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ABSTRACT 
An important class of software, including simulations and 
computational models, employs stochastic distributions to 
represent, or support evaluation of, uncertainty in an underlying 
model.  This class of software presents three interesting analysis 
challenges:  1) effective localization of the sources of unexpected 
outcomes; 2) effective treatment of stochastic distributions and the 
floating-point computations that generally accompany them and 
3) separation of unexpected outcomes: disassociating valid, but 
unexpected, results from those reflecting software failure. 
Traditional debugging and fault localization methods [2-6, 11-15, 
17-20, 23, 28, 30-32] have addressed primarily the first challenge, 
namely localization of sources of faults while assuming character, 
Boolean, integer and pointer operations. While these methods are 
effective in general, they are not tailored to software that uses 
stochastic distributions and floating-point computations. Thus 
there is opportunity.  We introduce ESP, a novel approach to 
predicate-based statistical debugging.  ESP localizes sources of 
unexpected outcomes in software using stochastic distributions 
and floating-point operations, thus addressing the first two 
aforementioned challenges. ESP predicates are elastic rather than 
uniform and static; each predicate adapts to variable values 
observed at its program instrumentation point. We present 
experimental results for established fault localization benchmarks 
and widely used simulations. For benchmarks employing 
stochastic distributions, ESP outperforms the best alternatives: 
Interesting Value Map Pair (IVMP), Cooperative Bug Isolation 
(CBI) and Tarantula. For traditional benchmarks, ESP performs 
similar to IVMP and outperforms CBI and Tarantula. 

Categories and Subject Descriptors 
D.3.4 [Programming Languages]: Processors Ð Debuggers.  

D.2.5 [Software Engineering]: Testing and Debugging Ð 
Debugging aids, Testing tools, Tracing.  

General Terms 
Algorithms, Measurement, Experimentation 

Keywords 
automated debugging, fault localization, exploratory software  

1. INTRODU CTION  
Our interest is in exploratory software. Exploratory software 
includes stochastic distributions, and the floating-point 
computations that generally accompany them. Typically 
exploratory software is used for exploration of uncertainties in an 
underlying model. Simulations and computational models are 
examples of exploratory software and have become a common 
tool for subject matter experts (SMEs) in a variety of disciplines 
[8].  Predictions based on exploratory software outcomes have 
entered the mainstream of critical public policy and research 
decision-making practices, often affecting large numbers of 
people and valuable resources. Unfortunately SMEs can struggle 
for decades with the resolution of unexpected exploratory 
software outcomes.  Their methods are generally manual and do 
not scale.  Automated analysis to localize the sources of 
unexpected exploratory software outcomes will be beneficial. 

Prior work in automatically localizing sources of unexpected 
software outcomes has focused on fault localization. Fault 
localization is the process of narrowing or guiding the search 
through source code to help a SME or developer find statements 
containing faults that cause software failures. The use of 
stochastic distributions defies fault localization approaches that 

depend on repeatable execution traces and outcomes [6, 12, 13].  
Furthermore, floating-point operations that typically accompany 
stochastic distributions exceed the capabilities of other existing 
fault localization methods [2, 3, 17-19, 30].  Unexpected 
exploratory software outcomes can reflect new knowledge about 
the underlying model, or a fault. Currently there is no known 
automated analysis method for separating them.  These challenges 
represent the basis of our motivation.  

Separating unexpected valid outcomes from software failures 
is an interesting, difficult problem.  We have not solved it.  
However, our predicate-based statistical debugger, Exploratory 
Software Predictor (ESP), does localize sources of the broader 
class of unexpected outcomes effectively in software employing 
stochastic distributions and floating-point operations. ESP is 
novel, and it extends the domain of programs for which fault 
localization analysis is effective. 

Our interest extends to software where model uncertainty is 
not a factor, but stochastic distributions and floating-point 
computations are present. Our interest is due to the challenge their 
presence creates for existing fault localization approaches.  ESP 
performs effectively for these programs and for the traditional 
programs fault localization techniques have targeted.  

ESP is a predicate-based statistical debugging approach 
focused on identifying single or multiple sources of unexpected 
outcomes in exploratory software. Predicate-based statistical 
debugging approaches, such as ESP, represent a class of fault 
localization techniques that share a common structure. Each 
approach consists of a set of conditional propositions, or 
predicates, tested at particular program points. The predicates are 
given an importance score based on how frequently they are true 
in the passing and failing test cases for a failing program. A single 
predicate can be thought of as partitioning the space of all test 
cases into two subspaces: those satisfying the predicate and those 
not. The more closely the partitions created by a predicate match 
the subspaces where the fault is and is not expressed, the better 
fault predictor the predicate is [17, 19]. The predicates are ranked, 
based on their importance score. The rankings and scores are 
provided to SMEs to help in finding and fixing the faults.  

In existing predicate-based statistical debugging approaches, 
predicates are uniform and static. The predicates are uniform in 
the sense that the same set of conditional propositions is tested at 
each program point. The predicates are static because each 
conditional proposition being tested is determined before the 
execution of the program. ESP moves beyond uniform and static 
predicates to elastic predicates. In ESP, as the program is 
executed the variable values at each program point are observed. 
For each program point, similar observed values are clustered to 
create unique conditional propositions. The unique conditional 
propositions for each program point are elastic predicates. Elastic 
predicates create partitions of test cases that more closely match 
the subspaces where an unexpected outcome is and is not 
expressed. The result is improved effectiveness. ESP offers 
improved effectiveness over existing fault localization techniques 
in terms of: (1) statement based rankings over a set of established 
benchmarks and several widely used simulations and (2) the 
importance scores associated with each predicate. 
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2. RELATED WORK  
We begin with a review of currently accepted definitions for the 
terms failure, error  and fault. A failure occurs when the observed 
behavior of a program differs from the expected behavior. An 
error represents part of the program state that may lead to the 
failure. A fault is the cause of the error in the program [22].  

There is no body of literature that specifically addresses the 
analysis of exploratory software outcomes; exploratory software 
possesses attributes that have typically been neglected or avoided. 
Software debugging methods come the closest to addressing the 
needs for analyzing unexpected exploratory software outcomes. 
Here, we review portions of that literature related to ESP. 

 

2.1 Automatically Repairing Software Faults 
Several approaches automatically assist developers in fixing 
failing software. He and Gupta use path-based weakest 
preconditions to automatically generate program modifications to 
correct a fault within a function provided the function has formal 
pre and post conditions [11]. More approaches employ machine-
learning algorithms to automatically repair faults in off -the-shelf 
legacy software [28]. While these approaches do not rely on 
formal specifications, they do require a failed test case that 
demonstrates the bug and a number of other test cases that encode 
the required functionality of the program. Due to the nature of 
exploratory software, this is not generally possible for SMEs. 
Furthermore, fault location is a prerequisite to repair. 
Improvements in locating faults will improve repair solutions.  

 

2.2 Slicing-based Fault Localization 
Slicing-based fault localization identifies faulty statements 
through static, dynamic and relevant slicing. Each of these slicing 
approaches is defined and described. Static slicing identifies a 
subset of program statements that may influence the value of a 
variable at a program location [27, 29]. Static slices are used in 
static fault localization approaches, such as FindBugs, to help 
identify predefined faulty patterns [4]. Dynamic approaches 
identify a subset of program statements that do influence the value 
of a variable at a particular point in a given dynamic program 
execution [1, 16, 30]. The concept of relevant slicing has also 
been studied to incorporate potential dependencies. Relevant 
slices computed from the point of an incorrect variable value can 
identify the subset of statements that could have contributed to the 
incorrect value. This subset is likely to contain a fault and is 
significantly smaller than the set of all program statements [27].  

 

2.3 Statistical Debugging 
Statistical debugging uses data collected during the execution of 
passing and failing test cases to rank predicates and statements 
based on the likelihood they contain a fault. Jiang and Su [14] 
construct control flow paths linking high ranking predicates to 
explain software failures. The Nearest Neighbor approach 
searches for a passing test case execution that is most similar to a 
failing test case execution, contrasts the two executions, and uses 
the information to identify the most suspicious parts of the 
program [23]. SOBER models the evaluation patterns of 
predicates in passing and failing test cases, and considers a 
predicate to be relevant to a fault if its evaluation pattern in failing 
test cases significantly differs from the observed pattern in 
passing test cases [20]. In recent fault localization evaluations 

using the Siemens Benchmark Suite [25], two approaches stand 
out in terms of efficiency and effectiveness: Tarantula and CBI [2, 
5, 6, 12, 15, 20]. We describe each further.  

Tarantula is a statistical debugging approach that analyzes 
how frequently a program statement is executed in passing and 
failing test cases. It has been shown to be one of the most 
effective and efficient fault localization approaches for identifying 
faulty statements in the Siemens Benchmark Suite [15]. The 
approach is efficient because it only takes into account statement 
coverage information of passing and failing test cases. However, 
its effectiveness is limited due to its inability to analyze values of 
variables within the program [6, 12].  

CBI employs predicate-based statistical debugging [17]. CBI 
uses instrumentation to collect feedback reports that describe 
which predicates are observed in a test case as well as the 
outcome of the test case. CBI assigns an importance score to all 
predicates and outputs a complete list of predicates and their 
importance scores in descending order. A developer or SME uses 
the list to identify areas of the program related to the observed 
failure. Section 3.2 describes how importance scores for 
predicates are computed in CBI. Using predicates ranked by 
importance scores, CBI has identified previously unknown faults 
in several widely used applications [17-19, 32]. SOBER was 
shown to be slightly more effective than a variant of CBI [20]. 
However, this was prior to CBIÕs use of importance scores, which 
significantly improve its effectiveness.  

Several enhancements have been studied for CBI and other 
predicate-based statistical debugging approaches. HOLMES and 
Adaptive Bug Isolation can significantly reduce the number of 
program points that need to be instrumented and monitored to 
identify predicates with high importance scores [2, 5]. Reduction 
in the number of instrumented program points can improve the 
overall efficiency of CBI but it does not improve the 
effectiveness. Another enhancement, compound Boolean 
predicates, combines predicates with Boolean formulae to create a 
richer predicate vocabulary [3]. Compound Boolean predicates 
and elastic predicates improve the effectiveness of predicate-
based statistical debugging approaches in a complementary 
fashion. Compound Boolean predicates offer a richer vocabulary 
while elastic predicates offer more precise predicates. Their 
possible combination has not yet been explored.  

 

2.4 State-altering Fault Localization 
State alteration approaches modify the program state of an 
executing program in an attempt to isolate faults. In the Delta 
Debugging framework, failure-inducing input is identified that 
allows for the computation of cause-effect chains for failures that 
are linked to faulty statements [6]. This is accomplished by 
swapping the values of variables between one passing and one 
failing test case. Predicate Switching is another state alteration 
approach which attempts to isolate faulty statements by 
identifying predicates whose outcomes can be altered during a 
failing test case to cause the test case to pass [31]. The most 
effective state-alteration approach, when evaluated with the 
Siemens Benchmark Suite, is IVMP. IVMP is a value profile 
based approach that involves searching for the program statements 
that can be shown to affect the output of a failing execution such 
that the incorrect output becomes correct. This is done by 
replacing the values used at a statement during the execution of a 
failing test case with an alternate set of values, then determining 
whether the altered execution passes the test case. The successful 
changes often occur at statements containing faults or statements 



that are directly linked to statements containing faults through 
data or control-flow dependencies [12, 13].  

State-altering approaches are not always effective for 
programs that use stochastic distributions. These approaches 
require an unaltered failing test case to fail every time it is 
executed [6, 12]. This requirement enables variable values in a 
failing test case to be identified and altered to attempt to create a 
passing test case. However, stochastic distributions cause some 
variable values to vary from execution to execution. These values 
can result in a test case that passes one time it is executed and fails 
another violating the requirement and diminishing the 
effectiveness of the method as a result.  

 

3. ELASTIC PREDICATES  
Numerous statistical debugging approaches have been proposed to 
identify predicates that are good failure predictors [14, 17-20, 31, 
32]. The most effective of these approaches analyze variable 
values within a program. However, accounting for all possible 
values at each assignment to a given variable is impractical [17]. 
Instead, these approaches utilize an instrumentation scheme with 
uniform and static predicates at each variable assignment 
statement. This instrumentation scheme is referred to as single 
variable and is an extension of the returns scheme in CBI. The 
most common single variable scheme for an assignment to a 
variable 

! 

x uses these predicates [17]: 

1. 

! 

x < 0 

2. 

! 

x = 0 

3. 

! 

x > 0 

The elastic predicates used in ESP replace uniform and static 
predicates. ESP provides a single variable instrumentation scheme 
that records the mean, 

! 

µx, and standard deviation, 

! 

" x, for a 

given variable  for all test case executions. Using 

! 

µx and 

! 

" x 
these predicates are constructed:  

1. 

! 

µx " l# x( ) > x 

2. 

! 

µx " k# x( ) $ x < µx " j# x( )  

3. 

! 

µx = x  

4. 

! 

µx + j" x( ) # x < µx + k" x( )  

5. 

! 

µx + l" x( ) > x  

For the predicates 0 !  j < k !  l is assumed. In ESP the default 
nine elastic predicates for the single variable instrumentation 
scheme are: j={0,1,2}, k={1,2,3}, l= {3}.  These predicates 
partition the values for an instrumented program point for three 
standard deviations above and below the mean of 

! 

x. 

Multiple variables within a program can have important 
relationships that cannot be captured with a single variable 
instrumentation scheme. The Daikon project identifies implicit 
invariants to aide program evolution and understanding [7]. ESP 
and existing predicate-based statistical debugging approaches 
identify near-invariants that are only violated when the program 
fails test cases. This instrumentation scheme is called scalar pairs 
[17]. Within CBI the scalar pairs scheme instruments assignments 
to character, integer and pointer typed variables. ESP extends the 

scheme to floating-point typed variables. The name scalar-pairs 
refers to the data type of the variables.  

In existing predicate-based statistical debugging approaches, 
the scalar pairs scheme examines possible invariants from a 
uniform, static set. At each assignment to a variable 

! 

x, these 
approaches identify all other same-typed local or global variables 

! 

y1,y2,...,yn that are currently in scope. For each pair of 

variables 

! 

x,yi( ) the scheme compares the new value of 

! 

x with 

the existing value of 

! 

yi with these predicates [17]: 

1. 

! 

x < yi  

2. 

! 

x = yi  

3. 

! 

x > yi  

In ESP, the mean 

! 

µx" yi
 and standard deviation 

! 

" x#yi
 of 

the difference between the new value of 

! 

x and the existing value 

of 

! 

yi , is computed for each pair of variables 

! 

x,yi( ). Using 

! 

µx" yi
 and 

! 

" x#yi
 these elastic predicates are constructed: 

1. 

! 

µx" yi
" l# x" yi( ) > x " yi  

2. 

! 

µx" yi
" k# x" yi( ) $ x " yi < µx" yi

" j# x" yi( )  

3. 

! 

µx" yi
= x " yi  

4. 

! 

µx" yi
+ k# x" yi( ) $ x " yi < µx" yi

+ j# x" yi( )  

5. 

! 

µx" yi
+ l# x" yi( ) < x " yi  

Again, for the elastic predicates 0 !  j < k !  l is assumed. The 
default values for j, k and l are the same as for the single variable 
scheme. These default elastic predicates partition the values for an 
instrumented program point for three standard deviations above 
and below the mean of 

! 

x " yi . 

In the elastic predicate single variable and scalar pairs 
instrumentation schemes, variable values are observed throughout 
executions of the failing program to create unique predicates at 
each instrumented program point. While elastic predicates require 
more space and time to compute than uniform and static 
predicates, the expectation is that these predicates will have higher 
importance scores and be better failure predictors because they are 
more tailored to the failing program. Experimental data about the 
space and time used by ESP is provided in Section 4.  

 

3.1 Importance Scores 
Elastic predicates and uniform and static predicates require two 
data structures for each executed test case to compute importance 
scores. Importance scores are used to rank predicates. The two 
data structures are: (1) a one bit feedback report, R, indicating if 
the test case was passed or failed and (2) a bit vector, BV, with 
one bit for each instrumented predicate. Within BV each bit 
indicates if the corresponding predicate is observed to be true at 
least once during execution of the test case [17-19, 32].  Once all 
test cases have been executed, the importance scores for each 
predicate can be calculated from these data structures. 

!  

x



Throughout the development of CBI, Liblit et al. explored 
several different formulas to compute importance scores for 
predicates [17-19, 32]. They determined that predicates that are 
sensitive and specific should yield high importance scores. 
Sensitive predicates account for a high percentage of failed test 
cases and specific predicates do not predict failure for successful 
test cases. The sensitivity and specificity are computed as we 
describe next. The data from each feedback report R and each 
corresponding bit vector BV is aggregated into four measures for a 
predicate p [17, 19, 32]: 

1. S(p obs) and F(p obs) the number of successful and failed 
test cases in which p was evaluated. 

2. S(p) and F(p) the number of successful and failed test cases 
in which the value of p was evaluated and found to be true. 

Sensitivity: log(F(p))/log(NumF). NumF is the total number of 
failing runs. This ratio describes the percentage of the failing test 
cases the predicate accounts for. 

Specificity: Increase(p). Increase(p) is the amount by which p 
being true increases the probability of failure over simply 
reaching the statement where p is defined.    

! 

Increase(p) =
F(p)

S(p) + F(p)
"

F(p obs)
S(p obs) + F(p obs)

 

Sensitivity and specificity are combined via their harmonic mean. 
This metric is the importance score for the predicate [19, 32].   

! 

Importance(p) =
2

1
Increase(p)

+
1

log(F(p)) /log(NumF)

 

While the formula to compute importance scores for uniform 
and static predicates and elastic predicates is the same, the scores 
are not. The example in Section 3.2 highlights the differences. 

 

3.2 Example 
Applying CBI and ESP to an example program used in previous 
fault localization studies helps elucidate the differences between 
uniform and static predicates (CBI) and elastic predicates (ESP). 
Figure 1 shows the source code of the more_arrays() function 
in the 1.06 version of the GNU implementation of BC, a basic 
command-line calculator tool [17, 20]. 

 
Figure 1: The source code of the more_arrays() function in the 
1.06 version of the GNU implementation of BC. 

 

Table 1: The top ranked CBI predicates for more_arrays() 

Filename Line 
# 

Function Predicate Importance 
Score 

storage.c 166 more_arrays a_count>0 0.1312 

storage.c 161 more_arrays old_count > 0 0.1242 

 

Table 2: The top ranked ESP predicates for more_arrays() 

Filename Line 
# 

Functi
on 

Predicate Importance 
Score 

storage.c 176 more_
arrays 

indx > µ+3"  0.988 

storage.c 176 more_
arrays 

µ+2" < indx !  µ+3"  0.846 

 

The more_arrays() function in BC is responsible for 
increasing the number of arrays needed for computing. The logic 
within the function is an example of buffer reallocation. Line 167 
allocates a larger chunk of memory. Line 171 is the top of a loop 
that copies values over from the old, smaller array. Line 176 
completes the resize by zeroing out the new extra space. However, 
there is a fault in the function. In this example, we apply the 
single variable instrumentation scheme for CBI and ESP to 
identify the fault in more_arrays() . We use 1,000 randomly 
generated valid BC programs with various sizes and complexities 
as test cases. This approach to generating test cases is modeled 
after Liu et al.'s case study of BC [20]. The top two ranked 
predicates for the methods are shown in Table 1 and Table 2. 
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The top ranked CBI predicates do not make the fault within 
more_arrays()  easy to discern. The predicates direct the user 
to two different line numbers with similar importance scores. 
These line numbers do not represent the program statement 
containing the fault and do not have importance scores that are 
high. They are not good failure predictors. In contrast, the location 
of the fault and the cause of the failure are evident in the top two 
ranked ESP predicates. The top ranked predicates show that indx  
is unusually large in failing test cases. The predicate suggests that 
failures occur when the input to BC defines an unusually large 
numbers of arrays. 

Examination of more_arr ays() reveals the hypothesis to 
be true. The allocation on line 167 requests space for a_count  
items. The copying loop on line 171 ranges from 1 through 
old_count -  1 . The zeroing loop on line 176 continues on 
from old_count  through v_count -  1 . And here ESP finds 
fault: the new storage buffer has room for a_count  elements, 
but the second loop is incorrectly bound by v_count  instead.  

The location of the fault and the cause of the failure are clear 
after identification and explanation. However, this fault was 
present and undiscovered for ten years in BC [17]. In this 
example, ESP is more effective than CBI because of the elastic 
predicates it employs. The elastic predicates are based on 
observed variable values creating partitions of test cases that more 
closely match the subspaces where the fault is. CBI performs 
poorly in this example because most of the values assigned to the 
variables in more_arrays()  are greater than zero. Since the 
predicates used in CBI are uniform and static, most variable 
values at each program point satisfy the same predicate. The result 
is predicates with low specificity and importance scores. 
Specifically, the value of indx  in line 176 is always greater than 
zero resulting in a predicate without specificity.  

The improved effectiveness provided by elastic predicates is 
not achieved without cost. Elastic predicates require the mean and 
standard deviation of each instrumented program point to be 
computed. Within ESP, these calculations take more space and 
time to compute than the uniform and static predicates used in 
CBI. Further analysis of the space and time used by ESP for the 
programs in our evaluation is provided in Section 4. 

 

4. EVALUATION  
 

4.1 Experimental setup 
Recent research uses adaptive sampling to reduce the number of 
predicates that need to be instrumented to achieve effective 
statistical debugging results [2, 5]. Parallelization of each 
approach included in our evaluation is also possible. While this 
work can improve the efficiency of each approach, here it is 
ignored and only na•ve sequential implementations are 
considered.  Exploring the extent to which the efficiency of ESP 
can be improved by adaptive sampling approaches and 
parallelization is an avenue for future work. 

4.1.1 Implementation and Hardware 
Our implementation of ESP closely mirrors the published 
implementation of CBI with several exceptions. First, ESP does 
not use random sampling of test case executions to reduce 
overhead; it always employs complete monitoring of each test 
case execution. This difference reflects the different goals of ESP 
and CBI. ESP is deployed as a stand-alone fault localization tool 

for a single SME. Its goal is to identify failure predicting 
predicates as effectively and efficiently as possible for the test 
cases provided. Second, ESP employs nine elastic predicates 
described in Section 3.1 and one uniform and static predicate at 
each instrumented program point. The uniform and static 
predicate tests the instrumented program point to determine if it 
equals zero. To ensure non-overlapping predicates it is always 
tested first. The inclusion of a uniform and static predicate in ESP 
is a reflection of how frequently used and important the value zero 
is in software, exploratory or not [4]. Finally, ESP uses an 
additional data structure to compute importance scores. Recall, for 
each test case in a test suite both ESP and CBI require: (1) a one 
bit feedback report, R, indicating if the test case was passed or 
failed and (2) a bit vector, BV, with one bit for each instrumented 
predicate. However, ESP implements elastic predicates with a 
third data structure, an m-by-n matrix, composed of 64-bit entries. 

Within the m-by-n matrix, m represents the number of 
instrumented program points in the simulation and n represents 
the number of times a value is assigned to a program point within 
a test case. Each entry in the matrix is 64-bits to enable double 
precision floating-point numbers to be recorded. As each test case 
is executed, each m-by-n matrix and each feedback report R is 
filled. Once all test cases have been executed the mean and 
standard deviation for each instrumented program point has been 
calculated. Then, the matrix for each test case is traversed and the 
corresponding bit vector BV is filled and importance scores are 
calculated as they are in CBI. 

In practice n is small for the majority of instrumented 
program points. The exceptions are program points within loops. 
As a result, ESP employs resizable rows within the m-by-n matrix, 
where each size increase is an order of magnitude (e.g. 10, 100, 
1,000, 10,000, 100,000).  This approach manages space well for 
the benchmarks and simulations used in our evaluation. 
Experimental data summarizing the distribution of n for our 
evaluation is provided in Section 4.4. 

It is important to note that employing elastic predicates does 
not require an m-by-n matrix. Instead, this data structure can be 
eliminated in a na•ve implementation at the cost of additional 
execution time. In this space efficient implementation, each test 
case is executed and the mean and standard deviation of each 
predicate are computed in an online manner. With the elastic 
predicates defined each test case can be executed again and the 
feedback reports and bit vectors can be filled as they are in CBI.  

Along with our implementation of ESP, we implemented 
versions of Tarantula, IVMP and CBI. These implementations 
reflect [15], [12, 13], and [17] respectively. They are discussed in 
more detail in Section 4.1.3. Our experiments for each approach 
were run on a server with two Intel Xeon quad-core processors at 
3.00 GHz and 48 GB of RAM. 

 

4.1.2 Subject programs and test suites 
The subset of programs from the Siemens Benchmark Suite used 
for our experiments is listed in Table 3. The programs, along with 
their corresponding faulty versions and test cases, were obtained 
from [25]. All  Siemens faulty versions contain seeded faults [10]. 
These faults are computation-related (as opposed to memory-
related), involving fault types such as operator and operand 
mutations, missing and extraneous code, and constant value 
mutations. Most faulty versions are seeded with a single fault in a 
single statement, but some faulty versions involve several 
statements. Several faulty versions were excluded because they 



did not yield any failing test cases from the provided test cases. 
These versions have been excluded in previous fault localization 
evaluations with the Siemens Benchmark Suite [12, 13]. The 
programs in Table 3 were chosen from the Siemens Benchmark 
Suite because they (1) contain floating-point computations or (2) 
could be easily modified to utilize stochastic distributions in a 
meaningful way. These characteristics make them similar to 
exploratory software and good candidates to test the effectiveness 
and efficiency of ESP against the best fault localization 
alternatives. The modifications we made are described after each 
program is introduced. 

 

Table 3: Siemens Benchmark Suite evaluation programs 

Program 
Name 

Lines 
of Code 

Num. of 
Versions 

# of Test 
Cases 

Program 
Description 

tcas 138 41 1608 Altitude separator 

totinfo 396 23 1052 Statistic 
computation 

sched 299 9 2650 Priority scheduler 

sched2 297 9 2710 Priority scheduler 

 

Within our subset of the Siemens Benchmark Suite are four 
programs: tcas, totinfo, sched and sched2. The tcas program 
contains no loops and represents one conditional check spread 
across several functions; it takes as input a set of integer 
parameters and reports one of three output values. totinfo reads a 
collection of numeric data tables as input and computes statistics 
for each table as well as across all tables. Programs sched and 
sched2 are priority schedulers for processes, taking as input a 
number of processes and a list of scheduling commands, and 
outputting the processes as they complete in priority order. For 
each faulty version of each program, we also created a stochastic 
version. For the totinfo and tcas programs we modified the value 
of constants to be sampled from a uniform distribution with 
minimum value of half the constant and a maximum value of one 
and a half times the constant. These modifications represent the 
uncertainty of surrounding measurements used in exploratory 
software and also reflect the seeded constant mutation faults in the 
Siemens Benchmark Suite [25]. In the two priority scheduler 
programs we modified the programs to include arrival times 
drawn from a normal distribution for the processes. This 
modification is consistent with existing queueing simulations [9]. 
These stochastic versions represent benchmark programs that are 
similar to exploratory software. Our stochastic Siemens 
Benchmark Suite is available [26]. 

 

4.1.3 Fault localization approaches and scoring 
In our experiments we compare the fault localization effectiveness 
of the following four approaches that rank program statements. 

IVMP. Within IVMP, each statement's ranking is based on the 
number of failing executions in which a state alteration within the 
statement results in a passing execution. Any ties within this 
scheme are broken using the Tarantula suspiciousness formula 
described in this section.  

ESP. ESP is a predicate-based statistical debugging approach that 
employs elastic predicates. In this evaluation both the single 
variable and scalar pairs instrumentation schemes for ESP are 

considered. Given a list of predicates ranked by importance 
scores, ESP and CBI rank statements according to the following: 

1. For each statement identify the corresponding predicate with 
the highest importance score and move the statement and its 
importance score to set ST. 

2. Rank the statements in ST by importance score. 

This statement ranking strategy is consistent with existing 
predicate-based statistical debugging approaches [20].  

CBI . CBI is a predicate-based statistical debugging approach that 
employs uniform and static predicates. In our evaluation both the 
single variable and scalar pairs instrumentation schemes for CBI 
are considered. Existing implementations of CBI only consider 
Boolean, character, integer, or pointer typed variables. However, 
in the interest of a fair evaluation we extend our implementation 
of CBI to consider floating-point type variables. Furthermore, our 
implementation of CBI does not use random execution sampling 
to reduce overhead. Instead it completely monitors each test case 
execution enabling the best possible effectiveness results for CBI. 
CBI ranks statements using the same process as ESP.  

Tarantula. Statements within Tarantula are ranked in descending 
order of suspiciousness. The suspiciousness, susp, of a statement s 

is defined as:
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Here, failed(s) and passed(s) are the number of failing and 
passing executions in which s is included. totalFailed and 
totalPassed are the total number of failing and passing executions.  

In our experiments, we rank only those program statements 
that are executed by failing test cases using the test suite 
associated with each faulty version of each program. When 
multiple statements are tied for a particular rank, all tied 
statements are given a rank value equal to the maximum rank 
value from among the tied statements. This reflects the 
conservative assumption that a SME will examine all tied 
statements before any faulty statement within the set of tied score 
statements can be found. 

To evaluate each approach we assign a score to each ranked 
set of statements that is the percentage of program statements 
executed by failing test cases in the test suite that need not be 
examined given the rank order of the statements. Given a ranked 
list of statements S, where the faulty statement occurs at rank r 
and n total statements are executed by failing test cases the score 
for the approach is: score(S) = (n-r)/n * 100.  

Finally, there are two details pertaining to certain types of 
faults.  First, for IVMP, faults in constant assignment statements 
(15 out of a total of 82 faulty versions), cannot be found. 
However, IVMP can detect faults in the statements where the 
constant representing the fault is used. To conservatively evaluate 
our effectiveness against IVMP we consider a constant 
assignment statement to be examined by a SME when the 
assignment statement is examined or when a statement explicitly 
using the constant is examined. Second, faults that involve 
missing statements (16 of the 82 faulty versions) cannot be ranked 
and examined by a user because they are missing. For these 
versions the statements directly adjacent to the missing code 
qualify as the faulty statement. These two issues are not unique 
and are handled the same way in previous evaluations [12, 13]. 



 

4.1.4 Identifying important predicates and scoring 
In our experiments we also compare the effectiveness of CBI and 
ESP in terms of identifying failure predicting predicates. We 
measure the highest importance score returned by each approach 
for each faulty version of each program in both versions of the 
Siemens Benchmark Suite. This is a traditional evaluation of 
effectiveness for predicate-based statistical debugging approaches 
and is described further in Section 4.3 [2, 6, 17, 19, 32]. 

 

4.2 Statement Ranking Effectiveness  
Our experimental results for the Siemens Benchmark Suite are 
shown for each of the statement ranking approaches in Figures 2-
5. In the figures the x-axis represents the lower bound of each 
score range, and the y-axis represents the percentage of faulty 
versions with a score greater than or equal to the lower bound. 
Figures 2 and 3 show the percentage of faulty versions in which 
each approach computes a ranked list of statements in the 
specified score range for the traditional Siemens Benchmark 
Suite. Figure 2 shows these results for IVMP, Tarantula, ESP and 
CBI under the single variable instrumentation scheme. Figure 3 
shows the results for IVMP, Tarantula, ESP and CBI under the 
scalar pairs instrumentation scheme.  Figures 4 and 5 show the 
same data as Figure 2 and 3 respectively, except they reflect the 
Siemens Benchmark Suite that uses stochastic distributions. These 
presentations of data follow the convention of Jones et al. [15]. 
However, whereas Jones et al. computes scores with respect to the 
total number of program statements, we compute scores with 
respect to the total number of statements executed by failing test 
cases in the suite. Figures 2 and 3 show that for the traditional 
Siemens Benchmark Suite the IVMP approach and ESP overall 
perform much better than Tarantula or CBI. However, the results 
significantly change for the Siemens Benchmark Suite that uses 
stochastic distributions, as shown in Figures 4 and 5. IVMP is no 
longer an effective approach because failing test cases executions 
are not necessarily repeatable. As a result ESP outperforms any 
alternative. We examine the data for each approach. 

 

Figure 2: Statement ranking approaches with ESP and CBI 
single variable for the traditional Siemens Benchmark Suite. 

 

Figure 3: Statement ranking approaches with ESP and CBI 
scalar pairs for the Siemens Benchmark Suite that does not 
use stochastic distributions.  

 

Figure 4: Statement ranking approaches with ESP and CBI 
single variable for the traditional Siemens Benchmark Suite.  

 

Figure 5: Statement ranking approaches with ESP and CBI 
single variable for Siemens Benchmark Suite that does use 
stochastic distributions.  

 

4.2.1 ESP vs. IVMP 
Within the traditional Siemens Benchmark Suite that does not use 
stochastic distributions IVMP performs better than ESP for tcas, 
sched and sched2. In these programs IVMP had a score of 90% or 
higher 40 times while ESP only had a score of 90% or higher 32 



times. However, ESP performed well for the totinfo program, 
which frequently employs floating-point computations, and IVMP 
did not. Within totinfo it is very difficult for IVMP to perform 
state alterations that cause a failing test case to pass. This 
difficulty is due to the level of precision in the floating-point 
computations that generate the programÕs output. As a result the 
approach resorts to the ranking system in Tarantula for most 
statements. In the evaluation IVMP performs the same as or worse 
than Tarantula for 15 of the 23 faulty versions of totinfo. 

Within the Siemens Benchmark Suite that does use stochastic 
distributions IVMP performs poorly. This is because the suite 
does not meet the state-alteration approach requirement, which 
requires a failing test case to fail each time it is executed. When 
applying IVMP to software that does not meet this requirement 
state-alterations that cause failing test cases to pass are harder to 
identify and not as meaningful [12, 13]. They cannot be isolated 
from variations in the execution trace that are caused by the 
stochastic distributions. Furthermore, the use of stochastic 
distributions introduces more floating-point computations into the 
programs, which IVMP does not always handle well.  

 

4.2.2 ESP vs. CBI 
ESP performs better than CBI under both instrumentation 
schemes for the traditional Siemens Benchmark Suite and the 
suite that uses stochastic distributions. Under the single variable 
instrumentation scheme there are only 21 out of the total 164 
faulty program versions where ESP assigned a lower rank to the 
statement containing the fault than CBI. These instances were a 
result of two different scenarios. In the first scenario the fault is 
triggered in a small number of test cases by several values for a 
program point that are greater than zero but only slightly larger 
than all other observed values. In the second scenario the fault is 
triggered in a small number of test cases by several values for a 
program point that are less than zero but only slightly smaller than 
all other observed values. In both scenarios a uniform and static 
predicate which tests if the values for a program point are greater 
or less than zero is more specific to the failure than the elastic 
predicate used in ESP. The elastic predicate clusters all the similar 
values together while the uniform and static predicate separates 
those values that trigger the fault from the other similar values. 

Under the single variable instrumentation scheme ESP and 
CBI assigned the same rank to the statement containing the fault 
in 36 other cases. In theses cases the uniform and static predicate 
used in both approaches identifies the fault. In the remaining 107 
cases ESP outperforms CBI. ESPÕs performance is attributed to 
elastic predicates, which result in predicates with higher 
importance scores and better fault localization capabilities. The 
importance scores for CBI and ESP are examined further in 
section 4.3.  

CBIÕs poor performance under the scalar pairs 
instrumentation scheme is noteworthy. For the traditional Siemens 
Benchmark Suite it only slightly outperforms Tarantula, an 
efficient approach that only analyzes statements, not variable 
values. This poor performance is consistent with the Liu et al. 
evaluation of CBI for the Siemens Benchmark Suite [20]. In this 
evaluation the scalar pairs instrumentation scheme did not add any 
effectiveness to CBI compared to the other implemented 
instrumentation schemes. ESP offers a significant improvement 
over CBI for the scalar pairs scheme, which we discuss in Section 
4.3. 

 

4.2.3 ESP vs. Tarantula 
Along with ESP and CBI, the Tarantula approach did not 
experience a significant decrease in effectiveness when applied to 
the Siemens Benchmark Suite that uses stochastic distributions. 
However, compared to ESP, Tarantula is not effective for either 
version of the Siemens Benchmark Suite. For the traditional suite 
the single variable instrumentation scheme of ESP was able to 
uniquely identify the statement containing the fault (assign it rank 
1) in 14 cases. Tarantula was able to do so in only 3 cases. Even 
though the ESP approach was able to uniquely identify the faulty 
statement in 14 cases, only 9 cases yielded scores of 99% or more 
because in the tcas program the number of statements executed in 
failing test cases was too few to yield a score of 99%.  

 

4.3 Importance Score Ranking Effectiveness 
Existing studies show that when SMEs or developers are provided 
with a good failure predicting predicate they are able to quickly 
identify the fault within a program whether the predicate 
corresponds to the statement containing the fault or not [17]. The 
importance score of the highest ranked predicate reflects this 
measure of effectiveness. Figure 6 shows the importance score of 
the highest ranked predicate for both ESP and CBI for the 
traditional Siemens Benchmark Suite. Figure 7 shows the same 
data for the suite that uses stochastic distributions. In the figures 
the x-axis represents the lower bound of each importance score 
range, and the y-axis represents the percentage of faulty versions 
with a score greater than or equal to the lower bound. 

The trends in the importance scores in Figures 6 and 7 are 
similar to the trends in the statement ranking scores in Figures 2-
5; ESP outperforms CBI by a similar margin. They are related. 
The elastic predicates do a better job of creating partitions of test 
cases where the fault is and it not expressed than the uniform and 
static predicates. This leads to a better ability to identify faults. 
The importance scores and statement ranks of the elastic 
predicates in ESP reflect this for both versions of the Siemens 
Benchmark Suite. The figures also explain the poor performance 
of CBIÕs scalar pairs scheme in our statement ranking evaluation. 
The uniform and static predicates are unable to identify 
relationships between variables that are only violated in failing 
test cases yielding few high scoring predicates. In contrast, the 
elastic predicates adapt to observed differences in variable values 
yielding many high scoring predicates and an effective approach. 

 
Figure 6: Highest importance score associated with a 
predicate for ESP and CBI for the traditional Siemens 
Benchmark Suite.  



 
Figure 7: Highest importance score associated with a 
predicate for ESP and CBI for the Siemens Benchmark Suite 
that uses stochastic distributions.  

 

Overall, the results of Section 4.2 and 4.3 demonstrate that 
ESP is more effective than CBI for both the traditional Siemens 
Benchmark Suite and the version that uses stochastic 
distributions. Furthermore, for the version that uses stochastic 
distributions ESP is the most effective fault localization approach. 
Also, ESP approaches the effectiveness of the best available 
approach for the traditional Siemens Benchmark Suite, which 
existing fault localization tools target. Next we explore how ESP 
performs compared to the other approaches in terms of efficiency. 

 

4.4 Efficiency 
Figures 8 and 9 summarize the efficiency results for our 
evaluation. Tarantula is the most efficient approach in our study 
because it only takes into account statement coverage information 
of passing and failing test cases. The other approaches also 
analyze the values of variables. As a result, we compute the 
efficiency of each approach relative to TarantulaÕs. This relative 

performance measure is: 

! 

RP=
timeTarantula

timeother

. 

 
Figure 8: RP for each statement ranking approach for the 
programs in the traditional Siemens Benchmark Suite.  

 

Figures 8 and 9 reveal several trends in the relative 
performance of the approaches in our evaluation. Each approach 
improves for the tcas benchmark and degrades for the totinfo 
benchmark. The tcas and totinfo programs are the least and most 
computationally intensive programs in the suite respectively. 

Tarantula does not analyze variable computations so it does not 
reflect these factors. However, the other approaches do analyze 
variable computations and reflect the computational 
characteristics of tcas and totinfo. 

 
Figure 9: RP for each statement ranking approach for the 
programs in the Siemens Benchmark Suite that use stochastic 
distributions.  

 

Given these expected fluctuations, the relative performance 
of ESP and CBI is independent of the programs in the evaluation 
to which they are applied. IVMP is not. For the the traditional and 
stochastic versions of the totinfo program the relative performance 
of IVMP approaches zero. This drastic degradation is due to 
several failing totinfo test case executions that IVMP repeatedly 
re-executes in an attempt to find state alterations resulting in a 
passing execution. IVMP is the only approach in our evaluation 
that re-executes failing test cases. As a result, for some programs, 
such as totinfo, repeated re-executions of failing test cases will be 
required, making IVMP inefficient. 

Figures 8 and 9 also highlight the extra time required when 
ESP and CBI are used in the scalar pairs instrumentation scheme 
as opposed to the single variable scheme. While the extra time 
required for these approaches does not result in improved 
effectiveness for the Siemens Benchmark Suite, the scalar pairs 
scheme has been shown to be effective in CBI for several widely 
used programs [17]. Several performance optimizations for the 
scalar pairs scheme are also available in [17]. These are not 
implemented for ESP or CBI in our evaluation. 

We expected the difference in the relative performance of 
ESP and CBI to be approximately constant throughout the 
evaluation. ESP and CBI both employ a set number of predicates 
at each instrumented program point resulting in relative 
performance that is independent of the faulty program. Recall, the 
difference in the implementation of CBI and ESP is the additional 
data structure, an m-by-n matrix, employed by ESP to construct 
elastic predicates. Within ESP, the matrix is generated for each 
executed test case. The rows in the matrix hold the values 
assigned to instrumented program points.  Figure 10 shows the 
distribution of the length of each row in the matrices for the 
Siemens Benchmark Suite that uses stochastic distributions. The 
x-axis represents the length of each matrix row and the y-axis 
represents the percentage of matrices with a row of the specified 
length. Each axis is at log scale. The distribution of the row length 
for the traditional Siemens Benchmark Suite is similar.  

Figure 10 shows that for more than 99% of the matrices the 
length of each row is 50 or less. Furthermore, for ~95% of the 
matrices the length of each row is 10 or less. In future work we 



will explore more efficient approaches for storing the values 
assigned for an instrumented program point. However, for the 
Siemens Benchmark Suite the additional matrix required by ESP 
is a compact data structure for most program points. 

 
Figure 10:  The distribution of the length of each row in each 
of the m-by-n matrices used by ESP. Note the log scales. 

 

ESP approaches the effectiveness of the best available fault 
localization approach, IVMP, for the traditional Siemens 
Benchmark Suite in less time. Furthermore, ESP outperforms all 
other approaches for a version of the suite that shares 
characteristics of ESPÕs target domain, exploratory software. ESP 
achieves this effectiveness with only a constant decrease in 
efficiency relative to the most efficient approach in our 
evaluation, Tarantula. Next we will evaluate ESP against the best 
fault localization alternatives for two widely used simulations. 

 

4.5 Widely Used Simulations 
We conducted additional experiments to determine how 
effectively and efficiently ESP localizes faults for two widely 
used simulations. The simulations in the evaluation are shown in 
Table 4. One fault, similar to those in the Siemens Benchmark 
Suite, is seeded in each simulation.  

 

Table 4: Evaluated simulations and simulators 

Sim. Name Modified Simulator Total Lines 
of Code 

TCP Protocol ns-2 Network Simulator [21] 11458 

CPU Scheduling Queueing Toolkit [24]   2561 

 

For each simulation, the rank of the statement containing the 
fault for each of the approaches is shown in Table 5. The RP and 
importance score of the highest ranked predicate in ESP and CBI 
are also provided. The best rank and highest importance score 
among the approaches for each simulation are shown in bold and 

italicized. For this portion of the evaluation ESP and CBI used 
only the single variable instrumentation scheme. 

 

Table 5: Effectiveness and efficiency results 

Sim. Name Faulty Statement Rank 

(ESP, CBI, IVMP, Tar) 

Importance 
Score 

(ESP, CBI) 

RP 

TCP 
Protocol 

(1,  16,  138,  144) (1.00, 0.925) .30951 

CPU Disk 
Scheduling 

(3,  96,  64,  213)  (0.985, 0.765) .32508 

 

Table 5 shows that ESP is capable of significant 
improvements in fault localization effectiveness over the best 
available alternatives for analyzing widely used exploratory 
software. Moreover, the decrease in relative performance for ESP 
remained constant when compared to Tarantula. These efficiency 
results seem reasonable in an automated context considering: (1) 
the significant improvement in the rank of the statements 
containing the fault and (2) the ability to find better failure 
predicting predicates with higher importance scores than existing 
approaches. Even though these simulations are significantly larger 
than the Siemens Benchmark Suite, ESPÕs performance relative to 
Tarantula is approximately the same as it was in the Siemens 
Benchmark Suite. These results illustrate that it is not program 
size that determines the efficiency of our approach, but the 
number of test cases included with the program. This has been 
shown to be the limiting factor of efficiency for existing 
predicate-based statistical debugging approaches [20]. 

 

4.6 Multiple Faults  
Several of the cases in the Siemens Benchmark Suite contain 
multiple faults. This is not uncommon; many examples of 
exploratory software also contain multiple faults. In our 
evaluation, each fault localization approach was only required to 
identify one fault per program. This allowed us to conservatively 
evaluate the effectiveness of ESP against the best available 
alternative for the Siemens Benchmark Suite, IVMP. However, in 
programs with multiple faults IVMP's effectiveness can diminish. 
It is difficult for IVMP to differentiate among multiples faults in a 
program because it has trouble identifying state alterations in 
failing test cases that have different effects on the program output 
[12]. Several modifications to IVMP have been suggested to 
address this issue. However, these modifications can make IVMP 
even more inefficient and do not guarantee multiple faults are 
distinguished from one another [13]. In contrast, the effectiveness 
and efficiency of ESP, CBI and other existing predicate-based 
statistical debugging approaches does not diminish. ESP uses the 
following established algorithm that guarantees a SME a failure 
predicting predicate for each fault in a program [17, 32].  

1. Rank each predicate in descending by importance score.  

2. Remove the top-ranked predicate p and discard all test cases 
where the p was found to be true. 

3. Repeat steps 1 and 2 until the set of test cases is empty or the 
set of predicates is empty. 



5. CONCLUSION 
SMEs can struggle for decades with separating valid, but 
unexpected, exploratory software outcomes from failures. This 
remains an open probelm.  However, we have developed a 
predicate-based statistical debugging method, ESP, which 
localizes sources of unexpected outcomes. ESP replaces the 
uniform and static predicates used in existing approaches with 
elastic predicates. The result is improved effectiveness. ESP 
outperforms the best alternatives in exploratory software 
applications and performs as well as the best alternative for 
traditionally targeted software. In future work, we will explore 
adaptive sampling approaches to reduce the program points 
instrumented with elastic predicates in ESP and automate the 
selection of parameters within ESPÕs elastic predicates. 
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