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ABSTRACT

Experience has shown that many defects in software systems are introduced during the
specification phase. For safety-critical systems this is significant since it indicates where
progress might be made in improving dependability. In this paper we argue that one of the
reasons that defects are introduced during specification is that the specifier does not have
an adequate understanding of the background and context of the system being specified. In
order to provide a better basis for specification, we introduce the notion of prespecifica-
tion—the determination and documentation of as much of the relevant background and
context information as possible for the benefit of the specifier.

The specifier is often a software engineer. Though qualified to build software, he or
she is unlikely to have a detailed knowledge of the application domain. Quite inadvert-
ently, software engineers are likely to overlook aspects of the system that may have direct
or indirect safety consequences. Application experts, on the other hand, are typically not
trained to build software and therefore to understand its safety implications. To develop
correct specifications, it is essential that there be precise communication between the
domain expert and the software engineer.

In this paper, we propose the introduction of a phase in the software lifecycle for
safety-critical systems that should precede the requirements analysis and documentation
phases. We call this phase the prespecification phase. In this phase, pertinent background
information regarding the software to be developed is collected and documented without
undertaking a full-fledged requirements elicitation. The document that is generated is
called the prespecification document.

We have built a prespecification document for a realistic safety-critical application.
This application is a digital control system for the University of Virginia’s Research
Nuclear Reactor and a software specification for the digital control system is now being
developed using the prespecification. We use the this prespecification as an example
throughout this paper.



Eliciting Background Information For Safety-Critical Software Specification

INTRODUCTION

Experience has shown that many defects in software systems are introduced during the
specification phase. In some cases, measurement has revealed that the majority of defects
are introduced during specification [1]. For safety-critical systems this is significant since
it indicates where progress might be made in improving dependability.

In this paper we argue that one (but perhaps one of many) of the reasons that defects
are introduced during specification is that the specifier does not have an adequate under-
standing of the background and context of the software being specified. In order to pro-
vide a better basis for specification, we introduce the notion of prespecification—a
lifecycle phase that follows planning and precedes requirements analysis and specification
in which as much of the relevant background and context information as possible is gath-
ered and documented for the benefit of the specifier. The prespecification document is
organized and structured to maximize its value as a reference source for the specifier.

Safety-critical applications are complex and often unfamiliar to the specifier, and it is
quite possible that errors are introduced because the specifier is unaware of significant
concepts from, common definitions in, or obscure but important detail about the applica-
tion domain. This argument is given some credibility in part by the very subtle and unex-
pected nature of the causes of most accidents and in part by the generally accepted notion
that many of the problems in specification are problems of communication.

The specifier is often a software engineer. Though qualified to build software, he or
she is unlikely to have a detailed knowledge of the application domain. Quite inadvert-
ently, software engineers are likely to overlook aspects of the system that may have direct
or indirect safety consequences. Application experts, on the other hand, are typically not
trained to build software and therefore to understand its safety implications. To develop
correct specifications, it is therefore essential that there be precise communication
between the domain expert and the software engineer.

The specification of a software system’s requirements is often regarded as the vehicle
for this communication. A specification contains various types of information but this
information can be broadly broken down into two categories:

e functional and non-functional requirements and,
» essential background information.

The background information contains definitions and explanations needed to understand
the remainder of the specification. Traditionally, the specifier focuses on eliciting the func-
tionality requirements, and obtains the background information on a “need-to-know”
basis. Thus both actual requirements and background information are obtained in a single
phase.

As elements of two case studies', we have worked on specifications for two non-trivial

t. The first case study.is_a robotic neurosurgical device, the Magnetic Stereotaxis System (MSS) [2]. The
second case study is focused on the University of Virginia’s Research Nuclear Reactor (UVAR), where
we are engaged in the specification of a digital control system.
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applications. As a result, we have concluded that gathering both requirements and back-
ground information in one phase is unsatisfactory, especially when the background infor-
mation is given a secondary role. We consider background information to be important
enough to be obtained in a systematic manner, instead of the ad hoc manner that is typi-
cally employed.

We claim that a separate activity is needed in which, to the extent possible, the neces-
sary background information is collected. While this information might not be complete,
this activity will force the specifier to understand and document relevant and available
information in an organized manner thus avoiding many potential mistakes that can occur
if such background information is overlooked. The resulting document helps to bridge the
gap between the domain expert and the software engineer, and it provides in part the vehi-
cle for the precise communication that is required between them. We are not aware of any
approach, especially in the domain of safety-critical systems, that stresses the relative
importance of background information.

There is an activity that is quite common in hardware engineering in which the inter-
face specification for some element of a system is defined and documented. This activity
has some similarity to the prespecification concept that we are advocating but lacks the
interrelationship between the various functions that the interface provides, the theory
behind the various functions, and the possible role of human operators or users.

We have built a prespecification document for one of our case studies, the University
of Virginia’s Research Nuclear Reactor (UVAR), and a specification for a digital control
system is now being developed using the prespecification. We use the UVAR prespecifica-
tion as an example throughout this paper.

In the next section of this paper, we discuss our rationale for prespecification. We then
present more details of the prespecification concept. Next we discuss a case study of pre-
specification, and finally we present our conclusions.

RATIONALE FOR PRESPECIFICATION

By the term background information, we mean the information that is required by
someone who is not an expert in the domain to understand the application and its associ-
ated environment. Such information does not include anything that would be considered
normally a requirement or part thereof.

The prespecification should explain sufficient about the background and context of the
software to be developed that, under ideal circumstances, the specifier is able to get all his
or her questions answered about the application context from this document. The prespeci-
fication establishes the breadth and depth of the understanding that is needed by the speci-
fier.

As an example of the type of information to which we refer, consider the extensive
sensing instrumentation used by a typical control system. Details of each sensor such as its
purpose, its range, its claimed accuracy, its resolution, its data representation, its timing
constraints, its failure modes, its use within the system, its level and type of redundancy,
and the means by which its value is displayed for the operator (if the value is displayed)
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are examples of the kind of information that should be documented systematically for ref-
erence during specification.

An approach that one might consider is to depend upon application experts being
involved in any software development project and merely asking for background informa-
tion as necessary. The information could be documented if necessary as it was acquired.
We suspect that this is what typically happens in practice yet the high level of defects in
specifications remain and so we infer that it is not a perfect solution. It also suffers from
the deficiency that it leaves the acquisition of vital background information to chance.

A systematic process for acquiring and organizing background information is essen-
tial. However, in most current approaches to software specification, background informa-
tion (a) depends on reference information that tends to be scattered through a variety of
documents, (b) is obtained in a rather ad hoc manner during lifecycle phases of which it is
not the focus, and (c) is not identified as a separate item. We consider this to be quite
unsatisfactory for large-scale, safety-critical applications where omissions and misunder-
standings can be serious. We expand on our rationale in the remainder of this section.

Scattered Information

It might be argued that a prespecification phase is not needed since the requisite infor-
mation is available in existing documents. Typically, however, background information is
scattered widely in these existing documents, and, although the documents probably
(though not necessarily) contain the relevant information, for any realistic safety-critical
application they are inadequate for the following reasons:

 Existing documents tend to be organized for the convenience of someone other
than the specifier. For example, a document describing system peripherals might
be organized with an emphasis on the physical organization of the electrical wiring
although buried in the document are details of the input/output hardware ports
being used.

o Existing documents are written assuming a technical background that is different
from the specifier’s. For example, a description of an application might be written
assuming that it will be read by an application engineer rather than a software
specifier. Essential definitions are likely to be omitted, therefore, because they are
assumed known, and a level of sophistication in areas such as continuous mathe-
matics might be assumed because it is common in the application domain.

» Existing documents often overwhelm the software specifier with information.

Using existing documentation, a great deal of time is often spent tracking down the rele-
vant sources of information, and, when found, the information is frequently in a form that
does not readily satisfy the needs of the specifier.

We infer from the inadequacies of existing documentation that (a) a comprehensive
source of background information is required and that (b) this background information has
to be organized and written keeping in mind the typical software engineer’s knowledge
and experience (or lack thereof) in the safety-critical application domain. Having such
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information in one place opens it to the scrutiny of both the software engineer and the
domain expert. Once consensus is reached on the content, the prespecification can act as
the authoritative repository of system-related knowledge—an asset that is likely to be very
valuable to both parties. The domain expert will be satisfied since the necessary informa-
tion that is considered important for the safe operation of the system will be in a document
that is both understandable and possibly amenable to analysis by the domain expert. The
software engineer will be satisfied since the related information that one would need to
develop the software will be in one place.

Focus On Requirements

How then should such a document be developed? We contend that it should not be dur-
ing requirements analysis and specification. Requirements analysis and specification are
typically the first phases of the software lifecycle and they focus on determining and doc-
umenting the software requirements of a system. Some background information is gath-
ered systematically because it is related directly to functionality in an obvious way. In
structured analysis, for example, file formats have to be defined and data dictionaries
developed to support the dataflow models. Even in a case like this, however, important
background information can be missed. For example, the expected size of a file, the
expected variability in size, its access pattern, and so on are not usually defined as part of
a structured analysis yet they can affect the details of a system’s software specification.

In safety-critical systems, safety concerns often arise from sources that are orthogonal
to the functional requirements and therefore cannot be deduced from the specifications of
the functionality. For example, a term commonly used in the application domain that is
used in software engineering but with a different meaning is a recipe for disaster.

The specifier should know as much relevant information about the system as is practi-
cal before he or she attempts to develop the specification. This would avoid many errors in
the specification from the very beginning thereby reducing the cost of building a specifica-
tion. Since the specifier would be aware of the background, the requirements analysis and
specification phases would be more focused and efficient. The specifier would be asking
relevant and “pertinent” questions sooner instead of prolonging the requirements analysis
phase.

We note that the safety of a system may be affected by parameters that are often not a
part of the system’s software requirements. This is where the relative emphasis on back-
ground rather than the requirements is important. Not being constrained by having to
record only software requirements, the software engineer is free to obtain information that
would have otherwise been dismissed as not being very relevant to the functionality of the
system.

Finally, we observe that specification detail often rests on assumptions associated with
background information. By devoting time to the prespecification, there is a greater
chance that these assumptions will be clearer from the very beginning rather than becom-
ing clear when it may be difficult to effect a change because activities are advanced in the
specification development cycle.
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A Separate Lifecycle Phase

The domain expert and the specifier need to establish a common ground of under-
standing and this should be systematized rather than leaving it to ad hoc and need-to-know
approaches. This ground should be created by the specifier interacting with the domain
expert to acquire the relevant information. This information should be then organized and
presented back in a manner that the domain expert can easily understand and inspect.
Once this process has been iterated to the satisfaction of both parties, it is established as a
definitive, living document. Any future references to the system should be obtained from
this document, and if in future this document does not suffice, careful updates should be
made to it and to the decisions that were made based on it. A major advantage to this
approach is that the information relating to assumptions that were made regarding a sys-
tem will be in one place, making the process of determining the effect of the update more
feasible.

Existing Specification Techniques

There are certain aspects of existing specification techniques that are designed to
develop information relevant to a specification and which have similarities to what we call
prespecification. Though very useful and essential within the specification context of their
definition, they are not prespecification as we define it and so do not eliminate the need for
prespecification.

An example is the introduction of systematic glossary information and systematic
input/output port definitions in the A7 specification technique [4]. The role of the glossary
in an A7-style specification is to centralize important definitions so that the meanings of
important terms will be clear and shared by the various users of the specification. The role
of the port definitions is to define port information in a consistent and thorough manner.

These techniques are major contributions to specification quality but they do not
replace the need for prespecification. In the case of the glossary, whether to include infor-
mation is determined to a large extent by the specifier rather than the application expert
although the application expert will obviously be involved in determining the information
itself. In addition, glossaries fail to show what can only be described as the “big picture”
and the system-level areas of safety concern.

A second type of information that has some similarity to prespecification is the result
of a hazard analysis [5]. The goal of a hazard analysis is to identify system states that, if
entered, could lead to an accident. Thus the role of hazard analysis in understanding the
safety elements of a system is clear. But again, we note that a hazard analysis, at best, only
adds to the specifier’s understanding of the application domain and so this understanding
is very likely to remain incomplete. However, it is this understanding that will enable the
specifier to make appropriate choices, ask the right questions, and know when vital infor-
mation is missing during specification itself.

PRESPECIFICATION CONCEPT

In this section, we examine the concept of prespecification in more detail. The ideas

Page 5



Eliciting Background Information For Safety-Critical Software Specification

expressed are the result of our experience with the prespecification we have written and its
use so far in our case study. The ideas are, therefore, preliminary and heavily influenced
by the application domain in which we are working.

We begin by enumerating the properties that we have found to be important. We then
review the structure and content that we have developed for a prespecification document,
and finally review some aspects of how the prespecification might be used.

Properties

A prespecification has to serve as a major communications channel between engineers
in different disciplines. To do this effectively, the prespecification has to be prepared care-
fully and possess the following essential properties:

e The prespecification should be as complete as possible in the sense that everything
about the background and context of the system to be built should be included.

e A combination of formal and informal notations should be used such that the pre-
specification is understandable and amenable to analysis as a whole by all the engi-
neers involved (application, software, etc.) and so that the engineers conform in
their views of the system. Tables are a simple yet very helpful formalism.

o The prespecification should be as precise as is deemed necessary by the engineers
involved. Precision is valuable but the existence of a topic in the prespecification is
the source of the major benefit. By being alerted to the topic, the specifier is aware
that seeking further precision might be necessary.

o The level of detail should be set so as to satisfy the various parties involved. How-
ever, we note that if something is not obviously relevant but any party thinks it
might be, it should be included if resources permit. At the very least, references to
other documents should be included at appropriate points.

e Detail that is required but which is for some reason unavailable can be omitted as
long as it is clear that detail is missing. Detail might be unavailable because it is
unknown or to-be-determined. Not knowing the detail is acceptable. Not knowing
that it is not known is not.

e Detail that is required but that is unclear or known to be erroneous should be
included and marked as possibly wrong.

Structure And Content

The structure we have evolved for the prespecification is quite simple but was derived
from our experience with one case study. It is likely that additional experience will refine
the structure.

Our structure focuses mainly on identifying systematically the equipment with which
the computing system will be involved. First, we include a section that describes the “big
picture”—what is this system and what is it for. Next we include sections that document
sensors, actuators, and input and output devices for operator information and control. In
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order to try to understand how the system will function, we include a section that docu-
ments how the system will interact with the outside world including human operators
where appropriate.

There is obviously a need to include sections within a prespecification that document
topics that are application-specific. For example, in our case study of the research nuclear
reactor we found it necessary to include a section in the prespecification that documents
the security system. This system is partly automatic and partly manual but understanding
it was critical to understanding why certain other parts of the system have to operate in
certain ways.

We include within our prespecification structure several sections that are designed to
function as repositories so that detail will not be lost. For example, we include sections to
hold pending technical questions, apparent or real errors in documents provided by the
domain experts, and a glossary of terms that grows as terms are defined.

Development

Since the basic purpose of a prespecification is to document background information
in the application domain, one could reasonably ask why the specifier could not learn the
domain the way domain experts do, perhaps by taking some type of course. The problems
with this approach are many: there might not be a course available; a course might not
cover the necessary material; or a course might cover too much material.

The prespecification is just a collection of information and so the process of develop-
ment is really just one of determining what information should be recorded and then
acquiring it. The development process should start with a trivial requirements analysis
phase so that the authors of the prespecification can become familiar with the overall sys-
tem goals. For example, in the UVAR case study, we began by determining that the system
to be specified was an enhanced version of the reactor’s present electromechanical control
system.

Once this level of requirements analysis is finished, the outline given in the previous
section can act as a guide to determining how to proceed. In the final analysis, a great deal
of effort has to be expended in reviewing existing documents and interrogating domain
experts.

Use

Once finished, the prespecification plays a variety of roles. It can act as a reference
source throughout the life of the associated software. But parts of the prespecification can
become parts of other documents as development proceeds. For example, details of sens-
ing equipment should be moved to the specification itself once work on the specification is
underway.

A prespecification can play different roles in different types of system development.
For example, when developing a new application, much of the background information
will be on hand but still needs to be organized and explained for the benefit of the speci-
fier. In the case of a replacement of an existing system, a prespecification can act as a
focus for acquisition of scattered information. For software maintenance, a prespecifica-
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tion can document information that would be hard to find in other ways because the origi-
nal development engineers are no longer available.

Maintenance

A prespecification needs to be maintained but maintenance of a prespecification will
be slightly different from the maintenance of other artifacts. Much of the content should
be unchanging and require no attention except the correction of errors. Since the prespeci-
fication is documenting background information it is unlikely that very much of that back-
ground will change during software development. What is much more likely to occur is
the realization that certain important background information was omitted during the ini-
tial development phase of the prespecification. Thus significant additions to the prespecifi-
cation are likely over time.

A CASE STUDY IN PRESPECIFICATION

The ideas in this paper evolved from our case study of the University of Virginia’s
research nuclear reactor. As an element of our research in software engineering, we are
developing the specification for an advanced control system for the reactor. By studying
the issues that arise in a complex application such as this, we are endeavoring to better
understand the issues involved in safety-critical systems.

A very important general point that has to be stated at the outset is that those involved
in this case study had a reasonable lay knowledge of nuclear physics before the case study
began. All were familiar with the general principles of fission reactors, their applications,
and the extreme care that must be taken with their construction and operation. However,
the complexity of the basic physics involved in understanding how a real reactor operates
was a surprise to all involved.

The Application

The University of Virginia Reactor (UVAR) is a 2 MW thermal, concrete-walled pool
reactor. It was originally constructed in 1959 as a 1 MW system, and it was upgraded to 2
MW in 1973. The reactor core consists of 20 to 25 plate-type fuel assemblies placed on a
rectangular grid plate. The reactor uses water cooling and the core is immersed in a large-
capacity (80,000 gallons) water pool. In a low power mode, cooling can be by natural con-
vection. In a high power mode, cooling is by forced water flow. There are three scramable
control rods for reactor shutdown, and one non-scramable regulating rod that can be put
into an automatic mode. In this mode an analog control system uses the regulating rod to
maintain reactor parameters.

A variety of sensors measure process variables including: 1) relative output by mov-
able fission chamber; 2) neutron flux by ion chamber; 3) start-up neutron flux and period
by BF3 counter; 4) core inlet and outlet temperatures by thermocouples; 5) primary system
flow by pressure gauge; 6) control and regulating rod positions by potentiometer; 7) gross
gamma-ray dose by ion chamber; and 8) various levels (such as pool water height) by limit
set switches.
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Other than the regulating rod, operation of the reactor is by manual control. All indica-
tions of reactor operating conditions are presented on analog or digital meters, and/or on
strip chart recorders. Operation of the reactor proceeds using detailed standard operating
procedures (SOP’s) with checkoff sheets to confirm that steps are completed with inter-
locks that prevent operation when certain steps are not done in proper order or equipment
is not functioning.

Our goal with this case study is to develop the software speciﬁcationJr for a digital con-
trol system for the reactor that would provide the functionality of the current electrome-
chanical/manual system plus some new capabilities. These new capabilities include more
sophisticated displays, additional operational checks, and automation of certain functions
that are presently manual.

Existing Documentation

As expected, there were a number of documents that provided much of the necessary
background information. The existing documents that were reviewed in the development
of the prespecification were the following:

» Standard Operating Procedures for the University of Virginia Reactor, 195 pages,
no drawings.

* Emergency Plan Implementation Procedure, 90 pages (grouped as individual pro-
cedures), no drawings.

e Amendment 1 to the Revised Safety Analysis Report and Technical Specifications
for Two Megawatt Operation - University of Virginia Reactor March 1971, 72
pages, 13 figures, 8 tables.

» University of Virginia Reactor Revised Safety Analysis Report, Revision 7 July
1989, 257 pages, 73 figures, 24 tables.

All of these documents were extremely well-structured and thorough but inevitably
were written with a nuclear eagineer+n mind. They were also each written for a specific
purpose as indicated by their titles and contained a great deal of material that was not
immediately useful in developing the document that we sought. However, it was not diffi-
cult to understanding most of the related material which is somewhat surprising given our
essentially non-nuclear engineering background.

When we tried to understand certain aspects of the reactor in detail, the information
was complex enough that we had to refer to the documentation in addition to interrogating
the domain experts. For example, information regarding the operator control panel instru-
mentation and layout was scattered in various documents. In some cases, display instru-
ment documentation did not indicate directly what were the normal, abnormal, and
impossible system operational ranges. This information is actually available indirectly and
is common knowledge among the nuclear experts but was not apparent to us.

1. Note that we are only developing a specification. In keeping with NRC regulations, at no point will
we have access to any reactor control equipment.
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We spent a considerable amount of time trying to categorize the operator control panel
instrumentation. We created labeled pictures of the control panel and integrated descrip-
tions of the individual instruments so as to provide us with a systematic, structured source
of details about the controls. This is discussed in more details below.

The Prespecification

The prespecification was developed over a period of about six months with contribu-
tions from a variety of people. The primary authors were two masters candidates, a doc-
toral candidate and a postdoctoral fellow in computer science at the University of Virginia.
Technical information about the application was obtained from a variety of domain experts
in nuclear engineering.

The prespecification is 64 pages long and the significant sections are:

Introduction

This section explains the goals of the document and summarizes the reactor sys-
term.

Control Panel

The entire control panel as presently constructed is described with details of each
instrument and control.

Human Interaction

This section documents the role of the human operator in the present system, and
the role of the researcher using the reactor for experimentation. Since control of
the reactor is required to establish the necessary environment for an experiment,
the researcher has to interact with the reactor operator. The activities of the opera-
tor and the researcher are described as procedural programs in an Ada-like pseudo
code.

Security Concerns

This section enumerates the various security interlocks that are used in facility
security.

System Details

The system details are broken down into systematic documentation of the system’s
sensors, actuators, interlocks, and alarms. In addition, the conditions under which
the reactor must be shut down (the scram conditions) are elaborated.

Open Questions

This sections is a repository for as-yet unanswered questions. It provides a single
location for storing this material so that these questions can be addressed systemat-
ically. Naturally, in the final form of a prespecification, this section should be
empty.

References
This is a list of relevant reference documents.
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°  Glossary
Definitions of important terms.

e Possible Mistakes in Original Documentation

This section is a repository for comments by the developers of the prespecification
about what they consider to be errors in the reference documents.

e Figures
This section includes copies of figures that we considered significant that were
contained in the existing documentation.

Notations

We found that for precise representation and presentation of the information we gath-
ered, very simple constructs sufficed. The main concern was that we are able to note down
pertinent information in the most suitable, clear, and readable, i.e., communicable form.
While we did not use formal notations specifically, we were careful to record our informa-
tion unambiguously using simple structural constructs and clear English phrases. If we
had felt a need for more formal notations, we would have used them.

SW1

Fig. 1. Photograph of upper right section of operator’s console
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Instrument ID: SC3.
Instrument Type: Paper strip chart recorder.
Information Displayed: Intermediate range (see glossary).
Units/Scale: Counts per second/7 decade log scale(10° to 1019),
Purpose: Show trend for intermediate range drawer output.
Description: Paper velocity: 6 per hour
Valid for normal operation
User Function: Output

Fig. 2. Intermediate range strip chart recorder description

The vast majority of the material in the prespecification is in the form of either tables
or bulleted lists. Very little natural language text is used. To document the operator’s con-
sole and its instrumentation, a variety of photographs were taken, labelled, and entered
into the document. One photograph shows the entire control panel to establish the layout.
The panel is then broken down into six subsections and a photograph of each subsection is
included. These later photographs are sufficiently detailed that instrument labels can be
read. The labels that we have superimposed onto the photographs provide the link
between the instrument and the table describing the instrument. Fig. 1 is an example pho-
tograph showing what is referred to as the Upper Right section of the operator’s console.

Precision of notations helped us organize our thoughts and ask intelligent questions,
and the simplicity allowed us to phrase our questions in a manner that was understandable
by people with a diverse background. We did not see any merit in formalizing certain
aspects of the system at this phase, since our understanding of them was not yet compre-
hensive.

An example of the value of limited precision came from the reactor operator interac-
tion algorithm described in Ada-like pseudo code. A simple inspection of the description
of the researcher interaction enabled us to realize that:

 the software engineer had misinterpreted the interaction, and

» there existed the possibility of multiple access to the facility that had not been con-
sidered earlier.

A basic tabular structure was chosen for the description of instrumentation. It seemed
to be an optimal combination of both understandability and precision. Each row repre-
sented an attribute of the instrument and the attributes chosen were mostly suggested by
the prespecification developer. The strip chart recorder identified in the Fig. 1 as SC3 is
documented using the table shown in Fig. 2.

Forcing us to write the description in the tabular format made us discover several
ambiguities in what we had written down from our initial discussions. Once we had reor-
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ganized our descriptions, our questions became more specific and therefore the answers
we received were more precise.

Verification

Verification of our prespecification document was by inspection. During development,
each section was reviewed for accuracy by the authors and questions were answered by
reactor personnel as they arose.

After the document was thought to be complete by its authors, it was subjected to a
thorough inspection by a staff member of the reactor facility (a senior reactor operator).
The result of that inspection is the main result that we report:

The inspection revealed that the prespecification as originally written con-
tained a large number of significant errors.

A wide variety of different types of error was found. There were errors of omission in
which, for example, certain instruments were not documented; errors of detail in which,
for example, parameters were documented with the wrong values; errors of fact in which,
for example, information was missing; errors of phrasing in which, for example, equip-
ment was described very poorly; and errors of status in which, for example, equipment
was documented that no longer exists.

Some, perhaps many, of these errors are attributable to less than perfect work by the
authors and, upon reflection, some errors are quite obvious. Other errors no doubt could
have been found (and should have been found) by a more systematic, rigorous inspection
by the authors. But many of the errors were subtle misunderstandings of a complex system
that could only be found by an experienced domain expert. It is our opinion that this is a
clear indication of the importance of prespecification.

It is important to keep in mind the purpose of the document in which these error were
found. This was not a specification, it was merely a prespecification that documented the
necessary background information. The reasons that we consider this result to be the most
important are twofold. First, even with the relatively narrow goal of describing back-
ground information, significant errors were made. Had we been trying to build a specifica-
tion at the same time, it is quite likely that we would have neither understood the
background nor been aware of the defects that would have crept inevitably into the speci-
fication as a result.

The second reason why we consider this result to be our most important from this
project is that we are now in a position to correct the errors. Once this is finished, we will
have a comprehensive reference document with which to proceed with specification. Our
hypothesis is that this will help reduce specification errors considerably.

A second significant result that we report is that the very process of background cap-
ture led to a much more thorough understanding of the background. Researchers and prac-
titioners in formal specification have reported that the systematic thought process that is
imposed by the construction of a formal specification tends to improve the quality of a
specification. This is in addition to the benefits brought about by a formal notation. We
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observe the same effect in background capture. By focusing on understanding the context,
a thought process was evoked that caused the authors to search systematically for the
information needed.

Finally, we note that the goal of capturing only background information was known to
be important in this project but proved hard to address. Throughout the development of the
prespecification, there was a constant tendency to be concerned with specification infor-
mation.

CONCLUSIONS

We conclude that background and context information is vital to the process of soft-
ware specification, especially for safety-critical systems. We refer to this information as
prespecification. We also conclude that the acquisition of this information is best under-
taken by a lifecycle phase that precedes requirements analysis. Our justification for these
conclusions is experience gained in a case study in which we have developed a prespecifi-
cation for a realistic safety-critical application.

We are aware that the concept of prespecification has not been explored completely by
the research reported here. Additional research is need to determine, for example, the best
way in which to acquire and organize the associated information. In addition, it will be
necessary to determine the effect, if any, of prespecification on specification quality.
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