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Abstract

Critical infrastructure applications provide services upon which society depends heavily;
such applications require survivability in the face of faults that might cause a loss of service.
These applications are themselves dependent on distributed information systems for all
aspects of their operation and so survivability of the information systems is an important
issue. Fault tolerance is a key mechanism by which survivability can be achieved in these
information systems. Much of the literature on fault-tolerant distributed systems focuses on
local error recovery by masking the effects of faults. We describe a direction for error recov-
ery in the face of catastrophic faults where the effects of the faults cannot be masked using
available resources. The goal is to provide continued service that is either an alternate or
degraded service by reconfiguring the system rather than masking faults. We outline the
requirements for a reconfigurable system architecture and present an error recovery system
that enables systematic structuring of error recovery specifications and implementations.

1. Introduction

The provision of dependable service in infrastructure applications such as electric power
generation and control, banking and financial systems, telecommunications, and transporta-
tion systems has become a major national concern [34], [35]. Society has become so depen-
dent on such services that the loss of any of them would have serious consequences. Such
services are often referred to as critical infrastructure applications.

As has occurred in many domains, sophisticated information systems have been intro-
duced into critical infrastructure applications as the cost of all forms of computing hardware
has dropped and the availability of sophisticated software has increased. This has led to dra-
matic efficiency improvements and service enhancements but, along with these benefits, a
significant vulnerability has been introduced: the provision of service is now completely
dependent in many cases on the correct operation of computerized information systems. Fail-
ure of an information system upon which a critical infrastructure application depends will
often eliminate service quickly and completely. The dependability of the information sys-
tems, which we refer to as critical information systems, has therefore become a major con-
cern.

Dependability has many facets—reliability, availability and safety, and so on [24]—and
critical infrastructure applications have a variety of dependability requirements. In most
cases, very high availability is important, but reliability and safety arise in such systems as
transportation control, and security is becoming an increasingly significant dependability
property in all application domains.



An important dependability requirement of critical infrastructure applications is that,
under predefined adverse circumstances that preclude the provision of entirely normal service
to the user, such systems must provide predefined forms of alternate service. The necessary
service might be a degraded form of normal service, a different service, or some combination.
Adverse circumstances might be widespread environmental damage, equipment failures,
software failures, sophisticated malicious attacks, and so on. This particular dependability
requirement is referred to as survivability. In the terminology of fault tolerance, survivability
can be thought of as requiring very specific (and usually elaborate) error recovery after a
fault.

This paper is about the mechanisms that are needed within the applications themselves to
provide error recovery, i.e., state restoration and continued service, under circumstances
where the application has been subjected to extreme damage. Application systems must be
designed to permit effective state restoration and appropriate continued service, and we
address the issues of application system design in this context. We are concerned with faults
that affect either large parts of the system or the entire system and which cannot be masked.
Thus, faults such as the failure of a single processor or a single communications link are not
within the scope of this paper. Faults such as these can be tolerated by local redundancy and
their effects can be totally masked at reasonable cost. Faults of interest include widespread
physical damage in which substantial resources are lost, and coordinated security attacks in
which multiple attacks occur in a short time period. We assume that error detection and dam-
age assessment are taken care of by some other mechanism such as a control-system
architecture [45].

The outline of the paper is as follows. In the next section we summarize briefly the func-
tionality and characteristics of critical infrastructure applications and their associated infor-
mation systems, and then present a detailed example of survivability. In section 4, we discuss
the role of fault tolerance and the requirements for an approach to survivability. In section 5,
we present some related work, and in section 6 we define directions for a solution approach.
Finally, we present our conclusions.

2. Critical infrastructure applications

Some background material about critical infrastructure applications is helpful in under-
standing the technical approaches that might be developed to realize survivability. Detailed
descriptions of four applications are available elsewhere [20]. In this section we summarize
three applications very briefly and then outline a set of important characteristics that tend to
be present in information systems supporting critical infrastructure applications. Finally in
this section, we discuss characteristics of future critical infrastructure applications that impact
approaches to survivability that might be developed.

2.1. Applications

The nation’s banking and finance systems provide a very wide range of services—check
clearing, ATM service, credit and debit card processing, securities and commodities markets,
electronic funds transfers, foreign currency transfers, and so on. These services are imple-
mented by complex, interconnected, networked information systems.

The most fundamental financial service is the payment system. The payment system is the
mechanism by which value is transferred from one account to another. Transfers might be for
relatively small amounts, as occur with personal checks, all the way up to very large amounts,
typical of commercial transactions. For a variety of practical and legal reasons, individual



banks do not communicate directly with each other to transfer funds. Rather, most funds are
transferred in large blocks by either the Federal Reserve or by an Automated Clearing House
(ACH).

The freight-rail transport system, another critical infrastructure application, moves large
amounts of raw materials, manufactured good, fuels, and food. Although not responsible for
moving everything in any one of these categories, loss of freight-rail transportation would be
devastating. Management of the freight-rail system uses computers extensively for a variety
of purposes. For example, every freight car in North America is tracked electronically as it
moves and databases are maintained of car and locomotive locations. Tracking is achieved
using track-side equipment that communicates in real time with computers maintaining the
database.

An especially important application that is being used increasingly in the freight-rail sys-
tem is just-in-time delivery. Train movements are scheduled so that, for example, raw materi-
als arrive at a manufacturing plant just as they are required. This type of service necessitates
analysis of demands and resources over a wide area, often nationally, if optimal choices are to
be made.

The generation and distribution of electric power, the third critical infrastructure applica-
tion we consider, is accomplished by a wide variety of generating, switching, and transmis-
sion equipment that is owned and operated by a number of different utility companies.
However, all of this equipment is interconnected, and control is exercised over the equipment
using a system that is rapidly becoming a single national network. The control mechanisms
within a region are responsible for managing the equipment in that region and interconnec-
tion of area control mechanisms is responsible for arranging and managing power transfers
between regions. The complexity of the control mechanisms in the power generation industry
is being affected considerably by industry deregulation.

2.2. Application system characteristics

The architecture of the information systems upon which critical infrastructure applications
rely are tailored very substantially to the services of the industries which they serve and influ-
enced inevitably by cost-benefit trade-off’s. For example, the systems are typically distrib-
uted over a very wide area with large numbers of nodes located at sites dictated by the
application. Beyond this, however, there are a number of characteristics that these applica-
tions possess in whole or in part which are important in constraining the ways by which these
applications approach error recovery. These characteristics are as follows:

• Heterogeneous nodes. Despite the large number of nodes in many of these systems, a
small number of nodes are often far more critical to the functionality of the system than the
remainder. This occurs because critical parts of the system’s functionality are implemented
on just one or a small number of nodes. Heterogeneity extends also to the hardware plat-
forms, operating systems, application software, and even authoritative domains.

• Stylized communication structures. In a number of circumstances, critical infrastructure
applications use dedicated, point-to-point links rather than fully-interconnected networks.
Reasons for this approach include meeting application performance requirements, better
security, and no requirement for full connectivity.

• Composite functionality. The service supplied to an end user is often attained by compos-
ing different functionality at different nodes. Thus entirely different programs running on



different nodes provide different services, and complete service can only be obtained when
several subsystems cooperate and operate in some predefined sequence. This is quite
unlike more familiar applications such as mail servers routing mail through the Internet.

• Performance requirements. Some critical infrastructures applications, such as the financial
payment system, have soft real-time constraints and throughput requirements (checks have
to be cleared and there are lots of checks) while others, such as parts of many transporta-
tion systems and many energy control systems, have hard real-time constraints. In some
systems, performance requirements change with time as load or functionality changes—
over a period of hours in financial systems or over a period of days or months in transpor-
tation systems, for example.

• Extensive databases. Infrastructure applications are all about data. Many employ several
very extensive databases with different databases being located at different nodes and with
most databases handling very large numbers of transactions.

• COTS and legacy components. For all the usual reasons, critical infrastructure applications
utilize COTS components including hardware, operating systems, network protocols, data-
base systems, and applications. In addition, these systems contain legacy components—
custom-built software that has evolved with the system over many years.

2.3. Future system characteristics

The characteristics listed in the previous section are important, and most are likely to
remain so in systems of the future. But the rate of introduction of new technology into these
systems and the introduction of entirely new types of application is rapid, and these suggest
that error recovery techniques must take into account the likely characteristics of future sys-
tems also. We hypothesize that the following will be important architectural aspects of future
infrastructure systems:

• Very large number of nodes. The number of nodes in infrastructure networks is likely to
increase dramatically as enhancements are made in functionality, performance, and user
access. The effect of this on error recovery is considerable. In particular, it suggests that
error recovery will have to be regional in the sense that different parts of the network will
require different recovery strategies. It also suggests that the implementation effort
involved in error recovery will be substantial because there are likely to be many regions
and there will be many different anticipated faults, each of which might require different
treatment.

• Extensive, low-level redundancy. As the cost of hardware continues to drop, more redun-
dancy will be built into low-level components of systems. Examples include mirrored
disks and redundant server groups. This will simplify error recovery in the case of low-
level faults; however, catastrophic errors will still require sophisticated recovery strategies.

• Packet-switched networks. For many reasons, the Internet is becoming the network tech-
nology of choice in the construction of new systems, in spite of its inherent drawbacks
(e.g. poor security and performance guarantees). However, the transition to packet-
switched networks, whether it be the current Internet or virtual-private networks imple-



mented over some incarnation of the Internet, seems inevitable and impacts solution
approaches for error recovery.

3. Survivability—an example

In this section, we present an example of survivability requirements to illustrate the extent,
scope, and complexity of the error recovery that might well be needed in a typical critical
infrastructure application. We use as an example application a highly simplified version of the
national financial payment system. It is important to note that, inevitably, most of the details
of the payment system are missing from this example and simplifications have been made
since we seek only to illustrate certain points. The interested reader is referred to the text by
Summers for comprehensive details of the payment system [46]. In addition, the faults and
continued service requirements in this example are entirely hypothetical and designed for
illustration only, but characteristic of strategies that might be employed for error recovery.

3.1. System architecture and application functionality

The information system that implements a major part of the payment system is very
roughly a hierarchic, tree-like network as illustrated in Figure 1. At the top level is a central
facility operated by the Federal Reserve. At the second level are the twelve regional Federal
Reserve banks. At the third level of the tree are the approximately 9,500 commercial banks
that are members of the Federal Reserve. Finally, at the lowest level of hierarchy are the
remaining 16,500 or so banks and their branch banks [20].

Processing a retail payment (an individual check) in this system proceeds roughly as fol-
lows. At the lowest level, nodes simply accept checks, create an electronic description of the
relevant information, and forward the details to the next level in the hierarchy. At the next
level, payments to different banks are collected together in a batch and the details forwarded
to the Federal Reserve system. Periodically (typically once a day) the Federal Reserve moves
funds between accounts that it maintains for commercial banks and then funds are disbursed

Figure 1. Example application network topology
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down through the system to individual user accounts. Large commercial payments originate
electronically and are handled individually as they are presented.

Extensive amounts of data are maintained throughout this system. User account informa-
tion is maintained at central facilities by retail banks, and this information provides all the
expected user services together with check authentication (as occurs when a check is scanned
at a retail outlet). The Federal Reserve maintains accounts for all its member banks together
with detailed logs and status information about payment activity. But, of course, this is just a
small part of the data maintained by the banking and financial system. Vast amounts of data
are also needed for all the other financial services, and the databases are used in combination
and in different ways by different services.

3.2. Survivability requirements

A complete survivability specification must document precisely all of the faults that the
system is required to handle and, for each, document the prescribed system response. Hypo-
thetical examples of the possible faults and their high-level responses for our simplified ver-
sion of the payments system are shown in Table 1. We include in the table faults ranging from
the loss of a single leaf node to the loss of the a critical node and its backup facilities.

For purposes of illustration, we examine one particular fault in more detail to see what
error recovery actions are needed. The fault we use for illustration is the loss of the top-level
node of the financial payment system—the Federal Reserve system’s main data center and its
backup facilities. Using our highly simplified architecture of the payment system in this
example, we assume that this node consists of a single processing entity with a single backup
that maintains mirror image databases. The actual Federal Reserve system uses a much more
sophisticated backup system. The survivability requirements for this fault are the following:

• Fault: Federal Reserve main processing center failure (common-mode software failure,
propagation of corrupt data, terrorism).

• On failure: Complete suspension of all payment services. Entire financial network
informed (member banks, other financial organizations, foreign banks, government agen-
cies). Previously identified Federal Reserve regional bank designated as temporary
replacement for Federal facilities. All services terminated at replacement facility, minimal
payment service started at replacement facility (e.g., payment service for federal agencies
only). All communication redirected for major client nodes.

• On repair: Payment system restarted by resuming applications in sequence and resuming
service to member banks in sequence within an application. Minimal service on replace-
ment facility terminated.

For this particular fault, we assume that all processing ceases immediately. This is actually
the most benign fault that the system could experience at the top-level node. More serious
faults that could occur include undetected hardware failure in which data was lost, a software
fault that corrupted primary and backup databases, and an operational failure in which pri-
mary data was lost.

State restoration in this case involves establishing a consistent state at all of the clients
connected to the Federal Reserve system. This requires determining the transaction requests
that have been sent to the Federal Reserve but not processed. Since this is a standard database



.
Table 1.  Survivability requirements summary

Fault Response

Single local bank
fails (local power
failure, hardware
failure, operator
error).

On failure: Local bank ceases service. Regional center buffers transac-
tions for local bank.

On repair: Local bank informs regional center. Regional center trans-
mits transaction backlog. Regional center resumes transaction
transmission. Local branch resumes normal service.

Multiple local
banks fail (wide-
area power fail-
ure, wide-area
environmental
stress, common-
mode software
failure).

On failure: Local banks cease service. Regional center buffers transac-
tions for local banks. Regional center starts minimal user services
(e.g., electronic funds transfer for selected major customers only).

On repair: Local banks inform regional center as they are repaired.
Regional center transmits transaction backlog. Regional center
resumes transaction transmission. Local branch resumes normal
service. Regional center terminates minimal user services.

Security penetra-
tions of multiple
local banks asso-
ciated with a sin-
gle commercial
bank (coordi-
nated security
attack).

On failure: Each local bank ceases service and disconnects itself from
the network when its local intrusion alarm is raised. Federal
Reserve suspends operations with commercial member bank under
attack and buffers all transactions for that bank.

On repair: Reset all nodes owned by commercial bank under attack.
All nodes change cryptographic keys and switch to aggressive
intrusion detection. System-wide restart of crucial services only.

Regional center
primary site fails
(power failure,
hardware failure,
software failure,
operational error,
environmental
stress).

On failure: Primary site ceases service. Backup site starts service. All
connected nodes informed. All communications—up to Federal
system and down to branches—switched from primary to backup.
Appropriate service selection made—full or reduced. Appropriate
switch selection made—instantaneous or delayed.

On repair: Primary site informs all connected nodes that it is repaired.
Primary site databases synchronized. Communications switched.
Primary site resumes services in prescribed priority order. Backup
site ceases service.

Regional center
primary and
backup sites fail
(wide-area power
failure, common-
mode software
failure, wide-area
environmental
stress, terrorism).

On failure: Primary and backup sites cease service. All connected
nodes informed. Previously identified local bank processing center
designated as temporary replacement for regional facilities. All
services terminated at replacement facility, minimal regional ser-
vice started at replacement facility (e.g., account services for com-
mercial and government clients only).

On repair: Regional service restarted by resuming applications in
sequence and resuming service to local banks in sequence within
an application. Minimal service on replacement facility terminated.



issue, we do not consider it further. We note, however, that notification or detection of failure
by the clients is an essential element of error recovery.

The provision of continued service is more complex in this fault scenario. Given the loss of
the most critical node in the network with a tree topology, the network is now effectively par-
titioned. One part of error recovery will involve re-establishing connectivity between the par-
titioned subtrees, each of which has a Federal Reserve regional bank at its top node. There are
a number of alternatives for re-establishing connectivity:

• Promote one regional bank to be the new root node in the tree and have all other regional
banks establish links to it. (This requires 11 new links to be established.)

• Establish links between each pair of regional banks, resulting in a fully-interconnected 12-
node network. (This requires 66 new links to be established.)

• Establish links to provide some other topology; for example, connect the 12 regional banks
with a ring topology. (This requires 12 new links to be established.)

In practice, it is unlikely that any of the above three alternatives would be used. A combi-
nation using different strategies in different locations is the most likely approach and it is very
possible that even in this case parts of the network would remain unconnected.

Once whatever connectivity that is possible is reestablished, a major reorganization
through the network would be required. First, the new root of the tree will have to suspend
most but probably all of its normal service activities. Second this node will have to prepare
the copies of the databases that are needed for payment processing and that it would have to
have maintained during normal processing if it were to function as an emergency backup.
Third, the entire set of clients will have to be informed of the change and of the level of ser-
vice that will be provided and when this will occur. These clients will have to take their own
actions including eliminating many services, reducing others, and perhaps starting certain
emergency services. Fourth, the new root node will have to initiate payment applications up
to the limit of the processing and communications capacity that was available. The available
capacity will be greatly reduced and the services that the system could provide once opera-
tional would be far less that would normally be the case. Which customers get what service
would have to be have been defined ahead of time as part of the survivability specification.

Much more complex but probably more useful recovery scenarios are possible for critical
services if a restricted form of service is acceptable. For example, one of the services of the
Federal Reserve is maintenance of member bank accounts. Maintenance of member bank
accounts could be taken over by the temporary replacement node but, because of reduced
facilities, services would be severely reduced. This function could be distributed following a
catastrophic failure, however. We consider two possible solution strategies:

• Each member bank maintains only its own account details, and only sends a batch message
to be processed if it has the funds to cover the deposit. (This approach distributes
responsibility for maintaining positive balances.)

• Each regional bank maintains an account balance for every other regional bank with which
it exchanges batch messages. (This approach requires more resources, but allows more value
to be transferred throughout the system.)

The details of the fault scenario we have described in this example are possible from the
computer science perspective as are many others. What the banking community requires in
practice depends upon the many details and priorities that exist within that domain and will
probably be far more elaborate that our example. However, our example does illustrate many



of the issues that have to be considered in application error recovery and shows how complex
this process is.

An important aspect of survivability that is omitted form this example is the need to cope
with multiple sequential faults. It will be the case in many circumstances that a situation gets
worse over time. For example, a terrorist attack on the physical equipment of a critical infor-
mation system might proceed in a series of stages. The attack might be detected initially dur-
ing an early stage (although it is highly unlikely that the detection process would be able to
diagnose a cause in this case) and the system would then take appropriate action. Subsequent
failures of physical equipment would have to be dealt with by a system that had already been
reconfigured to deal with the initial attack. This complicates the provision of error recovery
immensely.

4. Survivability and fault tolerance

4.1. The role of fault tolerance

In general, survivability is a requirement or a set of related requirements that a system
must meet. As illustrated by the example above, the requirements can be quite complex and
will often involve many different aspects of the application. For different faults that a system
might experience, the requirements that have to be met might be quite different from each
other and require entirely different actions by the application. In particular, for critical infra-
structure applications, it will often be the case that the effects of a fault leave the system with
greatly reduced resources (processing services, communications capacity, etc.) and substan-
tial changes in the service provided to the user will be necessary.

Fault tolerance is one of the mechanisms by which dependability (and thus survivability)
can be obtained. It is not the only mechanism of course since fault elimination and fault
removal are often alternate (and complementary) possibilities. In the case of critical infra-
structure applications, however, the manifestation of faults during operation is inevitable.
Such systems cannot be protected against all environmental damage, terrorist acts, opera-
tional mistakes, software defects, and so on. Thus, adding the ability to tolerate certain types
of fault is the only practical approach to achieving survivability.

Tolerating a fault does not necessarily mean masking its effects, however. The essential
meaning of survivability is the ability of a system to deal with more “serious” faults by pro-
viding a prescribed service that is not the same as the normal service. The catastrophic faults
to which a system of interest must respond are those that are not masked, i.e. by design there
is insufficient redundancy for the system to be able to handle the faults transparently. If it
were intended that the system mask such faults, as will be the case for many faults, then the
system would do so. Catastrophic faults that are not masked in any given system are not nec-
essarily unanticipated. Rather, a conscious decision is made in favor of an approach to error
recovery other than masking because the cost of handling faults transparently is redundancy.
And redundancy is expensive. Some redundancy is necessary even if a fault is not to be
masked, and, in addition, redundancy is necessary for the detection of errors. However, repli-
cating all the elements of a critical information system so that all faults of interest can be
masked is prohibitively expensive.

Since we are concerned with faults whose effects will not be masked, fault tolerance in
general requires actions by the application. The particular actions required in any given sys-
tem are application-specific but they will require such functionality as stopping some ser-
vices, starting others, and modifying yet others. In order to make such changes, the
application must be prepared to make the changes and so must be designed with this in mind.



For purposes of analysis, we view an application executing on a distributed system as a
concurrent program with one or more processes running on each node and with processes
communicating via a protocol that operates over network links. Although there is no shared
memory in the conventional sense, it is very likely that there are shared files. This view is use-
ful because it permits existing work on fault tolerance in concurrent systems to act as a start-
ing point from which to develop application error recovery mechanisms in the sense that we
desire.

4.2. Requirements for a solution

The general requirements that have to be met by any realistic approach to application error
recovery derive from the characteristics of the applications and the need to tolerate serious
faults that cannot be masked. More precisely, we identify the following solution require-
ments:

• Very large networks running sophisticated applications must be supported. The scale of
critical infrastructure applications necessitates a solution approach that scales to networks
with thousands of nodes. Similarly, the size of the application software presents significant
performance challenges that must be met.

• Resuming normal processing following the repair of fault must be supported. The prob-
lem of dealing with the effects of a fault is really only half of the problem. The systems of
interest typically have very high availability requirements and will be repaired while in
operation. Thus, resuming prescribed levels of service after repair must be part of any via-
ble solution.

• There must be minimal application re-write required. For many reasons—economic, polit-
ical, technical, and otherwise—it is nearly impossible to re-write the software within criti-
cal information systems from scratch. Critical information systems will most likely have to
evolve to provide improved survivability; however, the extensive use of COTS and legacy
software currently in these systems complicates revision of the software. Revision to the
applications must be kept to a minimum, but the application will have to make provision
for support of new error recovery services.

• Error recovery must be performed securely. Security attacks against these systems are a
major threat. It must be the case that any new error recovery services that are provided do
not introduce an additional security vulnerability that can be exploited to perpetrate further
damage to the system.

• Link failure and partitioning are errors that must be handled. The stylized connection
structure of most critical infrastructure applications dictates that, by default, every node
will not be able to communicate with every other node. This introduces the possibility that
a link failure will partition the network. Because the service provided is composed of func-
tionality provided by multiple application nodes, error recovery must include strategies for
circumventing link failure and network partitions.

• There are highly structured requirements for continued service. The requirements for con-
tinued service will not be homogenous—in fact they will be far from it. Different nodes
and different node classes will be required to implement different services. Similarly,



nodes in different geographic regions might be called upon to act differently after a fault.
Complicating the problem even further is the virtual certainty that different services on dif-
ferent nodes will have to be coordinated and that the coordination might have a hierarchic
structure given the topology of the system.

In seeking an approach to meeting these requirements, we begin by reviewing previous
work in a variety of areas and then we proceed to discuss a direction for solution.

5. Related work

Developments in several technical fields can be exploited to help deal with the problem of
error recovery in distributed applications. In this section we review related work in the areas
of system-level approaches to fault tolerance, fault tolerance in wide-area networking appli-
cations, reconfigurable distributed systems, and system specification and architectural
description languages.

5.1. System-level approaches to fault tolerance

Jalote presents an excellent framework for fault tolerance in distributed systems [19]. Jal-
ote structures the various services and approaches to fault tolerance into levels of abstraction.
The layers, from highest to lowest, of a fault-tolerant distributed system according to Jalote
are shown in Figure 2. Each level of abstraction provides services for tolerating faults, and in
most cases there are many mechanisms and approaches for implementing the given abstrac-
tion. At the lowest level of abstraction above the distributed system itself are the building
blocks of fault tolerance, including fail-stop processors, stable storage, reliable message
delivery, and synchronized clocks. One level above that is another important building block—
reliable and atomic broadcast; different protocols provide different guarantees with respect to
reliability, ordering, and causality of broadcast communication. The levels above that provide
the services upon which systems can be built to tolerate certain types of fault, including
abstractions for atomic actions and processes and data resilient to low-level failures. Finally,
the highest level of abstraction enables tolerance of design faults in the software itself.

Fault-Tolerant Software

Process Resiliency

Data Resiliency

Atomic Actions

Consistent State Recovery

Reliable and Atomic Broadcast

Basic Building Blocks of Fault Tolerance

Distributed System

Figure 2. Levels of a fault-tolerant distributed system [19]



Given this framework for fault tolerance in distributed systems, many system-level
approaches exist that provide various subsets of abstractions and services. In this subsection
we survey some of the existing work on fault-tolerant system architectures.

5.1.1. Cristian/Advanced Automation System: Cristian provided a survey of the issues
involved in providing fault-tolerant distributed systems [11]. He presented two requirements
for a fault-tolerant system: 1) mask failures when possible, and 2) ensure clearly specified
failure semantics when masking is not possible. The majority of his work, however, dealt
with the masking of failures.

An instantiation of Cristian’s fault tolerance concepts was used in the replacement Air
Traffic Control (ATC) system, called the Advanced Automation System (AAS). The AAS uti-
lized Cristian’s fault-tolerant architecture [14]. Cristian described the primary requirement of
the air traffic control system as ultra-high availability and stated that the approach taken is to
design a system that can automatically mask multiple concurrent component failures.

The air traffic control system described by Cristian handled relatively low-level failures:
redundancy of components was utilized and managed in order to mask these faults. Cristian
structured the fault-tolerant architecture using a “depends-on” hierarchy, and modelled the
system in terms of servers, services, and a “uses” relation. Redundancy was used to mask
both hardware and software failures at the highest-level of abstraction, the application level.
Redundancy was managed by application software server groups [14].

5.1.2. Birman/ISIS, Horus, and Ensemble: A work similar to that of Cristian is the “pro-
cess-group-based computing model” presented by Birman. Birman introduced a toolkit called
ISIS that contains system support for process group membership, communication, and syn-
chronization. ISIS balanced trade-off’s in closely synchronized distributed execution (which
offers easy understanding) and asynchronous execution (which achieves better performance
through pipelined communication) by providing the virtual synchrony approach to group
communication. ISIS facilitated group-based programming by providing a software infra-
structure to support process group abstractions. Both Birman and Cristian’s work addressed a
“process-group-based computing model,” though Cristian’s AAS also provided strong real-
time guarantees made possible by an environment with strict timing properties [8].

Work on ISIS proceeded in subsequent years resulting in another group communications
system, Horus. The primary benefit of Horus over ISIS is a flexible communications architec-
ture that can be varied at runtime to match the changing requirements of the application and
environment. Horus achieves this flexibility using a layered protocol architecture in which
each module is responsible for a particular service [47]. Horus also works with a system
called Electra, which provided a CORBA-compliant interface to the process group abstrac-
tion in Horus [26]. Another system that built on top of Electra and Horus together, Piranha,
provided high availability by supporting application monitoring and management
facilities [27].

Horus was succeeded by a new tool for building adaptive distributed programs, Ensemble.
Ensemble further enabled application adaptation through a stackable protocol architecture as
well as system support for protocol switching. Performance improvements were also pro-
vided in Ensemble through protocol optimization and code transformations [48].

An interesting note on ISIS, Horus, and Ensemble was that all three acknowledged the
security threats to the process group architecture and each incorporated a security architec-
ture into its system [38], [39], [40].



5.1.3. Other system-level approaches: Another example of fault tolerance that focuses on
communication abstractions is the work of Schlichting. The result of this work is a system
called Coyote that supports configurable communication protocol stacks. The goals are simi-
lar to that of Horus and Ensemble, but Coyote generalizes the composition of microprotocol
modules allowing non-hierarchical composition (Horus and Ensemble only support hierarchi-
cal composition). In addition, Horus and Ensemble are focusing primarily on group commu-
nication services while Coyote supports a variety of high-level network protocols [7].

Many of the systems mentioned above focus on communication infrastructure and proto-
cols for providing fault tolerance; another approach focuses on transactions in distributed sys-
tems as the primary primitive for providing fault tolerance. One of the early systems
supporting transactions was Argus, developed at MIT. Argus was a programming language
and support system that defined transactions on software modules, ensuring persistence and
recoverability [9].

Another transaction-based system, Arjuna, was developed at the University of Newcastle
upon Tyne. Arjuna is an object-oriented programming system that provides atomic actions on
objects using C++ classes [42]. The atomic actions ensure that all operations support the
properties of serializability, failure atomicity, and permanence of effect.

5.2. Fault tolerance in wide-area network applications

Fault tolerance is typically applied to relatively small-scale systems, dealing with single
processor failures and very limited redundancy. Critical information systems are many orders
of magnitude larger than the distributed systems that most of the previous work has
addressed. There are, however, a few research efforts addressing fault tolerance in large-scale,
wide-area network systems.

In the WAFT project, Marzullo and Alvisi are concerned with the construction of fault-tol-
erant applications in wide-area networks. Experimental work has been done on the Nile sys-
tem, a distributed computing solution for a high-energy physics project. The primary goal of
the WAFT project is to adapt replication strategies for large-scale distributed applications
with dynamic (unpredictable) communication properties and a requirement to withstand
security attacks. Nile was implemented on top of CORBA in C++ and Java. The thrust of the
work thus far is that active replication is too expensive and often unnecessary for these wide-
area network applications; Marzullo and Alvisi are looking to provide support for passive
replication in a toolkit [3].

The Eternal system, built by Melliar-Smith and Moser, is middleware that operates in a
CORBA environment, below a CORBA ORB but on top of their Totem group communication
system. The primary goal is to provide transparent fault tolerance to users [32].

Babaoglu and Schiper are addressing problems with scaling of conventional group tech-
nology. Their approach for providing fault tolerance in large-scale distributed systems con-
sists of distinguishing between different roles or levels for group membership and providing
different service guarantees to each level [6].

5.3. Reconfigurable distributed systems

Given the body of literature on fault tolerance and the different services being provided at
each abstraction layer, many types of faults can be addressed. However, the most serious
fault—the catastrophic, non-maskable fault—is not addressed in any of the previous work.
The previous approaches rely on having sufficient redundancy to cope with the fault and



mask it; there are always going to be classes of faults for which this is not possible. For these
faults, reconfiguration of the existing services on the remaining platform is required.

Considerable work has been done on reconfigurable distributed systems. Some of the work
deals with reconfiguration for the purposes of evolution, as in the CONIC system, and, while
this work is relevant, it is not directly applicable because it is concerned with reconfiguration
that derives from the need to upgrade rather than cope with major faults. Less work has been
done on reconfiguration for the purposes of fault tolerance. Both types of research are
explored in this section.

5.3.1. Reconfiguration supporting system evolution: The initial context of the work by
Kramer and Magee was dynamic configuration for distributed systems, incrementally inte-
grating and upgrading components for system evolution. CONIC, a language and distributed
support system, was developed to support dynamic configuration. The language enabled
specification of system configuration as well as change specifications, then the support sys-
tem provided configuration tools to build the system and manage the configuration [22].

More recently, they have modelled a distributed system in terms of processes and connec-
tions, each process abstracted down to a state machine and passing messages to other pro-
cesses (nodes) using the connections. One relevant finding of this work is that components
must migrate to a “quiescent state” before reconfiguration to ensure consistency through the
reconfiguration; basically, a quiescent state entailed not being involved in any transactions.
The focus remains on the incremental changes to a distributed system configuration for evo-
lutionary purposes [23].

The successor to CONIC, Darwin, is a configuration language that separates program
structure from algorithmic behavior [31]. Darwin utilizes a component- or object-based
approach to system structure in which components encapsulate behavior behind a well-
defined interface. Darwin is a declarative binding language that enables distributed programs
to be constructed from hierarchically-structured specifications of component instances and
their interconnections [28].

5.3.2. Reconfiguration supporting fault tolerance: Purtilo developed the Polylith Soft-
ware Bus, a software interconnection system that provides a module interconnection lan-
guage and interfacing facilities (software toolbus). Basically, Polylith encapsulates all of the
interfacing details for an application, where all software components communicate with each
other through the interfaces provided by the Polylith software bus [36].

Hofmeister extended Purtilo’s work by building additional primitives into Polylith for sup-
port of reconfigurable applications. Hofmeister studied the types of reconfigurations that are
possible within applications and the requirements for supporting reconfiguration. Hofmeister
leveraged heavily off of Polylith’s interfacing and message-passing facilities in order to
ensure state consistency during reconfiguration [18].

Welch and Purtilo have extended Hofmeister’s work in a particular application domain,
Distributed Virtual Environments. They utilize Polylith and its reconfiguration extensions in a
toolkit that helps to guide the programmer in deciding on proper reconfigurations and imple-
mentations for these simulation applications [49].

5.4. System specification and architectural description languages

Finally, many issues related to system and software architecture arise in the description
and analysis of complex distributed systems. It is helpful, therefore, to be able to describe
these architectures in a concise and comprehensive manner. A specification technology that



suggests itself for systems of such magnitude is architectural description languages (ADLs).
ADLs describe a particular piece of a system, the architecture in terms of components and
connectors. A focus of architectural description languages is often that the specification of the
architecture provide a mechanism to facilitate automatic construction of the distributed
system [16].

Magee and Kramer’s work on Darwin is an example of an architectural description lan-
guage intended to facilitate construction of distributed systems. The Darwin language has a
precise semantics that enables the construction of distributed systems from their specification
in Darwin. The work has evolved from specifying and executing dynamic changes in a dis-
tributed system to specification of a distributed system and generation of its implementation;
though Darwin still provides facilities for specification of dynamic change, elaboration of a
Darwin specification is an important goal as well [30].

There are many other architectural description languages, each with its own focus and
goals. Allen and Garland proposed the Wright architectural specification language in order to
support direct specification and analysis of architectural description. A key idea behind
Wright is that interaction relationships between components of a software system should be
directly specified, in the case of Wright as protocols describing the interaction [2].

Shaw et al. proposed an informal model for an architectural description language, then
developed an initial system for architectural description, UniCon. Their work is based upon
recognizing common patterns in software architectures, such as pipe and filter, implicit invo-
cation, etc., and then providing abstraction mechanisms for those element types [41].

Luckham et al. developed a specification system for prototyping architectures of distrib-
uted systems using an event-based, concurrent, object-oriented language, Rapide. Rapide
allows the simulation and behavioral analysis of software system architectures during the
development process [25].

Finally, Moriconi and Qian explored the process of transforming an abstract software
architecture into an instance architecture correctly and incrementally using refinements [33].

6. A solution direction

Despite the many results that have been achieved in survivability and related fields, exist-
ing technology does not satisfy the requirements for a solution that were identified in Section
4.2. In this section, we describe a solution direction for error recovery (state restoration and
continued service) in critical information systems following catastrophic, non-masked fail-
ures. The solution direction is conceptual and is based on previous work in the areas of fault
tolerance and reconfigurable distributed systems. Many detailed issues are identified in the
development of this solution direction.

Figure 3 shows the general layered structure that we anticipate in a single node. Note that
our solution direction does not address local faults. By local, we mean faults that affect a sin-
gle hardware or software component. We assume that all faults that are local are dealt with by
some mechanism that masks their effects. In Figure 3 this functionality would be provided by
mechanisms associated with the local recovery layer. Thus synchronized, replicated hardware
components are assumed so that losses of single processors, disk drives, communications
links, and so on are masked by hardware redundancy. If necessary, more sophisticated tech-
niques such as virtual synchrony can be used to ensure that the application is unaffected by
local failures.

The faults with which we are concerned, faults that are not masked, are dealt with by the
global recovery layer shown in Figure 3. The high-level concept that we suggest is the use of
formal specification to define the survivability requirements together with synthesis of the



implementation of the application. The synthesized system would use the global recovery
layer to achieve error recovery.

We begin by explaining this concept and then review the details including the system soft-
ware architecture used in each node. Finally, we discuss some of the implementation details.

6.1. Specification and synthesis

The size of current and expected critical information systems, the variety and sophistica-
tion of the services they provide, and the complexity of the survivability requirements means
that a solution approach that depends upon traditional development techniques is infeasible in
all but the simplest cases. The likelihood is that future systems will involve tens of thousands
of nodes, have to tolerate dozens, perhaps hundreds, of different types of fault, and have to
support applications that provide very elaborate user services. Programming such a system
using conventional methods is quite impractical, and so our solution direction is based on the
use of a formal specification to describe the required application reconfiguration and the use
of synthesis to generate the implementation from the formal specification. The approach is
illustrated in Figure 4.

There are many advantages to working with specifications rather than implementations.
First and foremost is the ability to specify solutions at a high-level, thereby abstracting away
to some extent the details of working with so many nodes, of so many different types, that
provide so many different services. An implementation-based solution would require too
much work, dealing with such a wide variety of nodes, applications, errors, and recovery
strategies at a lower level. In addition, specifications provide the ability to reason about and
analyze solutions at a higher level. An implementation synthesized from a specification also
allows recovery strategies to be changed quickly; different error recovery schemes can be
rapidly prototyped and explored using a specification-based approach.

Precise specification of the error recovery in a critical information system is a complex
undertaking. It involves three major sub-specifications: (1) the topology of the system and a
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Figure 3. Node abstraction layers



detailed description of the architecture and platform; (2) an abstraction of the services each
node supplies to the system and the mapping of services to platform for cases involving full
functionality and degraded or alternate service; and (3) a specification of the necessary state
changes from any acceptable system reconfiguration to any other in terms of topology, func-
tionality, and geometry (assignment of services to nodes). More precisely, the sub-specifica-
tions that together make up the input to the translator are the following:

• System Architecture Specification (SAS). The system architecture specification describes
the nodes and links, including detailed parametric information for key characteristics. For
example, nodes are named and described additionally with node type, hardware details,
operating system, software versions, and so on. Links are specified with connection type
and bandwidth capabilities, for example.

• Service-Platform Mapping Specification (SPMS). The service-platform mapping specifi-
cation relates the names of programs to the node names described in the SAS. The pro-
gram descriptions in the SPMS include the services that each program provides, including
alternate and degraded service modes.

• Error Recovery Specification (ERS). The overall structure of the specification is that of a
finite-state machine that characterizes the requisite responses to each fault. Arcs are
labelled with faults and show the state transitions for each fault from every relevant state.
The actions associated with any given transition are extensive because each action is
essentially a high-level program that implements the error recovery component of the full
system survivability specification. The full system survivability specification names the
different states (system environments) that the system can be in, including the errors that

Figure 4. Error recovery system
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will be detected and handled. The ERS takes this list of system states and describes the
actions—i.e., reconfigurations—that must be performed when the system transitions from
one environment to another. The ERS uses the SAS and the SPMS to describe the different
system configurations and alternate service modes under each system state.

We make no specific comments about the syntax that might be used for these notations.
However, existing work on architectural description languages provides an excellent starting
point for the development of syntax and precise semantics.

6.2. Reconfigurable processes

We define a specialized type of application process, the reconfigurable process, that is
used as the building block for critical information systems. The key specialization is that a
reconfigurable process supports certain critical services that are needed for error recovery in
addition to implementing some aspect of the required system functionality. A critical infor-
mation system is then a collection of reconfigurable processes that cooperate in the normal
way to implement normal application functionality. However, they can be manipulated using
their critical-service interfaces to prepare for error recovery and to effect that recovery.

The importance of the addition of critical services is that they are the basic services needed
for reconfiguration and they are available with every process. Thus the survivability specifica-
tion need not be concerned with the idiosyncrasies of individual node functionality. As an
example of critical service, consider the obvious implementation requirement that some pro-
cesses in a system undergoing error recovery will need to be started and others stopped. A
critical service that processes must provide is the ability to be started and another is the abil-
ity to be stopped. Neither of these actions is trivial, in fact, and neither can be left to the basic
services of the operating system.

A second more detailed example of a critical service arises in the provision of backward
error recovery. In the event that a system designer wishes to exploit a backward-error recov-
ery mechanism, he or she will want to be sure that all the processes involved are capable of
establishing recovery points and that groups of processes are capable of discarding them in
synchrony. Since this is such a basic facility in the context of error recovery, a set of critical
services is required to permit the manipulation of recovery points.

The following is a preliminary list of the critical services that a reconfigurable process has
to support:

• Start, suspend, resume, terminate, delay.

• Change process priority.

• Report prescribed status information.

• Establish recovery point, discard recovery point.

• Effect local forward recovery by manipulation of local state information (e.g., reset the
state).

• Switch to an alternate application function as specified by a parameter.

• Database management functions such as synchronizing copies, creating copies, withdrawing
transactions, and restoring a default state.

The critical services are conceptually simple in many cases but this simplicity is deceptive.
Many application processes will include very extensive functionality and this functionality



does not necessarily accommodate services such as process suspension. Far worse are situa-
tions that involve processes which manipulate databases. Such processes will have to be very
carefully developed if the creation of a checkpoint is to be efficient.

6.3. Node architecture

Each node in a critical information system that supports comprehensive error recovery
using the approach outlined here will have a fixed (but not a restrictive) architecture. The
basic application will be constructed in a standard manner as a collection of processes each of
which is enhanced to support critical services. Under benign circumstances, these processes
execute in a normal manner and provide normal functionality. Their critical services will be
used periodically in a proactive manner to make provision for some form of recovery such as
the establishment of recovery points or the forced synchronization of a database with backup
copies.

The most obvious architectural requirement that has to be met at each node is that the node
architecture support the provision of the various forms of degraded service associated with
each fault. The software that implements degraded service is provided by application or
domain experts, and the details (functional, performance, design, etc.) of this software are not
part of the approach being outlined here. In practice, the way in which the software that pro-
vides degraded service is organized is not an issue either. The various degraded modes could
be implemented as cases within a single process or as separate processes, as the designer
chooses.

The interface between the node and the error detection mechanism (the control system) is
a communications path from the control system to an actuator resident on the node. The actu-
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ator is a process that accepts notifications from the control system about erroneous states and
undertakes the actions needed on that node to cope with the errors. Thus, the actuator imple-
ments the changes dictated by the survivability specification, and it does this by making the
necessary changes to the node’s software using the critical services of the various reconfig-
urable processes. The actuator implementation is synthesized by the survivability specifica-
tion translator.

6.4. Critical service implementation

The critical services provided by a reconfigurable process are implemented by the process
itself in the sense that the service is accessed by a remote procedure call (or similar) and a
mechanism internal to the process implements the service. The exact way in which the imple-
mentation is done will be system specific but an obvious layered architecture that supports
this implementation suggests itself (see Figure 3).

The global recovery layer provides the interface that is used in the implementation of criti-
cal services within reconfigurable processes. The following is a preliminary list of the func-
tions that the global recovery layer has to support:

• Process synchronization.

• Inter-process communication.

• Multicast to a set of processes.

• Establishment of a checkpoint for a process.

• Establishment of a set of coordinated checkpoints for a group of processes.

• Restoration of the state of a process from a checkpoint.

• Restoration of the states of a group of processes from a set of checkpoints.

• Reset of a process’ state in support of forward error recovery.

• Synchronizing two or more processes to establish lock-step operation.

• Redirection of communication.

The global recovery layer would provide these services in a largely application-indepen-
dent manner. Thus, a common global recovery layer implementation could be used by multi-
ple applications with initial configuration achieved by generation parameters such as a
process name table and target system topology.

7. Conclusion

In this paper, we have explored the problem of error recovery in critical infrastructure
applications, from needs to solutions. We have described the problem context (system charac-
teristics and survivability requirements) and solution framework (fault tolerance) in order to
better understand the constraints on and requirements of a solution. Finally, we suggest a
solution direction involving system specification and generation in an error recovery system.

This work is being conducted in the context of general survivability research at the Univer-
sity of Virginia. As mentioned previously, the error detection and damage assessment phases
of fault tolerance are handled by a control-system architecture—hierarchical, adaptive, and
overlayed upon the critical information system [45]. In addition, we have developed a model-
ling and simulation framework to enable experimentation on example critical information



systems [44]. A model of the financial payments system has been constructed using this
experimentation system, and experiments and evaluation on both error detection and error
recovery strategies are being conducted using this system.
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