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ABSTRACT depend on repeatable execution traaed outcomesg] 12, 13.

An important class of software, diding simulations and ~ Furthermore, floatingoint operations that typically accompany
computational models, employs stochastic distributions to stochastic distributions exceed the capabilities of other existing
represent, or support evaluation of, uncertainty in an underlying f@ult localization methods 2, 3, 1719, 3(. Unepected
model. This class of software presents three interesting analysi€XPloratory software outcomes can reflect new knowledge about

challenges: 1) effective localization thfe sources of unexpected e underlying model, or a fault. Currently there is no known
outcomes; 2) effective treatment of stochastic distributions and the@Utomated analysis method for separating them. These challenges

floating-point computations that generally accompany them and rePresent the basis of our motivation.

3) separation of unexpected outcomdisassociatingvalid, but Separating unexpesd valid outcomes from software failures
unexpected, results from those rigfcting software failure. is an interesting, difficultproblem We have not solved it.
Traditional debugging and fault localization meth¢2s6, 11-15, However, our predicatbased statistical debuggeExploratory
17-20, 23, 28 30-32] have addressed primarily the first challenge, Software Predictor (ESP)Yoes localize sources of the broader
namely localization of sources of faults while assuntharacter, class of unexpected outces effectively in software employing

Boolean, integer and pointeperationsWhile these methods are  stochastic distributions and floatipwpint operations. ESP is
effective in generalthey are not tailored to software that uses novel, and it extends the domain of programs for which fault
stochastic distributionsand floatingpoint computations.Thus localizationanalysis isffective.

there isopportunity We introduceESP, a novel approach to
predicatebased statistical thegging. ESP localizes sources of
unexpected outcoes in software using stochastitistributions
and floating-point operations, thus addressing the first two
aforementioned challengelSSP predicates are elastic rather than
uniform and static; each predie adapts to variable values
observed at its program instrumentation point. We presen
experimental results for established fault localization benchmarks ESP is a predicateased statistical debugging approach
and widely used simulations. Fobenchmarks employing focused on identifying single or multiple sources of unexpected
stochastic distributionsESP outperformsthe lkest alternatives: outcomes in exploratory software. Predichssed statistical
Interesting Value Map Pair (IVMP), Cooperative Bug Isolation gepugging apmaches, such as ESP, represent a class of fault
(CBI) and Tarantula. For traditional benchmarkSP performs  |gcalization techniques that share a common structure. Each
similar to IVMP andoutperforms CBI and Tarantula. approach consists of a set of conditional propositions, or

: : : predicates, tested at particular program points. The predicates are
ch{le[gr%ggrsnrﬁag L?rl;lgzjaegi;Eﬁ)iglsg:glgsebuggers given an importancscore based on how frequently they are true

in the passing and failing test cases for a failing program. A single
D.2.5 [Software Engineering: Testing and Debuggingd predicate can be thought of as partitioning the space of all test

Our interest extends to software where model uncertainty is
not a factor, but stochastic distributions and floafoint
computations are present. Our interest is due to the challenge their
presence creates for existing fault localization approaches. ESP
performs effectively for these programs and for the ficautid

¢ programs fault localization techniquieave targeted.

Debugging aids, Testing tools, Tracing. cases into two subspaces: those satisfying the predicate and those
not. Themore closely the partitions created by a predicate match
General Terms the subspaces where the fault is and is not expressed, the better
Algorithms, Measurement, Experimentation fault predictor thepredicate is17,19]. The predicates are ranked,
based on their importance score. The rankings and scores are
Keywords provided to SMEs to help in finding and fixing the faults.

automated debugging, fault localizayi@xploratory software In existing predicatdased statistical debugging approaches,

1. INTRODUCTION predicates are uniform and static. The predicates are uniform in

Our interest is in exploratory softwar&xploratay software the sense that the same set of conditional propositions is tested at
includes stochastic distributions, and the floafmint ea:h_program point. The_predlcates_are static because each
computatios that generally accompany them.ypically conditional proposition being tested is determined before the
exploratory softwarés used for exploration of uncertainties in an €Xecution of the program. ESP moves beyond uniform and static

underlyng model. Simulations and computational models are Predicates toelastic predicatesIn ESP, as the program is

examples of exploratory software and have become a commonExecuted the vaable v_alues_ at each program point are observed.
For each program point, similar observed values are clustered to

tool for subject matter experts (SMEs) in a variety of disciplines ! g " . o
create unique conditional propositions. The unique conditional

[8]. Predictions based on exploratory software outcomes have o > ) - .
entered the maingam of critical public policy and research propositions for each program point are elastic predicates. Elastic

decisionmaking practices, often affecting large numbers of predicatescreate partitions of test cases that more closely match
people and valuable resources. Unfortunately SMEs can strugglethe subspaces where an _unexpected outcome s and is not
for decades with the resolution of unexpected exploratory expressed. The result is improved effectiveness. ESP offers

software outcomes. Their methoare generally manual and do improved effectiveness over existing fault localization techniques
not scale Autor.nated analysis to localize the sources of IN terms of: (L)statement based rankings over a set of established

unexpected exploratory software outcomes will be beneficial penchnarks and severaﬂmdely .USEd S|mulat_|0ns and (2) the
importance scores associated with each predicate.

Prior work inautomatically localizing sources of unexpected
software outcomeshas focused on fault locahtion. Fault
localization is the process of narrowing or guiding the search
through source code to help a SME or developer find statements
containing fauk that cause software failure§he use of ) )
stochastic distributions defies fault localization apphes that * Dept. of ComputetScience, UVA Charlottesville, VA 22904




2. RELATED WORK using the Siemens Benchmaskite P5], two approaches stand
We begin with a review ofurrently accepted definitiorfer the out in terms of efficiency _and effectiveness: Tarantula and[ZBlI
termsfailure, error andfault. A failure occurs when the observed > 812,15, 20. We describe each further.

behavior of a program differs from the expected behavior. An Tarantula is a statistical debugging approach that analyzes
error represents part of the program etdhat may lead to the  how frequentlya program statement is executedpiassing and
failure. Afaultis the cause of the error in the progrg]. failing test caseslt has been shown to bene of the most

effectiveand efficient fault localization approaches identifying
faulty statements in the Siememenchmark Suitg15]. The
é;\pproach is efficiet because ibnly takes into accourgtatement
coverage informatio of passing and failing test caséfowever,
fis effectiveness iimited due to itanability to analyze values of
variables within th@program g, 12].

There is no bog of literature that specifically addresses the
analysis of exploratory software outcomes; exploratory software
possesses attributes that have typically been neglected or avoide
Software debugging methods come the closest to addressing th
needs for angking unexpected exploratory software outcomes.

Here, we review portions of that literature related to ESP.
CBI employs predicatbased stastical debugging 17]. CBI

uses instrumentation to collect féedk reports that describe

: ‘o which predicates are observed in a test case as well as the
2.1 AUtomatlca”y Repalrlng Software Faults outcome of the test case. CB$signs @a importancescore toall

Several approaches automatically assist developers in ﬁxmgpredicates ath outputs a complete list giredicates andheir

failing software. He and Gupta use pa#ised weakest  jnhorance scores in descending ordedeveloper or SME uses
preconditions to_agtomatlcal_ly generate program mod|f|cat|ons 0 the Jistto identify areas of the program relatedthe observed
correct a fault within a function provided the function has formal ¢ i re  Section 3.2 describes how importance scores for

pre and postonditions L1]. More approaches employ machine predicates are computed in CBI. Using predicatsked by

learning algorithms to automatically repaults in off-the-shelf importance scores, CBI hagentified previously unknown faults
legacy software pg|. While these approaches duwt rely on in several widely used applicationd7f19, 33. SOBER was

formal specifications they do requirea failed testcase that shown to be slightly more effective than a variantC@! [20].
demonstrates the buand a number of other test cases that encode o ever. this was prior to CBIOs use of importance sashish
the required functionality of the prograrBue to thenature of significar;tly improve its effectiveness. '

exploratory softwarethis is not generally possible for SMEs. )
Furthermore, fault location is a prerequisite to repair. Several enhancementsive beerstudied for CBI and other

Improvements in locatinfaults will improve repair solutions. predicatebased statistical debugging approact¢®LMES and
Adaptive Bug Isolation can significantly reduce the number of
program points that need tme instrumented and monitored to

2.2 Slicing-based Fault Localization identify predicates with high importance scof2s5]. Reduction
Slicing-based fault localizaion identifies faulty statements N the number of instrumented program points can improve the
through static, yhamic and relevant sling. Each of these slicing ~ overall efficiency of CBI but it doesnot improve the

approaches is defined and described. Static slicing identifies ©ffectiveness Another enhancement, compul Boolean
subset of program statements thady influence the value of a prediates, combines predicates witbddean formulae to create a

variable at a prograrfocation [27, 29. Staticslices are used in  ficher predicatevocabulary §]. Compound Bolean predicates
static fault localization approaches, such as FindBugs, to help@nd elastic predicates improve the effectiveness of predicate
identify predefined faultypatterns 4]. Dynamic approaches  Pased statistical debugging approaches in a complementa
identify a subset of program statements thainfluence the value ~ f@shion Compound Bolean predicatesffer a richer vocabulary

of a variable at a pacular point in a given dynamic program while elastic predicates offer more precise predicafiseir
execution 1, 16, 30. The concept of relevant slicingas also ~ POSSible combination has not yet been explored.

been studied to incorporate potial dependencies. Relevant
dices computed fromhe point of an incorrect variablalue can . . .
identify the subset of atements that could have cohtited to the 2.4 State'_altenng Fault L_ocallzatlon

incorrect value.This subsetis likely to contain afault and is State alteration approachemodify the progam state of an

signifi cantly smaller than thset of all prograratatementsJ7]. executing program in an athpt to isolate faultsin the Delta
Debugging framework, failuranducing input is identied that

allows for the computation of causdfect chains for failures that
2.3 Statistical Debugging are Iin_ked to faultystatem_ents g. This is a:complis_hed by
Statistical debugging uses data collected during theugiom of swappingthe values of variables between one passing and one
passing and failing test cases to rank predicates and statement&iling test casePredicate Switching is another state alteration
based on the likelihood they contain a fadiang andSu [14] approach wfth attempts to isolate faulty statemenby
constructcontrol flow paths linking high ranking predicates to dentifying predicates whose outcomes can be alteredglui
explain software failures The Nearest Neighbor aprch failing test case to cause the test casgass B1]. The most
searches for a passing test case execution that is most similar to §€ctive statealteration approach, when evaluated with the

failing test case execution, contrasts the two executions, and useS'€mens Benchmarkuitg is IVMP. IVMP is a value profile
the information to identify the most suspicious parts of the Pased approach thatinvolves searching for the progremsents

program P3. SOBER models the evaluation patterns of that can b_e shown to affect the output of a failing _exgcmimh
predicates in passing and failingst casesand considers a that the incorrect output becomes correct. This is done by

predcate to be relevant to a faifliits evaluation pattern in failing ~ '€Placing the values used at a statement dufie execution of a
test casessignificantly differs from the observedpattern i failing test casevith an altgrnate saif values, therdeterminng
passing testases 20]. In recent fault localization evaitions whetherthe altered execution passes the test cHse.successful

changeften occur astatements containing faults statements



that are directly linked testatements containing faults through
data or contreflow dependencieslp, 13.

Statealtering approaches are not always effective for

schemeto floatingpoint typed vaiables. The namescalarpairs

refers to the data type of the variables
In existing predicatdased statistical debugging approaches,

programs that use stochastic distributions. These approacheshe scalar pairs schemexamhes possible invariants from a

require an unaltered failing test case to fail every time it is
executed[6, 12]. This requirement enables variable values in a
failing test case toeidentified and altered to attempt to create a
passing test case. However, stochadistributions cause some

variable values to vary from execution to execution. These valuesvariables

can result in a test case that passes one tilmexecuted and fails
anothe violating the requirement and diminishing the
effectiveness of the method as a result

3. ELASTIC PREDICATES

Numerous statistal debugging approachésve been proposed to
identify predicates that are godadlilure predictors 14, 1720, 31,

32). The mosteffective of these approaches analyze variable
values within a program. However, accounting for all possible
values at each assignment to a given variable is impragtical
Instead,these approachagilize an instrumentation scherméth
uniform and «tic predicates at each variable assignment
statement. This instrumentation scheme is referred tsirage
variable and is an extension of the returns scheme in GBé&

most common single variable scheme for an assignment to a

variable X uses thespredcates 17]:

1. X<O0
2. x=0
3. x>0

The elastic predicates usedB&Preplace uniform and static
predicatesESP provides a single variable instrumentation scheme

that records the meanjl,, and standard deviatip ", for a
given variable X for all test case executions. Usirld, and "X
these predicates are constructed:

Lo (pc1#,) > x

2. (" k#)$x<(u " %)
3. U =x

o (i) i< k)
5. (i +1",)>x

For thepredicates 0 j <k! | is assumedn ESP the default
nine elastic predicates for the single variable instrumentation
scheme are j={0,1,2}, k={1,2,3}, |1={3}. These predicates
partition the values for an instrumented program point for three
standard deviations abovadibelow the mean oK.

Multiple variables within a prograncan have important
relationships that cannot be capturedth a single variable
instrumentation schemé&he Daikon projectidentifies implicit
invariantsto aide program evolutiorand understanding7]. ESP
and existing predicatbased statistical debugging approaches
identify nearinvariants that are only viated when the program
fails test casesThis instrumentation scheme is callsdalar pairs
[17]. Within CBI thescalarpairs scheme instroents assignments
to character, integeand pointettyped variablesESP extends the

uniform, staticset. At each assignment to a variab¥e these
approaches identifall other saméyped localor global variables

Yi: Yoy, that are currently in scope-or each pair of
(X, yi) the scheme compares the new valueXoivith
the existing value ofy; with thesepredicateg17]:

1. X<y,
2. X=VY,
3. X>y,

In ESP, the meanl4,., and standard deviation of

X#y,
the difference between the new value Xfand the existing value

of Y;, is computed for each pair of variabls(é(, yi). Using

M. and " xity, these elastic predicates are constructed:
| 1

1. (ux..yi " I#X..yi) >x"y,;

e )y <(a o)
3. Moy XY,

(o )55 3, <[ 150
5. (/.lx-.yi +|#X"yi) <x"y,

Again, for theelasticpredicates 0 j <k! | is assumed. The
default values fof, k andl are the same der the single variable
scheme. These default elastic predicates partition the values for an
instrumented program point for three stamddeviations above

and below the mean ok " Y;.

In the elastic predicate single variable and scalar pairs
instrumentation schemes, variable values are observed throughout
executions of the failing program to create unique predicates at
each instrumented prograpoint. While elastic predicates require
more space and timeto compute than uniform and static
predicates, the expectation is that these predicates will have higher
importance scores and be beftture predictordecause they are
more tailored to théailing program. Experimental data about the
space and time used by ESP is provided in Section 4.

3.1 Importance Scores

Elastic predicatesand uniform and static predicatesquire two
data structures for each executed test case tputenimportance
scores.Importance scores are used to rank predicates. The two
data structures are: (1) a one bit feedback repyriadicating if

the test case was passed or failed and (2) a bit véRtbrwith

one bit for each instrumented predicate. WitlBl each bit
indicates if the corresponding predicate is observed to be true at
least once during executiof the test casgl7-19, 32] Once all

test cases have been executdts importance scores for each
predicate can be calculated from these data structures.



Throughait the development of CBI, Liblit et al. explored
several different formulas to compute importance scores for
predicateq17-19, 33. They determined that predicates that are
sensitive and specific should yield high importance scores.
Sensitive predicateaccountfor a high percentage of failed test

cases and specific predicates do not predict failure for successful

test casesThe ®nsitivity and specificity are computed as we
describe next. The data from each feedback reRomhd each
corresponding bitectorBV is aggregated into four measures for a
predicatep [17,19, 33:

1. S obs) andF(p obs)the numler of successful and failed
test casef which p was evaluated.
2. Yp) andF(p) the numler of successful and failed test cases

in which the value op was evaluated anfibund to be true.

Sensitivity: log(F(p))/log(NumB. NumF is the total number of
failing runs. This ratio describes the percentage of the failing test
cases the predicate accounts for.

Specificity: Increasép). Increasép) is the amount by tich p
being true increases the probability of failir over simply

reaching the statement wherés defined
F(p) . F(p obg
Increasép) =
S(p)+F(p) (pobg+F(poby

Sensitivity and specificity are combined via their harmonic mean.
This metric is the importance score for the predif¢a®e 33.

2

Importancép) = 1 1

Increasé€p) ¥ log(F(p))/log(NumF)

While the formula to compute importance scores for uniform
and static predicates and elastic predicates is the same, the scd
are not. The example in Section 3.2 highlights the differences.
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Figure 1: The source code of the more_arrays() function in the
1.06 version of the GNU implementation of BC.

Table 1: The topranked CBI predicates for more_arrays()

3.2 Example

"&Hename | Line | Function Predicate Importance
# Score
storage.c | 166 | more_arrays| a_count>0 0.1312
storage.c | 161 | more_arrays| old_count> 0| 0.1242

Applying CBI andESPto an example programsed in previous
fault localization studieselps elucidate the differences between
uniform and static predicates (CBI) and elastic predic&&$)(

Table 2: The top ranked ESP predicates for more_arrays()

Figure 1 showshie source code of thmore_arrays()  function
in the 1.06 version of the GNU implementation of ,BCbasic

commandline calculator too[17, 20]

Filename | Line | Functi | Predicate Importance
# on Score
storage.c | 176 | more_ | indx >p+3" 0.988
arrays
storagec | 176 | more_ | p+2" <indx! p+3" | 0.846
arrays

The more_arrays() function in BC is responsible for
increasingthe number of arrayseeded for computinglhe logic
within the function is an example of buffer reallocation. Line 167
allocates a larger chunk ofemory. Line 171 is the top of a loop
that copies values over from the old, smaller array. Line 176
completes the resize by zeroing out the new extra spaeeever,
there is a fault in the function. In this example, we apply the
single variable instrumertian scheme for CBI and ESP to
identify the fault inmore_arrays() . We use 1,000 randomly
generated valid B@rograms with various sizes and complexities

as test cases. This approach to generating test cases is modeled

after Liu et al.'s case study &C [20]. The top two ranked
predicats for the methods are shown iafille 1 andrable2.



The top ranked CBI predicates do not make the fault within for a single SME. Its goal is to identify failure predicting
more_arrays() easy to discern. The predicates direct the user predicates as effectively and efficignths possible for the test
to two different line numbers with similar impontze scores. casesprovided. Second, ESP employs nieastic predicates
These line numbers do not represent the program statemenglescribed in Section 3.1 and one uniform and static predicate at
containing the fault and do not have importance scores that areeach instrumented program point. The uniform and static
high. They are not good failure predictors. In contrast, the location predicate tests the instrumented program point to determine if it

of the fault and the cause of the failure are euidenhe top two equals zero. To ensure nromerlapping predidas it is always
ranked ESP predicates. The top ranked predicates shoindkat testedfirst. The inclusion of a uniform and static predicate in ESP
is unusually large in failing tesases The predicate suggests that is a reflection of how frequently used and important the vzdue
failures occur when the input to BC definem unusually large  is in software, exploratory onot [4]. Finally, ESP uses an
numbers of arrays. additional data structure to compute impocescores. Recall, for

each test case in a test suite both ESP and CBI require: (1) a one
bit feedback reportR, indicating if the test case was passed or
failed and (2) a bit vectoBV, with one bit for each instrumented
predicate. However, ESP implentgrelastic predicates with a
third data structure, am-by-n matrix, composed of 68it entries.

Examination ofmore_arr ays() reveals thehypothesis to
be true. The allocation on line 167 requests space_foount
items. The copying loop on line 171 ranges from 1 through
old_count - 1. The zeroing loop on line 176 continues on
from old_count  throughv_count - 1 . And hereESP finds
fault: the new storage buffer has room forcount elements,
but the second loop is incorrectly boundwyount instead.

Within the m-by-n matrix, m represents the number of
instrumented program points in the simulation ancepresents
the number of times a value is assigned farogram point within

The location of the fault and the cause of the failure are cleara test case. Each entry in the matrix isb@4 to enable double
after identification and explanatiorHowever this fault wes precision floatingpoint numbers to be recorded. As each test case
present and undiscoverefdr ten years inBC [17]. In this is executed, eacm-by-n matrix and each feedback repéttis
example, ESP is more effective than CBI because of the elasticfiled. Once all test cases have beexecuted the mean and
predicates it employs. The elastic predicates are based orstandard deviation foeach instrumented program polms been
observed variable values creatipartitions of test cases that more calculated. Then, the matrix for each test case is traversed and the
cloely match the subspaces where the faultdBl performs corresponding bit vectoBV is filled and importance scores are
poorly in this example because most of the values assigned to thealculated as they are in CBI.
variables in more_arrays() are greater than zero. Since the In practice n is small for the majority of instrumented

predicates used in CBI are gnlform and statlc_, most variable program points. The exceptions are program points within loops.

values at eeh program point satisfy the same predicate. The result p¢ 5 result, ESP employs resizable rows withinntiiy-n matrix,

is predicates with low specificity and importance SCOres. \pere each size increase is an order of magnitude (e.g. 10, 100,

Specifically, the value ofhdx in line 176 is always greater than 1,000, 10,00, 100,000). This approach manages space well for

zero resulting in a predicate without specificity. the benchmarks and simulations used in our evaluation.
The improved effectivesss provided by elastic predicates is Experimental data summarizing the distribution roffor our

not achieved without costldstic predicates requitbe mean and ~ evaluation is provided in Section 4.4.

standard deviation of each instrumented program point to be | js important to note that employing elastic gicates does
computed. Within ESP, these calculations take more space anghot require ammrby-n matrix. Instead, this data structure can be
time to computethan the unifam and static predicates used in  gjiminated in a nasve implementation at the cost of additional
CBI. Further analysis of thepace and time used SPfor the execution time. In this space efficient implementation, each test
programs in our evaluation Bovided in Section 4. case is executed and the mean and standardtideviaf each
predicdae arecomputed in an online manner. With the elastic
predicates defined each test case can be executed again and the

4. EVALUATION feedback reports and bit vectors can be filled as they are in CBI.
Along with our implementation of ESP, we implememht
4.1 Experimental setup versions of Tarantula, IVMP and CBI. These implementations

flect [L5], [12, 13, and [L7] respectively They are discussed in
ore detail in Section 4.1.3. Our experiments for each approach
were run on a server with two Intel Xeon quame processorat

3.00 GHz and 48 GB of RAM.

Recent research uses adaptive sampling to reduce the number cETE
predicatesthat need to be instrumented to achieve effective
statistical debugging result§2, 5. Parallelization of each
approach included inur evaluation is also possibl&/hile this
work can improve the efficiencpf each approachhere it is
ignored and only ave sequential implementations are
considered. Exploring the extent to which the efficiency BEP
can be improved by adaptive sampling approactses
parallelizationis an avenue for future work.

4.1.2 Subject programs and test suites

The subset ofprograms fronthe Siemens Benchmark Suitesed

for our experimentss listed in Table 3The programs, along with
their corresponding faulty versions arebtt cases, were obtaih
4.1.1 |mp|ementation and Hardware from [25]. All Siemens faulty versions contain seeded fqa®3.

Our implementation of ESP dely mirrors the published These faults are computatioelated (as opposed to memery
implementation of CBI with several exceptions. First, ESP does related), involving fault types such as operator and operand
not use random sampling of test case executions to reducenutations, missing and extraneous code, and constant value
overhead; it always employs complete monitoring of each testmutatims. Most faulty versions are seeded with a single fault in a
case execution. This difference reflects thféedént goals of ESP  single statement, but some faulty versions involve several
and CBI. ESP is deployed as a stafohe fault localization tool statementsSeveral faulty versions were excluded because they



did not yield any failing test s@s from the provided test cases considered. Given a list of predicates ranked by importance
Theseversions have been excluded in previous fault localization scores, ESP and CBI raskatements according to the following:
evaluations with the Siemens Benchmark S{itg 13. The
programs in Table 3 were chosen from thenf&rs Benchmark
Suite because they (1) contdioating-point computations o(2)
could be eayy modified to utilize stochastic distributions in a
meaningful way. These characteristics makenthgmilar to 2. Rank the statements 8T by importance score.

exploratory software and good candidates to test the effectiveness ) ) ) ] o
and efficiency of ESP against the best fault localizaton This statement rankg strategy is consistent with existing
alternatives The nodifications we made are described after each Predicatebased statistical debuggiagproaches0)].

program is introduced.

1. For each statement identify the corresponding predicate with
the highest importance score and move the statement and its
importance score to s8&fT.

CBI. CBl is a predicatdased statistical debugging approach that
employs uniform and static predicates. In our evaluation both the

Table 3: Siemers Benchmark Suite evaluation programs single variable and scalamaips instrumentation schemes for CBI

are considered. Existing implemtations of CBI only consider

Program| Lines Num. of | # of Test| Program Boolean, character, integer, or pointgped variables. However,
Name | of Code | Versions | Cases | Description in the interest of a fair evaluation we extend our implementation
tcas 138 41 1608 Altitude separator _of CBI to cor_wsider floatig-point type variables. Furthe_rmore, our
i _ implementation of CBI does not use random execution sampling
totinfo | 396 23 1052 Statistic to reduce overhead. Instead it completely monitors each test case
computation execution enabling the best possible effectiveness results for CBI.
sched 299 9 2650 Priority scheduler CBI ranks statemestusing the same process as ESP.
sched2 | 297 9 2710 Priority scheduler Tarantula. Statements within Tarantula are ranked in descending
order of suspiciousness. The suspiciousrass) of a statemerg
) ] failed(s)
Within our subset of the Siemens Benchmark Suite are four is defined as: _ totalFailed
programs: tcas, totinfo, sched and sched2. The pcagram susits) . failed(s) passeds) ¥
contains no loops and representse aconditional check spread FrotalEailed  totalPassed
across several functions; it takes as input a set of integer
parameters and reports one of three output vataéisfo reads a Here, failed(s) and passed(sjre the number of failing and

collection of numeric data tables as input and computes statisticpassing execigns in which s is included. totalFailed and
for each table as well amcrossall tables. Programs sched and totalPassedare the total number of failing and passing executions.
sched2are priority schedulers for processes, taking as input a
number of processeand alist of scheduling commands, and
outputting the processes as they complete in priority ofetar.
each faulty version of each programe alsocreated astochastic
version. For the totinfo and tcas programs we modified the value
of constants to be sampled from a uniform distribution with
minimum value of half the constant and a maximum value of one
and a half times the constar‘llhese moifications represent the statements before any faulty statement within theot&ed score
uncertainty of surrounding measurements usededploratory

- . statements cabe found.
software and also reflect the seeded constant mutation faults in theé

In our experiments, we rank only those program statements
that are executedy failing test casesusing the test suite
associated with each Uiy version of each programWhen
multiple statements are tied for a particular rank, all tied
statements are given a rank value equal to the maximum rank
value from among the tied atements. This reflects the
conservative assumptiothat a SME will exanine all tied

Siemens Benchmark Suit@5]. In the two priority scheduler To evaluate each approach we assign a score to each ranked
programs we modified the programs to im#uarrival times set of statements that is the percentage of program statements
drawn from a normal distribution for the process@dhis executed by failing test cas in the test suite that need not be
modification is consistent with existing queueisigwulations §]. examined given the rank order of the statements. Given a ranked
These stochastic versions represent benchmark programs that afést of statementsS, where the faulty statement occurs at rank
similar to exploratory software. Our stochastic nséms andn total statements are executed by failing test casesctire
Benchmark Suite isavailable[26]. for the approach iscordS) = (n-r)/n* 100.

Finally, there are two details pertaining to certain types of

It i . h q . faults. First, for IVMP, faults in constant assignment statements
4.1.3 Fault localization approaches and scoring (15 out of a total of 82 faulty versions), cannot be found.

In our experiments weoenpare the fault localization effectiveness However. IVMP can detect faults in thetatements where the
of the following fourapproachs that rank program statements. constant representing the fault is used. To conservatively evaluate

IVMP. Within IVMP, eachstatement's rankings basedon the our effectiveness against IVMP we consider a constant
number of failing executions in which a state alteration within the @sSignment statement to be examined by a SME when the
statement results in a passing execution. Any ties within this @Signment statement is examined or when a statementitgxplic

scheme are broken using the Tarantula suspiciousness formul&Sing the constant is examined. Second, faults that involve
described in this section. missing statements (16 of the 82 faulty versions) cannot be ranked

and examined by a user because they are missing. For these
ESP. ESP is a predatebased statistical debugging approach that versions the statements directly adjacent to the missing code
employs elastic predicates. In this evaluation both the single qudify as the faulty statement. These two issues are not unique
variable and scalar pairs instrumentation schemes for ESP areand are handled the same way in previeesuations 12, 13.



4.1.4 Identifying important predicates and scoring
In our experiments walsocompare the effectiveness of CBI and

ESP in terms of ideifying failure predicting predicates. We )
measure the highest importance score returned by each approacl £ w0 - |VMmP
for each faulty version of each program in both versions of the ; -®-Tarantula
Siemens Benchmark Suite. This is a traditional evaluation of 3 % -B-CBI SP
effectiveness for predicateased statistical debugging approaches % 4 -A'ESP_SP
and is described further in Section 236, 17, 19, 3P = B

20
4.2 Statement Ranking Effectiveness o A
Our experimental resultbor the Siemens Benchmark Suiee % % B H @ @ o % H T o
shown for each of the statemteanking approaches iRigures2- Score

5. In the figuresthe xaxis represents the lower bound of each
score rangeand the yaxis represents the percentage of faulty
versionswith a scae greater than or equal to thewer bound

Figures 2 and 3how thepercentagef faulty versions in whuh

each approach computes a ranked list of statements in the 10
specified score rangéor the traditional Siemens Benchmark %
Suite. Figure 2 shows these results for IVMP, Tarantula, ESP and
CBI under the single variable instrumentation scheme. Figure 3

Figure 3: Statement ranking approaches with ESP and CBI
scalar pairs for the Siemens Benchmark Suite that does not
use stochastic distributions.

80

shows he results for IVMP, Tarantula, ESP and CBI under the é 70

scalar pairs instrumentation scheme. Figures 4 and 5 show the § o - IVMP
same data as Figure 2 and 3 respectively, except they reflect the >

Siemens Benchmark Suite that uses stochastic distribulibese 3 "¢ Terantula
preseraitions of data followthe convention of Jones et §15]. G 40 CBLVAR
However, whereadones et al. computes scores with respect to the = “A-ESP_VAR
total number of program statements, we compute scores with

respect to the total number of statemesxscutedby failing test 0

casesin the suite.Figures 2 and 3 show that for the traditional 10

Siemens Benchmark Suite the IVMP approach and ESP overall ‘ ‘ ‘

perform much better than Tarantula or CBI. However rédseilts 0 % 8 70 6 5 4 3 20 1 0

Score

significantly changdor the Siemens Benchmark Suite that uses
stochastidistributions asshown in Figure 4 and 5. IVMP is no Figure 4: Statement ranking approaches with ESP and CBI
longer an effective approach because failing test cases executionsingle variable forthe traditional Siemens Benchmark Suite.

are not necessarily repeatable. As a result ESpPedorms any

alternative. \@ examine the data for each approach. 10
90
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S 70
80 °
« L 60
5 e z ~+-IVMP
w —_
o 3 > -®-Tarantula
> 60 w
> =®-Tarantula %5 40 -B-CBI_SP
3% - R 3
2 CBI_VAR 30 -A-ESP_SP
G 40
™ —-ESP_VAR 2
30
10
20
10 ® 100 9 80 70 60 5 40 30 20 10 0
Score
0 . . .
10 %0 & 70 60 S 40 30 20 10 0 Figure 5: Statement ranking approaches with ESP and CBI
Score single variable for Siemens Benchmark Suite that does use
Figure 2: Statement ranking approaches with ESP and CBI stochastic distributions.

single variable forthe traditional Siemens Benchmark Suite.

4.2.1 ESP vs. IVMP

Within the traditional Siemens Benchmark Suite that does not use
stochastic distributions IVMP performs better than ESP for tcas,
sched and sched2. In these programs IVMP had a score of 90% or
higher 40 times while ESP only had a score d%3fr higher 32



times. However, ESP performed well for the totinfo program, 4.2.3 ESP vs. Tarantula
which frequently employs floatirgoint computations, and IVMP along with ESP and CBI, the Tarantula approach did not

did not. Within totinfo it is very difficult for IVMP to perform experience a significant decrease in effectiveness when applied to
state alterations that cause a failing test case a®s.pThis  the Siemens Benchmark Suite that uses stochastic distributions.
difficulty is due to the level of precision in the floatipgint However, compared &SR, Tarantuh is not effectivefor either

computations that generate the programOs output. As a result th@ersion of the Siemens Benchmark Suiter the traditionabuite
approach resorts to the ranking system in Tarantula for mostthe single variable instrumentation scheme of E&&s able to
statements. In the evaluation IVMP performs the sasmar avorse uniquey identify the statement containg the fault (assign it rank
than Tarantula for 15 of the 23 faulty versions of totinfo. 1) in 14 cases. Tarantula wable to do so in only 3 casdsen
Within the Siemens Benchmark Suite that does use stochastidhough theESPapproach was able to uniquely idigy the faulty
distributions IVMP performs poorly. This is because the suite Statementin 14ases, only 9 cases yielded scores of 99% or more
does not meet the staadteration approach requirement, which because in the tcas prograhe number of statemerggecuted in
requires a failing test case to fail each time it is executed. Whenfailing test caseastoo few to yield a score &9%.
applying IVMP to software that does not meet this requirement
statealterations that cause failing test cases to pass are harder to
identify and not asneaningful L2, 13. They cannot bésolated 4.3 Importance Score Ranking Effectiveness
from variations in the execution trace that are caused by theExisting studies show that when SMEs or developers are provided
stochastic distributions.Furthermore, the use of stochastic with a good failure predicting predicate they are able to quickly
distributions introduces more floatiqgpint computations into the  identify the fault within a program whether the fpicede
programs, which IVMP does not always handle well. corresponds to the statement containing the fault oriit The
importance score of the highest ranked predicate reflects this
measure of effectivenesBigure 6 shows the importance score of
4.2.2 ESP . CBI the highest ranked predicate for both ESP and CBI ler t
ESP performs better than CBI under both instrumentation traditional Siemens Benchmark Suite. Figure 7 shows the same
schemes for the traditional Siemens Benchmark Suite and thedata for the suite that uses stochastic distributions. In the figures
suite that uses stochastic distributions. Under the single variablethe xaxis represents the lower bound of eauiportancescore
instrumentation scheme there are only 21 out of the total 164range, and the-gxis represents the percentage of faukysions
faulty program versionsvhere ESP assigned a lower rank to the with ascae greater than or equal to tlosver bound.
statement containing the faulian CBIl. These instances were a
result of two different scenarios. the first scenario the fault is
triggered in a small number of test cases by several védues
program point that argreater than zero bunly slightly larger
than all other observed values. hretsecond scenario the fault is
triggered in asmall number of test cases by several values for a
program point that arless than zero bumly slightly smaller than  the importance scores and statement ranks of theicelast
all other observed values. In both scenarios a uniform and staticyregicates in ESP reflect this for both versions of the Siemens
predicate which tests if the values for a program point are greatefggnchmark Suite. The figures also explain the poor performance
or less than zergs more specific to the failurthan the elastic ¢ cg|®s scalar pairs scheme in our statement ranking evaluation.
predicate used in ESP. The elasticdicate clusters all the similar 1o yniform and  static predicates are unable to identify
values together while the uniform and static predicate separateggjationships between variablésat are only violatedn failing
those values that trigger the fault from the other similar values. (ot cases yielding few high scoring predicates. In contrast, the
Under the single variable instrumentation scheme ESP andelastic predicates adapt to observed differences in variable values
CBI assigned the same rank to thatament containing the fault  yielding many high scoring predicates and an effectivecsupr.
in 36 other cases. In theses cases the uniform and static predicatr
used in both approaches identifies the fault. In the remaining 107
cases ESP outperforms CBI. ESPOs performance is attributed ti
elastic predicates, which nds in predicates with higher
importance scores and better fault localization capabilities. The
importance scores for CBl and ESP are examined further in

The trends in the importance scores in Figures 6 and 7 are
similar to the trends in the statement ranking scores in Figures 2
5; ESP outperforms CBI by a similar margin. Yhere related.

The dastic predicates do a better job of creating partitions of test
cases where the fault is and it not expressed than the uniform and
static predicates. This leads to a better ability to identify faults.

90

70

% of Faulty Versions
g

section 4.3. HCBLVAR
~ . a0 —-ESP_VAR

_ CBIOs ~ poor per_formance under the_ sca_lar pairs “ BCal_sp

instrumentation scheme is noteworthy. B traditional Siemens A-ESp P

Benchmark Suite it only slightly outperforms Tarantula, an o -

efficient approach that only analyzes statements, not variable 1

values. This poor performance is consistent wita Liu et al. °

evaluation of CBI for the Siemens Benchm&tite [20]. In this 099 09 08 07 06 05 04 03 02 01 0

evaluation the scalar pairs instrumentation scheme did not add any Importance Score

effectiveness to CBI compared to the other impated Fi 6 Highest i . ated  with
instrumentation scheme&SP offers a significant improvement lgure ©. Righest importance score associaled with a

over CBI for the scalar paigchemewhich we discusi Section ~ Predicate for ESP and CBI for the traditional Siemens
4.3. Benchmark Suite.



100 Tarantuladoes not analyze variable computations so it does not

% reflect these factors. However, the otheprapches do analyze
80 variable computations and reflect the computational
5 characteristics of tcas and totinfo.
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Figure 7: Highest importance score associated with a 02
predicate for ESP and CBI for the Siemens Benchmark Suite 01
that usesstochastic distributions. 0
sched sched2 tcas totinfo

Figure 9: RP for each statement ranking approach for the
programs in the Siemens Benchmark Suite that use stochastic
distributions.

Overall, the results of Section 4.2 and 4.3 demonstrate that
ESP is more effective than CBI for both the traditional Siemens
Benchmark Suite and the version that uses stochastic
distributions. Furthermore, for the version thaes stochastic
distributions ESP is the most effective fault localization approach. Given theseexpected fluctuations, the relative performance
Also, ESP approaches the effectiveness of the best availablesf ESP and CBI is independent of the programs in the evaluation
approach for the traditional Siemens Benchmark Suite, which o which they are appliedVMP is not. For thehe traditional and
existing fault localization tools target. Next weptore how ESP  stochastic versions of the totinfo progréme relative performance
performs compared to the other approaches in terms of efficiency. of |vMP approaches zero. This drastic detgation is due to

severalfailing totinfo test case executions that IVMP repeatedly

re-executes iman attempt to find state alterations resulting in a
4.4 Efﬁciency passing execution. IVMRs the only approach in our evaluation
Figures 8 and 9 summarize the efficiency results for our that reexecutes failing test cases. As a resolt some programs,
evaluation. Tarantula is the most efficient approach in our study Such as totinfo, repeated-eeecutions of failing test cases will be
because it only takes into account statat coverage information  required, making IVMP inefficient.
of passing and failing test cases. The other approaches also  Figures 8 and 9 alsddhlight the extra time requiresthen
analyze the values of variables. As a result, we compute theESP and CBI are used in theafar pairs instrumentation scheme
efficiency of each approach relative to TarantulaOs. This relativeas opposed to the single variable scheme. While the extra time

_ _ timer,anwia required for these approaches does not result in improved
performance measure iRP= t— effectiveness for the Siemens Benchmark Suite, the scalar pairs
IM&her scheme has been shown to be effectivCBI for several widely
1 used programs 17]. Several performance optimizations for the
09 scalar pairs scheme am@dso availablein [17]. These are not

implemented for ESP or CBI in our evaluation.

< o7 - IVMP We expected thelifference in therelative performance of
£ o6 -B-CBI_VAR ESP and CBI to beapproximately constant throughout the
g os —&-ESP_VAR evaluation ESP and CBbothemploy a set number of predicates
5 BCBI P at each instrumented program point resulting in relative
v AESp Sp performance that is independent of the faulty program. Recall, the
& 03 - difference inthe implementation of CBI and ESP is the additional
€ 02 data structure, am-by-n matrix, employed by ESP to construct

01 elastic predicates. Within ESP, the matrix is generated for each

executed test case. The rows in the matrix hold the values
assigned to insimented program points. Figure 10 shows the

sched sched2 tcas totinfo Ts X i )
distribution of the length of each row in the matrices for the
Figure 8: RP for each statement ranking approach for the Siemens Benchmark Suite that uses stochastic distributitwes. T
programs in the traditional Siemens Benchmark Suite. x-axis represents thkength of each matrix rovand the yaxis
represents the pemtgge ofmatrices with a row of the specified
. . . length. Each axis is at log scale. The distribution of the row length
Figures 8 and 9 reveal several trends in ftetative for the traditional Siemens Benchmark Suite is similar.
performanceof the appraches in our evaluation.aEh approach . )
improves for the tcas benchmark and rdegs for the totinfo Figure 10 shows that for more than 99% of the matrices the

benchmarkThe tcas and totinfo programs are the least and most!€ngth of each row is 5@r less. Furthermore, for ~95% of the
computationally intensive programis the suite respectively matrices the length of each row is 10 or less. In future work we



will explore more efficient approaches for storing the values italicized. For thisportion of the evaluation ESP and CBsed
assigned for an instrumented program point. However, for the only the single variable instrumentation scheme.
Siemens Benchmark Suite thddi#ional matrix required by ESP

is a compact data structure for most program points.
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Table 5: Effectiveness and efficiency results

Sim. Name

Faulty Statement Rank
(ESP, CBI, IVMP, Tar)

Importance
Score

(ESP, CBI)

RP

TCP
Protocol

(1, 16, 138, 144)

(1.00 0.925)

.30951

CPU Disk

(3, 96, 64, 213)

(0.985 0.765)

.32508

D Scheduling

log(density)
7

{ Table 5 shows that ESP is capable of significant
improvements in fault localization effectiveness ovee thest
available alternatives foranalyzing widely usedexploratory
software Moreover, the decrease in relative performance for ESP
remained constant when compared to Tarantula. These efficiency
results seem reasonable in an automated context consid@rjng:
the significant improvement in the rank of the statements
containing the fault and (2) the ability to find better failure
predicting predicates with higher importance scores than existing
approaches. Even though these simulations are significarglrlar
than the Siemens Benchmark Suite, ESPOs performance relative to
Tarantula is approximately the same as it was in the Siemens
Benchmark Suite. These results illustrate that it is not program
size that determines the efficiency of our approach, but the

ESP approaches the effectiveness of the beatladle fault number of test cases included with the program. This has been

localization approach, IVMP, for the traditional Siemens shown to be the limiting factor of efficiency for existing

Benchmark Suite in less time. Furthermore, ESP outperforms allPredicatebased statistical debuggiagproaches0].

other approaches for a version of the suite that shares

characteristics of ESPOs target domain, exploratory software. ESP

achieves this effectiveness with only a constant decrease in4.6 Multiple Faults

efficiency relative to the most efficient approach in our Several of the cases in the Siemens Benchmark Soitéain

evaluation, Tarantula. Next we will evaluate ESP against the bestmultiple faults. This is not uncommon; many examples of

fault localization alternatives for two widely used simulations. exploratory softwarealso contain multile faults. In our
evaluation, eaclfault localizationappro&h was only required to
identify one fault per progranThis allowed us to conservatively

4.5 Widely Used Simulations evaluate the féectiveness of ESP againstthe best available

We conducted additional experiments to determine how alternativefor the SiemenBenChmarlGUite, IVMP. HOWeVer, in

effectively and efficiently ESP localizes faults for two widely —Programs with multiple faults IVMP's effectiveness can diminish

used simulations. The simulations in the evaluation are shown inlt is difficult for IVMP to differentiate amongnultiples faults in a

Table 4.0ne fault similar to those in the Siemens Bémark program beause it has trouble identifyingtate alterations in
Suite,is seededn each simulation failing test cases that have different effects on the program output

[12]. Several modifications to IVMP have beenggested to
address this issuélowever, these modifications can make IVMP

0.0001

1 5 10 50 100 500 1000
log(length of each row in m-by-n matrix)

Figure 10: The distribution of the length of each row in each
of the m-by-n matrices used by ESPNote the log scales.

Table 4: Evaluated simulations and simulators

even more iafficient and do not guarantee multiple faults are
distinguished from one anothgk3]. In contrast, the effectivese

Sim. Name Modified Simulator Total Li
Ofog()de:nes and efficiency of ESP, CBI and other existing predidzsed
statistical debugging approaches does not diminish. ESP uses the
TCP Protocol ns-2 Network Simulatof21] 11458 following establishedalgorithm that guarantees a SMEfailure
_ i _ predicting predicate for each fault in a progrdi, 33.
CPU Scheduling | QueueingToolkit [24] 2561 . . . .
1. Rank each predicate in descending by importance score.

2. Remove the topanked predicatp and discard all test cases
For each simulatiorthe rank of the statement containing the where they was found tde true.
fault for each of the approaches is shown in Table 5.RMand
importance score of the highest ranked predicate in ESP and CBI™
are also provided. The best rank and highest importance score

among the approachesrfeach simulation are shown in bold and

Repeat steps 1 and 2 until the set of test cases is empty or the
set of predicates is empty.



5. CONCLUSION

SMEs can struggle for decades with separating valid, but

unexpected, exploratory software outcomes from failulléss
remains an open probelm However, we have developed a
predicatebased statistical

elastic predicates. The result is improvedeefifreness. ESP
outperforms the best alternatives in exploratory software
applicationsand performs as well as thebest alternative for
traditionally targeted softwardn future work, we will explore

debugging method, ESP, which
localizes sources of unexpected outcomes. ESP replaces the
uniform and static predicates used in existing approaches with

Proc. of the 2009 IEEE Int. Cordn Software Maintenance
221-230,20009.

[14] L. Jiang and Z. Su. Profilguided program simplification for
effective testing and analysis. Rroc. of the 16th ACM
SIGSOFT Int. Symp. on Foundations of Software
Engineering 48-58, 2008.

[15] J. A. Jones and M. J. Harrold. Empirical evaluation of the
Tarantula automatic faulbcalization technique. IRroc. of
the 20th IEEE/ACM Int. Conf. on Automatedt®are
Engineering 273282, 2005.

adaptive sampling approaches to reduce the programtspoin [16] B. Korel and J. Laski. Dynamic program slicitigformation

instrumented with elastic predicates in ESP and automate the

selection of parameters within ESPOs elastic predicates.
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