Environment Support for
The Software Testing Process

Steven Wartik

Computer Science Report No. TR~88-09
April 19, 1988

This research was supported in part by NSF grant DCR-8602674.

Abstract

This paper discusses how a software development environment should support the testing
process—that is, the coordination of interactions between developers and testers. For a large
project, the problem is a serious one, involving a significant amount of communication overhead
that can result in long delays.

The testing process is first formally defined. Next, a solution is presented, based on the
typical communication capabilities present in software development environments, This solution
has been implemented, and the user interface of the tools that do so are described. An experience
using the tools is related. The experience shows that an environment can indeed influence the
ease with which testing occurs,

Key words and phrases: software environment, software process, software testing, software
configuration management.

1 INTRODUCTION

The coordination of the interactions between project personnel and sofiware is a neglected aspect of software
testing. Unit testing tools, path analysis technmiques, requirements traceability tools, static and dynamic
analysis aids and symbolic execution tools {10,5,8,6] help developers and testers build tests, execute them,
and interpret the results—but do not provide guidelines on the order in which tests should be applied, who
must see the results, or how the results affect the software integration process.

The problem is often relegated to project management (see [14]). This is because it involves notification
of project personnel: a person must know the current state of all modules in the system on which his or
her work depends. However, the problemn encompasses many other areas. It is partially a configuration
management problem, since it involves the interaction of an evolving set of software modules [4]. While
environments with configuration management support (e.g., [13,19,11]) provide for such interactions, they
do not model the interactions of people and modules that occur during testing.

The relationship of the software development environment to the testing process must also be considered,
as an environment greatly influences the testing process. In particular, it defines the mechanisms by which
software can be integrated, and by which personnel can know the status of testing. Environments such as
TOOLPACK [16] treat software integration aspects, but not specifically in relation to testing. Ideally, an
environment will make testing status information readily available. "In practice, environments often provide
no such information, and people must learn of it by word of mouth.

An environment’s inability to provide this information can result in much misspent time and effort. Every
time & module is accepted from a round of testing, all modules that depend on that module are affected.
Until the developers of those modules know of the acceptance, they are operating with out-of-date knowledge.
I they cannot continue their work in the meantime, they must wait idly; if they are working in the belief
that the accepted version does not exist, they face inconsistencies. Similarly, testers typically spend much
of their time waiting to be informed that a module is ready to test, and trying to coordinate their schedules
with other testers. These situations cause delays that add up over the course of a project. Testing a large
project requires frequent communication between many people, over many communication paths, If this is
done manually, it is likely to be slow and error-prone.

A software development environment could therefore improve its users’ productivity by considering these
interactions. To do so requires a model of the testing process, defining the interactions between developers,
testers and the modules of the system they are building. Beizer presents an informal model [3], but only lists
the entities that comprise the process; his model is not rigorous enough to automate. A formal model would
both define the interactions that may occur, and identify what an environment needs to support effective
testing. However, the model cannot be too restrictive. The focus of this paper is on the process of software

integration that leads to a complete, tested system, as distinguished from the generation and execution of

test cases on individual or integrated modules. The medel must deﬁile the former without constraining ways
to accomplish the latter.

This paper has two goals. The first is to provide a formal model that defines how people interact
during testing to yield a working product. The second is to show how this model can be used to define an
“ideal” project testing environment, containing what we see as a useful set of abilities for project personnel.
The model we define is sufficiently flexible as to not interfere with a software environment’s integration
mechanisms; thus the environment can incorporate one’s favorite testing tools and techniques. Section 2
defines the problem more precisely. Section 3 states a solution to the problem. Section 4 describes an
automated version of the solution present in the OVERSEE configuration management tool set [17]. Section 5

gives our experiences using the tools. Section 6 presents conclusions and directions.

2 PROBLEM SPECIFICATION

The problem may be summarized as follows. For a given project, how can the testing process be carried out
go that as little time as possible is wasted waiting for people to finish their portion of the work?

Let us define the problem in detail. A project has a set of d developers D = {Dy,..., Dy}, a set of ¢
testers T = {T1,...,Tz}, and m modules M = {My,...,M,,}. Assume that the system is “non-trivial”,
meaning that d, ¢ and m are greater than one. (The model in this paper may be used on trivial systems,
but it has little effect on a project’s productivity.)

Each module must be developed, unit-tested, integrated and integration tested, in that order. These
‘terms’ definitions vary throughout the literature, so some definitions are necessary. Development involves
creating or modifying a module. It is dene by some developer D;; each D is responsible for a set of modules
DR; C M. The set DR = {DR,;} is the set of all responsibilities for all developers in a project. Elements
of DR are not necessarily disjoint; two developers might be assigned to build an Ada package together, for
instance. They probably would not share responsibility for the same procedure (at least not simultaneously),
but might both want to make changes to the package’s specification part.

Unii-testing requires executing a set of test cases that exercise a single module’s capabilities. Unit-testing
is done by the module’s developer. It occurs in isolation from other_"‘ testing activities; that is, compiling the
module and executing tests on it affect no one but the invoker. Compiling module M; requires some other set
of modules M D) (possibly empty) on which M; depends. When a unit-test module is compiled, the modules
in MD may be either used or stubbed—simulated by simple modules that permit compilation and little
more.! Unit-testing results in either acceptance or rejection of a module. ¥f accepted, it may be integrated;

if rejected, it must be re-developed.

}For the purposes of this paper, stubs and test harnesses {see [9]) accomplish the same goal.

Integration, also done by developers, is the incorporation of one or more unit-tested modules into a set of
unit-tested modules. Integration is accomplished aceording to an integration strategy IS, a relation defining
a partial order on the power set of M. MOD; < MOD; implies MOD; C MOD;, and means the modules
in MOD; are to be integrated before those in MOD;. For example,

{{M1} < {My, Mo}, { M} < {My, M3}, {My, M3} < {My, M2, M3}}

means the developers will first integrate the two pairs (M3, M2) and (M, M3), then integrate all three
modules.

A system’s software structure partially dictates the nature of IS. The type of integration used—top-
down, bottom-up, sandwich, efe.—defines the exact order, and which moduleis highest. Note that a partially
integrated system can exist, but must contain stubs if it is o be compiled.

Integration iesting is the testing of a set (possibly with one element) of integrated modules. Whereas
unit-testing of a module tests the characteristics of that module (even if it uses other modules), integration
testing tests whole subsystems. Testers, not developers, do integration testing, to assure that each part of
a system has been validated by someone other than its developer. Testers have responsibilities defined by
TR = {TR;}; each TR; is a set that defines the modules T; is testing. Each element of TR; is a set of
modules. For instance, if TR; = {{M1}, {Mo, M4, M5}}, then T; currently has two testing responsibilities:
module M) and the integration of Ma, My and My, {Nested sets distinguish the above case from a tester
who is independently testing four modules.)

I TR; = M, then T} is testing the entire system. This is acceptance testing, the final step of the testing
process.

Integration-testing, like unit-testing, results in either acceptance or rejection. Rejection requires re-
development of the offending module(s). Acceptance is more complicated, and is explained below.

We make no assumptions about the amount of integration testing. In the worst case, none will occur. In
the best case, testers will test each individual module and each step of the integration process. A common
intermediate case is to have the testers evaluate only the entire system, after all modules have been integrated.
That is, testers perform only acceptance testing.

Each module has a current stage that defines what it must undergo before being part of an accepted sys-

»oK© » o«

tem. The stage is one of “development,” “unit-testing,” “accepted from unit-testing,” “integration-testing,”
or “accepted from integration testing.” Stages are cyclic: a rejected module reverts back to development,
and must be unit-tested again. |

The sets 2R and T'R evolve quite differently throughout the testing process. A developer usually has
responsibility for a module throughout the testing process, so DR is fairly static. Also, overlapping elements
of DR are the exception rather than the rule. Neither of these two properties hold for TR. The following

are reasons why:

1. Testers often share responsibilities. Several testers are usually assigned to a complex module, for

instance. Hence elements of TR may overlap.

2. Assuming the “best-case” integration-testing mentioned above, each element of TR will initially be
some subset of M, and all elements of TR will be disjoint. For a tester to test the entire, integrated

system, the set of modules he is testing must equal M.

3. Usually, several people test the entire system. Thus, once the system is ready for acceptance testing,

several elements of TR may be equal.

4. Unlike developers, testers do not necessarily see a module through from start to finish. The following
scenario is more common. Suppose tester T is responsible for M, and tester T} for M;; once they
finish, the integration strategy requires that M; and M; be integrated, and the result will be tested
by T.. Thus, initially TR, = {{M;}}, TRy = {{M;}}, and TR, = ®; afterward, TR, = TRj = and
TR, = {{M:, M;}}.

5. When a tester rejects a module, he is not responsible for it until it has passed through unit-testing

again. Reason 4 shows that he may neot be immediately responsible for it even then.

Therefore, DR specifies responsibilities that exist throughout a project; TR reflects the stages of each module,
and changes throughout the testing process.

Reason 4 implies another important distinction between unit and integration testing: a tester may
accept a module from integration testing without changing its stage. Modules change from “integration-
testing” to “accepted from integration-testing” when acceptance testing ends. The stage change then occurs
simultaneously for all modules in the system. Prior to this, a module can be accepted by a tester but still
be undergoing integration testing.

Testers therefore need an integration strategy that follows the developers’. It is given as a set TIS =
{T1S,...,TIS,}. Each TIS; = (MOD;, TST;) where MOD; C M and TST; C T. Bach element specifies
that, when the system is sufficiently integrated to allow all modules in MOD; to be tested, the testers in
T'ST; will have the responsibility. Each MOD must be valid according to IS: if M; < M, then TIS may not
contain an element (MOD, T'ST) where My € MOD and M; ¢ MOD. In fact, IS can be used to define a
partial ordering on T'I'S as well. This ordering might not be identical to IS, however. The developers might
perform a systematic, comprehensive integration, but the testers might opt to test only the entire system.
If so then TIS = {({M},T)}, and the partial ordering on TIS is vacuous.

Whereas TR reflects the current state of testing, T'IS specifies all responsibilities for all testers over the
entire testing process. Note that there is not necessarily a subset of TIS that corresponds to a given state

of TR. In particular, there might exist an element (MOD, {T,,T}}), naming the two people as responsible

for the modules in M OD; however, T, might be ready before 73. If so then TR, will contain MO before
TR, does. '
The testing process can be defined as transformations on module stages and TR, as constrained by the

integration strategies IS and T'IS. For example, given:

M = {M, M, M;3}
D = {Di, Dy}
DR = {{M, M}, {Mas}}
I8 = {{M:} < {My, My, M3}, {M2} < {M;, My, Ms}}
T = {N,T3,Ts}
TIS = {({Mi}{n)), (M}, {T2)), ({ My, M3, Ma}, {13, T5})}

then the following is a reasonable way to conduct testing., Before tesf.ing begins, TR = §, and all modules are
in “development”. During unit-testing, D; takes M; and My, and D, takes Mz, through the “unit-testing”
and “accepted from unit-testing” stages. Nexs, integration-testing begins. This moves the modules to the
“integration testing” stage, and makes TR = {({M}, {T1}), ({M2}, {T2})}. After T} and T3 complete their
tests, TR = ({My, My, M3}, {13, T5}). After Th and T3 completed these tests, the modules move to the
“accepted from infegration testing” stage.

A project has the responsibility to see that the transformations occur in an orderly way, such that each
module is available for integration in a timely fashion. In practice, precise specification of the sets prior to
testing is virtually impossible. The most obvious reason is that the sets D) and T are changeable, due to
such mundane realities as vacations and personnel changes. Moreover, unexpected difficulties in development
may cause delays that necessitate, if not major rewrites of, then at least minor alterations to the integration
strategy.

Effecting these transformations is a challenging task. It is typically done ad hoc, with information on
stage recorded informally and transmitted to other people orally. Another common solution is to delay stage
changes until all moduies are ready. Neither solution is satisfactoryf ‘The first is error-prone, and the second
is slow,

"The discussion so far has concerned changes in stage. The real problem, however, is making the changes
known and available to other people. Testing “in the large” should not only verify a subsystem, it should
make a module part of a configuration where it may be utilized (or tested) by others. The testing process
aims to systematically combine all modules into a working product; this cannot occur unless those people
involved in each part of the process are made aware that the modules they require are ready and accessible.

These problems are termed information flow problems. They arise from the difficulties in transmitting
information about project status to all concerned parties (see [17]). Designating a module’s stage as “accepted

from unit-testing” is not enough. Certain people need to be made aware of the change in stage. In other

words, information must “fow” from party to party.

The aforementioned delays in software development often result from failure of information flow. In an
environment lacking support for it, the flow is slow and uncertain. It may evolve into routes requiring in-
termediate parties (i.e., people hear things only through their mana;gers). Automated information exchange
using electronic mail is guicker and more reliable. Even mail, however, is error-prone: someone must remem-
ber to send it, it must be addressed to the correct people, and must be sent in a way that assures the most

timely delivery.

3 A SOLUTION TO THE PROBLEM

This section presents a solution to the problem defined in section 2. The presentation describes what we
consider an ideal set of abilities that an environment should provide during the testing process—the full
powers people would like to have at their command.

The following initial conditions hold. First, some suitable assignment of values exists for the sets D, T,
M, DR, 1§ and T1S5; in this paper, we assume that these sets do not change. Second, TR = 8 (since testers
do not have responsibilities until they are actually assigned a module).

Every module must pass through the stages listed in section 2. Each of the following subsections describes
actions needed to move a module into the next stage (or reject it and send it back to development). These
actions are constrained by two factors: the module’s stage, and the. stage of other modules that the module
requires. Each subsection also describes the consequences of each action, in terms of the information flow
that should result from the action, and the transformations on TR. Some of these consequences are necessary
for the testing process to proceed. Many, however, are what we feel users of our idealized environment would
want to proceed most effectively. The consequences are distingnished by the use of “must” versus “should”,

respectively.

3.1 Beginning Unit-Testing

Since unit-testing is directed towards an individual module, the action of beginning unit-testing is largely
independent of other actions. A developer who is not using stubs must wait until the required modules are
available, but that describes a constraint on, rather than one imposed by, the action. However, unit-testing
cannot comimence unless one’s uni£ compiles. Therefore the action depends on knowing that other modules
are sufficiently developed. Section 3.2 describes how this happens.

‘The action has only one required consequence: the module’s stage must change from “development”
to “unit-testing”. If exactly one developer is responsible for that module, then no one else need know.

However, if several developers are responsible for it, they should be made aware of the action and prevented

from making changes until the testing has ended. Also, other people may wish to know that the module is
close to being accepted from unit-testing. For scheduling purposes, then, the action should notify all testers

assigned to the module, and all developers whose modules require it.

3.2 Unit-Test Acceptance

Suppose a module is in the “unit-testing” stage, and has passed all the tests its developer devised, Tt is then
ready to be accepted from unit-testing. It is not ready to be part of an accepted system, because it has not
vet undergone testing by an independent party (i.e., integration testing). However, other developers might
require it, or at least a portion thereof, to build their own software. This is a typical problem of concurrent
development [1]: since software modules built in parallel must ultimately merge, they should be available
to everyone as quickly as possible. The issue is how soon that can be. Many projects allow developers to
informally share code at any time, which is risky. Untested code is ofien too bug-ridden to be useful, and
is subject to unannounced changes. Alternately, the developers could wait for a module until it is accepted
from integration testing, but that is often overly restrictive and generally necessitates long delays.

Our view is that a module should be available as soon as it is accepted from unit-testing. Such a
module has been subjected to at least some testing (by definition) and, while it has not been independently
reviewed, can at least be considered useful, “caveat emptor”. In practice, we have found this approach quite
desirable. It lets developers access a module at the earliest possible time when that module’s developer has
some confidence (as established by his unit-tests) that the module is correct. Moreover, it eliminates most
careless errors. Even if the module still contains bugs, it is compilable (an uncompilable module cannot pass
unit-testing), which is usually what other developers need to continue their own work. For instance, an Ada
programmer might need to use a package via a WITH clause. That person cannot compile his module without
the package’s specification. Thus he needs the specification, in a reasonably stable configuration, as soon as
possible. Furthermore, the person can accomplish a reasonable amount of testing on his own module even
with a slightly flawed implementation of the package, either by testihg areas not related to the package or by
creating stubs. A flawed implementation is undesirable, but can stiii be useful. Also, it should be expected.
Few modules are 100% correct even after several rounds of testing.

A module accepted from unit-testing should therefore be in a central area, accessible to all developers, but
removed from their own areas. This area is called the mini-environment. Developers and testers reference
others’ work exclusively through this area, not by direct access to other developers’ areas. This separation
is important during integration testing, as section 3.6 shows.

A module that is ready for unit-testing can be developed before the modules it requires are fully ready.
If so it can be tested with stubs. It could even be accepted from unit-testing with stubs; this is once again

the principle of making software available early. However, other developers making use of it should be aware

that it contains stubs. Also, as the modules on which it depends are accepted from unit-testing, they can
be substituted for the stubs. This process follows the system integration strategy.

The action of accepting a module from unit-testing requires notifying the following people:
1. Developers who will be using the module.

2. The testers assigned to perform integration testing on the module.

3.3 Unit-Test Rejection

Under the above scenario, a module’s unit test can fail due either to a problem in the module or in a module
that it uses. If the former, the module must be rejected and sent back for modifications to correct the
problem. After doing so, its developer may begin unit-testing it again, repeating the cycle until it is ready to
pass. No change to the mini-environment takes place until the module is accepted, which does not happen
until until the developer has some confidence that it is correct.

If the problem is in another module, then this module must be in the mini-environment, meaning its
developer has accepted it from unit-testing. The action to be taken depends on who is developing the faulty
module. If the same person is responsible for both, he must withdraw the faulty module from acceptance
and fix the problem. If it is someone else, that person must be notified.

All developers using the faulty module should be made aware of the flaw. Sometimes—if the fault
renders a system unusable, and a previous version is available, for example—replacing the version in the
mini-environment with a previous version might be desirable.

Because developers’ responsibilities do not change, the first three operations have no effect on the sets of

section 2. Only the module’s stage changes.

3.4 Beginning Integration Testing

Testers need capabilities similar to developers; however, the differences in how they work alters the manner
in which they communicate. These differences are as follows. First, developers unit-test individual modules,
but testers rmay test individual modules or groups of related modules; they may also have responsibility
for several unrelated modules. Second, testers need to be able to inherit responsibilities from other testers.
Third, testers may inherit responsibilities piecemeal. If a tester has to test the integration of ten modules,
and if these tests involve code reviews, he will want to begin reviewing each module as soon as it is available.

Tester T; may begin integration-testing module set MOD; only if the following two conditions hold:

1. There exists (MOD;, TST;} € TIS, where T; € TST;, and MOD; ¢ TR;.

2. If the partial ordering on T1S defines (MODy, TST;) < (MOD;, TST;), then all testers in T'ST}, have
accepted MOD;.

Beginning integration testing sets TR; «— TR; U MOD;, and changes the stage of modules in M OD; to
“integration testing” if they were “accepted from unit-testing”. Furthermore, it requires cornmunication. A
module’s developer should know that a tester has started examining his code. Other testers assigned to the

module should be notified that their partners have begun.

3.5 Integration-Test Acceptance

When a tester accepts a module {or modules) from integration testing, he adds it to the set of modules that
constitute the partially integrated system. The module must then be integrated with other modules, and
new test cases must be prepared and run. Only when a system passes acceptance testing can a module be
accepted; at that point, all modules are accepted simultaneously. Note that multiple testers may be assigned
to a gset of modules. If so, acceptance does not occur until all have completed their testing. That is, given
some (MODy, T'ST;) € TIS, all testers in T'ST; should accept all modules in MOD,, before TR changes.

Integration test acceptance requires notification of the people who will be responsible for the next round
of tests. Also, the developers of the modules should be informed that their code is, so far, adequate.

The transformations are as follows. If MODy, = {M1,..., My}, the entire system is accepted; all modules
become “accepted from integration testing”, and TR « 0, Otherwiée, TR is transformed according to TIS;
testers in T'ST} are relieved of responsibility for MO Dy, and modules in MO D, become available for further
integration. More precisely, for each i such that T; € TST}, TR; «— TR; ~ MOD),. New responsibilities are
not assigned until testers begin their next round of integration testing, as discussed in section 3.4.

This definition ignores one detail: the transformation to T'R does not occur until all testers in T'ST}, have
accepted all modules in MODj. Synchronizing that is an implementation problem that does not affect the
sets. It does affect notification, however. Each acceptance prior fo the final one should notify the developers
of the modules, and the testers in TST}, and T'ST,, so that they are aware of the progress being made, The

final notification should inform these people that a new phase of work may begin.

3.6 Integration-Test Rejection

Rejection sends a module back to development. An important feature of rejeciion from integration testing
is that it can apply to individual modules as well as groups of modules. If tester is testing a set of thres
modules, and finds a problem, then there is no reason to reject all of them if the error can be localized.
However, if the error cannot be localized, all modules may have to be rejected.

Rejection differs from acceptance in that a single rejection stops the integration testing. This does not

mean that all integration testing must stop, only that the current version of the rejected module(s) cannot
be accepted. The re-developed version must undergo unit-testing again (remember, this is a statement that
its developer has verified the correction). Ideally, it should also be subjected to the same integration-testing
steps; this may only be practical if regression-testing capabilities are present, however.

Rejection requires, for each rejected module, notification of the module’s developer. All testers currently
responsible for the module should also be alerted, as should those testers who will next inherit the module.

Rejection transforms TR by deleting the module(s) from the appropriate tester responsibility sets. If a
tester rejects all modules for which he is responsible, the entire integration-testing process up to that stage
must be repeated. If he rejects a proper subset of his modules, however, only those modules need such

treatment.

4 OVERSEE TOOLS FOR THE TESTING PROCESS

The capabilities presented in section 3 provide a solid foundation for an automated set of tools to control
the testing process. Most of the capabilities currently exist in the OVERSEE configuration management
system. This section describes the tools that provide them, and thelr implementation.

The tools’ user interface is straightforward; the capabilities can be provided with only five commands,
some permitting small variations in their arguments. Figure 1 shows the command syntax. They are UNIX
shell-level commands, although flags are words, rather than single characters, for readability. The meanings
are as follows. First, there is no explicit command to initially place a module in development; that is its
stage when created (an OVERSEE command sequence not covered here). A developer may then execute
the unit-test command, and perform his tests. After doing so, he can accept the module. An accepted
module is automatically installed in the mini-environment, and those developers and testers who require
the module are notified (notification in OVERSEE is via electronic mail). He can also reject the module,
correct problems, and run unit-test again. This command also notifies those concerned, so they may have

an idea of the project’s status,

If a developer has inserted stubs into the module, he can use the -stubs flag with the accept command.
This installs a stubbed version, and people are explicitly informed that the version in the mini-environment
is not fully functional. As modules become available to replace the stubs, the developer re-executes accept,
naming those modules; his module is re-installed, without the stubs, in the mini-environment. Note that this
technique shows how the final system is built. Whoever is responsible for the main program of the system is
ready to build the full system whenever all subordinate modules (and their subordinates) contain no stubs.
The acceptance process defines this precisely.

Once a module is accepted, a tester can run intr-test to begin integration testing. He may simultane-

10

Developer Commands Tester Commands

unit-test intr-test module [module ...]
intr-test ~add module [module ...]

accept accept
accept —-stubs
accept module—name [module-name ... 1
reject reject [module ... J
withdraw

Figure 1: OVERSEE Command Summary

ously integration-test several modules, by giving several module names on the command line. in addition,
if he is assigned to test a group of modules, he may begin testing one module and then use the —add flag to
add them as they become available, or as he feels he is ready. He may then accept the modules; however,
the current implementation does not support inheritance, so acceptance can be done only to the full set of
modules. (So far, people have handled this either by hand-simulating inheritance or sharing accounts.) He
may also reject all the modules, or any subset thereof.

Sometimes a developer will discover a problem in a module he has already accepted. If so then he may
execute the withdraw command. The module reverts to the development stage, where the developer may
correct the error. The command notifies other developers who are qsing the module, and to testers who are
testing it.

Each tool operates on a module or set of modules. In some contexts, the module is known; in others,
it must be named explicitly. The rules to achieve this are as follows. First, a developer using OVERSEE
always has a “current module” determined by the context in which he is working. It is on this module that
a developer’s commands always operate. Second, a tester who is integration-testing a set of modules may
opt to simultaneously reject all of them. If so then the modules need not be named.

Each tool has three purposes. First, it verifies that the operation requested is legal. Second (assuming the
operation is legal}, it changes the stage of the module(s) on which it operates. Third, it announces the change
to all concerned parties. A fourth purpose (performed only by accept) is to install software in the mini-
environment. A fifth purpose would be to support the integration strategy, but the current implementation
does not do so directly. (Although one may be implemented using a technique known as policies [17].) Partly
due fo this, the current implementation also takes the safe but sure method of broadcasting announcements

to all testers and developers, rather than select groups. sizable

11

5 EXPERIENCE

The OVERSEE testing tools were recently used in the development of a small database accounting system,
consisting of nine modules, which when completed contained approximately four thousand executable lines
of code written in the C programming language. The system was written as the project for a graduate
course in software engineering. The students started with a design written in Ada PDL [12], and had two
weeks to convert it into C and test the result. Eighteen students participated in the project. Ten of these
were developers, and eight were testers. The two groups were egoless teams [18]; the usual warnings of a
six-person maximum [2] were deliberately ignored to induce large amounts of communication.

The model of the testing process proved both feasible and useful. Despite the usual constraints of an
academic project—Ilimited time and students not able to devote their complete attention to the matter—the
system was operational (although not fully robust) within the required time. The testing process occupied
about one week. During that time, each module went through several rounds of formal unit and integration
testing. Also, the testers were able to verify (or more often, invalidate) the developers’ integration at each
step. This represents excellent productivity on everyone’s part. It was possible in part because little time
was wasted, due to the techniques and tools discussed in this paper.

A sizable part of that productivity stems from the incorporation of communication mechanisms into
tools. Having the tocls change module stages without notifying anyone would have been far less successful.
Some people worked off-site (one was 100 miles away) and so were inaccessible except through electronic
mail. People saw the automatic notification facilities of the OVERSEE tools as an invaluable aid. The
current OVERSEE implementation delivers mail to everyone, however, and people quickly complained of
information overload. They had to read about 50 messages each day, many of which were irrelevans to them.
Thus we feel that the notification scheme described in section 3 is the correct approach. Manually routing
mail to a subset of project personnel would be too error-prone. Having the tools perform this function is far
sSurer.

The project used object-oriented development [7]. Each module therefore had a separate specification
and implementation. To make the specification available early, we devised a system where the two parts
where separate submodules. This worked well but was not conceptually desirable. It suggests that unit-test
acceptance should be applicable to entities other than complete modules. This is an area we are currently
exploring.

When the project began, we had not appreciated the need for tester groups. It was quickly revealed as
testers waited for modules that were supposed to be ready. Since OVERSEE does not currently support
tester groups, we shared user accounts. Based on the resulting interactions between testers, we modified the
model to that described in section 3. We have not yet automated this approach, but believe it accurately

reflects how the testing occurred on the accounts that were used.

12

6 CONCLUSIONS AND DIRECTIONS

This paper has presented a model of the interactions that occur between developers, testers, and software
modules. The model defines a set of abilities granted to project personnel that promote speedy integration
and testing of a system, with minimal interference due to communication problems. Previous systems have
not treated this problem specifically, adopting information solutions and making simple use of automated
tools. However, most of the interaction between people that occurs during software development takes place
during testing. Indeed, testing may be said to involve the most complicated interactions of the software
process. Special support, such as that defined in this paper, helps solve the problem.

An automated tool set is an essential part of any solution. The tools must blend into the environment,
however, so as to not constrain how the rest of the software development process occurs. The OVERSEE
tools .discussed in this paper are one such set. They separate testing into two parts: managing the testing,
and running the tests. By concentrating on the former, they allow the integration mechanisms of the host
environment to accommodate any tools that are already present. Note that they automate the configuration
management process, by assuming the role of configuration manager. That is, a developer eonirols, via
the accept operation, when software is installed in the mini-environment, and does not need anyone'’s
approval to do this; however, to execute accept, a developer must have conducted a certain amount of
testing. Furthermore, OVERSEE tools assume the responsibility of notification, rather than requiring it as
a separate responsibility of project personnel. Determining who to notify is not simple, as section 3 showed.
The notification scheme we actually used would not have worked if the project were much larger. Having
tools solve the problem relieves people of a large chore.

We have deliberately not discussed what goes on between the unit-test and accept operations—namely,
the construction, execution and verification of test cases. That is not a simple problem, but it is outside
the scope of this paper. Note that it may require little amount time in comparison to development and
subsequent re-development, especially if one has regression testing tools available. OVERSEE currently
supports them in a rudimentary form, with functional capabilities similar to those found in SPMS {15]. A
developer may specify a set of test cases to be run each time he executes the unit-test command, This
practically automates unit testing of all rounds following the first, because if all tests succeed, acceptance
can follow immediately.

Section 3 assumed that all sets except TR are static—meaning that people never join or leave a project.
Such changes cannot be formally predicted, but are not problematic. They do, however, have information
flow implications. New people need to be made aware of their modules’ stages, and other people need to
know of the change. This should probably be automated as well.

Anp interesting possibility that was not covered in this paper is using the model of section 2 to analyze

the desirability of a given allocation of testers. We are currently investigating an algorithm that, given M,

13

IS, and the complexity of each module in M as inputs, produces as its output an assignment to T1S.

We are also enhancing OVERSEE to fully support the model of section 3. This is part of a larger project
to understand the information flow that occurs in software development environments. Information flow
complexities are particularly apparent in testing, and have provided one on the most interesting areas of
study. A formal definition of information flow helps in evaluating an environment, and the productivity that

is possible within it.

References

{1] Mikio Aoyama, “Concurrent Development of Software Systems: A New Development Paradigm”, ACM
Software Engineering Notes, 12(3):20-24, July 1987.

(2] F. Baker, “Chief Programmer Team Management of Production Programming”, IBM Systems Journal,
11(1):56-73, 1972,

[3] Boris Beizer, Software Testing Techniques, Van Nostrand Reinhold, New York, NY, 1983.

[4] Edward Bersoff, “Elements of Software Configuration Management”, IEEE Transactions on Software
Engineering, SE~10(1):79-87, January 1984.

[6] Barry Boehm, Mazia Penedo, Arthur Pyster, Don Stuckle, and Robert Williams, “A Software Devel-
opment Environment for Improving Productivity”, Computer, 17(6):30-44, June 1984,

[6] Susan Brilliant, Testing Software Using Multiple Versions, PhD thesis, University of Virginia, Char-
lottesville, VA, September 1987,

[7] Brad Cox, Object-Oriented Programming, Addison Wesley, Reading, MA, 1986,

{8] Richard Fairley, “Ada Debugging and Testing Support Environments”, SIGPLAN Notices, 15(11),
November 1980.

{9] Richard Fairley, Software Engineering Concepts, McGraw-Hill, New York, NY, 1985.

[10] Richard Fairley, “Static Analysis and Dynamic Testing of Computer Software”, Computer, 11(4), April
1978.

[11] Ferdinando Gallo, Regis Minot, and Tan Thomas, “The Object Management System of PCTE as a.
Software Engineering Database Management System”, in Proceedings of the Second Symposium on
Software Development Environments, pages 1215, December 1986,

[12] Hal Hart, “Ada for Design: An Approach for Transitioning Industry Software Developers”, in Proceed-
ings NSIA Software Group Conference, Alexandria, VA, October 1981.

[13] Patrick Hawley, “DACOM: A Design and Configuration Management System”, in COMPSAC’83,
pages 380-587, Chicago, IL, November 1983,

[14] Harlan Mills, Richard Linger, and Alan Hevner, Principles of Information System Apalysis and Design,
Academic Press, Orlando, FL, 1986,

[15] Peter Nicklin, “The SPMS Software Project Management System”, in Unix Programmer’s Manual (4.2
Berkeley Software Distribution), University of California, Berkeley, CA, 1983.

[16] Leon Osterweil, “Toolpack—An Experimental Software Development Environment Research Project”,
IEEE Transactions on Software Engineering, SE-9(6):673-685, November 1983.

i4

[17] Steven Wartik, “Rapidly Evolving Software and the OVERSEE Environment”, SIGPLAN Notices,
22(1):77-83, January 1987.

[18] Gerald Weinberg, The Psychology of Computer Programming, Van Nostrand Reinhold, New York,
NY, 1971.

[19] Sandra Zucker, “Autormating the Configuration Management Process”, in SOFTFAIR, pages 164-172,
Arlington, VA, June 1983.

15

