a);
y = B.op1(b);
z = A.op2(x, y);
printf (“%d\n”, z);

}

a b

A.op1 B.op1

A.op2

to invoking object

Figure 9. Example user code and the program graph derived from thte data dependencies.



16

methods. These services require a second initialization phase which is encapsulated in the
AcceptMethods() member function of the LegionLibraryState class.

Legion.AcceptMethods();

After making this call, the object can both accept and invoke methods. Consequently, basic object
control mechanisms such as object creation and ClassOf() (which rely on the ability to
invoke methods on remote objects) are also enabled. The reason for a two-phase initialization for
the Library is simply to de-couple method service configuration from the enabling of method
arrival events.

To summarize, the Library initialization should proceed as follows:

1. Call Legion.init(). This initializes various data structures in the library.

2. Enable acceptable methods (i.e. function numbers) in the objects invocation buffering
mechanism (the Legion invocation store). This is accomplished by calling LegionIn-
vocationStore.enable_function(int) for each method the object will be
exporting.

3. If methods will be serviced by an event handler, add this event handler for Metho-
dReady events. This event handler should contain code to extract work units from the
invocation store and call the appropriate method implementations based on incoming
function numbers.

4. Call Legion.AcceptMethods(). This call initializes the Legion message passing
system and notifies the object’s creator (i.e. its class) that the object is up and ready to
accept method requests.

5. Start the server loop. The details of this depend upon how work units are being extracted
from the invocation store. Two options are described in Section 3.5.1.

Once the Legion library state is fully initialized, the object can use Legion object to determine
its own LOID, the LOID of its vault, the LOID of LegionClass, and so on. For example:

UVaL_Reference<LegionLOID> MyLOID, VaultLOID;
MyLOID = Legion.GetMyLOID();
VaultLOID = Legion.GetVaultLOID();

In addition to these basic state accessor functions, the LegionLibraryState class also pro-
vides an interface to a number of key system services such as object creation, activation, deactiva-



17

tion, and deletion. An example is given in Figure 10.

An object can also use the LegionLibraryState interface to report to its class when it plans to
delete itself without having been requested to do so by the class. For example, an object before
exiting could execute:

fprintf(stderr,”Problem - this object must exit\n”);
Legion.DeleteSelf();
exit(1);

Beyond object control services, the LegionLibraryState class encapsulates the important
Legion ClassOf() operation, which can be used to determine the LOID of a class object based
on the LOID of one of its instances, or based on just a class identifier (that part of an LOID that
indicates an object’s class). For example:

UVaL_Reference<LegionLOID> foo, classOfFoo;

//...set foo to some LOID of interest (not shown)...

classOfFoo = Legion.ClassOf(foo);

Note that unlike simple state accessors such as GetMyLOID(), object control methods such as
CreateObject() and ClassOf() all result in Legion method invocations, and thus the cost
of these member functions are non-trivial.

3.2 Legion messages
Legion objects communicate with one another via method invocation and return values. To
invoke methods and return results, Legion objects send messages to one another in a standard
Legion message format. A Legion message can carry (1) part (or all) of a method invocation, or
(2) the function return value that resulted from an invocation, or (3) a return value for an out or in/
out parameter. Every Legion message contains, in order, source and destination LOID’s, a func-

test_object_control(char *class_id)
{

UVaL_Reference<LegionLOID> testObj1, testObj2;

// Create an object of the specified class
testObj1 = Legion.CreateObject(class_id);

// Create an object of the same class as testObj1
testObj2 = Legion.CreateObject(testObj1);

// Test object deactivation and activation
Legion.DeactivateObject(testObj1);
Legion.ActivateObject(testObj1);

// Test object deletion
Legion.DestroyObject(testObj2);

}

Figure 10. Example use of  object Legion of class LegionLibraryState.



18

tion number, the number of parameters to expect, a computation tag, a list of parameters, a contin-
uation list, and an environment.

Source LOID: The source LOID names the sender of the message.

Destination LOID: The destination LOID names the object to which the message is being sent.

Function number: The function number field should contain an integer that is packed in the data
format of the architecture of the machine from which it was sent. If the message is intended to
implement a method invocation, the packed integer should match some function number in the
public interface of the object to which the message is being sent. If the message is the “filled-in”
value of an out or in/out parameter or a normal return value, then the packed integer should be the
constant LEGION_RETURN_FUNCTION_NUMBER.

Computation tag: A single method invocation can be split up into several Legion messages
which can come from different sources (see Section 3.4). A Computation Tag is a long integer,
packed in the message sender’s data format, that uniquely identifies a computation, or method
function invocation. The computation tag should be assigned by the invoker. Messages that carry
function return values and filled in out and in/out parameters should contain the same compu-
tation tag as the messages that carried the invocation that generated the results. The invoker
matches on the computation tag when awaiting results.

Although a computation tag is simply a long integer, the Library provides a C++ class called
LegionComputationTag that encapsulates the integer and exports appropriate functions on
computation tags. The Library also provides a class called LegionComputationTagGener-
ator that can be used to generate random computation tags. Typical use of these two classes is
shown in the example shown in Figure 11.

Parameters to expect: The “parameters to expect” field should contain an integer packed in the
sender’s data format, that indicates the total number of parameters that are being passed in the
function invocation of which this message is part. If the message is part of a return value, this

// Declare a new computation tag generator.
LegionComputationTagGenerator gen;

// Declare variables to point to computation tags.
UVaL_Reference<LegionComputationTag> t1;
UVaL_Reference<LegionComputationTag> t2;

// Get the next two tags from the generator.
t1 = gen.next_tag();
t2 = gen.next_tag();

// Print the values of the tags.
printf(“Tag 1 is: %d\n”, t1->get_value());
printf(“Tag 2 is: %d\n”, t2->get_value());

// Sample output
// Tag 1 is: 2023717593
// Tag 2 is: 1683023

Figure 11. Use of Legion computation tags.



19

field is ignored.

Parameter list: If the message is part of an invocation, the parameter list contains the values of
the parameters contained in the message. The parameter list is packed as an integer that indicates
how many parameters are present, followed by the parameters themselves. Each parameter con-
tains an integer that indicates the number of the parameter followed by a LegionBuffer that
contains the value of the parameter. Return values are passed back in a parameter list as well. The
C++ object classes LegionParameter and LegionParameterList implement parame-
ters. The code in Figure 12 builds a parameter list that contains two parameters, an integer and a
14-element character string.

Continuation list: A Continuation List describes where results should get forwarded. A continu-
ation contains a computation tag and result number, which together identify a return value. It also
contains the LOID, function number, and parameter number to which the result should be sent.
The continuation list describes where all the results of a particular computation should be for-
warded. The motivation for continuation lists arises from the macro data-flow programming
model that is the initial Legion target. In this paradigm, results from method invocations are sent
directly to other invocations that use these results as parameters. These data dependencies are

// Declare the variables to be packed into a parameter list.
int int_parameter;
char string_parameter[14];

// Initialize the variables appropriately.
int_parameter = 7;
sprintf(string_parameter,”Hello, World.”);

// Create a LegionBuffer to hold the integer parameter.
UVaL_Reference<LegionBuffer> lb1;
lb1 = new LegionBuffer();
lb1->put_int(&int_parameter, 1);

// Create a LegionBuffer to hold the string parameter.
UVaL_Reference<LegionBuffer> lb2;
lb2 = new LegionBuffer();
lb2->put_char(string_parameter, 14);

// Create parameters out of the buffers.
UVaL_Reference<LegionParameter> param1;
param1 = new LegionParameter(1, lb1);
UVaL_Reference<LegionParameter> param2;
param2 = new LegionParameter(2, lb2);

// Create a new parameter list.
UVaL_Reference<LegionParameterList> plist;
plist = new LegionParameterList();

// Finally, insert the parameters into the parameter list.
plist->insert(param1);
plist->insert(param2);

Figure 12. Example use of LegionParameterList and LegionParameter.



20

determined through analysis of the program code. See [3] for more information. LegionProgram
Graphs are the representation of these data dependencies and are described in Section 3.4. For fur-
ther information, refer to the on-line documentation.

Environments: An environment is a list of environment items, each of which is a <tag, type,
value> triple. The tag is a string that names the item. The type is an integer whose value corre-
sponds to one of the well-known environment types, and which determines how the value field
should be interpreted. For further information, refer to the on-line documentation.

The LegionMessage class implements Legion messages in the Library. Its most useful con-
structor takes parameters that correspond to all of the constituent parts described above. Thus, an
instance of LegionMessage can be created as shown in Figure 13.

Although LegionMessage provides a mechanism for implementing method invocation in the
library, LegionProgramGraph (described in tSection 3.4) provides a higher level abstraction
that is simpler to use.

3.3 Overview of Method Invocation
Suppose Legion object A (the invoker) invokes a member function on Legion object B (the invo-
kee). This method invocation proceeds through the invoker and invokee as shown in Figure 14.
The invoker builds a Legion message containing salient information about the member function
invocation. Typically, the Legion program graph interface builds this message. The Legion mes-
sage is then passed to the Legion Message Layer, which binds the LOID of the recipient to a par-
ticular address. The binding process is a key aspect of Legion and is described in considerable
detail elsewhere ([7]). The outcome of the binding process is a <LOID-ObjectAddress> tuple
called a “binding.” The binding represents the logical name and current physical address of the
referenced object. The message and its binding are then passed to the Data Delivery Layer. The
data delivery layer linearizes the message for transport over the wire, uses the object address to
create a physical connection to the referenced object, and sends the message.

// Declare variables for the LegionMessage’s constituent
// parts.
UVaL_Reference<LegionLOID> source_LOID;
UVaL_Reference<LegionLOID> destination_LOID;
int function_number;
int parameters_to_expect;
UVaL_Reference<LegionComputationTag> computation_tag;
UVaL_Reference<LegionParameterList> parameter_list;
UVaL_Reference<LegionContinuationList> continuation_list;
UVaL_Reference<LegionEnvironment> environment;

// Initialize the constituent parts appropriately (not shown).

// Create a new LegionMessage from the constituent parts.
LegionMessage *msg;
msg = new LegionMessage(source_LOID, destination_LOID,

function_number, parameters_to_expect, computation_tag,
parameter_list, continuation_list, environment);

Figure 13. Example creation of a Legion message.



21

On the receiving side, the data delivery layer of the destination object unpacks the data back into
a new instance of LegionMessage and passes the message up to the message layer. The mes-
sage layer then inserts this message into the Legion Message Database (Section 2.5). Conceptu-
ally, the Legion message database is divided into two parts. The “bottom” part, called the Legion
Invocation Matcher, manages the list of partially complete method invocation requests for the
Legion object1. A method invocation request is partially complete if one or more of it’s parame-
ters are missing. The “top” part of the database, the Legion Invocation Store, maintains two sepa-
rate lists. The first list contains complete method invocation requests i.e. requests with a complete
parameter set and that have passed all security checks. The second list contains return values the
object has seen as a result of it’s own method invocations on other Legion objects. So, a Legion
message is inserted into the Legion invocation matcher. As soon as all parameters are present, the
message becomes a Legion Work Unit and is bumped up to the invocation store.

Within each Legion object is a server loop that periodically checks the Legion invocation store for
ready work units. A Legion work unit is similar in composition to a Legion message, but by defi-
nition contains all information needed to perform a method invocation and forward the results to
the proper place. When a work unit is ready, the object removes it from the invocation store and
ascertains which it method is being called. The object then calls this method with the supplied
parameters, packs up the results (if any) into a Legion message, marks the message as containing
a result, and inserts the message into the Legion message layer. The Legion message transport
mechanism then takes over.

When the return result reaches its destination, it is handled like any other Legion message until it
reaches the invocation store. The invocation store examines the contents of the work unit, realizes
that it is a return result and not a method request, and inserts it into the separate list for return val-
ues. These values are then available to the original invoking object through the program graph
interface.

1. A method invocation request can be partially complete because the parameters to the invocation may be
coming from objects dispersed throughout the running Legion system.



22

An application program must interface with the Library at four different points (Figure 14).

1. Making an invocation request

2. Removing an invocation request for execution

3. Returning the results of an invocation

4. Getting a return result.

We handle 1 and 4 together in Section 3.4, and 2 and 3 in Section 3.5.

3.4 The Invoker: Invocation Requests and Return Results
The most straightforward mechanism by which to make an invocation request is to build a pro-
gram graph (Section 2.6) using the interface provided by the C++ object class LegionPro-
gramGraph. It is also possible to interface directly with the Legion Message Layer if so desired,
though we do not document this method here.

Salient parts of the LegionProgramGraph interface are given in Figure 15. A fuller descrip-
tion of the interface constituents appears in the Appendix.

Figure 14. The path through the Library for a method invocation that returns a result to the
caller. Below the dotted line is considered the Library’s domain. Application code must inter-
face with the library at the four marked points.

Legion Message Legion Message

Data Delivery Data Delivery

Invocation
  Matcher

Program
  Graph

Results Requests Results Requests

Invoker Invokee

1 234

Invocation
  Matcher



23

Now we can show the necessary library calls to implement the example given in Figure 16.

Start-up. The call to Legion.init() initializes various data structures in the Library.
Legion.AcceptMethods() is called because the invoking object may itself be accepting
member function requests from other objects.

Object creation. The calls to Legion.CreateObject() create the two objects of interest and
return LOIDs to these objects. Given these LOIDs, local handles for the objects are created.

Member function invocation. For each method, we use the object’s local handle to create an invo-
cation.1 We can then add the invocation to the program graph using add_invocation().
Every added invocation becomes a node in the program graph. To create arcs, parameters must
first be packaged into instances of LegionParameter (see Figure 12). Once packaged, they
are added to the graph using add_constant_parameter(). Internal arcs in the graph must
be handled differently, because they represent values that are not locally available—they have not
been computed yet. Internal arcs are added using add_invocation_parameter(). Once a
program graph is constructed, the execute() member function must be called. Calling exe-
cute() causes every node in the program graph to be packed up as a Legion Message and
shipped to the appropriate object for execution. Results from this remote execution then become
available and are automatically sent to the objects that require them. In the example, the return

1. A Legion invocation identifies a particular invocation on one of an object’s member functions.
An invocation contains a computation tag that identifies it within Legion for the duration of the
invocation’s existence. An invocation is obtained through a Legion Core Handle. Core handles
export functions that allow programmers to ask for invocations and to obtain a description of the
corresponding object’s interface. A handle can be thought of as a local representation of an object
and as a generator of invocations for that object.

Figure 15. Some elements of the LegionProgramGraph interface

class LegionProgramGraph {
public:

// these methods are for making invocation requests
UVaL_Reference<LegionInvocation>

add_invocation(UVaL_Reference<LegionInvocation> inv);
ParameterStatus

add_constant_parameter(UVaL_Reference<LegionInvocation> target,
                       UVaL_Reference<LegionParameter> parameter,
                       int param_number);

void add_result_dependency(UVaL_Reference<LegionInvocation> inv,
                    int param_number);

int execute(LegionInvocation *inv);

// these methods are for managing return values
UVaL_Reference<LegionBuffer>

get_value(UVaL_Reference<LegionInvocation> inv, int param_number);
int release_value (UVaL_Reference<LegionInvocation> inv, int param_number);
int release_all_values();

}



24

// The “user” code
main () {

int a = 10, b = 15, x, y,
z;
MyObject A, B;
x = A.op1(a);
y = B.op1(b);
z = A.op2(x, y);
printf (“%d\n”, z);

}

// The corresponding calls to the library to implement the “user” code
main() {

UVaL_Reference<LegionInvocation> inv1, inv2, inv3;
UVaL_Reference<LegionBuffer> buffer;
UVaL_Reference<LegionParameter> parm;
int a = 10, b = 15;

// Start-up
Legion.init();
Legion.AcceptMethods();

// Object creation
UVaL_Reference<LegionLOID> A_name, B_name;
A_name = Legion.CreateObject(MY_OBJECT_CLASS_ID);
B_name = Legion.CreateObject(MY_OBJECT_CLASS_ID);

// Member function invocation
LegionProgramGraph G(Legion.getMyLOID());
LegionCoreHandle A_handle(A_name), B_handle(B_name);
inv1 = A_handle.invoke(OP1_FUNC_NUM, 1, 1);
G.add_invocation(inv1);
parm = make_parameter (a, 1);
G.add_constant_parameter (inv1, parm, 1);

inv2 = B_handle.invoke(OP1_FUNC_NUM, 1, 1);
G.add_invocation(inv1);
parm = make_parameter (15. 1);
G.add_constant_parameter (inv1, parm, 1);

// Return value retrieval
inv3 = A_handle.invoke(OP2_FUNC_NUM, 2, 1);
G.add_invocation(inv1);
G.add_invocation_parameter (inv1, inv3, 1, 1);
G.add_invocation_parameter (inv2, inv3, 1, 2);
G.execute(inv3);

buffer = G.get_value(inv3, UVAL_METHOD_RETURN_VALUE);
int z;
buffer.get_int(&z, 1);
printf (“%d\n”, z);

}

Figure 16. Sample user code (top-left), the corresponding program graph (top-right), and the library
calls needed to implement it (bottom). In this case make_parameter() takes an integer, wraps it up in
a LegionBuffer, then wraps the buffer  in a LegionParameter.

a b

A.op1 B.op1

A.op2

to invoking object



25

values fromA.op1() and B.op1() are forwarded directly toA so they can become the param-
eters toA.op2().

Return results. Getting return values that are results of method invocation requests is straightfor-
ward. TheLegionProgramGraph class has a method calledget_value(), which takes the
parameter number of the result value as one of its arguments. If the result is unavailable, then
get_value() blocks. The constantUVaL_METHOD_RETURN_VALUE can be passed to
get_value() to obtain the return value of the function call. The constant also serves as the
parameter number (position of the parameter in the function signature) for in/out parameters. By
default, the return values of all method invocations are returned to the invoker. For in/out parame-
ters,add_result_dependency() (not shown) must be used to explicitly ask for the param-
eter to be returned.Add_result_dependency() must be calledbefore execute() is
called on the program graph that contains the associated method invocation. Otherwise the param-
eter will not be returned and a call toget_value() for that parameter will block indefinitely.

3.5 The Invokee: Invocation Execution and Result Return
The Library announces aMethod Ready event each time a ready method invocation request is
inserted into the invocation store. Each request is maintained as aLegionWorkUnit, a class
similar in structure toLegionMessage, but with additional semantics, namely that all parame-
ters for the particular method are present. The general algorithm for getting aLegion-
WorkUnit out of the database and invoking the requested method is as follows:

1. Remove the work unit from the invocation store

2. Construct and perform the requested method invocation.

3.5.1 Removing the Legion Work Unit
User code can remove work units from the invocation store in at least two different ways, each of
which require a server “loop” that continuously checks the invocation store for ready work units.
Both mechanisms require a server ‘loop’ which continuously checks the invocation store for
ready work units. One mechanism is to supply and register an event handler forMethodReady
events. The code for the handler and the server loop then look like that in Figure 17 -top. The
other mechanism, illustrated in Figure 17 - bottom does not require the user to supply an event
handler. Instead, the user checks the invocation store each time through the server loop.

3.5.2 Constructing the Method Invocation
Once a work unit is removed from the invocation store, it needs to be unpacked to a form suitable
for method invocation. There must be specific code to do this for each public method in the
invoked object. Figure 18 contains an example invocation construction. The sequence is function-
ally the same as server stubs in RPC. First ascertain the requested method, then remove each
parameter from the work unit based upon the particular requested method. Each parameter is
returned as a LegionBuffer, so these need to be unpacked to get the actual parameters for the
method invocation. Once this is done, then the method can be called like any C++ member func-
tion.

For methods that have return results, these values must be sent to the list of objects defined in the



26

LegionContinuationList part of the work unit from which the method invocation was
constructed. The most straightforward way to do this is as follows. For each return result, allocate
a new LegionBuffer and insert the return value into the buffer. Then call
Legion.return() with the buffer, continuation list, and number of the return value as argu-
ments. This sequence is illustrated at the bottom of Figure 18.

A complete example of a C++ class, it’s translation into the appropriate Library calls, and some
sample method invocations are given in the Appendix.

3.6 Legion Object Persistent Representations
Legion objects are endowed with a persistent representation in which they can store volatile state
in the event that they must be deactivated during the operation of the system [7]. Objects might
also use their persistent representation to store data structures that are too large to contain in vola-
tile storage (e.g. a “file” object need not keep its entire state, including the contents of the file, in
memory). The persistent representation of an object is referred to as a Legion Object Persistent
Representation, or OPR. In this section we examine the Library interface to manipulating object
persistent representations.

The most basic interface to a Legion OPR is provided by the LegionOPR class. Instances of the
class LegionOPR are constructed based on a Legion OPR Address, a description or pointer to a
LegionOPR. This construction is taken care of internally by the library implementation. At the

int MethodReadyHandler (LegionEvent *event) {
UVaL_Reference<LegionWorkUnit> wu;
if (LegionInvocationStore->any_ready()) {

wu = LegionInvocationStore->next_matched();
invoke_method(wu);

}
}
void server_loop() {

LegionEventMgr.serverLoop();
}

void server_loop() {
while (TRUE) {

LegionEventMgr.flushEvents(); // causes all events to be handled
while (LIS->any_ready()) {

wu = LIS->next_matched();
invoke_method(wu);

}
LegionEventMgr.blockForEventAvailable(); // blocks on any event

}
}

Figure 17. Two mechanisms to get a ready work unit out of the invocation store. One method (top) is to
supply an event handler that is called whenever a MethodReady event is announced. The accompanying
server loop is quite short. The other method (bottom) is to have a longer server loop that checks the invo-
cation store whenever any event occurs. In this case, no event handler is needed.



27

time of activation, objects are passed a LegionOprAddress by the responsible Legion Host
object so that they can locate and access their persistent representation. When the Library is ini-
tialized, the OPR Address is automatically converted into a LegionOPR instance using getLe-
gionOPR(). The programmer can then access the LegionOPR instance for a Legion object
using the GetOPR() method of the LegionLibraryState object class (Section 3.1). For
example:

UVaL_Reference<LegionOPR> myOPR;
myOPR = Legion.GetOPR();

The interface to the OPR provides two key functions that provide access to the two basic forms of
an OPR: linearized and inflated. For the purposes of object migration, the persistent representa-
tion of an object can be gathered into a linearized form, suitable for transport. The Legion applica-
tion programmer will typically have no use for the linearized form of the OPR, which can be
accessed via the getLinearized() method on the LegionOPR class. The more important
form of the OPR for the applications programmer is the directly manipulatable form, the inflated
form. The inflated form of a LegionOPR is encapsulated by the LegionPersistent-

Figure 18. An example method construction, invocation, and return once a work unit
has been removed from the invocation store. Other code structures are possible.

// Each object might have a functio like this to figure out
// which member function to call.
invoke_method (UVaL_Reference<LegionWorkUnit> wu) {

switch (wu->get_function_number()) {
case SAMPLE_OP_FUNCTION_NUMBER:

sample_op_wrapper(wu);
break;

// cases for other methods go here
}

}

// assume this method has two parameters, an int and a float
void sample_op_wrapper(UVaL_Reference<LegionWorkUnit> wu) {

float float_parm;
int int_parm, return_value;
UVaL_Reference<LegionBuffer> buffer;

// unpack the parameters
buffer = wu->get_parameter(1);
lb->get_int(&int_parm, 1);
buffer = wu->get_parameter(2);
lb->get_int(&float_parm, 2);

// invoke the method
return_value = sample_op (int_parm, float_parm);

// Return results to whomever has asked for them
buffer = new LegionBuffer();
buffer->put_int (&return_value, 1);
Legion.return(METHOD_RETURN_VALUE, wu->get_continuation_list(), buffer);

}



28

BufferDir class. As its name implies, the LegionPersistentBufferDir is a directory
of Persistent LegionBuffer objects. The inflated form of the OPR is accessed via the getIn-
flated() method on the LegionOPR class. For example:

UVaL_Reference<LegionPersistentBufferDir> myState;
myState = myOPR.getInflated()

The LegionPersistentBufferDir class implements an association set that maps null ter-
minated character strings to objects of the LegionBuffer class and subdirectory objects of the
LegionPersistentBufferDir class. Objects of this class can be thought of as directories
in a file system that contain string named files (persistent LegionBuffers) and subdirectories
(LegionPersistentBufferDirs), although the implementation of these objects need not
be based on a file system. Some elements of the interface to the LegionPersistent-
BufferDir class are given in Figure 19. It contains methods to determine the number of con-
tained buffers and subdirectories, to determine if a given string maps to a contained buffer or
subdirectory, to access, add to, or delete from the contained buffers and subdirectories by name,
and to iterate over the contained buffers and subdirectories.

The Legion buffers contained in LegionPersistentBufferDir objects are persistent. That
is, these buffers are based on storage that is contained in the object’s persistent representation and
will thus persist after the object is deactivated. Thus, in manipulating these buffers, the object is
directly manipulating its persistent state. Of course, this does not imply any changes to the
LegionBuffer interface. Data structures that were rendered packable for the purposes of trans-
port in Legion messages are equally packable into the Legion buffers obtained as part of the
object’s OPR. The implementation of an object’s SaveState() method is typically a sequence
of pack() operations on the data structures that make up the object’s state, many of which
already needed to be packable (or made up of packable constituents) for the sake of method ser-
vice and invocation.

During the operation of a Legion object’s SaveState() method, or for the purposes of taking
checkpoints, the programmer may need to capture the state of the Library. This functionality is

// Get the OPR representation
UVaL_Reference<LegionPersistentBufferDir> myState;
myState = myOPR.getInflated()

// Check the contents of a directory
if (myState.NumSubdirs() == 0) return -1;
if (! myState.IsContainedSubdir(“State”)) return -2;

// Access a subdirectory
UVaL_Reference<LegionPersistentBufferDir> subDir;
subDir = myState.GetSubdir(“State”);

// Access a contained buffer
UVaL_Reference<LegionBuffer> myData;
myData = subDir.GetBuffer(“My Data”);

Figure 19. Sample invocations on an object of class LegionPersistentBufferDir.



29

provided through the saveState() method on the LegionLibraryState class. To save
the state of the Legion library, the programmer simply writes:

Legion.saveState();

To recover the state from the persistent representation, a complementary restoreState()
operation is provided, e.g.:

Legion.restoreState();

4. Modifying the Library
One of the major design objectives of Legion is to provide an extensible system - it must be easy
for future implementors to insert modules into the Library. To enable this extensibility the Library
provides

1. a layered design and implementation, and

2. a standard mechanism for inter-layer communication.

The layered design of the Library is depicted in Figure 20. The “client” side (left) is the “invoker”,
the code that is requesting a method invocation on some Legion object. The “server” side (right) is
the “invokee”, the Legion Object upon which the method invocation has been made. While it is
convenient to think of the library in terms of clients and servers, it is artificial in that the full
library functionality is provided to both parties. In many cases an object’s role changes as execu-
tion progresses. Sometimes clients are servers and vice versa.

4.1 Implementing the Legion Configurable Protocol Stack
As Figure 20 illustrates, the Legion protocol stack supports a variety of functions. One of our
goals in designing the protocol stack was to allow modules to be added and configured easily, an
approach similar to that used in the x-Kernel [6]. The problem with the traditional approach to
building protocol stacks is that each layer in the stack explicitly calls the layer below or above.

Figure 20. The layered design of the Legion Library.

Transport Level Communication Protocol

Data Delivery

Legion Message

Program Graph

Data Delivery

Legion Message

Message Database

Client Server



30

This static coupling makes it difficult to dynamically configure the stack.

To provide a dynamically configurable stack, we have chosen a well understood technology [1],
events, and have applied it to enable flexibility and extensibility. Four main classes implement
events: LegionEvent, LegionEventKind, LegionEventHandler and Legion-
EventManager.

When an event has occurred, we “announce” an event to an Event Manager. The event manager,
an instance of class LegionEventManager, notifies interested parties, i.e. Legion Event Han-
dlers, of the event. An event manager may notify an event handler using one of two policies: the
handlers can be notified immediately or at a later time.

To be notified of an event, event handlers register themselves with a Legion Event Kind, an event
template that contains an unique tag and a default list of handlers. Since there may be more than
one event handler per event kind, we associate a priority with the handler at the time of registra-
tion. In our scheme, a handler with a lower priority number is executed before a handler with a
higher priority number. Not all event handlers associated with a LegionEvent are guaranteed to be
executed because an event handler is allowed to prevent the execution of subsequent handlers.

The class LegionEventKind serves as a template for instances of class LegionEvent (Fig-
ure 21). When an event is created, it obtains a list of LegionEventHandlers from its corre-
sponding LegionEventKind. This allows users to modify the behavior of the protocol stack
without having to change existing modules. To enable inter-layer communication, Legion events
may also carry arbitrary data. This data can be update, modified, and transformed in essentially
arbitrary ways by the event handlers that process each event.

A Legion event handler takes as its sole argument a reference to the LegionEvent that it is ser-
vicing. Thus, each LegionEventHandler associated with a particular LegionEvent may
inspect and modify the data carried by the LegionEvent. In general, this is how information is
shared between various LegionEventHandlers.

4.2 Interfaces

4.2.1 LegionEventKind, LegionEvent and LegionEventHandler
Users may add LegionEventHandlers to a LegionEventKind. When a LegionEvent
is created, it will obtain its unique event identifier and a list of LegionEventHandlers from
its corresponding LegionEventKind. LegionEventHandlers are ordered and the han-
dlers with lower numbered priorities have higher precedence. An example of a event handler is
given in Figure 22.

A Legion event maintains a logical pointer to the currently executing LegionEventHandler.
This allows the event to suspend the execution of its event handlers and to resume that execution
at a later time.

There are no restrictions on the code implementing a LegionEventHandler. In particular, a
an event handler may

1. Inspect and modify the data field of the incoming event



31

2. Inspect and modify the list of handlers contained in the incoming event

3. Create and announce new events

4. Prevent the next handlers from being executed

5. Save the current event

class LegionEventKind {
public:

// Construct a new event kind and give it a unique identifer
LegionEventKind(int kind);

// Add and delete handlers
// Note that handlers are added in priority order
int addHandler(LegionEventHandler, LegionEventHandlerPriority);
int deleteHandler(LegionEventHandler);

};

class LegionEvent : public UVaL_Reference {
public:

// Construct an event using a LegionEventKind as a template
LegionEvent(LegionEventKind&);
LegionEvent(LegionEventKind&, void * data);

// Adding and deleting handlers
int addHandler(LegionEventHandler, LegionEventHandlerPriority);
int deleteHandler(LegionEventHandler);

// Setting and getting the data associated with the LegionEvent
void* getData();
void setData(void*)

// Invoking event handlers
LegionEventHandlerStatus callNextHandler(UVaL_Reference<LegionEvent> ev);
void callRemainingHandlers(UVaL_Reference<LegionEvent> ev);

};

Figure 21. Some elements of the LegionEventKind and LegionEventInterface

// Signature of a LegionEventHandler
typedef LegionEventHandlerStatus

(*LegionEventHandler) (UVaL_Reference<LegionEvent>)

// Example of a valid LegionEventHandler
LegionEventHandlerStatus myHandler(UVaL_Reference<LegionEvent> myEvent) {

// arbitrary code
}

Figure 22. LegionEventHandler



32

4.2.2 LegionEventManager
When users wish to notify the system that something of interest has occurred, they must announce
a LegionEvent to a LegionEventManager (Figure 23). The LegionEventManager is
responsible for deciding when to execute the handlers associated with an event. In our current
implementation, there are two ways of announcing events to an event manager. Depending upon
the chosen method, the event manager will either invoke the handlers immediately, or will defer
the execution of the event handlers and store the LegionEvent in an internal queue.

The flushEvents() method is used to execute all pending events. The blockForEven-
tAvailable() method is used to block the thread of control until there are some pending
events available. Finally, the serverLoop() method repeatedly calls blockForEven-
tAvailable() followed by flushEvents().

4.3 Default Protocol Stack
The list of default LegionEventKinds and their associated LegionEventHandlers is
shown in Table 1. These implement the protocol layers shown in Figure 20.

Table 1: Default LegionEventKind and LegionEventhandlers

LegionEventKind LegionEventHandler
Description of

LegionEventHandler

Sending Object

LegionEvent_MethodSend LegionDefault_Can_I Determines whether to allow the
outgoing method invocation [10].

LegionDefaultMethodSendHandler Generates a
LegionEvent_MessageSend for each
method invocation

class LegionEventManager {
public:

// There are two ways to announce an event
// (1) LegionEventAnnounceLater - Defer execution of the handlers
// (2) LegionEventAnnounceNow - Immediately invoke the handlers
announce(UVaL_Reference<LegionEvent>,
         LegionEventQueingDiscipline queueEvent  = LegionEventAnnounceLater);

// flush all events from the queue and execute the handlers
unsigned flushEvents();

// blocking call that returns only when there are events in the queue
unsigned blockForEventAvailable();

// the server loop repeatedly calls blockForEventAvailable and flush Events
unsigned serverLoop();

};

Figure 23. Some Elements of the LegionEventManager Interface



33

On the sending side, the program graph layer generates a
LegionEvent_MethodSendEvent. The security handler LegionEvent_Can_I may dis-
allow the remote method invocation [10]. If it doesn’t, then a following handler generates a
LegionEvent_MessageSend event for each method invocation. Once the message has been
successfully sent, the data delivery layer generates a LegionEvent_MessageComplete
event.

LegionEvent_MessageSend msg_layer_MsgSnd_handler Binds the destination LOID into an
Object Address

data_delivery_MsgSnd_handler Sends LegionMessage over the wire

LegionEvent_MessageComplete data_delivery_MsgComplete_handler Indicates that the message has been
successfully sent.

LegionEvent_MessageError data_delivery_MsgError_handler Indicates that the data delivery layer
was unable to send the message

msg_layer_MsgError_handler Indicates that the message was not
sent successfully

Receiving Object

LegionEvent_MessageReceive data_delivery_MsgRcv_handler Extract message from the transport
layer.

msg_layer_MsgRcv_handler Unpack the data into a Legion-
Message and cache the sender’s
object address.

LegionDefaultMessageHandler Inserts the message into the Invoca-
tion Matcher. If this LegionMessage
completes a partial method invoca-
tion, then generate a
LegionEvent_MethodReceive event.

LegionEvent_MethodReceive LegionDefault_May_I Determine whether to allow the
incoming method invocation [10].

LegionDefaultWorkUnitHandler Stores incoming method invocation
in the Invocation Store. Generates a
LegionEvent_MethodReady event.

LegionEvent_MethodReady LegionMethodDispatcherMonitors_M
ethodReadyHandler

Enforce monitor semantics on
incoming method invocation

UVaL_ObjectMandatory_LegionMeth
odInvoke

Invoke the actual function

LegionEvent_MethodDone LegionMethodDispatcherMonitors_M
ethodDoneHandler

Indicates that a method has been
complete. Generate a
LegionEvent_MethodReady event if
there are pending methods.

Table 1: Default LegionEventKind and LegionEventhandlers

LegionEventKind LegionEventHandler
Description of

LegionEventHandler



34

On the receiving side, the data delivery layer will generate a
LegionEvent_MessageReceive once it has successfully assembled a complete message.
The LegionDefaultMessageHandler is the last handler for the event
LegionEvent_MessageReceive and generates a LegionEvent_MethodReceive
once the invocation matcher has assembled a complete method invocation. The first handler for
LegionEvent_MethodReceive is a security handler and implements access control on this
object [10]. If the security handler grants access, the method invocation is deposited into the
LegionInvocationStore, and we generate a LegionEvent_MethodReady event.

4.4 Adding new functionality to the Legion protocol stack
To add functionality to the existing stack, users may either define a new LegionEventKind or
may register their own handlers with one of the predefined event kinds. The latter option is the
simpler method for adding functionality.

Defining a new event kind consists of creating an instance of the class LegionEventKind with
a unique identifier. For example:

LegionEventKind LegionEvent_Foobar (UniqueIdentifier);

Once the event kind has been defined, creating and announcing a LegionEvent is shown below:

LegionEvent myEvent(LegionEvent_Foobar);
LegionDefaultEventMgr.announce(myEvent);

Adding a handler to an existing event kind is best illustrated through an example. In this example
we show how a user can add a security layer to encrypt outgoing messages and decrypt incoming
messages. We first define the handlers encryptionHandler(), decryptionHandler()
and register them with the appropriate LegionEventKind (Figure 24).

For encryption, we would like the encryption handler to be the last handler called when sending a
message. For decryption, we would like the decryption handler to be the first handler called when
a message is received. There ordering constraints are realized by registering encryptionHan-
dler() with a high numbered priority and decryptionHandler() with a low numbered
priority. The new protocol stack is now shown in Figure 25.

5. Diversity and Extensibility
The Library can be used to support a diverse array of programming models and styles, or to
extend existing support for basic programming models. The flexible Legion event mechanism is
the key Library feature that enables diversity and extensibility. By adding to or replacing the event
handlers that comprise the Legion protocol stack, a programmer can achieve many different
library configurations that implement different method invocation semantics, security protocols,
communication mechanisms, object instantiation environments, and other important elements of
the desired programming model. In this section, we examine a number of possible Legion proto-
col stack configurations that implement some well known programming models, including active
messages, path-expressions, and basic message passing. These examples show how the Library
can be used to support programming models beyond the basic remote procedure call and macro-
dataflow/program graph based styles implemented by the default library configuration.



35

5.1 Active Messages
The active messages programming model [9] is a message passing scheme that is intended to inte-
grate communication and computation in order to increase the compute/communicate overlap,

// Declaration of the encryption handler
LegionEventHandlerStatus encryptionHandler(UVaL_Reference<LegionEvent> ev) {
      // extract the LegionMessage from the data field of the event,
      // encrypt the message, and
      // allow the next handler to be called.
      return TRUE;
}

// Declaration of the decryption handler
LegionEventHandlerStatus decryptionHandler(UVaL_Reference<LegionEvent> ev) {
      // extract the LegionMessage from the data field of the event,
      // decrypt the message, and
      // allow the next handler to be called.
      return TRUE;
}

//
// Register the handlers with the appropriate LegionEventKind
//

// The encryptionHandler should be the last handler before the
// message is sent by the data delivery layer
LegionEvent_MessageSend.addHandler(encryptionHandler, encryptionPriority);

// The decryptionHandler should be the first handler called
// after the message is delivered by the data deliver layer
LegionEvent_MessageRecv.addHandler(decryptionHandler, decryptionPriority);

Figure 24. Adding encryption and decryption capabilities  to the protocol stack

Figure 25. Legion protocol stack with encryption and decryption added

Transport Level Communication Protocol

Data Delivery

Legion Message

Program Graph

Data Delivery

Legion Message

Message Database

Sender Receiver

Security:Encryption Security:Decryption



36

thereby masking the latency of message passing and increasing performance. The basic idea
behind active messages is simple. Messages are prepended with the address of a handler routine
that is automatically invoked upon receipt of the message. Active messages are not buffered and
explicitly received, as is common with standard message passing interfaces. Instead, the receiving
process invokes the handler routine specified for the message immediately upon message arrival.
The handler may execute as a new thread of control, or may interrupt the running computation.
The job of the active message handler is to incorporate the received message into the on-going
computation.

A Legion version of active messages could be constructed by making Legion methods serve as
message handlers, and by replacing the Legion “method ready” event handler with one that cre-
ates a new thread to service incoming methods instead of buffering them in an invocation store.
Pseudo-code for such a method invocation handler is given in Figure 26.

This “method ready” event handler would need to be registered with the “method ready” event
kind. The code to do this might look like:

LegionEvent_MethodReady.addHandler(ActiveMessageMethodHandler,1.0);

This line of code would need to be executed before any methods arrived at the object. This can be
achieved by placing this line of code before any calls to Legion.AcceptMethods().

The effect of this new “method ready” event handler is to provide an active messages style pro-
gramming model. In some ways, the model supported here is more general than the traditional
active messages model. For example, if a method (i.e. a handler) required two messages from dif-
ferent sources for activation, this requirement would be enforced by the Legion invocation
matcher. Programs might be entirely composed of standard single-token active messages, provid-
ing a programming model as flexible as the original [9]. On the other hand, programs might also
include multi-token active messages, for a more general programming model that might best be
called “active methods”.

5.2 Path Expressions
The various method invocation semantics covered thus far have offered a “one size fits all” con-

int ActiveMessageMethodHandler(UVaL_Reference<LegionEvent> ev) {
// Extract the work unit from the event
LegionMethodEventStructure *mes;
mes = (LegionMethodEventStructure *)ev->getData();
UVaL_Reference<LegionWorkUnit> wu = mes->work_unit;

// Spawn a thread with the appropriate start-up function
// based on the function number associated with the method
switch (wu->get_function_number()) {

case METHOD1_FUNCTION_NUMBER:
pthread_create(&thr_id, &thr_attrib, method1, wu);

} // Similar cases for other methods...
}

Figure 26. An example method handler for implementing active messages.



37

currency control mechanism. For example, the supported remote procedure call model allows
exactly one method to be serviced at a time by a given object. The active messages approach, on
the other hand, allows any number of operations of all types to be active at the same time in the
same object. A more general approach to customizing the concurrency control requirements of
operations on an object can be designed based on path expressions [2]. Path expressions permit
the programmer to specify 1) sequencing constraints among operations; 2) selection (mutual
exclusion) between operations; and 3) allowable concurrency between operations. These concur-
rency control primitives let programmers maintain the sequential consistency of their programs
and at the same time indicate potential concurrency to a run-time environment.

Path expression based method sequencing could be implemented for Legion objects, again by uti-
lizing the inherent configurability of the Library’s protocol stack. As with active messages, sup-
porting a different method invocation semantic requires replacing  the Legion “method ready”
event handler. In this case, the method ready handler must examine the function numbers of avail-
able operations and determine if they may be safely fired given the ordering constraints specified
by the program’s path expressions. If a method can be safely fired, a new thread is created and
allowed to run, starting at the entry point for the given member function (as in the active messages
case). On the other hand, if the ordering constraints of a newly arrived method are not satisfied,
the method must be buffered (e.g. in a library-provided invocation store) and later extracted and
fired when safe. This need to defer the firing of methods requires that code be executed whenever
methods complete execution. One possible way to satisfy this requirement is to use
LegionEvent_MethodDone event kind, and announce events of this kind when methods
complete execution. A handler for this event kind can then be used to re-evaluate buffered meth-
ods with respect to the path expression ordering constraints whenever a running operation com-
pletes.

To examine the implementation of the scheme in more detail, we assume a path expression run-
time support class, PathExpressionManager, that exports methods to specify the ordering,
selection, and sequencing constraints of operations (i.e. Legion method function numbers). This
class would also support methods to determine if a given method is safe to fire, and to determine
which (if any) methods are ready to be fired upon the completion of a running operation. The first
modification we must make to the Library configuration is to add a new “method ready” event
handler that might look like that of Figure 27.

This method handler would need to be registered with the Legion method ready event kind, as in
the case of the active messages handler. The other requirement of our path expression solution is
that code be executed upon method completion in order to re-evaluate the safety of firing buffered
methods. To accomplish this, we use “method done” events that must be announced whenever a
method is finished running. A handler (Figure 28) must be registered with the
LegionEvent_MethodDone event kind that tries to fire any runnable buffered methods.

LegionEvent_MethodDone.addHandler(PathExprMethodDoneHandler, 0.0);

Finally, an event of this type would need to be announced upon the completion of each method by
the object. The data for the event would need to be set to reflect the function number of the com-
pleted method.

UVaL_Reference<LegionEvent> done = new LegionEvent(MethodDone);



38

done.setData((void *)my_function_number);
LegionEventManagerDefault.announce(done);

The result of this configuration of the Library would be a run-time environment that could be used
to support path expression style method invocation semantics. This run-time system might be
used explicitly by a programmer, or might be the target of a compiler that accepted a Path-Pascal
like implementation language for Legion methods.

5.3 Message Passing
Thus far, the programming models we have examined have been variations of an object-based

int PathExprMethodHandler(UVaL_Reference<LegionEvent> ev){
// Extract the work unit from the event
LegionMethodEventStructure *mes;
mes = (LegionMethodEventStructure *)ev->getData();
UVaL_Reference<LegionWorkUnit> wu = mes->work_unit;

int function_number = wu->get_function_number();
if(PathExpressionManager.canFire(function_number)) {

// We can safely fire this method now
PathExpressionManager.runningOperation(function_number);
switch(function_number) {

case METHOD1_FUNCTION_NUMBER:
   pthread_create(&thr_id, &thr_attrib, method1, wu);

} // Similar cases for other methods...
} else {

// Buffer this method until ordering constraints are met
LegionInvocationStoreDefault->insert(wu);

}
}

Figure 27. An example method handler for implementing path expressions.

int PathExprMethodDoneHandler(UVaL_Reference<LegionEvent> ev) {
int done_function_num = (int)ev.getData();
PathExpressionManager.completedOperation(done_function_num);

while (PathExpressionManager.anyReady()) {
int function_num = PathExpressionManager.nextReady();
UVaL_Reference<LegionWorkUnit> wu;
wu = LegionInvocationStoreDefault->next_matched_for_func(function_num);
PathExpressionManager.runningOperation(function_num);
switch(function_num) {

case METHOD1_FUNCTION_NUMBER:
   pthread_create(&thr_id, &thr_attrib, method1, wu);

} // Similar cases for other methods...
}

}

Figure 28. One possible handler for MethodDone events in an implementation of path expressions.



39

method-invocation-oriented model. This is natural given the object oriented nature of the Legion
system. However, Legion can support alternative programming models such as message passing
or distributed shared memory. In this section, we examine the ways in which the Legion library
can be configured to support a message passing model. We describe how Legion can be uses as
run-time support to implement a message-passing interface such as MPI[5] or PVM[8]. These
systems allow asynchronous send and receive operations - messages are buffered until explicitly
requested at the receiving process, and send operations are permitted to return before the destina-
tion process has received the message.

One possible implementation of such a message passing system would be to construct a message
passing Legion base class which exports a single messageDeliver() method. The parame-
ters to this method could be an integer message tag and an un-interpreted string of bytes contain-
ing the message. The operation of the send() library function would simply involve invoking
the messageDeliver() Legion method on the intended destination LOID. The implementa-
tion of the messageDeliver() Legion method would simply accept and buffer the received
message in an internal message queue. The receive() library function would then consist of a
loop that could check the message queue for the desired message tag, dequeue and return it if
available, or block for a messageDeliver() invocation if not.

Although the above solution is very simple to implement using the available library support
mechanisms, it has the potential drawback of incurring the cost of the mechanism associated with
method invocation (e.g. token matching, additional event handlers, etc.), while only requiring the
very simple support needed for message passing. An alternative implementation strategy is to
insert a handler lower in the Legion library protocol stack. The natural place for such a message
passing handler would be at the Legion “message receive” event layer. Here, a handler could be
inserted to capture messages with certain desired function numbers (i.e. a special “message pass-
ing” function number), and enqueue the message contents on a message queue for use by the mes-
sage passing library. Messages with other function numbers (for example, those associated with
object mandatory methods[7]) would be allowed to continue up the protocol stack and through the
normal method invocation mechanism. In this scheme, the send() library operation would con-
struct a LegionMessage object containing the message contents and reflecting the appropriate
agreed upon function number. This Legion message would be added to a LegionMessag-
eEventStructure, which would be placed into a new LegionEvent of the kind
LegionEvent_MessageSend. This event would be announced and the message would be
sent. The receive() operation would simply loop, examining the message queue utilized by
the message receive handler described above, and blocking for available events. Thus, in this
scheme, the overhead of the standard Legion method invocation mechanism is avoided for low-
level message passing traffic.

Although this scheme could improve performance, it has serious security ramifications. If mes-
sages are caught before the token matching process, the automatic MayI() method will not be
invoked and the object’s security may be compromised. While this may be acceptable for certain
performance-critical, security-optional applications, the first message passing implementation
described would be more suitable for balanced security/performance applications.



40

6. References
1. B. Bershad et al. Extensibility, Safety, and Performance in the SPIN Operating System. In

15th Symposium on Operating System Principles, 1994.

2. R. H. Campbell and A. N. Habermann. The Specification of Process Synchronization by Path
Expressions. Lecture Notes in Computer Science, No. 16, Springer Verlag, pages 89-102,
1973.

3. Andrew S. Grimshaw, Jon Weissman, W. Timothy Strayer. Portable Run-Time Support for
Dynamic Object-Oriented Parallel Processing. ACM Transactions on Computer Systems,
14(2), 1996.

4. Andrew S. Grimshaw, William A. Wulf. Legion - A View from 50,000 Feet. In Proceedings
of the Fifth IEEE International Symposium on High Performance Distributed Computing.
IEEE Computer Society Press, Los Alamitos, California, August 1996.

5. W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Programming with the
Message Passing Interface,MIT Press, 1994.

6. N. C. Hutchinson and L. L. Peterson. The x-Kernel: An Architecture for Implementing Net-
work Protocols. IEEE Transactions on Software Engineering, 17(1):64-76, 1991.

7. Mike Lewis, Andrew S. Grimshaw. The Core Legion Object Model. In Proceedings of the
Fifth IEEE International Symposium on High Performance Distributed Computing. IEEE
Computer Society Press, Los Alamitos, California, August 1996.

8. V.S. Sunderam. PVM: A Framework for Parallel Distributed Computing. Journal of Concur-
rency: Practice and Experience, 2(4):315-339, December 1990.

9. Thornsten von Eicken, David E. Culler, Seth C. Goldstein, and Klaus E. Schauser. Active
Messages: A Mechanism for Integrated Communication and Computation. In Proceedings of
the International Symposium on Computer Architecture, pages 256-266, May 1992.

10. William A. Wulf, Chenxi Wang, Darrell Kienzle. A New Model of Security for Distributed
Systems. University of Virginia, Department of Computer Science Technical Report CS-95-
34, August 1995.

11. H. Zhou and A. Geist. Receiver Makes Right Data Conversion in PVM. In Proceedings of
14th International Conference on Computers and Communications, Phoenix, AZ, pp. 458-
464, March 1995.



41

7. Appendix A - Example Translations
The most up-to-date version of these translations are also available at http:/legion.virginia.edu/.

7.1 Example 1 - The Simple Class
The first example is a nonsense class in that it does no meaningful computation. However, it exer-
cises the full functionality of the library and also illustrates how our compiler will generate trans-
lations. We give the C++ class, its translation, and a sample program that illustrates how we
invoke methods.

To write the translation, we define a wrapper class called Legion_Simple. This wrapper con-
tains a protected data member that is an object of the C++ class being translated. We call this the
wrapped object. For each member function in the wrapped object we define a corresponding
member function in Legion_Simple. The job of these member functions is to take a work unit,
build the corresponding call to the wrapped object’s member function, execute the call, and pack-
age up any return values (much like a server stub in RPC implementations).

Legion_Simple also contains additional member functions to figure out which wrapper mem-
ber function should be called (invoke_method()), to indicate to the invocation store which
member functions will be accepted (enable_functions()), and to perform the server loop
(accept_member_functions()).

7.1.1 Simple.h & Simple.c
%-----------------Simple.h-------------------------%
// A very simple class definition
#ifndef _H_Simple_
#define _H_Simple_

#include <stdio.h>

class Simple
{
   int data;
 public:
   Simple();
   int op1(int foo);
   int op2(int &foo, int &bar);
};

#endif
%-----------------Simple.c-------------------------%
// A very simple class definition
#ifndef _C_Simple_
#define _C_Simple_

#include <stdio.h>
#include “Simple.h”

Simple::Simple() {
   data = 0;
}

Simple::op1(int foo) {



42

   data = foo;
}

int
Simple::op2(int &foo, int &bar) {
   foo = data*data;
   bar = data+data;
   return foo+bar;
}
#endif

7.1.2 Simple.trans.h & Simple.trans.c
%--------------Simple.trans.h----------------------------%
// Legion ‘wrapper’ class definition for the Simple class
#ifndef _H_Simple_trans_
#include <stdio.h>
#include “legion/Legion.h”
#include “Simple.h”

#define SIMPLE_OBJECT_CLASS_ID   “Simple”

#define SIMPLE_OP1_FUNCTION_NUMBER 1
#define SIMPLE_OP2_FUNCTION_NUMBER 2

// class Legion_Simple
class Legion_Simple
{
 private:
   // the object being wrapped
   Simple *object;

   // For generating methodDone events
   virtual void generate_MethodDoneEvent();

 public:
   Legion_Simple();
   ~Legion_Simple();

   // wrapper member functions for each member function in ‘object’
   void Legion_op1(UVaL_Reference<LegionWorkUnit> wu);
   void Legion_op2(UVaL_Reference<LegionWorkUnit> wu);

   // auxiliary member functions needed
   virtual void enable_functions(LegionInvocationStore *);
   virtual int  invoke_method(UVaL_Reference<LegionWorkUnit> wu);
   virtual void accept_member_functions();
};
#endif

%--------------Simple.trans.c----------------------------%
// The ‘wrapper’ class definition
#ifndef _C_Simple_trans_

#include <stdio.h>
#include <unistd.h>
#include “legion/Legion.h”



43

#include “Simple.trans.h”

// This is the wrapped object
static Legion_Simple *wrapper;

// This is the event handler for invoking a method
static int LegionMethodInvoke(UVaL_Reference<LegionEvent>);

// -------------------------------------------------------------------------
// Generates a MethodDone event. Should be called right after the call
// to the wrapped object’s member function.
void
Legion_Simple::
generate_MethodDoneEvent()
{
   UVaL_Reference<LegionEvent> methodDoneEvent;

   methodDoneEvent = new LegionEvent(LegionEvent_MethodDone, (void *) NULL);
   LegionEventManagerDefault.announce(methodDoneEvent, LegionEventAnnounceNow);
}

// -------------------------------------------------------------------------
// Allocates the wrapped object and enables the corresponding
// functions in the invocation store.
Legion_Simple::
Legion_Simple()
{

object = new Simple();
wrapper = this;
enable_functions(LegionInvocationStoreLL_Default);

}

// -------------------------------------------------------------------------
// De-allocates the wrapped object
Legion_Simple::
~Legion_Simple()
{

delete object;
wrapper = NULL;

}

// -------------------------------------------------------------------------
// wrapper member function for wrapped.op1()
void
Legion_Simple::
Legion_op1(UVaL_Reference<LegionWorkUnit> wu)
{
   // get the parameter from the work unit
   int parm1;
   UVaL_Reference<LegionBuffer> lb;
   lb = wu->get_parameter(1);
   lb->get_int(&parm1, 1);

   // Invoke the wrapped member function
   int result = object->op1(parm1);
   generate_MethodDoneEvent();

   // Return the result.
   UVaL_Reference<LegionBuffer> return_lb;



44

   return_lb = new LegionBuffer();
   return_lb->put_int(&result, 1);
   Legion_return(UVaL_METHOD_RETURN_VALUE, *(wu->get_continuation_list()), return_lb);
}

// -------------------------------------------------------------------------
// wrapper member function for wrapped.op2()
void
Legion_Simple::
Legion_op2(UVaL_Reference<LegionWorkUnit> wu)
{

// get the parameters from the work unit and unpack them
   int parm1, parm2;
   UVaL_Reference<LegionBuffer> lb;
   lb = wu->get_parameter(1);
   lb->get_int(&parm1, 1);
   lb = wu->get_parameter(2);
   lb->get_int(&parm2, 1);

// invoke the requested function
   int result = object->op2(parm1, parm2);
   generate_MethodDoneEvent();

   // Return all results. In this case, there are three of them
   // (return value and two in/out parameters).
   UVaL_Reference<LegionBuffer> return_lb;
   return_lb = new LegionBuffer();
   return_lb->put_int(&result, 1);
   Legion_return(UVaL_METHOD_RETURN_VALUE, *(wu->get_continuation_list()), return_lb);
   return_lb = new LegionBuffer();
   return_lb->put_int(&parm1, 1);
   Legion_return(1, *(wu->get_continuation_list()), return_lb);
   return_lb = new LegionBuffer();
   return_lb->put_int(&parm2, 1);
   Legion_return(2, *(wu->get_continuation_list()), return_lb);
}

// -------------------------------------------------------------------------
// Invokes the appropriate method based on the function number in
// the supplied work unit.
int
Legion_Simple::
invoke_method(UVaL_Reference<LegionWorkUnit> wu)
{
   switch (wu->get_function_number()) {
     case SIMPLE_OP1_FUNCTION_NUMBER:
       Legion_op1(wu);
       break;
     case SIMPLE_OP2_FUNCTION_NUMBER:
       Legion_op2(wu);
       break;
     default:
       fprintf(stderr,”Legion_Simple::invoke_method()\n”);
       fprintf(stderr,”This object does not export function number %d\n”,
          wu->get_function_number());
       exit(0);
       break;
   }
}



45

// -------------------------------------------------------------------------
// This is the server loop.
// EventMgr.serverLoop() continuously flushes events and then
// blocks waiting for events to become available.
void
Legion_Simple::
accept_member_functions()
{
  LegionEventManagerDefault.serverLoop();
}

// -------------------------------------------------------------------------
// Enable the wrapped object’s functions. The LIS must be explicitly
// told which functions to accept. There will eventually be some
// object mandatory functions in here too.
void
Legion_Simple::enable_functions(LegionInvocationStore *LIS)
{

// Enable the function numbers that I can handle...
   LegionInvocationStoreLL_Default->enable_function(
     SIMPLE_OP1_FUNCTION_NUMBER, DEFAULT_PRIORITY);
   LegionInvocationStoreLL_Default->enable_function(
     SIMPLE_OP2_FUNCTION_NUMBER, DEFAULT_PRIORITY);

// Register my event handler...
LegionEvent_MethodReady.addHandler(LegionMethodInvoke, 1.0);

}

// -------------------------------------------------------------------------
// This is the event handler that get called on a MethodReady event.
// A MethodReady event is generated every time a ready invocation is
// inserted into the invocation store.
static int
LegionMethodInvoke(UVaL_Reference<LegionEvent> event)
{
   UVaL_Reference<LegionBuffer> lb;
   int parameter;

   if (LegionInvocationStoreLL_Default->any_ready()) {
      UVaL_Reference<LegionWorkUnit> wu;
      wu  = LegionInvocationStoreLL_Default->next_matched();
      wrapper->invoke_method(wu);
   }
   return 0;
}

// -------------------------------------------------------------------------
int
main (int argc, char **argv)
{
   Legion.init();
   wrapper = new Legion_Simple();
   Legion.AcceptMethods();
   wrapper->accept_member_functions();
}
#endif



46

7.1.3 ex1_Simple.c
%--------------ex1_Simple.c---------------%
#include <stdio.h>

#include “Simple.trans.h”
#include “legion/Legion.h”

// Make a LegionParameter from the supplied arguments
UVaL_Reference<LegionParameter>
make_int_parameter(int parm_value, int parm_number)
{
   UVaL_Reference<LegionBuffer> lb;
   UVaL_Reference<LegionParameter> parm;

   lb = (LegionBuffer *) new LegionBuffer();
   lb->put_int(&parm_value, 1);
   parm = (LegionParameter *) new LegionParameter(parm_number, lb);

   return parm;
}

int
main(int argc, char **argv)
{
   // Variables for the ‘user’ code
   int a = 10, b = 15;
   int x, y, z;

   // Initialize legion state
   // All of the below to get a random instance number
   int my_instance_number;
   struct timeval tv;
   gettimeofday(&tv,NULL);
   srand(tv.tv_sec ^ tv.tv_usec);
   my_instance_number = rand() ^ tv.tv_sec ^ tv.tv_usec;

   // Initialize Legion Library
   Legion.init();

   // Manufacture my own loid because I’m a command line object
Legion.SetMyLOID(make_loid(UVaL_CLASS_ID_COMMANDLINE, my_instance_number));

   // Tell my creator I’m ready to go
   Legion.AcceptMethods();

   // Create an empty program graph
LegionProgramGraph G(Legion.GetMyLOID());

// Create a couple of ‘Simple’ objects
UVaL_Reference<LegionLOID> A_name, B_name;

   A_name = Legion.CreateObject(SIMPLE_OBJECT_CLASS_ID);
   B_name = Legion.CreateObject(SIMPLE_OBJECT_CLASS_ID);

   // Get handles for each object
   LegionCoreHandle A_handle(A_name), B_handle(B_name);

   // First call: x = A.op1(a);



47

   // invoke()’s signature is invoke(function_num, num_parms, num_results);
   UVaL_Reference<LegionInvocation> inv1;
   inv1 = A_handle.invoke(SIMPLE_OP1_FUNCTION_NUMBER, 1, 1);
   G.add_invocation(inv1);
   UVaL_Reference<LegionParameter> parm1;
   parm1 = make_int_parameter(a, 1);
   G.add_constant_parameter(inv1, parm1, 1);

   // Second call: y = B.op1(b);
   UVaL_Reference<LegionInvocation> inv2;
   inv2 = B_handle.invoke(SIMPLE_OP1_FUNCTION_NUMBER, 1, 1);
   G.add_invocation(inv2);
   UVaL_Reference<LegionParameter> parm2;
   parm2 = make_int_parameter(b, 1);
   G.add_constant_parameter(inv2, parm2, 1);

   // Third call: z = A.op1(x, y);
   // Both parameters are values yet to be computed,
   // so they must be invocation parameters.
   UVaL_Reference<LegionInvocation> inv3;
   inv3 = A_handle.invoke(SIMPLE_OP2_FUNCTION_NUMBER, 2, 3);
   G.add_invocation(inv3);
   G.add_invocation_parameter(inv3, inv1, 1, UVaL_METHOD_RETURN_VALUE);
   G.add_invocation_parameter(inv3, inv2, 2, UVaL_METHOD_RETURN_VALUE);

   // We specifically ask for the in/out parameters. Don’t
   // get them otherwise.
   G.add_result_dependency(inv3, 1);
   G.add_result_dependency(inv3, 2);

   // printf (“%d\n”, z);
   // We need ‘z’, so we must execute
   G.execute();

   // and wait for the return.
   UVaL_Reference<LegionBuffer> lb;
   lb = G.get_value (inv3, UVaL_METHOD_RETURN_VALUE);
   lb->get_int(&z, 1);
   printf (“z is%d\n”, z);

   // Since we asked for them, we can get the other values too.
   G.release_all_values();
   lb = G.get_value (inv3, 1);
   lb->get_int(&x, 1);
   printf (“x is %d\n”, x);
   lb = G.get_value (inv3, 2);
   lb->get_int(&y, 1);
   printf (“y is %d\n”, y);

   Legion.DestroyObject(A_name);
   Legion.DestroyObject(B_name);
}

8. Appendix B - Interfaces
This section provides selected parts of the interface from selected objects that make up the Library
implementation.



48

8.1 LegionProgramGraph
UVaL_Reference<LegionInvocation> add_invocation ()

Parameters: UVaL_Reference<LegionInvocation>

Add an invocation to the program graph. Returns the invocation if successful, NULL if
not.

ParameterStatus add_constant_parameter()
Parameters: UVaL_Reference<LegionInvocation> target

UVaL_Reference<LegionParameter> parameter
int parameter_number

Adds the given parameter to the specified invocation as the ‘parameter_number’th param-
eter. The parameter is aLegionParameter, which means that it contains an already
computed value. The other possible is that it is an invocation parameter. This means that
the parameter itself is aLegionInvocation, thus representing a computation that has
yet to be performed.

ParameterStatus add_invocation_parameter()
Parameters: UVaL_Reference<LegionInvocation> source

UVaL_Reference<LegionInvocation> target
int source_parameter_number
int target_parameter_number

Adds the given source parameter as a parameter to the given target parameter. This call
creates what is called aLegion Continuation, and adds the continuation to the continuation
list for the source parameter. When an invocation request is eventually executed, the invo-
kee must know where to send the results of the execution. Each continuation identifies a
destination LOID to which a result should be sent.

void add_result_dependency()
Parameters: UVaL_Reference<LegionInvocation> source

int parameter_number

The current implementation always sends the return value of a method request back to the
invoker. If the invoker wishes to receive other result values that e.g. might correspond to
in/out parameters to the method invocation, then those values must be explicitly asked for
using add_result_dependency. This call then creates a LegionContinuation corresponding
to the requested parameter.

UVaL_Reference<LegionBuffer> get_value()
Parameters: UVaL_Reference<LegionInvocation> inv

int parameter_number

Gets the specified return value for the given LegionInvocation out of the program graph.
This is essentially a call through the program graph to the underlying message database. If
the result is not available, get_value blocks until it is. A LegionBuffer is returned.

int execute()
Parameters: None

Takes the program graph rooted at the provided invocation and fire it off to be executed.
Does not block.



49

8.2 LegionInvocationStore
int enable_function ()

Parameters: int func_num
int priority

Enables the supplied function so that the LIS will accept method requests for it. Method
requests for disabled functions are not accepted. High values for priority mean high
priority.

int any_ready()
Parameters: None

Checks to see if any method requests are ready.

int any_ready_for_func()
Parameters: int func_num;

Checks to see if any method requests for the given function are ready.

UVaL_Reference<LegionWorkUnit> next_matched()
Parameters: None

Returns the next work unit. The priority scheme is obeyed.

UVaL_Reference<LegionWorkUnit> next_matched_for_func()
Parameters: int func_num;

Returns the next work unit with the given function number.

int set_priority ()
Parameters: int func_num

int priority

Sets the priority for the given function number.

int insert()
Parameters: UVaL_Reference<LegionWorkUnit> new_work_unit

Inserts the provided work unit into the invocation store. This work unit may be a method
request or it may be a result from a previous method invocation.

UVaL_Reference<LegionWorkUnit> get_return_value()
Parameters: UVaL_Reference<LegionComputationTag> tag

int parameter_number

Returns the work unit with the given tag and parameter number. Typically, this function is
called by a higher layer (e.g. LegionProgramGraph) which will unwrap the returned work
unit to get the parameter inside.

int release_return_value()
Parameters: UVaL_Reference<LegionComputationTag> tag

int parameter_number

Deletes the work unit that matches the supplied tag/parameter_number pair.

int release_all_return_values()
Parameters: None

Deletes all return values from the invocation store.



50

8.3 LegionWorkUnit
int get_function_number()

Parameters: None

Returns the target function number for the work unit.

UVaL_Reference<LegionContinuationList> get_continuation_list()
Parameters: None

Return the continuation list for the results of this work unit.

UVaL_Reference<LegionBuffer> get_parameter()
Parameters: int parameter_number

Returns the given parameter as a LegionBuffer. NULL if the parameter is not in the work
unit.

8.4 LegionBuffer

8.4.1 Constructors
LegionBuffer()

Parameters: None

Creates an empty buffer with a LegionStorageScat storage, and default implementa-
tions of the packer, compressor, and encryptor function sets.

LegionBuffer()
Parameters: UVaL_Reference<LegionStorage>

Wraps a default buffer around a given storage object. It uses default implementations for
the packer, encryptor, and compressor.

LegionBuffer()
Parameters: LegionMetaData metadata

Creates a new empty LegionBuffer with a LegionStorageScat default storage
implementation. It instantiates packer, encryptor and compressors based on the metadata

LegionBuffer()
Parameters: UVaL_Reference<LegionStorage>

LegionMetaData metadata

The full featured constructor wraps a specified storage in a buffer appropriate for the
given metadata, selecting the right packer, compressor, and encryptor implementations.

8.4.2 Operations on the associated LegionStorage
A LegionStorage exports member functions to read and write untyped characters from and to
a logical buffer. These operations are also exported by LegionBuffer, but the user should be
warned that the “better” way to put data into a buffer is through the LegionPacker interface;
read()and write() will not perform appropriate data format conversions, but put_int()
and get_int() will.

size_t read()
Parameters: size_t num_bytes

void *data



51

Reads num_bytes bytes from the buffer starting at the current location of the buffer
pointer. Copies the bytes into the space pointed to by data_dest. Returns the number of
bytes actually read, and positions the buffer pointer immediately after the last byte that
was read. Read() will not read past the end of the buffer.

size_t write()
Parameters: size_t num_bytes

void *data

Writes num_bytes bytes pointed to by data into the buffer starting at current position of
the buffer pointer (overwriting existing data). Returns the number of bytes actually writ-
ten, and positions the buffer pointer immediately after the last byte that was written. Writ-
ing past the end of the buffer causes it to expand.

size_t seek()
Parameters: seek_start whence

int bytes_away

Changes the position of the buffer pointer. “Whence” can be BEGINNING (0), CUR-
RENT (1), or END (2), and bytes_away tells how many bytes away from whence to set
the pointer. Seeking past the end of the buffer causes it to expand and to be filled with
NULL bytes. Seeking to negative logical positions the buffer does not cause the buffer to
expand; the buffer pointer is placed at logical position 0.

size_t size()
Parameters: None

Returns the current size of the buffer in bytes.

size_t current_byte()
Parameters: None

Returns the number of the byte to which the buffer pointer currently points.
Current_byte() returns 0 when the buffer pointer is at the beginning of the buffer,
and current_byte() == size() when the buffer pointer is at the end of the buffer.

char *linearize()
Parameters: int pack_metadata=0

 Returns a pointer to the beginning of the buffer’s data. This pointer is guaranteed to point
to data that is contiguous in memory. Depending on the implementation of the
LegionStorage, this function may or may not need to return a pointer to a copy of the
data.

void setMetaData()
Parameters: LegionMetaData md

Sets the meta data associated with the LegionStorage.

LegionMetaData getMetaData()
Parameters: None

Returns the meta data associated with the LegionStorage. This is useful for instantiat-
ing an appropriate LegionBuffer based on a given LegionStorage.

8.4.3 Operations on the associated LegionPacker
A LegionPacker exports operations for packing and unpacking the basic C++ data types into
and out of a LegionBuffer in a particular data format. A LegionPacker exports



52

put_ZZZ() and get_ZZZ() for all ZZZ in {char, short, ushort, int, long, ulong,
float, double}.

size_t put_ZZZ()
Parameters: ZZZ *source

int how_many

Assumes that “source” points to an array of “how_many” instances of type ZZZ. Cop-
ies this data into the buffer after first performing the appropriate data conversion operation
if necessary and appropriate for the type of LegionPacker that is instantiated.

size_t get_ZZZ()
Parameters: ZZZ *source

int how_many

Assumes that “source” points to enough space for an array of “how_many” instances
of type ZZZ. Copies the next data from the LegionBuffer into this space after first per-
forming the appropriate data conversion operation if necessary and appropriate for the
type of LegionPacker that is instantiated.

8.4.4 Operations on the associated LegionEncryptor
Since no encryption algorithms have been implemented, the current encryption operations,
encrypt() and decode(), are merely placeholders until the right set of encryption opera-
tions are defined.

8.4.5 Operations on the associated LegionCompressor
Since no compression algorithms have been implemented, the current compression operations,
compress() and decompress(), are merely placeholders until the right set of compression
operations are defined.

8.4.6 LegionPackable
int pack()
int unpack()

Parameters: LegionBuffer &lb

LegionBuffers are themselves packable.

8.4.7 Other functions
show()

Parameters: None

Prints the contents of the LegionBuffer to stderr. This is done however the associ-
ated LegionStorage sees fit.

8.4.8 LegionLOID
LegionLOID is intended to be a base class for LOID’s that enforce a particular structure on the
fields of the LOID. An LOID contains four private data members, (1) an integer that holds the
type of LOID, (2) an integer that indicates how many fields the LOID contains, (3) an array
“field_size{]” of integers that holds the sizes in bytes of the LOID fields, and (4) an array
“field_value[]” of pointers to the field data. Currently, the only derived class is called
LegionGeneralPurposeLOID, which simply exposes the protected members to the public
interface.



53

LegionLOID() (protected)
Parameters: int ltype

Sets the type to ltype, sets all other fields to zero.

LegionLOID() (protected)
Parameters: int ltype,

short nfields

Sets the type to ltype. Sets num_fields to nfields. Allocates the field_size[] and
field_value[] arrays. Sets all field_size[]’s to 0, sets all field_value[]’s to NULL.

LegionLOID() (protected)
Parameters: int ltype,

short nfields,
short *fld_size

Sets the type to ltype. Sets num_fields to nfields. Allocates the field_size[] and
field_value[] arrays. Sets all field_size[]’s to the values contained in the fld_size[] array.
Allocates the field_value[] entries to the right size and zeros them out. This constructor
assumes the fld_size array has at least nfields elements.

LegionLOID() (protected)
Parameters: int ltype

short nfields
short *fld_size
char **fld_value

Sets the type to ltype. Sets num_fields to nfields. Allocates the field_size[] and
field_value[] arrays. Sets all field_size[]’s to the values contained in the fld_size[] array.
Allocates the field_value[] entries to the right size and copies the values from fld_value[]
array into the field_value[] array. This constructor assumes that the fld_size[] and
fld_value[] arrays have at least nfields elements, and that each fld_value[i] points to at
least fld_size[i] bytes of space.

set_field_size() (protected)
Parameters: short field_num

short fsize

Sets the appropriate field_size element to fsize and makes sure that the corresponding
field_value element is at least fsize bytes. If it is not, it deletes the old field_value entry
and allocates a new one. Only derived classes should be allowed to call this member.

set_type() (protected)
Parameters: int new_type

Sets the type entry to be new_type.  Can only be called from within the code of derived
classes.

LegionLOID()
Parameters: LegionBuffer &lb

LegionLOID()
Parameters: LegionLOID &otherLOID

These two constructors are public because neither allows the caller to violate the structure
of any particular type of LOID - both just copy the LOID from the parameter, either a
LegionBuffer or another LegionLOID.

LegionLOID()
Parameters: None



54

Not a very useful constructor, so it prints a warning and assigns all data members to zero.
Useful constructors should at least say what the type is.

Accessors

Methods for getting and setting the type and all field values, by field number and field
name, exist.

Overloaded operators

The ==, !=, and = operators are overloaded appropriately. An LOID is equal to another
only if all fields are identical in size and value.

int is_empty()
Parameters: None

Returns 1 only if the LOID is of type UVaL_LegionLOID_type_EMPTY (zero).

int is_class()
Parameters: None

Returns 1 only if the LOID seems to refer to a class object, i.e. the instance number field is
empty.

int same_class_as()
Parameters: UVaL_Reference<LegionLOID> other_loid

Returns 1 if the class_id field matches that of other_loid.

int pack()
Parameters: LegionBuffer &lb

Type and num_fields are packed first, in network order. Next num_fields shorts are
packed, in network order. Next, num_fields values are packed.

int unpack()
Parameters: LegionBuffer &lb

The type, num_fields, and field_size[]’s are unpacked into host order. The
field_value[]’s are unpacked without switching the byte order.

int show()
Parameters: None

Prints the contents of the LOID to stderr for debugging purposes.

8.5 LegionMessage
LegionMessage()

Parameters: UVaL_Reference<LegionLOID> src
UVaL_Reference<LegionLOID> dest
int fnum
int parms_to_expect
UVaL_Reference<LegionComputationTag> tag
UVaL_Reference<LegionParameterList> plist
UVaL_Reference<LegionContinuationList> lcontList
UVaL_Reference<LegionEnvironment> lenv

Creates a LegionMessage from the constituent parts passed as parameters.

Accessor functions

LegionMessage exports public member functions to get and set all of its constituent parts .



55

Overloaded operators

The equality operators (== and !=) are overloaded. Two LegionMessages are deemed
equal only if each of the constituent parts are equal, as determined by the equality opera-
tors of their respective classes.

show()
Parameters: None

Prints the contents of the LegionMessage to the stderr stream.

int pack()
Parameters: LegionBuffer &lb

int unpack()
Parameters: LegionBuffer &lb

LegionMessage is packable.

8.5.1 LegionParameter
LegionParameter()

Parameters: int param_number
UVaL_Reference<LegionBuffer> lb

Constructs a new parameter whose value is assumed to be in lb, and whose number is set
to param_number.

Other constructors

The default constructor creates a parameter with a negative parameter number and an
empty LegionBuffer. A constructor that takes only a LegionBuffer as a parameter
unpacks the contents of the LegionParameter from that buffer. The copy constructor is also
overloaded.

Accessor functions

LegionParameter exports public member functions to get and set both the parameter
number and the buffer that contains the value of the parameter.

Overloaded operators

The == operator is overloaded to return 1 when the parameter numbers are the same, and 0
otherwise.

show()
Parameters: None

Prints the contents of the LegionParameter to the stderr stream.

int pack()
Parameters: LegionBuffer &lb

int unpack()
Parameters: LegionBuffer &lb

LegionParameter is packable.

8.5.2 LegionParameterList
Constructors

The default constructor creates an empty parameter list, and a constructor that takes a
LegionBuffer as an argument unpacks the contents of the LegionParameter-
List from that buffer.



56

Set operations

LegionParameterList is derived from templated class
UVaL_PackableSet_LinkedList, and therefore exports the full interface of
UVaL_PackableSet.

UVaL_Reference<LegionParameter> find()
Parameters: int parameter_number

Augments the UVaL_Set operations to allow parameters to be looked up by number.
Returns a reference to the parameter, if found, or a null reference if not.

show()
Parameters: None

Prints the contents of the LegionParameterList to the stderr stream.

int pack()
Parameters: LegionBuffer &lb

int unpack()
Parameters: LegionBuffer &lb

LegionParameterList is packable.

8.5.3 LegionComputationTag
LegionComputationTag simply maintains a glorified interface to a long integer. The Library
also contains a class—LegionComputationTagGenerator—that creates random compu-
tation tags. See the source code or on-line documentation for a description of that class.

Constructors

The default constructor creates a LegionComputationTag with an uninitialized ini-
tial value. A constructor that takes a LegionBuffer as an argument unpacks the con-
tents of the computation tag from that buffer.

Accessor functions

LegionComputationTag exports public member functions to allow the value of the
tag to be set and retrieved as a long integer.

show()
Parameters: None

Prints the contents of the LegionComputationTag to the stderr stream.

int pack()
Parameters: LegionBuffer &lb

int unpack()
Parameters: LegionBuffer &lb

LegionComputationTag is packable.

8.5.4 Other fields
A LegionMessage also contains a LegionContinuationList, and a LegionEnviron-
ment. A LegionContinuationList is simply a UVaL_PackableSet of LegionCon-
tinuations, and a LegionEnvironment is a UVaL_PackableSet of
LegionEnvironmentItems. Please refer to the online documentation and source code for
the interface to these classes.


