

Statistical Debugging with Elastic Predicates

Ross Gore, Paul F. Reynolds, Jr., David Kamensky
{rjg7v, pfr, dmk3d}@virginia.edu

University of Virginia*

Tech Report
CS-2011-02

ABSTRACT
An important class of software, including simulations and
computational models, employs stochastic distributions to
represent, or support evaluation of, uncertainty in an underlying
model. This class of software presents three interesting analysis
challenges: 1) effective localization of the sources of unexpected
outcomes; 2) effective treatment of stochastic distributions and the
floating-point computations that generally accompany them and
3) separation of unexpected outcomes: disassociating valid, but
unexpected, results from those reflecting software failure.
Traditional debugging and fault localization methods [2-6, 11-15,
17-20, 23, 28, 30-32] have addressed primarily the first challenge,
namely localization of sources of faults while assuming character,
Boolean, integer and pointer operations. While these methods are
effective in general, they are not tailored to software that uses
stochastic distributions and floating-point computations. Thus
there is opportunity. We introduce ESP, a novel approach to
predicate-based statistical debugging. ESP localizes sources of
unexpected outcomes in software using stochastic distributions
and floating-point operations, thus addressing the first two
aforementioned challenges. ESP predicates are elastic rather than
uniform and static; each predicate adapts to variable values
observed at its program instrumentation point. We present
experimental results for established fault localization benchmarks
and widely used simulations. For benchmarks employing
stochastic distributions, ESP outperforms the best alternatives:
Interesting Value Map Pair (IVMP), Cooperative Bug Isolation
(CBI) and Tarantula. For traditional benchmarks, ESP performs
similar to IVMP and outperforms CBI and Tarantula.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors – Debuggers.

D.2.5 [Software Engineering]: Testing and Debugging –
Debugging aids, Testing tools, Tracing.

General Terms
Algorithms, Measurement, Experimentation

Keywords
automated debugging, fault localization, exploratory software

1. INTRODUCTION
Our interest is in exploratory software. Exploratory software
includes stochastic distributions, and the floating-point
computations that generally accompany them. Typically
exploratory software is used for exploration of uncertainties in an
underlying model. Simulations and computational models are
examples of exploratory software and have become a common
tool for subject matter experts (SMEs) in a variety of disciplines
[8]. Predictions based on exploratory software outcomes have
entered the mainstream of critical public policy and research
decision-making practices, often affecting large numbers of
people and valuable resources. Unfortunately SMEs can struggle
for decades with the resolution of unexpected exploratory
software outcomes. Their methods are generally manual and do
not scale. Automated analysis to localize the sources of
unexpected exploratory software outcomes will be beneficial.

Prior work in automatically localizing sources of unexpected
software outcomes has focused on fault localization. Fault
localization is the process of narrowing or guiding the search
through source code to help a SME or developer find statements
containing faults that cause software failures. The use of
stochastic distributions defies fault localization approaches that

depend on repeatable execution traces and outcomes [6, 12, 13].
Furthermore, floating-point operations that typically accompany
stochastic distributions exceed the capabilities of other existing
fault localization methods [2, 3, 17-19, 30]. Unexpected
exploratory software outcomes can reflect new knowledge about
the underlying model, or a fault. Currently there is no known
automated analysis method for separating them. These challenges
represent the basis of our motivation.

Separating unexpected valid outcomes from software failures
is an interesting, difficult problem. We have not solved it.
However, our predicate-based statistical debugger, Exploratory
Software Predictor (ESP), does localize sources of the broader
class of unexpected outcomes effectively in software employing
stochastic distributions and floating-point operations. ESP is
novel, and it extends the domain of programs for which fault
localization analysis is effective.

Our interest extends to software where model uncertainty is
not a factor, but stochastic distributions and floating-point
computations are present. Our interest is due to the challenge their
presence creates for existing fault localization approaches. ESP
performs effectively for these programs and for the traditional
programs fault localization techniques have targeted.

ESP is a predicate-based statistical debugging approach
focused on identifying single or multiple sources of unexpected
outcomes in exploratory software. Predicate-based statistical
debugging approaches, such as ESP, represent a class of fault
localization techniques that share a common structure. Each
approach consists of a set of conditional propositions, or
predicates, tested at particular program points. The predicates are
given an importance score based on how frequently they are true
in the passing and failing test cases for a failing program. A single
predicate can be thought of as partitioning the space of all test
cases into two subspaces: those satisfying the predicate and those
not. The more closely the partitions created by a predicate match
the subspaces where the fault is and is not expressed, the better
fault predictor the predicate is [17, 19]. The predicates are ranked,
based on their importance score. The rankings and scores are
provided to SMEs to help in finding and fixing the faults.

In existing predicate-based statistical debugging approaches,
predicates are uniform and static. The predicates are uniform in
the sense that the same set of conditional propositions is tested at
each program point. The predicates are static because each
conditional proposition being tested is determined before the
execution of the program. ESP moves beyond uniform and static
predicates to elastic predicates. In ESP, as the program is
executed the variable values at each program point are observed.
For each program point, similar observed values are clustered to
create unique conditional propositions. The unique conditional
propositions for each program point are elastic predicates. Elastic
predicates create partitions of test cases that more closely match
the subspaces where an unexpected outcome is and is not
expressed. The result is improved effectiveness. ESP offers
improved effectiveness over existing fault localization techniques
in terms of: (1) statement based rankings over a set of established
benchmarks and several widely used simulations and (2) the
importance scores associated with each predicate.

 * Dept. of Computer Science, UVA, Charlottesville, VA 22904

2. RELATED WORK
We begin with a review of currently accepted definitions for the
terms failure, error and fault. A failure occurs when the observed
behavior of a program differs from the expected behavior. An
error represents part of the program state that may lead to the
failure. A fault is the cause of the error in the program [22].

There is no body of literature that specifically addresses the
analysis of exploratory software outcomes; exploratory software
possesses attributes that have typically been neglected or avoided.
Software debugging methods come the closest to addressing the
needs for analyzing unexpected exploratory software outcomes.
Here, we review portions of that literature related to ESP.

2.1 Automatically Repairing Software Faults
Several approaches automatically assist developers in fixing
failing software. He and Gupta use path-based weakest
preconditions to automatically generate program modifications to
correct a fault within a function provided the function has formal
pre and post conditions [11]. More approaches employ machine-
learning algorithms to automatically repair faults in off-the-shelf
legacy software [28]. While these approaches do not rely on
formal specifications, they do require a failed test case that
demonstrates the bug and a number of other test cases that encode
the required functionality of the program. Due to the nature of
exploratory software, this is not generally possible for SMEs.
Furthermore, fault location is a prerequisite to repair.
Improvements in locating faults will improve repair solutions.

2.2 Slicing-based Fault Localization
Slicing-based fault localization identifies faulty statements
through static, dynamic and relevant slicing. Each of these slicing
approaches is defined and described. Static slicing identifies a
subset of program statements that may influence the value of a
variable at a program location [27, 29]. Static slices are used in
static fault localization approaches, such as FindBugs, to help
identify predefined faulty patterns [4]. Dynamic approaches
identify a subset of program statements that do influence the value
of a variable at a particular point in a given dynamic program
execution [1, 16, 30]. The concept of relevant slicing has also
been studied to incorporate potential dependencies. Relevant
slices computed from the point of an incorrect variable value can
identify the subset of statements that could have contributed to the
incorrect value. This subset is likely to contain a fault and is
significantly smaller than the set of all program statements [27].

2.3 Statistical Debugging
Statistical debugging uses data collected during the execution of
passing and failing test cases to rank predicates and statements
based on the likelihood they contain a fault. Jiang and Su [14]
construct control flow paths linking high ranking predicates to
explain software failures. The Nearest Neighbor approach
searches for a passing test case execution that is most similar to a
failing test case execution, contrasts the two executions, and uses
the information to identify the most suspicious parts of the
program [23]. SOBER models the evaluation patterns of
predicates in passing and failing test cases, and considers a
predicate to be relevant to a fault if its evaluation pattern in failing
test cases significantly differs from the observed pattern in
passing test cases [20]. In recent fault localization evaluations

using the Siemens Benchmark Suite [25], two approaches stand
out in terms of efficiency and effectiveness: Tarantula and CBI [2,
5, 6, 12, 15, 20]. We describe each further.

Tarantula is a statistical debugging approach that analyzes
how frequently a program statement is executed in passing and
failing test cases. It has been shown to be one of the most
effective and efficient fault localization approaches for identifying
faulty statements in the Siemens Benchmark Suite [15]. The
approach is efficient because it only takes into account statement
coverage information of passing and failing test cases. However,
its effectiveness is limited due to its inability to analyze values of
variables within the program [6, 12].

CBI employs predicate-based statistical debugging [17]. CBI
uses instrumentation to collect feedback reports that describe
which predicates are observed in a test case as well as the
outcome of the test case. CBI assigns an importance score to all
predicates and outputs a complete list of predicates and their
importance scores in descending order. A developer or SME uses
the list to identify areas of the program related to the observed
failure. Section 3.2 describes how importance scores for
predicates are computed in CBI. Using predicates ranked by
importance scores, CBI has identified previously unknown faults
in several widely used applications [17-19, 32]. SOBER was
shown to be slightly more effective than a variant of CBI [20].
However, this was prior to CBI’s use of importance scores, which
significantly improve its effectiveness.

Several enhancements have been studied for CBI and other
predicate-based statistical debugging approaches. HOLMES and
Adaptive Bug Isolation can significantly reduce the number of
program points that need to be instrumented and monitored to
identify predicates with high importance scores [2, 5]. Reduction
in the number of instrumented program points can improve the
overall efficiency of CBI but it does not improve the
effectiveness. Another enhancement, compound Boolean
predicates, combines predicates with Boolean formulae to create a
richer predicate vocabulary [3]. Compound Boolean predicates
and elastic predicates improve the effectiveness of predicate-
based statistical debugging approaches in a complementary
fashion. Compound Boolean predicates offer a richer vocabulary
while elastic predicates offer more precise predicates. Their
possible combination has not yet been explored.

2.4 State-altering Fault Localization
State alteration approaches modify the program state of an
executing program in an attempt to isolate faults. In the Delta
Debugging framework, failure-inducing input is identified that
allows for the computation of cause-effect chains for failures that
are linked to faulty statements [6]. This is accomplished by
swapping the values of variables between one passing and one
failing test case. Predicate Switching is another state alteration
approach which attempts to isolate faulty statements by
identifying predicates whose outcomes can be altered during a
failing test case to cause the test case to pass [31]. The most
effective state-alteration approach, when evaluated with the
Siemens Benchmark Suite, is IVMP. IVMP is a value profile
based approach that involves searching for the program statements
that can be shown to affect the output of a failing execution such
that the incorrect output becomes correct. This is done by
replacing the values used at a statement during the execution of a
failing test case with an alternate set of values, then determining
whether the altered execution passes the test case. The successful
changes often occur at statements containing faults or statements

that are directly linked to statements containing faults through
data or control-flow dependencies [12, 13].

State-altering approaches are not always effective for
programs that use stochastic distributions. These approaches
require an unaltered failing test case to fail every time it is
executed [6, 12]. This requirement enables variable values in a
failing test case to be identified and altered to attempt to create a
passing test case. However, stochastic distributions cause some
variable values to vary from execution to execution. These values
can result in a test case that passes one time it is executed and fails
another violating the requirement and diminishing the
effectiveness of the method as a result.

3. ELASTIC PREDICATES
Numerous statistical debugging approaches have been proposed to
identify predicates that are good failure predictors [14, 17-20, 31,
32]. The most effective of these approaches analyze variable
values within a program. However, accounting for all possible
values at each assignment to a given variable is impractical [17].
Instead, these approaches utilize an instrumentation scheme with
uniform and static predicates at each variable assignment
statement. This instrumentation scheme is referred to as single
variable and is an extension of the returns scheme in CBI. The
most common single variable scheme for an assignment to a
variable

€

x uses these predicates [17]:

1.

€

x < 0
2.

€

x = 0
3.

€

x > 0
The elastic predicates used in ESP replace uniform and static

predicates. ESP provides a single variable instrumentation scheme
that records the mean,

€

µx , and standard deviation,

€

σx , for a
given variable for all test case executions. Using

€

µx and

€

σx
these predicates are constructed:

1.

€

µx − lσ x() > x

2.

€

µx − kσ x() ≤ x < µx − jσ x()

3.

€

µx = x

4.

€

µx + jσ x() ≤ x < µx + kσ x()

5.

€

µx + lσ x() > x

For the predicates 0 ≤ j < k ≤ l is assumed. In ESP the default
nine elastic predicates for the single variable instrumentation
scheme are: j={0,1,2}, k={1,2,3}, l={3}. These predicates
partition the values for an instrumented program point for three
standard deviations above and below the mean of

€

x .

Multiple variables within a program can have important
relationships that cannot be captured with a single variable
instrumentation scheme. The Daikon project identifies implicit
invariants to aide program evolution and understanding [7]. ESP
and existing predicate-based statistical debugging approaches
identify near-invariants that are only violated when the program
fails test cases. This instrumentation scheme is called scalar pairs
[17]. Within CBI the scalar pairs scheme instruments assignments
to character, integer and pointer typed variables. ESP extends the

scheme to floating-point typed variables. The name scalar-pairs
refers to the data type of the variables.

In existing predicate-based statistical debugging approaches,
the scalar pairs scheme examines possible invariants from a
uniform, static set. At each assignment to a variable

€

x , these
approaches identify all other same-typed local or global variables

€

y1,y2,...,yn that are currently in scope. For each pair of

variables

€

x,yi() the scheme compares the new value of

€

x with

the existing value of

€

yi with these predicates [17]:

1.

€

x < yi
2.

€

x = yi
3.

€

x > yi
In ESP, the mean

€

µx−yi
 and standard deviation

€

σx−yi
 of

the difference between the new value of

€

x and the existing value

of

€

yi, is computed for each pair of variables

€

x,yi() . Using

€

µx−yi
 and

€

σx−yi
 these elastic predicates are constructed:

1.

€

µx−yi
− lσ x−yi() > x − yi

2.

€

µx−yi
− kσ x−yi() ≤ x − yi < µx−yi

− jσ x−yi()

3.

€

µx−yi
= x − yi

4.

€

µx−yi
+ kσ x−yi() ≤ x − yi < µx−yi

+ jσ x−yi()

5.

€

µx−yi
+ lσ x−yi() < x − yi

Again, for the elastic predicates 0 ≤ j < k ≤ l is assumed. The
default values for j, k and l are the same as for the single variable
scheme. These default elastic predicates partition the values for an
instrumented program point for three standard deviations above
and below the mean of

€

x − yi.
In the elastic predicate single variable and scalar pairs

instrumentation schemes, variable values are observed throughout
executions of the failing program to create unique predicates at
each instrumented program point. While elastic predicates require
more space and time to compute than uniform and static
predicates, the expectation is that these predicates will have higher
importance scores and be better failure predictors because they are
more tailored to the failing program. Experimental data about the
space and time used by ESP is provided in Section 4.

3.1 Importance Scores
Elastic predicates and uniform and static predicates require two
data structures for each executed test case to compute importance
scores. Importance scores are used to rank predicates. The two
data structures are: (1) a one bit feedback report, R, indicating if
the test case was passed or failed and (2) a bit vector, BV, with
one bit for each instrumented predicate. Within BV each bit
indicates if the corresponding predicate is observed to be true at
least once during execution of the test case [17-19, 32]. Once all
test cases have been executed, the importance scores for each
predicate can be calculated from these data structures.

!

x

Throughout the development of CBI, Liblit et al. explored
several different formulas to compute importance scores for
predicates [17-19, 32]. They determined that predicates that are
sensitive and specific should yield high importance scores.
Sensitive predicates account for a high percentage of failed test
cases and specific predicates do not predict failure for successful
test cases. The sensitivity and specificity are computed as we
describe next. The data from each feedback report R and each
corresponding bit vector BV is aggregated into four measures for a
predicate p [17, 19, 32]:

1. S(p obs) and F(p obs) the number of successful and failed
test cases in which p was evaluated.

2. S(p) and F(p) the number of successful and failed test cases
in which the value of p was evaluated and found to be true.

Sensitivity: log(F(p))/log(NumF). NumF is the total number of
failing runs. This ratio describes the percentage of the failing test
cases the predicate accounts for.

Specificity: Increase(p). Increase(p) is the amount by which p
being true increases the probability of failure over simply
reaching the statement where p is defined.

€

Increase(p) =
F(p)

S(p) + F(p)
−

F(p obs)
S(p obs) + F(p obs)

Sensitivity and specificity are combined via their harmonic mean.
This metric is the importance score for the predicate [19, 32].

€

Importance(p) =
2

1
Increase(p)

+
1

log(F(p)) /log(NumF)

While the formula to compute importance scores for uniform
and static predicates and elastic predicates is the same, the scores
are not. The example in Section 3.2 highlights the differences.

3.2 Example
Applying CBI and ESP to an example program used in previous
fault localization studies helps elucidate the differences between
uniform and static predicates (CBI) and elastic predicates (ESP).
Figure 1 shows the source code of the more_arrays()function
in the 1.06 version of the GNU implementation of BC, a basic
command-line calculator tool [17, 20].

Figure 1: The source code of the more_arrays() function in the
1.06 version of the GNU implementation of BC.

Table 1: The top ranked CBI predicates for more_arrays()

Filename Line

Function Predicate Importance
Score

storage.c 166 more_arrays a_count>0 0.1312

storage.c 161 more_arrays old_count > 0 0.1242

Table 2: The top ranked ESP predicates for more_arrays()

Filename Line

Functi
on

Predicate Importance
Score

storage.c 176 more_
arrays

indx > µ+3σ 0.988

storage.c 176 more_
arrays

µ+2σ< indx ≤ µ+3σ 0.846

The more_arrays()function in BC is responsible for
increasing the number of arrays needed for computing. The logic
within the function is an example of buffer reallocation. Line 167
allocates a larger chunk of memory. Line 171 is the top of a loop
that copies values over from the old, smaller array. Line 176
completes the resize by zeroing out the new extra space. However,
there is a fault in the function. In this example, we apply the
single variable instrumentation scheme for CBI and ESP to
identify the fault in more_arrays(). We use 1,000 randomly
generated valid BC programs with various sizes and complexities
as test cases. This approach to generating test cases is modeled
after Liu et al.'s case study of BC [20]. The top two ranked
predicates for the methods are shown in Table 1 and Table 2.

!"#$
!"%$
!"&$
!""$
!"'
!"(
!")
!"*
!'+
!'!
!'#
!'%
!'&
!'"
!''
!'(
!')
!'*
!(+
!(!
!(#
!(%
!(&
!("
!('
!((
!()
!(*
!)+
!)!
!)#
!)%
!)&
!)"

!"#$
%"&'()&&)*+,-
.
//#01/#0$23
//#01/"4$(5"6013
//75(!)&()&&)*/88"4$()&*3
//59)&/88"4$(0)%'+3

//:8/;)!'/19'/"4$/!)46'+</8:
//"4$(5"601/=/)(5"6013
//"4$()&*/=/)&&)*+3
//"4$(0)%'+/=/)(0)%'+3

//:8/>05&'%'01/7*/)/?#2'$/)%"601/)0$/)44"5)1'</8:
//)(5"601/@=/;ABCD(>EFC3
//)&&)*+/=/,75(!)&()&&)*/88-/75(%)44"5/,)(5"6018+#G'"?,75(!)&<<
//)(0)%'+/=/,59)&/88-/75(%)44"5/,)(5"6018+#G'"?,59)&/8--3

//:8/F"H*/19'/"4$/)&&)*+</8:
//?"&/,#0$2/=I3/#0$2/J/"4$(5"6013/#0$2@@-
////)&&)*+K#0$2L/=/"4$()&*K#0$2L3

//:8/>0#1#)4#G'/19'/0'M/'4'%'01+</8:
//?"&/,3/#0$2/J/!(5"6013/#0$2@@-
////)&&)*+K#0$2L/=/ENOO3

//:8/P&''/19'/"4$/'4'%'01+</8:
//#?/,"4$(5"601/Q=/R-
////.
//////?&''/,"4$()&*-3
//////?&''/,"4$(0)%'+-3
////S
S/

The top ranked CBI predicates do not make the fault within
more_arrays() easy to discern. The predicates direct the user
to two different line numbers with similar importance scores.
These line numbers do not represent the program statement
containing the fault and do not have importance scores that are
high. They are not good failure predictors. In contrast, the location
of the fault and the cause of the failure are evident in the top two
ranked ESP predicates. The top ranked predicates show that indx
is unusually large in failing test cases. The predicate suggests that
failures occur when the input to BC defines an unusually large
numbers of arrays.

Examination of more_arrays()reveals the hypothesis to
be true. The allocation on line 167 requests space for a_count
items. The copying loop on line 171 ranges from 1 through
old_count - 1. The zeroing loop on line 176 continues on
from old_count through v_count - 1. And here ESP finds
fault: the new storage buffer has room for a_count elements,
but the second loop is incorrectly bound by v_count instead.

The location of the fault and the cause of the failure are clear
after identification and explanation. However, this fault was
present and undiscovered for ten years in BC [17]. In this
example, ESP is more effective than CBI because of the elastic
predicates it employs. The elastic predicates are based on
observed variable values creating partitions of test cases that more
closely match the subspaces where the fault is. CBI performs
poorly in this example because most of the values assigned to the
variables in more_arrays() are greater than zero. Since the
predicates used in CBI are uniform and static, most variable
values at each program point satisfy the same predicate. The result
is predicates with low specificity and importance scores.
Specifically, the value of indx in line 176 is always greater than
zero resulting in a predicate without specificity.

The improved effectiveness provided by elastic predicates is
not achieved without cost. Elastic predicates require the mean and
standard deviation of each instrumented program point to be
computed. Within ESP, these calculations take more space and
time to compute than the uniform and static predicates used in
CBI. Further analysis of the space and time used by ESP for the
programs in our evaluation is provided in Section 4.

4. EVALUATION

4.1 Experimental setup
Recent research uses adaptive sampling to reduce the number of
predicates that need to be instrumented to achieve effective
statistical debugging results [2, 5]. Parallelization of each
approach included in our evaluation is also possible. While this
work can improve the efficiency of each approach, here it is
ignored and only naïve sequential implementations are
considered. Exploring the extent to which the efficiency of ESP
can be improved by adaptive sampling approaches and
parallelization is an avenue for future work.

4.1.1 Implementation and Hardware
Our implementation of ESP closely mirrors the published
implementation of CBI with several exceptions. First, ESP does
not use random sampling of test case executions to reduce
overhead; it always employs complete monitoring of each test
case execution. This difference reflects the different goals of ESP
and CBI. ESP is deployed as a stand-alone fault localization tool

for a single SME. Its goal is to identify failure predicting
predicates as effectively and efficiently as possible for the test
cases provided. Second, ESP employs nine elastic predicates
described in Section 3.1 and one uniform and static predicate at
each instrumented program point. The uniform and static
predicate tests the instrumented program point to determine if it
equals zero. To ensure non-overlapping predicates it is always
tested first. The inclusion of a uniform and static predicate in ESP
is a reflection of how frequently used and important the value zero
is in software, exploratory or not [4]. Finally, ESP uses an
additional data structure to compute importance scores. Recall, for
each test case in a test suite both ESP and CBI require: (1) a one
bit feedback report, R, indicating if the test case was passed or
failed and (2) a bit vector, BV, with one bit for each instrumented
predicate. However, ESP implements elastic predicates with a
third data structure, an m-by-n matrix, composed of 64-bit entries.

Within the m-by-n matrix, m represents the number of
instrumented program points in the simulation and n represents
the number of times a value is assigned to a program point within
a test case. Each entry in the matrix is 64-bits to enable double
precision floating-point numbers to be recorded. As each test case
is executed, each m-by-n matrix and each feedback report R is
filled. Once all test cases have been executed the mean and
standard deviation for each instrumented program point has been
calculated. Then, the matrix for each test case is traversed and the
corresponding bit vector BV is filled and importance scores are
calculated as they are in CBI.

In practice n is small for the majority of instrumented
program points. The exceptions are program points within loops.
As a result, ESP employs resizable rows within the m-by-n matrix,
where each size increase is an order of magnitude (e.g. 10, 100,
1,000, 10,000, 100,000). This approach manages space well for
the benchmarks and simulations used in our evaluation.
Experimental data summarizing the distribution of n for our
evaluation is provided in Section 4.4.

It is important to note that employing elastic predicates does
not require an m-by-n matrix. Instead, this data structure can be
eliminated in a naïve implementation at the cost of additional
execution time. In this space efficient implementation, each test
case is executed and the mean and standard deviation of each
predicate are computed in an online manner. With the elastic
predicates defined each test case can be executed again and the
feedback reports and bit vectors can be filled as they are in CBI.

Along with our implementation of ESP, we implemented
versions of Tarantula, IVMP and CBI. These implementations
reflect [15], [12, 13], and [17] respectively. They are discussed in
more detail in Section 4.1.3. Our experiments for each approach
were run on a server with two Intel Xeon quad-core processors at
3.00 GHz and 48 GB of RAM.

4.1.2 Subject programs and test suites
The subset of programs from the Siemens Benchmark Suite used
for our experiments is listed in Table 3. The programs, along with
their corresponding faulty versions and test cases, were obtained
from [25]. All Siemens faulty versions contain seeded faults [10].
These faults are computation-related (as opposed to memory-
related), involving fault types such as operator and operand
mutations, missing and extraneous code, and constant value
mutations. Most faulty versions are seeded with a single fault in a
single statement, but some faulty versions involve several
statements. Several faulty versions were excluded because they

did not yield any failing test cases from the provided test cases.
These versions have been excluded in previous fault localization
evaluations with the Siemens Benchmark Suite [12, 13]. The
programs in Table 3 were chosen from the Siemens Benchmark
Suite because they (1) contain floating-point computations or (2)
could be easily modified to utilize stochastic distributions in a
meaningful way. These characteristics make them similar to
exploratory software and good candidates to test the effectiveness
and efficiency of ESP against the best fault localization
alternatives. The modifications we made are described after each
program is introduced.

Table 3: Siemens Benchmark Suite evaluation programs

Program
Name

Lines
of Code

Num. of
Versions

of Test
Cases

Program
Description

tcas 138 41 1608 Altitude separator

totinfo 396 23 1052 Statistic
computation

sched 299 9 2650 Priority scheduler

sched2 297 9 2710 Priority scheduler

Within our subset of the Siemens Benchmark Suite are four
programs: tcas, totinfo, sched and sched2. The tcas program
contains no loops and represents one conditional check spread
across several functions; it takes as input a set of integer
parameters and reports one of three output values. totinfo reads a
collection of numeric data tables as input and computes statistics
for each table as well as across all tables. Programs sched and
sched2 are priority schedulers for processes, taking as input a
number of processes and a list of scheduling commands, and
outputting the processes as they complete in priority order. For
each faulty version of each program, we also created a stochastic
version. For the totinfo and tcas programs we modified the value
of constants to be sampled from a uniform distribution with
minimum value of half the constant and a maximum value of one
and a half times the constant. These modifications represent the
uncertainty of surrounding measurements used in exploratory
software and also reflect the seeded constant mutation faults in the
Siemens Benchmark Suite [25]. In the two priority scheduler
programs we modified the programs to include arrival times
drawn from a normal distribution for the processes. This
modification is consistent with existing queueing simulations [9].
These stochastic versions represent benchmark programs that are
similar to exploratory software. Our stochastic Siemens
Benchmark Suite is available [26].

4.1.3 Fault localization approaches and scoring
In our experiments we compare the fault localization effectiveness
of the following four approaches that rank program statements.

IVMP. Within IVMP, each statement's ranking is based on the
number of failing executions in which a state alteration within the
statement results in a passing execution. Any ties within this
scheme are broken using the Tarantula suspiciousness formula
described in this section.

ESP. ESP is a predicate-based statistical debugging approach that
employs elastic predicates. In this evaluation both the single
variable and scalar pairs instrumentation schemes for ESP are

considered. Given a list of predicates ranked by importance
scores, ESP and CBI rank statements according to the following:

1. For each statement identify the corresponding predicate with
the highest importance score and move the statement and its
importance score to set ST.

2. Rank the statements in ST by importance score.

This statement ranking strategy is consistent with existing
predicate-based statistical debugging approaches [20].

CBI. CBI is a predicate-based statistical debugging approach that
employs uniform and static predicates. In our evaluation both the
single variable and scalar pairs instrumentation schemes for CBI
are considered. Existing implementations of CBI only consider
Boolean, character, integer, or pointer typed variables. However,
in the interest of a fair evaluation we extend our implementation
of CBI to consider floating-point type variables. Furthermore, our
implementation of CBI does not use random execution sampling
to reduce overhead. Instead it completely monitors each test case
execution enabling the best possible effectiveness results for CBI.
CBI ranks statements using the same process as ESP.

Tarantula. Statements within Tarantula are ranked in descending
order of suspiciousness. The suspiciousness, susp, of a statement s

is defined as:

€

susp(s) =

failed(s)
totalFailed

failed(s)
totalFailed

+
passed(s)
totalPassed

⎛

⎝
⎜

⎞

⎠
⎟

Here, failed(s) and passed(s) are the number of failing and
passing executions in which s is included. totalFailed and
totalPassed are the total number of failing and passing executions.

In our experiments, we rank only those program statements
that are executed by failing test cases using the test suite
associated with each faulty version of each program. When
multiple statements are tied for a particular rank, all tied
statements are given a rank value equal to the maximum rank
value from among the tied statements. This reflects the
conservative assumption that a SME will examine all tied
statements before any faulty statement within the set of tied score
statements can be found.

To evaluate each approach we assign a score to each ranked
set of statements that is the percentage of program statements
executed by failing test cases in the test suite that need not be
examined given the rank order of the statements. Given a ranked
list of statements S, where the faulty statement occurs at rank r
and n total statements are executed by failing test cases the score
for the approach is: score(S) = (n-r)/n * 100.

Finally, there are two details pertaining to certain types of
faults. First, for IVMP, faults in constant assignment statements
(15 out of a total of 82 faulty versions), cannot be found.
However, IVMP can detect faults in the statements where the
constant representing the fault is used. To conservatively evaluate
our effectiveness against IVMP we consider a constant
assignment statement to be examined by a SME when the
assignment statement is examined or when a statement explicitly
using the constant is examined. Second, faults that involve
missing statements (16 of the 82 faulty versions) cannot be ranked
and examined by a user because they are missing. For these
versions the statements directly adjacent to the missing code
qualify as the faulty statement. These two issues are not unique
and are handled the same way in previous evaluations [12, 13].

4.1.4 Identifying important predicates and scoring
In our experiments we also compare the effectiveness of CBI and
ESP in terms of identifying failure predicting predicates. We
measure the highest importance score returned by each approach
for each faulty version of each program in both versions of the
Siemens Benchmark Suite. This is a traditional evaluation of
effectiveness for predicate-based statistical debugging approaches
and is described further in Section 4.3 [2, 6, 17, 19, 32].

4.2 Statement Ranking Effectiveness
Our experimental results for the Siemens Benchmark Suite are
shown for each of the statement ranking approaches in Figures 2-
5. In the figures the x-axis represents the lower bound of each
score range, and the y-axis represents the percentage of faulty
versions with a score greater than or equal to the lower bound.
Figures 2 and 3 show the percentage of faulty versions in which
each approach computes a ranked list of statements in the
specified score range for the traditional Siemens Benchmark
Suite. Figure 2 shows these results for IVMP, Tarantula, ESP and
CBI under the single variable instrumentation scheme. Figure 3
shows the results for IVMP, Tarantula, ESP and CBI under the
scalar pairs instrumentation scheme. Figures 4 and 5 show the
same data as Figure 2 and 3 respectively, except they reflect the
Siemens Benchmark Suite that uses stochastic distributions. These
presentations of data follow the convention of Jones et al. [15].
However, whereas Jones et al. computes scores with respect to the
total number of program statements, we compute scores with
respect to the total number of statements executed by failing test
cases in the suite. Figures 2 and 3 show that for the traditional
Siemens Benchmark Suite the IVMP approach and ESP overall
perform much better than Tarantula or CBI. However, the results
significantly change for the Siemens Benchmark Suite that uses
stochastic distributions, as shown in Figures 4 and 5. IVMP is no
longer an effective approach because failing test cases executions
are not necessarily repeatable. As a result ESP outperforms any
alternative. We examine the data for each approach.

Figure 2: Statement ranking approaches with ESP and CBI
single variable for the traditional Siemens Benchmark Suite.

Figure 3: Statement ranking approaches with ESP and CBI
scalar pairs for the Siemens Benchmark Suite that does not
use stochastic distributions.

Figure 4: Statement ranking approaches with ESP and CBI
single variable for the traditional Siemens Benchmark Suite.

Figure 5: Statement ranking approaches with ESP and CBI
single variable for Siemens Benchmark Suite that does use
stochastic distributions.

4.2.1 ESP vs. IVMP
Within the traditional Siemens Benchmark Suite that does not use
stochastic distributions IVMP performs better than ESP for tcas,
sched and sched2. In these programs IVMP had a score of 90% or
higher 40 times while ESP only had a score of 90% or higher 32

times. However, ESP performed well for the totinfo program,
which frequently employs floating-point computations, and IVMP
did not. Within totinfo it is very difficult for IVMP to perform
state alterations that cause a failing test case to pass. This
difficulty is due to the level of precision in the floating-point
computations that generate the program’s output. As a result the
approach resorts to the ranking system in Tarantula for most
statements. In the evaluation IVMP performs the same as or worse
than Tarantula for 15 of the 23 faulty versions of totinfo.

Within the Siemens Benchmark Suite that does use stochastic
distributions IVMP performs poorly. This is because the suite
does not meet the state-alteration approach requirement, which
requires a failing test case to fail each time it is executed. When
applying IVMP to software that does not meet this requirement
state-alterations that cause failing test cases to pass are harder to
identify and not as meaningful [12, 13]. They cannot be isolated
from variations in the execution trace that are caused by the
stochastic distributions. Furthermore, the use of stochastic
distributions introduces more floating-point computations into the
programs, which IVMP does not always handle well.

4.2.2 ESP vs. CBI
ESP performs better than CBI under both instrumentation
schemes for the traditional Siemens Benchmark Suite and the
suite that uses stochastic distributions. Under the single variable
instrumentation scheme there are only 21 out of the total 164
faulty program versions where ESP assigned a lower rank to the
statement containing the fault than CBI. These instances were a
result of two different scenarios. In the first scenario the fault is
triggered in a small number of test cases by several values for a
program point that are greater than zero but only slightly larger
than all other observed values. In the second scenario the fault is
triggered in a small number of test cases by several values for a
program point that are less than zero but only slightly smaller than
all other observed values. In both scenarios a uniform and static
predicate which tests if the values for a program point are greater
or less than zero is more specific to the failure than the elastic
predicate used in ESP. The elastic predicate clusters all the similar
values together while the uniform and static predicate separates
those values that trigger the fault from the other similar values.

Under the single variable instrumentation scheme ESP and
CBI assigned the same rank to the statement containing the fault
in 36 other cases. In theses cases the uniform and static predicate
used in both approaches identifies the fault. In the remaining 107
cases ESP outperforms CBI. ESP’s performance is attributed to
elastic predicates, which result in predicates with higher
importance scores and better fault localization capabilities. The
importance scores for CBI and ESP are examined further in
section 4.3.

CBI’s poor performance under the scalar pairs
instrumentation scheme is noteworthy. For the traditional Siemens
Benchmark Suite it only slightly outperforms Tarantula, an
efficient approach that only analyzes statements, not variable
values. This poor performance is consistent with the Liu et al.
evaluation of CBI for the Siemens Benchmark Suite [20]. In this
evaluation the scalar pairs instrumentation scheme did not add any
effectiveness to CBI compared to the other implemented
instrumentation schemes. ESP offers a significant improvement
over CBI for the scalar pairs scheme, which we discuss in Section
4.3.

4.2.3 ESP vs. Tarantula
Along with ESP and CBI, the Tarantula approach did not
experience a significant decrease in effectiveness when applied to
the Siemens Benchmark Suite that uses stochastic distributions.
However, compared to ESP, Tarantula is not effective for either
version of the Siemens Benchmark Suite. For the traditional suite
the single variable instrumentation scheme of ESP was able to
uniquely identify the statement containing the fault (assign it rank
1) in 14 cases. Tarantula was able to do so in only 3 cases. Even
though the ESP approach was able to uniquely identify the faulty
statement in 14 cases, only 9 cases yielded scores of 99% or more
because in the tcas program the number of statements executed in
failing test cases was too few to yield a score of 99%.

4.3 Importance Score Ranking Effectiveness
Existing studies show that when SMEs or developers are provided
with a good failure predicting predicate they are able to quickly
identify the fault within a program whether the predicate
corresponds to the statement containing the fault or not [17]. The
importance score of the highest ranked predicate reflects this
measure of effectiveness. Figure 6 shows the importance score of
the highest ranked predicate for both ESP and CBI for the
traditional Siemens Benchmark Suite. Figure 7 shows the same
data for the suite that uses stochastic distributions. In the figures
the x-axis represents the lower bound of each importance score
range, and the y-axis represents the percentage of faulty versions
with a score greater than or equal to the lower bound.

The trends in the importance scores in Figures 6 and 7 are
similar to the trends in the statement ranking scores in Figures 2-
5; ESP outperforms CBI by a similar margin. They are related.
The elastic predicates do a better job of creating partitions of test
cases where the fault is and it not expressed than the uniform and
static predicates. This leads to a better ability to identify faults.
The importance scores and statement ranks of the elastic
predicates in ESP reflect this for both versions of the Siemens
Benchmark Suite. The figures also explain the poor performance
of CBI’s scalar pairs scheme in our statement ranking evaluation.
The uniform and static predicates are unable to identify
relationships between variables that are only violated in failing
test cases yielding few high scoring predicates. In contrast, the
elastic predicates adapt to observed differences in variable values
yielding many high scoring predicates and an effective approach.

Figure 6: Highest importance score associated with a
predicate for ESP and CBI for the traditional Siemens
Benchmark Suite.

Figure 7: Highest importance score associated with a
predicate for ESP and CBI for the Siemens Benchmark Suite
that uses stochastic distributions.

Overall, the results of Section 4.2 and 4.3 demonstrate that
ESP is more effective than CBI for both the traditional Siemens
Benchmark Suite and the version that uses stochastic
distributions. Furthermore, for the version that uses stochastic
distributions ESP is the most effective fault localization approach.
Also, ESP approaches the effectiveness of the best available
approach for the traditional Siemens Benchmark Suite, which
existing fault localization tools target. Next we explore how ESP
performs compared to the other approaches in terms of efficiency.

4.4 Efficiency
Figures 8 and 9 summarize the efficiency results for our
evaluation. Tarantula is the most efficient approach in our study
because it only takes into account statement coverage information
of passing and failing test cases. The other approaches also
analyze the values of variables. As a result, we compute the
efficiency of each approach relative to Tarantula’s. This relative

performance measure is:

€

RP = timeTarantula
timeother

.

Figure 8: RP for each statement ranking approach for the
programs in the traditional Siemens Benchmark Suite.

Figures 8 and 9 reveal several trends in the relative
performance of the approaches in our evaluation. Each approach
improves for the tcas benchmark and degrades for the totinfo
benchmark. The tcas and totinfo programs are the least and most
computationally intensive programs in the suite respectively.

Tarantula does not analyze variable computations so it does not
reflect these factors. However, the other approaches do analyze
variable computations and reflect the computational
characteristics of tcas and totinfo.

Figure 9: RP for each statement ranking approach for the
programs in the Siemens Benchmark Suite that use stochastic
distributions.

Given these expected fluctuations, the relative performance
of ESP and CBI is independent of the programs in the evaluation
to which they are applied. IVMP is not. For the the traditional and
stochastic versions of the totinfo program the relative performance
of IVMP approaches zero. This drastic degradation is due to
several failing totinfo test case executions that IVMP repeatedly
re-executes in an attempt to find state alterations resulting in a
passing execution. IVMP is the only approach in our evaluation
that re-executes failing test cases. As a result, for some programs,
such as totinfo, repeated re-executions of failing test cases will be
required, making IVMP inefficient.

Figures 8 and 9 also highlight the extra time required when
ESP and CBI are used in the scalar pairs instrumentation scheme
as opposed to the single variable scheme. While the extra time
required for these approaches does not result in improved
effectiveness for the Siemens Benchmark Suite, the scalar pairs
scheme has been shown to be effective in CBI for several widely
used programs [17]. Several performance optimizations for the
scalar pairs scheme are also available in [17]. These are not
implemented for ESP or CBI in our evaluation.

We expected the difference in the relative performance of
ESP and CBI to be approximately constant throughout the
evaluation. ESP and CBI both employ a set number of predicates
at each instrumented program point resulting in relative
performance that is independent of the faulty program. Recall, the
difference in the implementation of CBI and ESP is the additional
data structure, an m-by-n matrix, employed by ESP to construct
elastic predicates. Within ESP, the matrix is generated for each
executed test case. The rows in the matrix hold the values
assigned to instrumented program points. Figure 10 shows the
distribution of the length of each row in the matrices for the
Siemens Benchmark Suite that uses stochastic distributions. The
x-axis represents the length of each matrix row and the y-axis
represents the percentage of matrices with a row of the specified
length. Each axis is at log scale. The distribution of the row length
for the traditional Siemens Benchmark Suite is similar.

Figure 10 shows that for more than 99% of the matrices the
length of each row is 50 or less. Furthermore, for ~95% of the
matrices the length of each row is 10 or less. In future work we

will explore more efficient approaches for storing the values
assigned for an instrumented program point. However, for the
Siemens Benchmark Suite the additional matrix required by ESP
is a compact data structure for most program points.

Figure 10: The distribution of the length of each row in each
of the m-by-n matrices used by ESP. Note the log scales.

ESP approaches the effectiveness of the best available fault
localization approach, IVMP, for the traditional Siemens
Benchmark Suite in less time. Furthermore, ESP outperforms all
other approaches for a version of the suite that shares
characteristics of ESP’s target domain, exploratory software. ESP
achieves this effectiveness with only a constant decrease in
efficiency relative to the most efficient approach in our
evaluation, Tarantula. Next we will evaluate ESP against the best
fault localization alternatives for two widely used simulations.

4.5 Widely Used Simulations
We conducted additional experiments to determine how
effectively and efficiently ESP localizes faults for two widely
used simulations. The simulations in the evaluation are shown in
Table 4. One fault, similar to those in the Siemens Benchmark
Suite, is seeded in each simulation.

Table 4: Evaluated simulations and simulators
Sim. Name Modified Simulator Total Lines

of Code

TCP Protocol ns-2 Network Simulator [21] 11458

CPU Scheduling Queueing Toolkit [24] 2561

For each simulation, the rank of the statement containing the
fault for each of the approaches is shown in Table 5. The RP and
importance score of the highest ranked predicate in ESP and CBI
are also provided. The best rank and highest importance score
among the approaches for each simulation are shown in bold and

italicized. For this portion of the evaluation ESP and CBI used
only the single variable instrumentation scheme.

Table 5: Effectiveness and efficiency results

Sim. Name Faulty Statement Rank
(ESP, CBI, IVMP, Tar)

Importance
Score
(ESP, CBI)

RP

TCP
Protocol

(1, 16, 138, 144) (1.00, 0.925) .30951

CPU Disk
Scheduling

(3, 96, 64, 213) (0.985, 0.765) .32508

Table 5 shows that ESP is capable of significant
improvements in fault localization effectiveness over the best
available alternatives for analyzing widely used exploratory
software. Moreover, the decrease in relative performance for ESP
remained constant when compared to Tarantula. These efficiency
results seem reasonable in an automated context considering: (1)
the significant improvement in the rank of the statements
containing the fault and (2) the ability to find better failure
predicting predicates with higher importance scores than existing
approaches. Even though these simulations are significantly larger
than the Siemens Benchmark Suite, ESP’s performance relative to
Tarantula is approximately the same as it was in the Siemens
Benchmark Suite. These results illustrate that it is not program
size that determines the efficiency of our approach, but the
number of test cases included with the program. This has been
shown to be the limiting factor of efficiency for existing
predicate-based statistical debugging approaches [20].

4.6 Multiple Faults
Several of the cases in the Siemens Benchmark Suite contain
multiple faults. This is not uncommon; many examples of
exploratory software also contain multiple faults. In our
evaluation, each fault localization approach was only required to
identify one fault per program. This allowed us to conservatively
evaluate the effectiveness of ESP against the best available
alternative for the Siemens Benchmark Suite, IVMP. However, in
programs with multiple faults IVMP's effectiveness can diminish.
It is difficult for IVMP to differentiate among multiples faults in a
program because it has trouble identifying state alterations in
failing test cases that have different effects on the program output
[12]. Several modifications to IVMP have been suggested to
address this issue. However, these modifications can make IVMP
even more inefficient and do not guarantee multiple faults are
distinguished from one another [13]. In contrast, the effectiveness
and efficiency of ESP, CBI and other existing predicate-based
statistical debugging approaches does not diminish. ESP uses the
following established algorithm that guarantees a SME a failure
predicting predicate for each fault in a program [17, 32].
1. Rank each predicate in descending by importance score.

2. Remove the top-ranked predicate p and discard all test cases
where the p was found to be true.

3. Repeat steps 1 and 2 until the set of test cases is empty or the
set of predicates is empty.

5. CONCLUSION
SMEs can struggle for decades with separating valid, but
unexpected, exploratory software outcomes from failures. This
remains an open probelm. However, we have developed a
predicate-based statistical debugging method, ESP, which
localizes sources of unexpected outcomes. ESP replaces the
uniform and static predicates used in existing approaches with
elastic predicates. The result is improved effectiveness. ESP
outperforms the best alternatives in exploratory software
applications and performs as well as the best alternative for
traditionally targeted software. In future work, we will explore
adaptive sampling approaches to reduce the program points
instrumented with elastic predicates in ESP and automate the
selection of parameters within ESP’s elastic predicates.

6. REFERENCES
[1] H. Agrawal and J. R. Horgan. Dynamic program slicing. In

Proc. of the ACM SIGPLAN 1990 Conf. on Programming
Language Design and Implementation, 246-256, 1990.

[2] P. Arumuga Nainar and B. Liblit. Adaptive bug isolation. In
Proc. of the 32nd Int. Conf. on Software Engineering, 255-
264, 2010.

[3] P. Arumuga Nainar, T. Chen, J. Rosin, and B. Liblit.
Statistical debugging using compound Boolean predicates. In
Proc. of the 2007 Int. Symp. on Software Testing and
Analysis (ISSTA ’07), 5–15, 2007.

[4] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix and
W. Pugh. Using Static Analysis to Find Bugs. IEEE
Software, 25(5): 22-29.

[5] T. M. Chilimbi, B. Liblit, K. K. Mehra, A. V. Nori, and K.
Vaswani. HOLMES: Effective statistical debugging via
efficient path profiling. In Proc. of 31st Int. Conf. on
Software Engineering, 34–44, 2009.

[6] H. Cleve and A. Zeller. Locating causes of program failures.
In Proc. of the 27th Int. Conf. on Software Engineering, 342-
351, 2005.

[7] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to
support program evolution. IEEE Trans. on Software
Engineering, 27(2): 99–123, 2001.

[8] L. Fortnow. The status of the P vs. NP problem.
Communications of ACM 52(9): 78-86, 2009.

[9] M. K. Govil and M. C. Fu. Queueing Theory in
Manufacturing: A Survey. Journal of Manufacturing Systems
18(3): 214-240, 1999.

[10] M. J. Harrold, A. J. Offutt and K. Twewary. An approach to
fault modeling and fault seeding using the program
dependence graph. Journal of Systems and Software 36(3):
273-295, 1997.

[11] H. He and N. Gupta. Automated debugging using path-based
weakest preconditions. In Proc. of the 2004 Fundamental
Approaches to Software Engineering Conf., 267-280, 2004.

[12] D. Jeffery, N. Gupta and R. Gupta. Fault Localization Using
Value Replacement. In Proc. of the 2008 Int. Symp. on
Software Testing and Analysis, 167–177, 2008.

[13] D. Jeffery, N. Gupta and R. Gupta. Effective and efficient
localization of multiple faults using value replacement. In

Proc. of the 2009 IEEE Int. Conf. on Software Maintenance,
221-230, 2009.

[14] L. Jiang and Z. Su. Profile-guided program simplification for
effective testing and analysis. In Proc. of the 16th ACM
SIGSOFT Int. Symp. on Foundations of Software
Engineering, 48-58, 2008.

[15] J. A. Jones and M. J. Harrold. Empirical evaluation of the
Tarantula automatic fault-localization technique. In Proc. of
the 20th IEEE/ACM Int. Conf. on Automated Software
Engineering, 273–282, 2005.

[16] B. Korel and J. Laski. Dynamic program slicing. Information
Processing Letters, 29(3): 155-163, 1988.

[17] B. Liblit. Cooperative Bug Isolation (Winning Thesis of the
2005 ACM Doctoral Dissertation Competition), Lecture
Notes in Computer Science 4440. 2007.

[18] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug
isolation via remote program sampling. In: Proc. of the ACM
SIGPLAN 2003 Conf. on Programming language Design and
Implementation (PLDI ’03), 141–154, 2003.

[19] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan.
Scalable statistical bug isolation. In Proc. of the ACM
SIGPLAN 2003 Conf. on Programming Language Design
and Implementation, 15–26, 2005.

[20] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff. SOBER:
Statistical model-based bug localization. In Proc. of the 13th
ACM SIGSOFT Int. Symp. on Foundations of Software
Engineering, 286–295, 2005.

[21] ns-2: Java Network Simulator. http://jns.sourceforge.net
[22] B. Parhami. Defect, Fault, Error, …, or Failure. IEEE Trans.

on Reliability, 46(4): 450–451.
[23] M. Renieris and S. P. Reiss. Fault localization with nearest

neighbor queries. In Proc. of the 18th IEEE/ACM Int. Conf.
on Automated Software Engineering, 30–39, 2003.

[24] SimJ Modeling Tools. http://jmt.sourceforge.net.

[25] SIR: Software-artifact Infrastructure Repository.
http://sir.unl.edu/portal/index.html.

[26] StochSiemens. http://cs.virginia.edu/~rjg7v/stochsiemens/.

[27] F. Tip. A survey of program slicing techniques. Journal of
Programming Languages, 3(3): 121-189, 1995.

[28] W. Weimer, S. Forrest, C. L. Goues, and T. Nguyen,
Automatic program repair with evolutionary computation.
Communications of the ACM 53(5): 109-116, 2010.

[29] M. Weiser. Program slicing. IEEE Trans. on Software
Engineering, 10(4): 352-357,1984.

[30] X. Zhang, N. Gupta, and R. Gupta. Pruning dynamic slices
with confidence. In Proc. of the ACM SIGPLAN 2006 Conf.
on Programming Language Design and Implementation,
169-180, 2006.

[31] X. Zhang, N. Gupta, and R. Gupta. Locating faults through
automated predicate switching. In Proc. of the 28th Int. Conf.
on Software Engineering, 272-281, 2006.

[32] A. X. Zheng, M. I. Jordan, B. Liblit, M. Naik, and A. Aiken.
Statistical debugging: simultaneous identification of multiple
bugs. In Proc. of the 23rd Int. Conf. on Machine Learning,
1105–1112, 2006.

