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1. Introduction

The concept of naming is essential to the process of communicating ideas and information.

But what is a "name"? We should be able to agree that a name is a sequence of symbols drawn

from some alphabet, a word, or more simply a string. But with this we may have reached the

limit of communal consensus. The real issue is "what is the function of names in communica-

tion?". This must be resolved before we can develop a meaningful treatment of names in com-

puter languages.

Traditionally, names are used to identify various kinds of things in our universe of

discourse. They are nouns. When the identification is of a unique entity, the name is said to be a

proper noun and it is commonly capitalized (in English) to call attention to this role. If it is not a

single unique entity that the word identifies—it might denote a group of entities, a concept, or a

mass object—we call it a common noun. It seems that the unique identification of a single thing,

or object, is what most people mean when they speak of name, naming or nameability. Unique

identification is also the customary role of names in programming languages. We use variable

names and named constants. Procedures and tasks can be named. But when the word denotes a

class of things, for instance a data type, we seldom refer to it as a name.

But there is a danger in tying the the concept of a name too closely with that of the unique

identification of a single entity or object. First, Khoshafian and Copeland point out in their excel-

lent paper [KhC86], there are many ways of identifying objects of interest besides naming them.

One should avoid treating naming and identification as if they were synonyms. Second, the con-

cepts of uniqueness and singularity are difficult to establish rigorously. They are very context

dependent. Formally, one has to deal with hierarchies of equivalence relations. Less formally,

one must come to grips with issues such as "when is a collection of several things, such as tuples

or records, a single nameable thing, such as a relation or file?"; or "must any aggregate, such as

all files unused since 1 January 1987, that I choose to name be regarded as a single entity and be
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implementable as such?". These are not unsurmountable issues; but clearly they can be messy.

Third, as we develop computer languages that are capable of handling persistent objects, e.g.

[BuA86], we must be able to create and name persistent types, which are not traditional entities

and need not be singular.

In ADAMS, the Advanced DAta Management System being developed at the University of

Virginia [PSF87], we resolve a number of these issues by regarding as "names" all noun-like

words which denote in some manner things of interest in our particular universe of discourse

which is the implementation of, and access in, databases. Because this will be the thrust in subse-

quent sections, we toyed with using the title "Noun Denotation in ADAMS" for this paper. We

did not only because we felt that the concepts of "names" and "scoping" would carry more

significance to potential readers. Throughout this paper we will use name as if it were a synonym

for a generic noun and not necessarily a "proper" noun.

Generalizing the nature of the problem to the denotation of noun-like words within a com-

puter language helps to avoid needless involvement with the issue of unique entity identification.

But many other issues remain. We will sketch the nature of some of these issues in this introduc-

tion and then develop the approach taken in ADAMS more fully in subsequent sections.

The meaning of a name is that object, or element, or concept, which it denotes. Even

though ADAMS may be regarded as an object-oriented database language [CoM84, MSe86], we

try to avoid using the term object. The things that an ADAMS name denotes are not true objects

in the sense of [GoR83, 81]; that is, their manipulation is not restricted to only those methods (or

processes) declared for the class. We prefer to use a more neutral term, element. But, in the con-

text of this paper, the reader may choose to treat element and object as synonyms.

An element is an instance of a class. Both elements and classes are nameable. In a large

community of users it is desirable to allow many names to be reused, over and over again. The

specific element or class that a particular name denotes must depend on the context in which that
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name is uttered. In natural language there are three different kinds of context which we call lexi-

cal, structural, and semantic. The lexical context refers to the entire body of text in which the

word is embedded. For example the noun set has distinct meanings if appearing in a mathemati-

cal treatise or an article about tennis. A word’s structural context is its usage within the sentence

or statement. The word set used as a verb is distinct from either of the two noun meanings above.

More subtle distinctions may be derived from an understanding of the overall meaning of the

sentence—this is the semantic context. Consider the two different meanings of "She set the vase

on the table" and "He sets a high value on neatness". Programming languages have traditionally

used both lexical and structural contexts to disambiguate the meanings of names. In section 2,

we will extend the familiar concept of lexical scope from programming languages in order to pro-

vide a lexical context for name disambiguation in persistent environments.

In any language words must somehow be bound to their meanings. The role of dictionaries

as a persistent mechanism for communally binding words to their meanings is well documented.

But dictionaries are most important for binding the meanings of common nouns; only a few,

extremely well known proper nouns are ever recorded here. Names, or proper nouns, are bound

to the elements they denote by a variety of means—by telephone books, by voter registration

lists, by gazetteers, by class year books. In section 3, we will describe the dictionary in more

detail. At the same time we will show that the binding of class names (or common nouns) should

be somewhat different from the binding of element names (or proper nouns, or unique

identifiers).

Words change over time. New words are coined to denote new concepts and new instances.

Some words actually change their meaning. And other words simply disappear from current

usage. These phenomena are most difficult to model; and yet they are of crucial importance if

one is to maintain a persistent name space. Sections 4 and 5 look at several important issues sur-

rounding the dynamic denotation of words.
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Finally, in section 6, we address the issue of synonyms—two distinct words which ave the

same, or nearly the same, meaning.
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2. Name Space Hierarchy

The meaning of words and names depends on their context. This is evident in natural

language; meanings depend upon one’s dialect, geographical location, economic position, educa-

tional level, and vocational speciality [Pei49]. In computer science, the importance of context

has been most clearly formalized. Most readers will be familiar with a block structured language,

such as Pascal or Algol, in which two identical words (variable identifiers), in separate pro-

cedures, can have completely different semantic meaning. With nested blocks, the semantic

meaning of a name may, or may not, be inherited from the block at a lexically higher level. In

task structured languages, such as Modula or Ada, words (and their meanings) can be explicitly

imported from, and exported to other tasks.

There are several alternative ways of structuring a space of commonly known and under-

stood persistent names. The structure can be quite chaotic with clusters of common understand-

ings associated with different individuals in different situations, as it is in natural language. Or

there can be just a single set of commonly understood words, as the reserved words of a program-

ming language; their form and usage are completely determined. Of the many variations between

these two extremes we have chosen to create an essentially hierarchical structure on our persistent

name space. The levels of the hierarchy are

SYSTEM

GROUP or <groupid>

USER or <userid>

LOCAL

At each level, there is a dictionary containing the definition of every ADAMS word which is

valid at that level in the hierarchy. Of course, SYSTEM, GROUP, and USER dictionaries are

themselves persistent. A LOCAL dictionary (which might be called a symbol table) exists only

for the duration of its associated process. Normally, when a word is encountered in an ADAMS
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statement its meaning is first sought in the LOCAL dictionary, then the USER, GROUP, and

SYSTEM dictionaries in that order.

Names and terms defined at the SYSTEM level have a universal meaning that is understood

in common by all processes within the system. One would expect such core computer science

words as "RELATION", "SCHEMA", "FILE", "RECORD", and "PROCESS", together with the

primitive ADAMS reserved words of "ELEMENT", "SET", "ATTRIBUTE", "MAP", and

"CO_DOMAIN" to be defined at this highest level. While it is expected that a number of com-

monly understood core classes (or types) will be defined at this level, there should be very few, if

any, globally known objects or instances. Persistent object instances will tend to be owned by

individual users or communally owned by small groups of users. (System devices, particularly if

they are treated as files, might be one notable exception.)

The word "GROUP" used in an ADAMS statement denotes "my group". The definitions of

all names shared by a group of users are found in that group’s dictionary. In addition to "my

group’s" dictionary, any process may also make use of definitions occurring in the dictionary of

another group whose identity, <groupid>, it knows. A process can import names.

The word "USER" refers to the persistent name space of a particular user. Although a user

can easily create his own classes and data types, the entries in a USER dictionary will be, for the

most part, the names of persistent objects and instances. This is quite analogous to file names in a

user’s directory. Object instances in another user’s name space may be available by the import

mechanism <userid> only if that user has provided export permission.

Finally, the term "LOCAL" denotes that space of non-persistent run time identifiers which

are local to an executing process.

2.1. Name Paths

A path in the dictionary tree is a sequence of sub-dictionaries. The sequences <user_3,

group_b, system> and <proc_y, user_6, group_c> in Figure 1 are paths. A name path is the path
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Figure 1
Hierarchically Structured Name Space

of dictionaries that any process could access in the course of resolving the meaning of a name.

For example, the resolution of ADAMS names in process "proc_w" could involve searching

along the name path

"proc_w" (local)
"user_2" (persistent)
"group_a" "
"system" "

We say a path beginning in a local dictionary is active with respect to a name, if there exists a

process, which need not be currently executing, or another ADAMS element that references that

name.

2.2. Examples of Scope Usage in ADAMS Statements

The structure of the name space hierarchy may become a little more clear if we look at

some sample ADAMS statements. In ADAMS, we use a "class" concept to denote a general

class of objects. The use of "class" in this context has been popularized by "Smalltalk-80"

[CoM84, GoR83, 81]. However, many readers may feel more comfortable if they substitute the

synonym data type for class. Specific objects are named instantiations of the class. The basic

class definition statement has the form
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<class_name> is a <class_designator> [ <definition> ][ with scope <scope_id> ].

Here, a new <class_name> is being defined in terms of an existing <class_designator> subject to

any restrictions and/or extensions which will be imposed by the optional <definition> clause. If

the optional <scope_id> is omitted, the new <class_name> will be LOCAL, by default. The

basic object instantiation statement has the form

<instance_name> belongs to <class_name> [ <instantiation_options> ][ with scope <scope_id> ].

An instance of an object with <instance_name> belonging to the general class of objects with

<class_name> is created and recorded in the appropriate dictionary.

Consider, for example, the following two ADAMS statements which we may assume occur

in the text of "proc_z" in Figure 1 so that the name path is <proc_z, user_6, group_c, system>.

SCHEMA is a SET of ATTRIBUTE elements, with scope USER

faculty_attr belongs to SCHEMA consisting of { name, age, dept }

(For pedagogical reasons, we normally denote classes of ADAMS objects in upper case, specific

instances in lower case, and reserved words in bold face. None of these are constraints of the

language itself.)

Here a local definition of the schema concept has been created, in which "SCHEMA"

denotes a set of attributes (as is customary in the relational model). The second statement then

creates a specific relation schema, called faculty_attr, which has the properties of this newly

defined SCHEMA class. Subsequent statements in "proc_z" can now create one, or more, rela-

tions using faculty_attr as the schema. The new SCHEMA definition will be persistent, so other

processes belonging to "user_6" can also re-use the definition by simply referencing it. The

faculty_attr instance is not persistent; it will vanish when the process terminates.

Had the ADAMS "is a" statement redeclaring the class SCHEMA not occurred in the text

of "proc_z" then the instantiation creating faculty_attr would have searched up its name path to

locate the semantics of "SCHEMA". Presumably a more traditional schema, whose semantics
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consists of just a set of attributes, exists as a SYSTEM definition. Whether or not SCHEMA had

been redefined, the SYSTEM version could have been invoked by the statement

faculty_attr belongs to SYSTEM SCHEMA consisting of { name, age, dept }

in which the <class_designator> SYSTEM SCHEMA would override the normal hierarchical scop-

ing.

2.3. Reason for Choosing a Hierarchical Model

It is not apparent that the space of persistent names should be hierarchically structured. A

SYSTEM dictionary of universal definitions which serves as the root of the hierarchy does make

sense—even if there are only a few terms whose meaning can be commonly agreed on. A

LOCAL name space of temporary identifiers used by a single process is also clearly required.

And readily, there should be a USER dictionary that can record classes which have been defined

in processes just of that user, as well as all persistent objects created by such processes. It is the

GROUP level in the hierarchy which is questionable.

Following the UNIX tradition, the set of all users has been partitioned into disjoint sets

called "groups". This is a reasonable structure for system administration; but it seems somewhat

forced and unnatural as the structure of a name space. One would expect a task area to share

common definitions; and one might expect a single user to participate in several different tasks

with other users. A name space that was organized with respect to shared tasks would be an acy-

clic structure with a greatest element such as shown in Figure 2.

While a task structured name space might seem more natural than one that is hierarchically

organized, the latter is much simpler. In a tree structured hierarchy there is a unique dictionary

path from the ADAMS term occurring in a referencing process to the SYSTEM root. It is easy to

resolve the meaning of names. Resolution of an ADAMS identifier in a task structured name

space might entail searching along several paths in the acyclic network. For example, if we were

using the structure of Figure 2 to resolve the semantics of a name in proc_z all of the tasks
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Acyclic Task Structured Name Space
Figure 2

subsuming user_6 (in this case just task_b and task_c) would have to be examined using a

breadth first search. We decided to use the more rigid hierarchical name space in ADAMS sim-

ply because its implementation is just so much simpler. In practice, most of the rigidity can be

circumvented because ADAMS permits direct reference to another name path in the tree by

means of the explicit <group_id> and <user_id> scopes. It remains an open question as to

whether this is a wise decision.
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3. Dictionary Implementation

The ADAMS Dictionary is itself an ADAMS structure, and the underlying ADAMS opera-

tions are used to create and update the Dictionary.

3.1. The Distributed ADAMS Dictionary Structure

A dictionary is a mechanism for looking up the meaning of words. That is precisely the

purpose of the ADAMS Dictionary. Except instead of one monolithic tome, the ADAMS Dic-

tionary is logically distributed into at least four scopes or levels. (Note: these levels may, or may

not, be physically distributed.) The present concept describes a structure of four levels or scopes,

three of which may contain numerous sub-dictionaries. Here the term dictionary (small d) refers

to those sub-dictionaries which are referenced by a single process, or program, i.e., within a sin-

gle name path; the Dictionary (large d) refers to the union of all dictionaries. We use sub-

dictionary to denote that portion of a dictionary residing at one lexical level.

Figure 3 provides an example of a portion of a typical Dictionary. Logically, there is only

one SYSTEM sub-dictionary, containing all terms defined for system-wide use. (In practice, we

may have several replicated copies for efficiency.) There may be an arbitrary number of

GROUP, USER, and LOCAL sub-dictionaries, forming a virtual tree, as described below.

3.2. Name Paths

Each USER and GROUP sub-dictionary has a unique internal identifier, used within the

dictionary entries of its "children" (connected nodes, one level lower) to indicate the parent node.

E.g., all USER-level entries contain the identifier of the GROUP-level sub-dictionary to which

they belong. Concatenation of the sequence of these parent identifiers, beginning with a diction-

ary entry at any level and moving up the tree to the SYSTEM level, constitutes a path of sub-

dictionaries which is the dictionary for that lexical level (and above). We call this path of sub-

dictionaries a name path because all names must be resolved with the dictionaries of this path.
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See Figure 3 for a simple example. Normally, an ADAMS statement will reference the name of
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an entity without specifying a scope designation, as in:

faculty_attr belongs to SCHEMA consisting of {name, age, dept}

In this ADAMS statement the instance name faculty_attr is being defined. That definition is

associated with the name faculty_attr in the local (temporary) dictionary by default. The name

"SCHEMA" is referenced as a part of the definition of faculty_attr; the system will search for

SCHEMA in order to use information from its dictionary entry to build a part of the faculty_attr

entry. The local sub-dictionary is searched first, containing all currently active, temporary (non-

persistent) names. If the entry for the name SCHEMA is not found here, the system determines

the current user id, representing the "parent" user for the current local dictionary, and searches

that USER-level sub-dictionary. If not found there, the search proceeds up the path to the parent

GROUP sub-dictionary and then to the SYSTEM sub-dictionary until the name is found, or deter-

mined to be absent. A similar search process is employed to find the semantic meanings of name,

age, and dept.

However, the user process may specify at which level of the dictionary to begin the search.

With the ADAMS statement

faculty_attr belongs to SYSTEM SCHEMA consisting of { name, age, dept }

only the SYSTEM sub-dictionary will be searched for the "SCHEMA" entry..

Normal ADAMS usage allows duplicate names for different entities, as long as they have

distinct scopes, that is, they occur in separate sub-dictionaries. Limiting name resolution

searches to sub-dictionaries along the process’s name path protects against accessing the wrong

entity. By providing for explicit scope designation in its referencing syntax, ADAMS also per-

mits duplicate names in the same dictionary path, provided the names in any single sub-

dictionary are distinct.

The ADAMS syntax allows reference to entries in other USER or GROUP dictionaries, as

in:
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use user_5 database of user_5 RELATION

where the instance database belonging to user_5 is accessed. Note that its definition will be

found in user_5’s dictionary. This should not be a frequent occurrence; if the name is used com-

monly by processes in other name paths, then it should probably be moved up one or more levels.

3.3. Individual Entries

Each named entity is defined by characteristics stored in its dictionary entry. Entities of dif-

ferent types require different information; six different dictionary entries have been defined at

present: set, class, attribute, map, codomain, and instance. All ADAMS names fall into one of

these six types.

Since the Dictionary itself is an ADAMS database, each of these entries can be defined and

created by standard ADAMS statements. Each of the six constitutes a separate CLASS. Since

classes are characterized (in part) by the attributes and maps defined for them, each dictionary

entry class has a set of attributes defined for it, and may also have one or more maps that relate it

to another entry class. Using the ADAMS system to "bootstrap" the ADAMS Dictionary itself

causes a slight problem of nomenclature. To describe the Dictionary structure with a minimum

of confusion, we will use three terms, which we apply only to internal dictionary entries. First,

we will call the six individual entry classes categories, so that the word "class" will only refer to

classes other than the dictionary entry classes. Instead of referring to the internal attributes

defined for each of these entry categories as "attributes", we will call them fields. Thus the term

"attributes" is reserved for the external, programmer-defined attributes associated with a class,

while "fields" refers to the internal attributes associated with a given category of dictionary entry.

In addition to a set of fields, five of the six categories have relationships mapping elements

of the category to those of another entry category. We choose the term dependencies to refer to

the internal maps defined on entry categories, while "maps" is reserved for external,

programmer-defined maps.
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Figure 4.

A schematic of interrelationships between the six categories of entries is shown in Figure 4.

Properties of each entry category are listed under its name; arrows indicate dependencies, and

point to the image category for the dependency. As an example, class name entries have depen-

dencies (by means of att_set and map_set) to sets of attribute and map entries, which are two

defining characteristics of a class. As would be expected, the class entry is the most common and

has dependencies to or from all other entry categories, with the exception of codomain entries.

Every dictionary entry, regardless of category, has two fixed fields not shown on the diagram—its

name, on which any search is directed, and a set of references, which will be described later.

The schematic of figure 4 is generally illustrative of the dependencies; but it ignores many

details. We give our first detailed definition of the Dictionary using C-like syntax.
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struct
{ /* dict(ionary)_entry */
char *entry_name;
E_TYPE entry_type;
REF_SET *references
SYN_SET *synonyms
union

{
CO_DOM_ENTRY co_dom;
CLASS_ENTRY class;
INST_ENTRY instance;
MAP_ENTRY map;
ATTR_ENTRY attribute;
}

} DICT_ENTRY

struct
{ /* Body of Co_Domain entry */
char *reg_expression;
int() *mem_test;
int() *fetch_conv;
int() *store_conv;
} CO_DOM_ENTRY;

struct
{ /* Body of Class/Set entry */
DICT_ENTRY *parent;
char *predicate;
int() *pred_test;
DICT_ENTRY *element_type; /* only classes of type SET */
ASSOC_SET *att_set; /* associated attributes */
ASSOC_SET *map_set; /* associated maps */
} CLASS_ENTRY;

struct
{ /* Body of Attribute entry */
DICT_ENTRY *co_domain;
char *null_value;
ASSIGN_TYPE assignment;
*char() *computed;
} ATTR_ENTRY;

struct
{ /* Body of Map entry */
DICT_ENTRY *image;
} MAP_ENTRY;

struct
{ /* Body of Instance entry */
DICT_ENTRY *inst_class;
ELEM_ID *id;
} INST_ENTRY;

Dictionary Layout in C
Figure 5.

Note that every dictionary entry (DICT_ENTRY) has an entry_name field, by which all entries

are accessed; an entry_type tag field, identifying the kind of dictionary entry, a references field,
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denoting all other dictionary entries and/or processes which reference this entry, and a synonyms

field, denoting all synonymous entries. The remaining body of the entry belongs to one of five

basic types: co_dom, class, map, attribute, or instance.

If the entry denotes a co_domain, then its body contains a field, reg_expression, denoting

the regular expression by which the co_domain has been defined. Such an expression is of little

practical use and is maintained only for display purposes. At run time a membership test predi-

cate, mem_test, is used to determine whether an assigned value actually belongs to the

co_domain. (Note: it may be necessary to also provide "equality" and "ordering" test processes.)

The procedures fetch_conv and store_conv are used to convert the co_domain value, which is by

definition a string, into a computational form appropriate for the particular hardware when it is

fetched from storage—or conversely placed in storage.

Many of the dictionary entries will define classes. There are four basic types of classes,

CLASS, SET, ATTRIBUTE, and MAP. The class type is also denoted by entry_type. Whenever

a class is defined in terms of a pre-existing class, it automatically inherits the properties of that

class. That pre-existing class is denoted by the parent field. This link can be followed to access

any inherited properties or characteristics. Additional properties of the current class are defined

by a predicate expression. The integer function pred_test is invoked during execution to test

whether or not newly created, or modified, instances actually satisfy the predicate restrictions for

membership in the class.

If the ADAMS class is a SET, then the element_type field is used to verify that newly

inserted elements are of the correct type, and that various set operations are legitimate. This field

is used to enforce homogeneity in all ADAMS sets. Attribute functions and map functions can be

declared on any ADAMS class. Sets of such attributes and maps are associated with the class by
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means of the a_set and m_set fields.

Co-domain, attribute, and map entries are all used in ADAMS in the definition of element

classes. A class is a kind of generic data object, or a data type. Of course they must be named,

and their names must be recorded is the Dictionary so that they can be referenced by various

processes. An instance is an actual data object belonging to some class. Every ADAMS

instance, or element, is uniquely identified by a symbolic id, which is sufficient to access the ele-

ment in secondary storage. But it need not be named. Most instances are not named. For exam-

ple, given a set of elements, it is customary to name the set as a whole (which is an instance), but

not to name any of its individual constituent elements. Thus for any named instance, the only

dictionary fields that are required, in addition to the standard fields of name, entry_type, refer-

ences, etc., are the instance class, to access a complete description of the instance type, and id, to

access the data object itself.

As noted earlier, the ADAMS Dictionary is persistent. Consequently, it structure can be

described within the ADAMS syntax itself. Given below, in figure 6, is such a definition.

Readers, unfamiliar with this syntax should refer to [PSF88]. Note that both this definition and

the C definition given above are incomplete; a number of "low-level" types and co_domains are

left undefined.

The "union" of structures in C has always been an awkward construct, as has the "variant"

record in Pascal syntax. They are mechanisms for asserting that a class of structures are "almost"

the same, but not quite. Storage is allocated for the largest possible structure. The actual internal

structure must be designated by some other "testable" variable to insure correct run time

behavior. A "union" concept is needed because a dictionary entry can be either a class entry, a

co_domain entry, or an instance entry, and each has somewhat different internal structure.

ADAMS has no provision for "variant" elements. The elements of a set, such as the entries in a

dictionary, must be homogeneous. Instead, the variant portions of the these entry bodies are
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entry_type belongs to ATTRIBUTE, with image E_TYPE
reg_expression belongs to ATTRIBUTE, with image STRING
mem_test belongs to ATTRIBUTE, with image BOOLEAN_PROC
fetch_conv belongs to ATTRIBUTE, with image BOOLEAN_PROC
store_conv belongs to ATTRIBUTE, with image BOOLEAN_PROC
predicate belongs to ATTRIBUTE, with image STRING
pred_test belongs to ATTRIBUTE, with image BOOLEAN_PROC
id belongs to ATTRIBUTE, with image ELEM_ID
null_value belongs to ATTRIBUTE, with image STRING
assignment belongs to ATTRIBUTE, with image ASSIGN_TYPE
computed belongs to ATTRIBUTE, with image STRING_PROC

references belongs to MAP, with image REF_SET
synonyms belongs to MAP, with image SYN_SET

ASSOCIATION is a CLASS, having fields = { synonym, map/att_set }
ASSOC_SET is a SET, of ASSOCIATION elements

a_set belongs to MAP, with image ASSOC_SET
m_set belongs to MAP, with image ASSOC_SET

DICT_ENTRY is a CLASS, forward

co_domain belongs to MAP, with image DICT_ENTRY
image belongs to MAP, with image DICT_ENTRY
element_type belongs to MAP, with image DICT_ENTRY
parent belongs to MAP, with image DICT_ENTRY
inst_class belongs to MAP, with image DICT_ENTRY

ATTR_ENTRY is a CLASS, having dependencies = { co_domain },
having fields = { null_value, assignment, computed }

MAP_ENTRY is a CLASS, having dependencies = { image }

INST_ENTRY is a CLASS, having dependencies = { inst_class, attr_def, map_def },
having fields = { id }

CLASS_ENTRY is a CLASS, having fields = { predicate, pred_test },
having dependencies = { parent, element_type, a_set, m_set }

CO_DO_ENTRY is a CLASS, having fields = { reg_expression, mem_test, fetch_conv, store_conv }

co_dom belongs to MAP, with image CO_DO_ENTRY
class belongs to MAP, with image CLASS_ENTRY
instance belongs to MAP, with image INST_ENTRY
map belongs to MAP, with image MAP_ENTRY
attribute belongs to MAP, with image ATTR_ENTRY

DICT_ENTRY is a CLASS, having fields = { entry_name, entry_type },
having dependencies = { references, synonyms, co_dom, class, map, attribute, instance }

Definition of the Dictionary in ADAMS syntax
Figure 6

declared to be distinct classes, here INST_ENTRY, CLASS_ENTRY, MAP_ENTRY,

ATTR_ENTRY, and CO_DOM_ENTRY. A DICT_ENTRY then has three associated maps,
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instance, class, map, attribute, and co_dom whose image will be an instance of one of the classes

respectively. Depending on the entry_type only one of the maps will be defined—the other two

will be null maps. So, for example if x denotes a dictionary entry of entry_type "co-domain", the

ADAMS expression x.co_dom.reg_expression will denote the regular expression (a string) which

defines the co_domain.

21



4. Migration of Names

ADAMS is designed to support dynamic development of systems. Its name space must

therefore be dynamic. New kinds of classes can be defined and entered into the system. Pro-

cedures can then be written to operate on instances of these classes—to test their utility, to test

their adequacy. The usual approach to such innovation is to experiment with new constructs at an

individual USER level. If the new construct seems to be robust and useful, it may be moved up

to GROUP status, where it can be tested by a larger community of users. Similarly, particularly

useful GROUP constructs and/or objects can be installed at a SYSTEM level. Such movement is

called upward migration. The upwards migration of a class or instance name is accomplished by

a statement of the form

rescope [ <current_scope> ] <name> to <new_scope>

Although it occurs less often, names of limited use can migrate downwards.

Readily, no name (character string) can be moved to a level where the same string exists as

a name with a different semantic definition. It might change the behavior of processes referring

to that name. But absence of the name from the target dictionary is not by itself sufficient to

ensure that a new entry or an upward (or downward) migration will not have unwanted side

effects. Addition, deletion, or movement of a name in a hierarchically structured space can unin-

tentionally mask, or unmask, other definitions of the same name.

4.1. Name Insertion and Upward Migration

A newly defined name may be inserted into a sub-dictionary provided (1) a duplicate name

does not already exist in that sub-dictionary, and (2) inserting the name at that level does not

interfere with other name paths. For example, if a process expects to find a given name at the

SYSTEM level, insertion of an entry for an identically-named entity into the GROUP sub-

dictionary along the name path causes the search to find this new entry rather than the intended
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top-level one as in figure 7.

Moving an entry upward in a name path can cause the same problems as insertion. Raising

an entity one level will not of itself prevent a search from locating the entry; it will merely be

found one level higher. However, the move can mask higher entities in other name paths. In

figure 8, moving the name n4 up one level masks the SYSTEM level definition of n4 from the

processes of U2.

It is database instances that tend to be most dynamic; it easy to envision them being

created, used, and released by processes. Consequently, we tend to think in terms of issues relat-

ing to instances being accessed along active name paths by processes. But, it is important to

remember that any persistent element, or instance, must belong to a specific CLASS—thus the

instance in turn references a CLASS definition. Therefore that CLASS definition cannot be

migrated in such a way that it becomes masked in the name path through the instance entry.
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Moving n 4 up from U1 to G1 masks SYSTEM level n 4 for processes 2 and 3.
Figure 8.

In figure 9, moving the name e3 up two levels unmasks the different definition of e3 in the

G1 sub-dictionary. Consequently, the processes of U1 may not access the definitions, or

instances, they had been using. Moving e3 into a sub-dictionary "behind" the occurrence in the

U3 sub-dictionary should cause no problems. But observe that incorrect deletion of e3 in the U3

sub-dictionary would unmask the SYSTEM level e3.

4.2. Removal of Dictionary Entries

Data removal, or deletion, is always more difficult than data insertion. A user, or process,

may specify that a class name, co_domain name, or instance_name should be removed from a

sub_directory because it is to be moved to another sub-directory, or it is no longer needed and

should be deleted altogether from persistent storage. Can it, in fact, be removed? Let us consider

a few sample cases.
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and also causes a potential problem for any subsequent deletion of e 3 in U3.

Figure 9.

Suppose, first, that we seek to delete a class name altogether. If there still exist instances of

this class, then readily the class entry can not actually be deleted from the dictionary. Similarly,

if the class is referenced as the image of a MAP, or as the parent of another CLASS, it must be

kept—even though its original creator may believe it has out lived it usefulness. We call these

internal references because they represent cross references within the persistent ADAMS name

space; not references by external processes. We could largely ignore the issue of internal cross

references during the discussion of name insertion because, of course, no name can be cross refer-

enced until it has been installed into the Dictionary. It was sufficient to consider only the issue of

masking other name paths.

A CO_DOMAIN entry can be referenced by an ATTRIBUTE class definition. A CLASS

entry can be referenced as the

class of an instance,
parent of another class,
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image of a map class, and
element_type of a set class.

Attribute and map instances are referenced in class definitions. All of these internal cross-

reference dependencies, which were summarized in Figure 4, must be tested and found to be

empty before removal can take place.

We saw that name insertion, or upward migration, could have surprising side effects in the

form of masking, or unmasking, other names in the space. And, just as insertion of an identical

name can mask a desired name entry, deletion of an entry can uncover access to an identical but

unwanted name at a higher level. See, for example, Figure 10.

4.3. Summary

The preceding examples can be condensed into the following three rules which govern the

definition, migration, and deletion of names in the name space.
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(1) No name may be entered into a target dictionary level if the target dictionary is on an active

name path to a different definition of the same name.

(2) No name may be deleted from a dictionary which is on an active name path to the

occurrence of the name in a different process.

(3) Names must be (conceptually) moved one level at a time.

Readily, in order to support a dynamic name space, one must have a way of determining

which name paths to any given name in the space are active.
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5. Active Name Paths

In section 2.1, we said that a name path was active if there existed a process which refer-

enced that name along the path. And, because the name space is permanent, we emphasized that

the process need not be currently executing. Given the concept of internal cross-referencing

introduced in the preceding section, the active name path concept must be extended to include

those name that are indirectly referenced by active processes.

One would expect such an extension to complicate the determination of active name paths.

In fact it does not. Keeping track of internal cross-references is much easier than determining

active references in existing, but dormant, processes. Part of the ease derives from the nature of

internal cross-referencing itself, part derives from the rule that any term used in an ADAMS

declaration must be found in the same sub-dictionary, or in a higher level dictionary. Search for

these internal cross-references is relatively easy.

The problem of determining whether or not a persistent object is referenced by another

object or process is a common theme in computer science. It appears, for example, in list pro-

cessing, in storage management, and in shared memory maintenance. List and graph processing

using pointers requires some mechanism to determine when a pointer may be changed or deleted

without impacting on other parts of the program. Some storage allocation methods require a

means of determining when a block of storage can no longer be used and thus can be safely freed.

Shared memory cells require some means of knowing when it is safe to update the cell and main-

tain consistency among the various users’ viewpoints. Various methods have been developed to

deal with these situations.

Garbage collection is a useful, automatic way to remove items that can no longer be refer-

enced, and hence used. The method appears as an integral component of LISP interpreters, to

deallocate storage for LISP functions or lists no longer active [WiH81]. It may also provide a

means of deallocating heap storage no longer referenced by active processes. Garbage collection
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depends on two factors; a means of marking the objects to be retained or deleted, and a means of

inspecting the parts of the system that might use the objects. In both of the examples mentioned

(LISP and general heap clean-up), this second set of objects to be inspected consists of a limited

set of active processes. The storage units that might be referenced by these processes are not per-

sistent, and the resultant interactions are accordingly limited in number. In contrast, ADAMS

dictionary entries are persistent, and the entities referencing them are programs, which may be

executing or dormant. Inspection of all programs that might require a given entry in essence

means inspecting the object code symbol tables of all stored programs. An approach to determin-

ing active name paths which makes the same assumptions as garbage collection would be clearly

difficult to implement.

A number of researchers have designed lock mechanisms that in effect permit various

degrees of access to items (nodes of a tree, pages of a file) and allow update only when the lock is

exclusive (as defined by the system). Carla Ellis [Ell80], expanding on work by Bayer and

Schkolnick [BaS77], defined three different locks, one for reading a node, two for writing. One

of the "write" locks allowed only one process access at a time; the other two locks kept counts of

processes using the lock on a given object at any one time. All such schemes insure consistency

by requiring at least one exclusive lock for updating an object. The use of "lock counts" is essen-

tially the same as the maintenance of reference counts, described below, with an exclusive lock

having a count of one.

Maintenance of pointers is often supported by reference counts. UNIX directory entries

keep track of links between files in this fashion, with no file being completely deleted from the

system until all link references have been removed, indicating that no directory in the hierarchy

contains a pointer to the file. An early, but generally effective, mechanism to ensure the safe

removal of subordinate list structures has appeared in [Wei63] and [Pfa77]. It requires a record

of the number of referencing super-lists.

29



5.1. Methods of Determining Active Name Paths

There appear to be two basic methods of determining whether a specific object is useful,

that is might be referenced in the future, or whether it can be deleted from permanent storage.

One involves the use of reference counters, the other makes use of a modified garbage collection

method. A third method, which will not be further explored in this report, might assume the

existence of "write once, read often" memory in which nothing would ever be actually deleted

from permanent storage.

It is possible to record with each dictionary entry the number of times that that entry is

referenced by other named constructs and/or entries, which by virtue of being named, also occur

as dictionary entries. These are cross-references within the name space.

CLASS entries can be referenced as
(1) a parent class of a restricted CLASS,
(2) the element class of a SET,
(3) an image class of a MAP, and
(4) the class of a named INSTANCE.

CO_DOMAIN entries can be referenced only as
(1) the co-domain of an ATTRIBUTE.

INSTANCE entries can be referenced as
(1) in the sets of MAPS and/or ATTRIBUTES associated with

a CLASS.

Whenever a new dictionary entry is created, the reference counters of all entries that are cross-

referenced in the course of its definition would be incremented. Whenever an existing dictionary

entry is deleted—its reference counter would have to be zero—the reference counters of all

cross-referenced entries would be decremented.

More commonly, of course, instance entries will be referenced in executable ADAMS state-

ments appearing within program segments. Also class entries can be referenced by unnamed

instances within the class. Indeed, it is quite possible to have a class of ADAMS elements in

which no individual instance is ever named; the elements of a named set constitute an excellent
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example. These two considerations would appear to generate severe problems.

Processes containing ADAMS statements must run in some environment. If this environ-

ment were controllable by ADAMS, as it is in LISP programs, then a solution to the first prob-

lem, references within executable code, could be envisioned. The object version of each process

would have to have a prefix that enumerated the named ADAMS elements and constructs appear-

ing within the code. (Recall, we are only maintaining a "name" space; ADAMS variables can be

ignored.) Every time a compiler created such an object process, it would have to access the dic-

tionary and increment the appropriate reference counters. If the object process were removed, say

by an operating command such as rm proc_a, the operating system would have to access the dic-

tionary and decrement all of the reference counters indicated in the prefix. It is possible to envi-

sion such a totally controlled environment in the future; it is impossible to envision such changes

to the general operating system environment in the present. An option might be to associate with

each instance name in the dictionary, the date it was last referenced. Then a heuristic procedure

could periodically examine the entire dictionary and mark some instance entries that have been

unreferenced for an extended time as "presumed dead". These instances would then be deleted,

and associated reference counters decremented.

Unnamed instances can reference dictionary entries; they must reference at minimum the

CLASS to which they belong. Since permanent instances can only be created, and deleted, by

ADAMS commands this situation can, in theory, be handled by ADAMS. Whenever a persistent

element is created, whether named or not, all appropriate reference counters could be incre-

mented. They could be decremented when it is deleted from permanent storage. Such a pro-

cedure would be tedious and inefficient. More important, it is unnecessary. There can be no

instances which are unreachable from some named instance. Therefore it is only necessary to

maintain cross references between named ADAMS constituents, that is cross references within

the dictionary itself. We need only maintain a name space, not an entire storage space.
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6. Synonymy

Two words are said to be synonymous if they mean the same thing—that is they can be used

interchangeably. In natural languages, one seldom has exact synonymy; usually the words mean

nearly the same thing and can be used interchangeably in most contexts. But invariably there are

subtle differences and nuances that will make one of the synonyms more appropriate than

another. Consequently, in natural languages one can speak of close and distant synonymy, where

these terms roughly denote the contextual scopes over which the words are equivalent. In

English, the classic definition of synonymy is Roget’s Thesaurus.

The issue of synonymy is an important one in ADAMS, as indeed it must be in any system

which maintains a persistent name space. Communication between people, or processes, which

employ a large number of distinct, but synonymous, terms for shared concepts is difficult. In

effect, they are using different languages, or at least different dialects of the same language.

There is a real communication advantage to detecting synonymous words, noting the synonymy,

and where possible replacing the synonyms with a common word. For example, the terms rela-

tion, tuple, and attribute are virtual synonyms to file, record, and field in most database applica-

tions. But simply because different words are used it is often difficult to compare results found in

the relational literature with that found in the literature of file processing. And procedures written

in one genre are seldom translated into the other. There would be distinct benefits to bringing

these two dialects into congruence. In the context of ADAMS, it would permit increased sharing

of data constructs and communication between procedures. It would also reduce the size and

clutter in our dictionaries.

While there are some decided advantages to replacing a plethora of synonyms with com-

mon expressions, there are also some disadvantages. On one hand, there may be subtle differ-

ences between apparent synonyms. In the preceding example, while the relational terms are vir-

tually synonymous to the file processing terms, the former are somewhat more abstract while the
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latter tend to be implementation specific. Both sets of concepts are usually implemented identi-

cally; but they need not be. A tuple need not be represented as a single record with an ordered

sequence of fields. Further, in an experimental environment, which ADAMS has been designed

to support, meanings tend to change frequently. My private definition of a relation may currently

be synonymous with a commonly accepted definition, but may change tomorrow. I may want to

keep my meaning distinct.

In our development of ADAMS we have tried to develop formalisms and mechanisms

which would support various interpretations of synonymy and to enforce what seems to be a rea-

sonable standard—we generally enforce a strong control over synonymy at the SYSTEM level,

where these terms are assumed to be widely accepted, a weaker control over synonymy at the

GROUP level, and no control over the use of synonymous terms at the USER or LOCAL levels.

Still, there is much that we do not understand and much more to be investigated.

6.1. Definition of Synonymy

Synonymy is an equivalence concept. In ADAMS, two terms are said to be strongly

synonymous if all terms occurring in their definitions are identical. For example, if the terms

student_record and s_tuple were defined by the ADAMS statements

student_record is a CLASS
having { student_number, name, gpa }

s_tuple is a CLASS
having { name, student_number, gpa }

then student_record and s_tuple are strongly synonymous. They are defined in terms of the same

set of identical attributes. Note that the order in which the attributes have been enumerated is dif-

ferent. This is deliberate. ADAMS is defined in terms of sets, not sequences, so these definitions

are identical.
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It is easy to verify that strong synonymy is an equivalence relation.

Two ADAMS co-domains are also said to be strongly synonymous if they define the same

regular set. Other ADAMS terms are said to be weakly synonymous or, just synonymous, if all

terms in their definitions are synonymous. (Note, identical terms are clearly synonymous.) For

example, if

name belongs to ATTRIBUTE
with image STRING, value is assigned

s_name belongs to ATTRIBUTE
with image STRING, value is assigned

are the respective definitions of name and s_name, then they are strongly synonymous. If now

s_tuple were to be redefined by

s_tuple is a CLASS
having { s_name, student_number, gpa }

then student_record and s_tuple would be weakly synonymous because the attributes name and

s_name are only synonyms, not identical.

Again, it is easily verified that weak synonymy is also an equivalence relation. And strong

synonymy implies weak synonymy.

It is important to note that synonymy in ADAMS refers to structural, or syntactic,

synonymy. The representations of the objects denoted by the terms (either dictionary entries or

instances) must be congruent. This is distinct from what might be called semantic synonymy. If

we were to define two attributes

age belongs to ATTRIBUTE
with image INTEGER_3, value is assigned

and

length belongs to ATTRIBUTE
with image INTEGER_3, value is assigned

both of which are functions into to the same co_domain, which in this example is all 3-digit
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integers, then structurally they are strongly synonymous. But we would not wish to treat them as

synonymous in a semantic sense. The distinction between structural and semantic synonymy will

create problems in creating effective synonymy enforcement protocols.

6.2. Synonymy Implementation

The implementation of synonymy in a persistent name space presents three important sub-

issues. They are the (1) detection of synonymy, (2) the representation of synonymy, and (3) the

enforcement of appropriate synonymy protocols.

The representation of synonymy is the easiest to handle. Since both forms of synonymy are

true equivalence relations, it is sufficient to simply represent as a set the equivalence class (of

other terms) that are synonyms. Moreover, operationally there is no need to maintain a distinc-

tion between strong and weak synonymy so a single set will suffice. We use the synonyms field

of a dictionary entry to do this. This field is then used to (1) alert a user to the presence of

synonymous terms, and (2) detect other occurrences of synonymy.

The detection of synonymy is more difficult and time consuming. At the time of definition

(term binding), all other entries in the same sub-dictionary must be examined for possible

synonymy. A simple screen based on surface appearance will eliminate most candidates; it will

also immediately detect strong synonymy. Discovery of weak synonymy in the few remaining

candidates will require testing for synonymy between pairs of defining terms, including a possi-

bly exhaustive comparison of all permutations of associated sets of attributes and maps.

There are three features of the ADAMS language and its persistent name space which aid in

the discovery of synonymy. First, simply recording sets of all synonymous terms in the diction-

ary entry eliminates the need for a recursive descent search. Second, all ADAMS constructs must

be defined in terms of names on the same name path, that is in the same sub-dictionary or higher

level dictionaries. Given its hierarchical organization, this reduces the scope of the name space

that must be examined. Finally, ADAMS requires that all co-domains must be regular sets
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defined by regular expressions. Thus, in theory (c.f. [HoU79]) the test for whether or not two

co-domains are synonymous is decidable. (In practice, ADAMS does not test for synonymy

between co-domains so only strongly synonymous attribute functions will be discovered.)

Finally, we address the issue of synonymy enforcement protocols. In ADAMS, we decided

to test for synonymy only at the GROUP and SYSTEM levels of the name space, not at the

USER or LOCAL levels. This decision was based on considerations of efficiency—there are far

fewer terms in the dictionary at these levels; and because the value of inter-user and inter-process

communication is far more apparent at this level. But having discovered synonymy, what actions

should be taken? We would like to develop protocols which would alert the user to synonymy at

the GROUP level, and which would prohibit synonymy altogether at the SYSTEM level. If

ADAMS were a purely interactive system, it would be easy to control the use of synonymy

through such protocols. In the former case, the user could be interactively notified of pre-existing

synonymous terms and asked whether one of them could be used instead. In the latter case, the

user would be notified of the other synonym and instructed that it must be used. But ADAMS is

not intended to be used with only interactive processes. We do not know how to enforce any con-

trol over synonymy in such a non-interactive environment.
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