
9/8/2006 DRAFT 

Genesis II: Motivation, Architecture, and Experiences 
using Emerging Web and OGF Standards1 

Mark Morgan, University of Virginia 
7 September 2006 

 

Abstract 
 
In the past year, hype over web services and their use in emerging software applications 
has prompted the creation of many standards and proto-standards.  On top of this, the 
OGF (Open Grid Forum [3]) has seen a number of standards making their way through 
various design and edit pipelines.  In parallel with the continued growth of these 
specifications, it is important that implementations develop along-side the documents 
which validate the efforts of the document writers.  Well meaning authors of a 
specification document might inadvertently loose site of the purposes to which those 
specifications must eventually answer.  Further, in the context of the OGF and its work, 
no specification exists in isolation.  OGF specifications inevitably compose to form a 
higher order product then the individual components themselves.  Together, these 
specifications will be used to form the grid infrastructure of the future and an evaluation 
of this emerging work, not only in and of itself, but also taken together in the context of 
an emerging grid becomes increasingly relevant. 
 
This document describes the pieces of, motivation behind, and experiences composing 
the Genesis II system at the University of Virginia.  Genesis II is a production level 
compute and data grid, based on existing and emerging web and grid standards, designed 
not only to provide a framework for research going forward, but also to validate the 
components from which it is derived.  In doing so we hope to provide useful feedback to 
the OGF, and more specifically, to the working groups represented by this effort. 

                                                 
1 Partially funded by NSF-SCI-0426972 and the Office of the UVa Vice Provost for Research. 



9/8/2006 DRAFT 2

1 Table of Contents 
Abstract ............................................................................................................................... 1 
1 Table of Contents........................................................................................................ 2 
2 Acknowledgements..................................................................................................... 3 
3 Introduction................................................................................................................. 3 
4 Background................................................................................................................. 4 

4.1 WS-Addressing ................................................................................................... 4 
4.2 WS-BaseFaults.................................................................................................... 4 
4.3 WS-Security........................................................................................................ 4 
4.4 JSDL ................................................................................................................... 4 
4.5 WS-Naming ........................................................................................................ 5 
4.6 RNS..................................................................................................................... 5 
4.7 OGSA-ByteIO..................................................................................................... 6 
4.8 OGSA-BES......................................................................................................... 6 

5 Genesis II Architecture and Use ................................................................................. 6 
5.1 Basic RNS Directories ........................................................................................ 7 
5.2 Basic ByteIO Resources ..................................................................................... 8 
5.3 Exported Directories ........................................................................................... 9 
5.4 Basic BES Containers and BES Activities ......................................................... 9 
5.5 BES Multiplexer ............................................................................................... 11 
5.6 Genesis II Container Service ............................................................................ 12 

6 Experiences and Future Work................................................................................... 12 
6.1 Experiences ....................................................................................................... 13 

6.1.1 Naming as Core Infrastructure.................................................................. 14 
6.1.2 BES Overly Generic ................................................................................. 15 

6.2 Future Work ...................................................................................................... 16 
References......................................................................................................................... 18 
 



9/8/2006 DRAFT 3

2 Acknowledgements 
Lest I forget the individuals that have allowed me to write this document, I wish to 
acknowledge the individuals who have helped transform Genesis II from an “over coffee” 
discussion a few months ago into the functional, production system available now.  In 
particular, I wish to thank Andrew Grimshaw and Howie Huang for their help designing 
the system, and John Karpovich, Duane Merrill, Woochul Kang, and Janis Shultz for 
their continued efforts to design and implement various components of Genesis II. 

3 Introduction 
In the past year, hype over web services and their use in emerging software applications 
has prompted the creation of many standards and proto-standards.  On top of this, the 
OGF (Open Grid Forum [3]) has seen a number of standards making their way through 
various design and edit pipelines.  In parallel with the continued growth of these 
specifications, it is important that implementations develop along-side the documents 
which validate the efforts of the document writers.  Well meaning authors of a 
specification document might inadvertently loose site of the purposes to which those 
specifications must eventually answer.  Further, in the context of the OGF and its work, 
no specification exists in isolation.  OGF specifications inevitably compose to form a 
higher order product then the individual components themselves.  Together, these 
specifications will be used to form the grid infrastructure of the future and an evaluation 
of this emerging work, not only in and of itself, but also taken together in the context of 
an emerging grid becomes increasingly relevant. 
 
This document describes the pieces of, motivation behind, and experiences composing 
the Genesis II system at the University of Virginia.  Genesis II is a production level 
compute and data grid, based on existing and emerging web and grid standards, designed 
not only to provide a framework for research going forward, but also to validate the 
components from which it is derived.  In particular, Genesis II is based heavily on the 
following specifications and proto-specifications2: 
 

• WS-Addressing [4] 
• WS-BaseFaults [6] 
• WS-Security [7] 
• JSDL [8] 
• WS-Naming [9] 
• RNS (Resource Naming Service) [10] 
• OGSA-ByteIO [11] 
• OGSA-BES (Basic Execution Service) [12] 

 

                                                 
2 Many specifications lead to the design of Genesis II including, but not limited to SOAP 1.2, WSDL 1.1, 
HTTP 1.1, etc.  It would be impossible to do justice to all specifications which are part of this work so I 
limit discussion herein to those specifications which are directly relevant to the work coming out of the 
OGF. 



9/8/2006 DRAFT 4

This document begins with a brief, high-level description of each of these specifications 
and proto-specifications.  Following the introductory material, we describe the Genesis II 
system and its architecture.  Finally, we conclude with a section summarizing our 
experiences implementing and using these specifications, both in isolation and in 
coordination with one another. 

4 Background 
4.1 WS-Addressing 
WS-Addressing is a specification coming out of the W3C [4] which describes, among 
other things, a schema type called an EndpointReferenceType (EPR) that clients and 
services use to identify a target web service and the means by which clients transform 
that information into the message headers for a SOAP message targeting the indicated 
web service.  This schema includes fields for identifying the target address (URI) of the 
desired service, opaque referencing information which target services may use to further 
identify session data, and metadata information which can be used by clients as hints 
describing various aspects of the target web service or web service resource3. 

4.2 WS-BaseFaults 
WS-BaseFaults is a standard emerging from OASIS and part of the WSRF [5] framework 
which extends on the basic concept of SOAP Faults[14].  Specifically, WS-BaseFaults 
gives a base schema type for fault information “thrown” by web service operations that 
includes information about the source of the exceptions, details message information, 
timestamp information, and other relevant pieces of information. 

4.3 WS-Security 
Security is fundamental to the success and use of web services and distributed systems.  It 
is perhaps the most common denominator between successful grid technologies.  Because 
Grids exist to bring together resources from distributed, mutually distrustful 
organizations and entities with widely varying security requirements, concerns, and 
policies, the adoption of any given grid technology is inevitably tied to the usability and 
functionality of its security layers.  WS-Security is a specification that describes how web 
services communicate securely to protect individual message integrity, confidentiality, 
and client authentication.  In and of itself, WS-Security is not a complete security story, 
but in Genesis II it serves to facilitate a model which protects the interactions between 
users and web services. 

4.4 JSDL 
The act of launching a job or activity on a compute grid roughly breaks down into four 
distinct phases; describing the job to execute, locating the resource or host on which to 
execute said job, preparing or deploying the selected application for its execution, and 

                                                 
3 For an excellent discussion of both the evolution of the WS-Addressing EndpointReferenceType and the 
uses of its various fields, please refer to Steve Vinoski’s paper, “WS-Addressing Metadata” [1] 



9/8/2006 DRAFT 5

running and maintaining the indicated job on the selected resource.  JSDL addresses the 
first of these requirements. 
 
JSDL is far too large to describe in total in this document, but at a high-level, it is a 
schema for describing in XML an application, how to stage the data for that job, and what 
restrictions apply to its execution.  Further, rather than attempt to describe specifications 
for all possible application types (legacy binary4, web service instance, grid-aware 
application, etc.), the JSDL authors instead have left numerous extensibility points (open 
ended xsd:any elements) throughout the schema which allow for extension profiles that 
further describe or specify the various application types, data types, etc.  In particular, the 
JSDL document itself includes one such profile for what the authors call POSIX 
applications (essentially legacy applications). 

4.5 WS-Naming 
While most OGF specifications described in this document are intended to address 
specific grid concerns, WS-Naming is somewhat unique in its applicability to non-grid 
application domains.  This specification specifically deals with two issues that are 
common to almost any distributed system; unique identification or naming of target 
endpoints, and rebinding of or re-resolution to those endpoints from abstract identifiers to 
communicable addresses5. 
 
WS-Naming describes two extensibility profiles on the standard WS-Addressing 
specification whereby target service endpoints add additional elements to their WS-
Addressing EndpointReferenceType’s metadata element; namely an endpoint identifier 
element which serves as a globally unique (both in space and time) abstract name for that 
resource, and a list of zero or more resolver endpoints.  The endpoint identifier element 
gives clients a way of identifying and comparing addressing endpoints without requiring 
them to communicate with those endpoints while the resolver list indicates a number of 
services that clients can use to bind those endpoint identifiers to new WS-Addressing 
EPRs (for example when a service endpoint migrates from one address to another). 

4.6 RNS 
As Tannebaum and van Steen describe in their distributed systems book [2], naming in a 
distributed system often involves a three-tiered approach whereby human-readable names 
or paths are resolved to abstract names or identifiers, which in turn are mapped into 
location-dependent addresses.  WS-Naming addresses the latter mapping in this 
hierarchy.  RNS addresses the former – that of translating from human-readable names 
into location independent identifiers. 
 
At its most basic, RNS is a distributed means of mapping human readable names into 
WS-Addressing EPRs.  Because these EPRs can refer to any relevant grid (or web) 
                                                 
4 By “legacy”, I mean to identify application or job types which are existing binaries, unaware of the nature 
of the grid or its involvement, which a client intends to execute on the grid by staging required data to and 
from that job as needed. 
5 Andrew Tannenbaum and Martin van Steen given an excellent description of naming in distributed 
systems in there book “Distributed Systems: Principles and Paradigms” [2]. 



9/8/2006 DRAFT 6

service, one achieves a hierarchical (or filesystem-like) organization by allowing a named 
mapping inside an RNS resource to indicate another RNS resource (in much the same 
way as an entry inside a filesystem’s directory may be another filesystem directory). 

4.7 OGSA-ByteIO 
ByteIO is a service specification consisting of two separate port types (one for random 
access and one for stream-able access) which serves to facilitate a data story for grid 
technology.  The ByteIO authors specifically designed the specification with the belief 
that clients and users of grids are best served when presented familiar compute pieces 
(such as data and process execution) via a familiar interface.  As such, ByteIO delivers 
data (or receives data) via an interface which is heavily based on the traditional POSIX 
file interface.  This not only simplifies the use of ByteIO service endpoints by giving 
clients an interface familiar to them or their authors, but also further facilitates the 
development of common data sharing protocols which have traditionally presented such 
an interface to their own clients (such as NFS, CIFS, FTP, etc.). 
 
Further, similar to named pipes, device drivers, and the /proc filesystem in UNIX-like 
operating systems, ByteIO is not limited to presenting file information, despite its 
intentional design as a file-like resource.  Implementers may choose to use ByteIO to 
present a file-like interface to any source or sink of data in the grid. 

4.8 OGSA-BES 
BES is an emerging specification originally designed to fulfill the most basic core of a 
larger architecture under development in the OGSA; The Execution Management 
Specification (EMS) [13].  As described above in the section on JSDL, the compute story 
can be decomposed into four phases leading from intent to action in a compute scenario.  
BES addresses the final stage of this story by understanding fully reified JSDL and 
executing/managing the activity described therein. 
 
In addition, similar to ByteIO, BES describes an interface for translating JSDL into 
running activities, but does not specify that the BES container need be directly 
responsible for those activities.  An implementation may directly control started 
activities, but could also instead submit the request for an activity to another, backend 
BES container (which may in turn delegate responsibility to yet another entity).   

5 Genesis II Architecture and Use 
The VCGR [15] group at the University of Virginia originally created Genesis II (using 
Java, Axis, WSS4J, and other related products) to address a number of needs and answer 
various questions about emerging grid technology.  These included 

• the need for a production grid system with which to provide compute and data 
grid capabilities to various partner groups and research projects, 

• the desire to have a fully functional grid framework on which further grid 
research could be performed, 



9/8/2006 DRAFT 7

• and the desire to “test drive” the various specifications making their way through 
various standardization organizations to both vet and better understand those 
specifications, both in isolation, and together as a whole. 

 
Today, users can interact with Genesis II via both a familiar command-line interface 
(based largely on common *NIX commands such as ls, cat, cp, etc.), and through a grid 
aware FTP daemon.  As we continue to work on Genesis II and as research leads us down 
various paths, we anticipate the creation of NFS and CIFS servers, web portals for job 
submission, and other graphical tools for using, observing, and managing the grid. 
 
Further, because Genesis II is based on grid standards both existing and under 
development, we hope to extend Genesis II grids by “linking” other, non-Genesis II 
based implementations, into existing Genesis II grids. 
 
This section describes in detail the various components that make up a Genesis II grid.  
Because of its importance to Genesis II and user interaction, we then detail the uses of 
RNS and ByteIO that facilitate bringing grid functionality to the average Genesis II user.  
It concludes with detailed descriptions of two scenarios that show common user 
interactions with the Genesis II system (a data interaction, and a compute interaction).  

5.1 Basic RNS Directories 
All human-software interaction boils down to humans identifying intent and the sources 
and targets of that intent.  The most basic instance of this is the filesystem.  From the 
beginning, operating systems have interpreted directories and paths as ways of 
identifying the objects of its users’ intentions.  Whether that interaction was to indicate an 
executable to launch, a file to read, a location to store an output, or a named pipe into 
another process, the filesystem has provided the ubiquitous bridge between the human 
element, and the software element. 
 
Genesis II is designed largely around the belief that as grid technology matures and 
becomes available to the lay user, the adoption of that technology will be inextricably 
bound to the ability of the grid system to translate age-old interaction paradigms into 
modern grid intentions.  To this end, the ability for RNS resources to provide a familiar 
filesystem-like abstraction via which users can indicate and talk about target grid 
resources is one of the most important concepts in the Genesis II software.  Nearly every 
grid resource available to the user exists as a named path in a grid-wide RNS space (this 
includes everything from file and directories to execution containers, queues, running 
applications and even non-grid web sites). 
 



9/8/2006 DRAFT 8

 
Example 1:  Example of common, filesystem-like interactions with Genesis II RNS space. 
 
The most basic instance of RNS in Genesis II is in a simple, core RNS implementation 
whose sole purpose is to represent and operate on a mapping of human readable names to 
WS-Addressing EndpointReferenceTypes or EPRs.  By composing these mappings 
together into a hierarchical namespace, a distributed filesystem emerges which, along 
with human organizational conventions, provides a complete and familiar picture to the 
end user.  Example 1 shows an example session where a user is interacting (via a 
command line interface) with a running Genesis II grid using familiar “filesystem-like” 
tools.  Despite the fact that the directory structure implied exists in a distributed grid 
which could span computers and countries, the familiarity of the filesystem view makes it 
easier for the end user to learn the new environment.  Additionally, RNS gives us the 
ability to name any grid object imaginable (not just files and directories).  By giving the 
command line shown in Example 2, the user identifies via RNS paths the name his 
running job should take on as well as the BES container that will manage that job. 

 
Example 2:  An example command line that shows non-file RNS interactions. 
 

5.2 Basic ByteIO Resources 
The ByteIO specification, along with RNS, completes the picture of a distributed 
filesystem for the user.  In Genesis II, a basic ByteIO service implements the 
specification by storing its contents on the local disk where the JVM is running.  As users 
perform operations on the ByteIO service, the ByteIO service translates those operations 
into equivalent local filesystem commands, acting as a proxy between the grid world, and 
the local machine. 

$ vcgr run --name=MyJob \ 
> --in=input.txt/http://www.tempuri/inputs/input.txt \ 
> --out=output.txt/mailto:mmm2a@cs.virginia.edu \ 
> /bes-containers/MyContainer 

$ vcgr ls / 
/: 
VCGR Homepage 
bes-containers 
collections 
containers 
factories 
queues 
$ vcgr cd bes-containers 
$ vcgr pwd 
/bes-containers 
$ vcgr ls –la 
bes-containers: 
[BES]           BootstrapBES 
[BES]           centurion021 
[BES]           centurion022 



9/8/2006 DRAFT 9

 

 
Example 3:  User "cat-ing" a simple ByteIO resource. 

5.3 Exported Directories 
While the simple RNS and ByteIO service implementations provide the most basic 
versions of their respective specifications, the ExportDir capabilities of Genesis II 
combine these specifications together to offer a more advanced data-sharing technology 
to its users.  With ExportDir, users select a directory structure on their local machine to 
share into the grid, the ExportDir service “wraps” that directory and each subdirectory 
inside with an RNS interface, and each contained file with a ByteIO interface.  All 
operations that take place through the grid interface are reflected into the actual 
filesystem that the user shared out, and all changes made to the local filesystem on that 
machine are in turn reflected into the grid.  ExportDir is a perfect example of using 
simple specifications to build a product whose value is greater than the sum of its parts. 

5.4 Basic BES Containers and BES Activities 
The Basic BES container is at the heart of the Genesis II compute technology.  This 
container is a simple implementation of the BES specification that creates legacy 
activities by launching a new process on the containing host machine. 
 
When a Basic BES service implementation receives a request from a client to create a 
new activity, it parses the JSDL to verify that all requirements indicated by that are 
acceptable.  It then creates a new activity instance which will take on the responsibility of 
staging the data in (currently via http, ftp, or rns), executing or launching the legacy job, 
and finally staging the data out (via ftp, rns, or mailto). 
 
The BES container in Genesis II makes heavy use of the RNS interface to realize the 
belief that common, familiar interfaces make for a more enjoyable and more productive 
user experience.  This shows up in two separate facets of the BES interaction; data 
staging6, and activity identification. 
 
In Example 4Error! Reference source not found., we include a snippit from an example 
JSDL file that indicates a user staging data to and from an RNS path (one absolute, one 
relative).  Much as would be the case with command line arguments in a conventional 
operating system like Windows or Linux, the user is indicating that he wishes to load 
and/or store files at specific paths (which are assumed to refer to ByteIO capable 
resources) during the execution of his activity.  The BES container is capable of working 

                                                 
6 Data staging to and from RNS is achieved by creating a new URI type whose protocol is the string “rns”.  
This protocol type has not been registered yet with the proper URI registries and as such is informal at this 
time. 

$ vcgr cat hello.txt 
Hello World! 
$ 



9/8/2006 DRAFT 10

with both relative and absolute RNS path names (realizing that an absolute RNS path 
name is only a relative path to a given root) by retrieving the “calling-context” of the user 
who submitted the job.  This calling context is passed in SOAP headers with every call 
and includes information about what is the EPR of the root of the user’s RNS space, what 
is his current location in that space, and what security information he wishes to pass 
along with the call.  Using this context information, and the path given in the JSDL, the 
BES activity can stage data to and from RNS space just as it would copy the data to and 
from other URIs. 
 

 
 
 
Additionally, the basic BES service also itself implements the RNS port type.  In this 
way, it acts as a pseudo-directory (similar to directories in the /proc filesystem) whose 
entries are determined not from contents added by outside clients, but rather by internal 
state – in this case, the activities currently running in the container.  As the BES container 
manages various activities, it associates a name (usually available from the JSDL) with 
each activity’s EPR and offers this mapping to external clients via the RNS interface.  
Using this interface, users can browse into the BES container as if it were another 
directory and see each running activity, referring to them later by RNS path in other 
command line tools or grid applications (see Figure 1 for an example). 

<?xml version="1.0" encoding="UTF-8"?> 
<jsdl:JobDefinition xmlns="http://www.example.org/" 
 xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl" 
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 
  
 ... 
 
 <jsdl:DataStaging> 
  <jsdl:FileName>file1.dat</jsdl:FileName> 
  <jsdl:CreationFlag>overwrite</jsdl:CreationFlag> 
  <jsdl:DeleteOnTermination>true</jsdl:DeleteOnTermination> 
  <jsdl:Source> 

<jsdl:URI>rns:/home/mmm2a/file1.dat</jsdl:URI> 
  </jsdl:Source> 
 </jsdl:DataStaging> 
 
 <jsdl:DataStaging> 

<jsdl:FileName>output.dat</jsdl:FileName> 
  <jsdl:CreationFlag>overwrite</jsdl:CreationFlag> 
  <jsdl:DeleteOnTermination>true</jsdl:DeleteOnTermination> 
  <jsdl:Target> 

<jsdl:URI>rns:output.dat</jsdl:URI> 
  </jsdl:Target> 
 
 </jsdl:DataStaging> 
 
 ... 
 
</jsdl:JobDefinition> 

Example 4: Example JSDL Snippit Showing Absolute and Relative RNS Data Staging 



9/8/2006 DRAFT 11

 
Figure 1: Windows FTP client showing activities in a BES container by browsing into that container 
through the Genesis II FTP daemon. 
 

5.5 BES Multiplexer 
The basic BES container assumes that when it receives a request to create an activity, the 
intention is for that activity to run in the hosting environment where the BES itself exists.  
However, this is merely an implementation detail, and not required or even indicated by 
the BES specification.  The BES multiplexer service is a different Genesis II 
implementation of the BES specification, but in this case, instead of launching activities 
on a local resource, the multiplexer passes activity requests on to other BES containers 
(which may themselves be multiplexers, basic BES resources, or some other implementer 
of the BES protocols).  In this way, administrators can form hierarchies of BES 
containers, thus distributing load and acting as a simple scheduler. 
 
As with the basic BES container, the BES multiplexer also implements the RNS 
interfaces.  However, instead of acting as a mapping of names to activities running in that 
BES container, instead the multiplexer contains lists of other BES containers.  In fact, it 
is through this interface that administrator manage the BES multiplexer.  By linking an 
existing BES resource into the multiplexer’s RNS map, the administrator is indicating 
that he wishes the multiplexer to consider that new BES container when making 
scheduling decisions.  If the administrator removes a BES resource from a multiplexer’s 
RNS space, then he is effectively reconfiguring the multiplexer to ignore that resource. 



9/8/2006 DRAFT 12

5.6 Genesis II Container Service 
The final Genesis II service that we will talk about in this paper is the Genesis II 
container service.  This service is not based off an existing or emerging web or grid 
standard, but rather is a complete homegrown service that Genesis II uses to manage the 
web-hosting environment (in our case, Jetty, Axis, and a Java JVM).  In particular, the 
container service exports an operation that administrators can use to remotely shutdown a 
hosting environment and all of its contained resources. 
 
However, while the Genesis II container service is not based off standard specification, it 
does make heavy use of RNS for facilitating user interactions.  In particular, the container 
service implements a pseudo-RNS space that serves to name services implemented by 
that container.  In other words, if a client lists the contents of the container’s Services 
directory, that user will receive as output a listing of all services currently running in that 
container’s hosting environment (see Example 5).  Many tools which need to create new 
resources for existing services (for example, creating a new exported directory) can use 
RNS paths indicating these services to indicate which service will host the new exported 
directory. 
 

 

 

6 Experiences and Future Work 
In the final section of this paper, we discuss some of the experiences and lessons learned 
from implementing various web service and grid service standards and proto-standards 
and then we offer some suggestions for possible changes or future directions for those 

$ ./vcgr ls /containers/BootstrapContainer/Services 
Services: 
CounterPortTypePort 
BrokerPortType 
AdminService 
CounterFactoryTypePort 
RNSPortType 
ExportedRootPortType 
ExportedFilePortType 
BESPortType 
Version 
BESActivityPortType 
RandomByteIOPortType 
ExportedDirPortType 
SimpleBESQueuePortType 
VCGRContainerPortType 
 
$ 

Example 5:  Example of a client listing the contents of the Genesis II Container's services directory. 



9/8/2006 DRAFT 13

specifications.  Finally, we conclude with a brief description of some possible future 
directions that Genesis II may take and some ideas for further improving usability. 
 

6.1 Experiences 
Technology has come a long way since the days of rolling your own communication 
protocol and serialization protocols.  Instead, today software developers have a wide 
array of pre-existing tools and environments that perform large portions of this low-level 
work for them.  This is certainly true in the case of Web Services.  Web Service 
developers already have a communication protocol laid out before them – namely SOAP 
over HTTP(S)7.  Once you have chosen to use SOAP for your communication, XML is 
the only realistic choice for serialization and fortunately, the web service hosting 
environment that your average developer uses probably already handles the serialization 
for you. 
 
That said, improvement opportunities exist for modern specifications like WSDL, SOAP, 
and Web Services in general.  WSDL is unnecessarily complex and as a result, no two 
tools parse WSDL the same8.  WSDL generated by one platform is not guaranteed to be 
understood by a different platform.  Considering that the whole point is interoperability, 
this seems unfortunate.  Likewise, SOAP (and particularly XML serialization), is 
incredibly inefficient for a communication protocol.  Especially in the realm of data 
grids, specification designers and implementers find themselves forced to implement out-
of-band communication protocols for transmitting large quantities of data to make up for 
the inadequate performance of the existing communication medium. Finally, while 
viewing a web service in the guise of a pure, service-oriented architecture has some nice 
properties, from an implementation point of view, it complicates life greatly.  The 
resultant code, which now has to separate data from code, is often large and unwieldy and 
less robust then it could have been. 
 
In the OGF, the difficulties arise not only due to the relative immaturity of the 
specifications (which are for the most part still under development), but also from 
conflicting goals within the organization between its constituents and sometimes even 
within individual working groups.  Further, there is an unfortunate tendency to achieve 
(or strive for interoperability) by specification dilution9 rather than through actual 
compromise.  Also, in the attempt to achieve interoperability, there is a tendency to over-
generisize interfaces.  This makes it easy to interoperate with services at a purely 
communicational level, but much more difficult at an actual understanding or 
comprehension level (for example, operations which take an arbitrary XML element 
describing an arbitrary set of operations and parameters is very easy to communicate 
with, but nearly impossible to interact with).  Finally, vast numbers of loosely 
coordinated working groups leads to multiple, incompatible solutions for similar 

                                                 
7 Other options exist for web services, but SOAP over HTTP(S) is so ubiquitous as to be the de-facto 
standard in web service communication. 
8 In fact, this author has yet to use a tool which in and of itself parses valid WSDL 100% correctly. 
9 By dilution here, I mean that specifications often loose operations and functionality over time in order to 
resolve disagreements on content. 



9/8/2006 DRAFT 14

problems whereas a single, universally adopted specification could have solved the 
problem for all interested parties.  For the remainder of the experiences section of this 
document, we will focus on two examples that were particularly relevant to the 
development of GenesisII; WS-Naming and RNS adoption, and the specification of the 
BES port types. 

6.1.1 Naming as Core Infrastructure 
Naming comes in three layers in Genesis II (and as described by Tannebaum [2]); 
human-readable, abstract or location independent, and address or location dependent.  
The last of these, the address of a resource, is generally not under dispute in the OGF – 
WS-Addressing EPRs solve the problem of addressing web service resources elegantly 
and efficiently.  The first two components of naming however are often the source of 
much confusion and much debate.  The RNS specification allows for the naming of any 
grid or web resource, but frequently seems relegated to the role of simple filesystem 
provider.  The second, abstract or location independent names, are often ignored due to 
the misconception that they are an unnecessary addition to the already sufficient WS-
Addressing EndpointReferenceType. 
 
As Genesis II shows, human-readable naming is a vastly important concept in distributed 
systems and in grids.  At the highest level, they provide a means for identifying abstract 
entities which otherwise would be difficult to talk about during human-software 
interactions.  Things like identifying which container a user wants to run on, which 
application to launch, which activity to kill, etc., cannot be relegated to low level 
implementation detail but need to be considered as a fundamental architectural 
component of all grids as these specifications develop.  Human-readable naming is the 
key to grid adoptability in the future and needs to rest on equal footing with such 
concepts as serialization, and communication protocols. 
 
The mapping from location independent or abstract names to location-dependent 
addresses is an easy one to over look.  After all, if you have an address for something, 
you have identified which something you wish to talk to right?  Unfortunately, this is not 
the end of the story when it comes to naming.  The location-independent name to address 
binding is the facilitator for a number of classic Distributed Systems transparencies, not 
the least of which is migration transparency.  If you bind the concept of where something 
is with the identify of that something, you prohibit that something from every migrating 
away from its location10.  Further, identity itself is of prime importance simply as a 
coding tool.  For caching reasons, and cycle-checking reasons, software will often need to 
ask the question, “Have I talked with this entity before or not?”  This phenomenon occurs 
repeatedly in Genesis II.  Indeed, throughout the code, algorithm after algorithm checks 
to make sure that the EPR to which it is target represents a WS-Name with a valid 
Endpoint Identifier field.  Sometimes failure to do so results in decreased performance 
and usability by the end user, and sometimes concessions cannot be made and the EPR 

                                                 
10 It is important to note that migration sometimes happens without a component ever leaving its hosting 
environment.  Consider the case where a web service container such as Jetty or Tomcat runs on a laptop 
that frequently moves about physically with its owner.  Such a laptop will almost certainly acquire new IP 
addresses as it moves from one network to another. 



9/8/2006 DRAFT 15

must be rejected outright.  As a result, interoperability becomes an issue when one starts 
attempting to link together grids that do not offer a uniform, well-specified way of 
identifying unique resources. 
 
Genesis II has served as an excellent vehicle for showing (at least internally to the VCGR 
group at UVa) that WS-Naming and RNS are key elements for the future of grids.  In 
particular, as specifications mature within the OGF, an agreement within the community 
to specify WS-Names as the most appropriate form of EPR would do a lot to help the 
prospect of grid implementation interoperability. 

6.1.2 BES Overly Generic 
For this final section on experiences implementing Genesis II, we focus on one 
specification in isolation; that of BES.  The specification represents the work of a number 
of devoted individuals with a variety of important experiences in the distributed 
computing and grid computing fields.  Representatives from UVa, IBM, Microsoft, 
Fujitsu, HP, Platform, Argonne, and others have all contributed to producing a 
specification that is applicable to a wide host of compute grid applications.  
Unfortunately, in doing so the resultant specification is just generic enough to be difficult 
to implement and use.  In particular, two general problems arise when one tries to 
implement the BES port types; lack of knowledge about activity location, and lack of 
specific, detailed information about activity state and operation results. 
 
In the end, most of the difficulties with implementing and using BES result from the strict 
adherence to a design decision whereby all specified interactions with BES activities 
must occur through the container itself.  While this has some nice properties like easily 
allowing for bulk operations and giving a second level of defense against non-responsive 
jobs, the results of this architecture make more mundane and common uses of the 
technology problematic.  Difficulties in defining exceptions (or BaseFaults) for 
operations which take vectors of activities on which to operate has lead to a specification 
where these operations instead return vectors of results which little information beyond 
simple true or false values indicating success or failure.  As an example, in Genesis II, 
while its very easy to determine whether or not an activity completed successfully on a 
BES container, it is impossible according to BES specification to determine, once an 
activity has failed, what the failure mode was.  This problem can and will be solved in 
Genesis II with additional port types to the BES container or activity, but such a solution 
nearly guarantees reduced functionality when interacting with non-Genesis II 
implementations. 
 
Finally, difficulties arise for software and users trying to control activities started through 
the BES multiplexer.  With the simple BES container, the control point is obvious – it is 
simply the container to which the job was submitted.  Users can asynchronously return to 
that BES container in the future and, using RNS, identify and check on the status of their 
running activities.  Unfortunately, when the users submits the same activity to the BES 
multiplexer, he is no longer aware of where the activity finally ended up executing.  He 
has no way of knowing from this point forward how to identify his job without checking 
the contents of every available BES container delegated to by the multiplexer.  This lack 



9/8/2006 DRAFT 16

of information leads to serious problems which once again can only be solved by taking 
on port types not considered part of the standard, thus limiting interoperability with other 
grids.  In fact, the BES specification discusses such a port type, the BES Activity Port 
Type, but leaves this as an optional, suggested port type rather than a required one.  The 
reasons for this are clear – it is easier to achieve consensus on material that is not 
mandatory – but to paraphrase a sentiment often overheard at OGF meetings, a 
specification is the sum of its required elements.  Components not required by a 
specification never interoperate with other implementations.  Genesis II shows that this 
BES Activity Port type is an essential part of a functional, usable compute grid. 

6.2 Future Work 
Genesis II has proven both a successful proof-of-concept work with regards to 
specifications making their way through the OGF process, and a successful 
implementation of basic grid functionality.  By adopting a design model where user-
interaction becomes a driving force behind system architecture, and with liberal use 
familiar interaction abstractions, Genesis II will provide an easy-to-learn and easy-to-use 
platform for the lay user wishing to reap the benefits of grid technology in a virtually 
seamless manner. 
 
Moving forward, many exciting additions are planned for the Genesis II system.  RNS 
has proven to be an ideal means of conveying grouping information to end users, but 
many resource types do not exhibit this mapping paradigm.  ByteIO could easily become 
relevant here just as file abstractions in the /proc filesystem have.  One could imagine a 
future where a new ByteIO file is created and filled in with a JSDL document inside a 
BES resource, thus indicating to the BES service that a new activity was to be created.  
Such an addition would make it possible for users to start compute activities simply by 
dragging and dropping JSDL files from their desktop into the grid (or from other 
locations in the grid).  A faux-ByteIO interface on BES activities would allow for users to 
check on the status of their jobs simply by “cat-ing”, or double-clicking those ByteIO 
files. 
 
Other potential additions include more robust application or binary management and 
identification (imagine a resource, linked into RNS with a human-readable name, which 
represents the data for deploying and configuring a binary), or better scheduling 
algorithsm.  Already, work in underway to include a BES broker service that schedules 
BES activities using modern market and economic principles of use and resource 
auctioning.  Further, a queue-like grid object (which held batches of jobs until resources 
to execute them became available) which supports the BES interface has already been 
discussed. 
 
In addition, the VCGR group is looking into ways of doing cutting edge research with 
QoS policies for both normal, day-to-day use of grid components, as well as QoS policies 
for handling extreme situations for emergency infrastructure survival.  In particular, we 
plan to give users the ability to specify policies like: 

• “This ByteIO resource must have high availability,” 
• “I need a BES container which will complete my job before this deadline,” 



9/8/2006 DRAFT 17

• “I want a BES container which gives me the lowest cost for usage of its compute 
cycles,” 

• etc. 
 
As the specifications in the OGF continue to develop and mature, Genesis II will 
continue to track these documents in the hopes of providing a robust and production 
quality environment that brings grid technology to the lay grid user while attempting to 
facilitate interoperability with future grid products. 



9/8/2006 DRAFT 18

References 
 
[1] Vinoski, Steve.  “WS-Addressing Metadata,”  

www.iona.com/hyplan/vinoski/pdfs/IEEE-WS-Addressing_Metadata.pdf.  
IEEE Internet Computing.  May-June 2005. p. 90-93. 

[2] Tannenbaum, A. and van Steen, M., 2002, “Distributed Systems: 
Principles and Paradigms,” Prentice Hall, 2002. p. 184-210. 

[3] Open Grid Forum. http://www.ogf.org. 
[4] Gudgin, M., Hadley M., and Rogers T., 9 May 2006, “Web Services 

Addressing 1.0 – Core,” World Wide Web Consortium, 
http://www.w3.org/TR/2006/REC-ws-addr-core-20060509. 

[5] Snelling, D., Robinson, I., and Banks, T., 2006, “WSRF,” 
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf. 

[6] Liu, L., and Meder, S., 1 April 2006, “Web Services Base Faults 
1.2 (WS-BaseFaults),” http://docs.oasis-open.org/wsrf/wsrf-
ws_base_faults-1.2-spec-os.pdf. 

[7] Lawrence, K., Kaler, C., and Flinn, D., 2006, “WS-Security,” 
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss. 

[8] Anjomshoaa, A., Brisard, F., Drescher, M., Fellows, D., Ly, A., 
McGough, S., Pulsipher, D., and Savva, A., 7 November 2005, “Job 
Submission Description Language (JSDL) Specification,” 
https://forge.gridforum.org/sf/docman/do/downloadDocument/project
s.jsdl-wg/docman.root.published_docs.jsdl_1_0/doc12582/28. 

[9] WS-Naming Working Group at OGF, 2006, “WS-Naming Specification,” 
https://forge.gridforum.org/sf/docman/do/downloadDocument/project
s.ogsa-naming-wg/docman.root.current_drafts/doc6861/1. 

[10] Pereira, M., Tatebe, O., Luan, L., and Anderson, T., June 2006, 
“Resource Namespace Service Specification,” 
https://forge.gridforum.org/sf/docman/do/downloadDocument/project
s.gfs-wg/docman.root.working_drafts/doc8272/5. 

[11] Morgan, M., Chue-Hong, N., and Drescher, M., 2006, “ByteIO 
Specification 1.0,” 
https://forge.gridforum.org/sf/docman/do/downloadDocument/project
s.byteio-wg/docman.root.current_documents/doc13719/1. 

[12] Grimshaw, A., Newhouse, S., Pulsipher, D., Morgan, M., Theimer, 
M., and Robinson, I., 2006, “OGSA Basic Execution Service,” 
https://forge.gridforum.org/sf/docman/do/downloadDocument/project
s.ogsa-bes-wg/docman.root.current_drafts/doc13740/1. 

[13] Grimshaw, A., Smith, C., and Subramaniam, R., 2005, “Executoin 
Management Services – OGSA,” 
https://forge.gridforum.org/sf/docman/do/downloadDocument/project
s.ogsa-
wg/docman.root.design_teams.execution_management_services/doc1277
4/1. 

[14] Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N., 
Nielsen, H. F., Thatte, S., and Winer, D., 8 May 2000, “Simple 
Object Access Protocol (SOAP) 1.1,” 
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/. 

[15] “Virginia Center for Grid Research (VCGR),” 
http://vcgr.cs.virginia.edu.  


