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Abstract

Cost-benefit analysis attempts to balance the benefits of file prefetching against the costs of giving up a
buffer from the cache. This is a comprehensive approach to prefetching. It simultaneously answers the
questions of what and when/whether to prefetch, and also addresses the interaction between prefetching
and caching. Original research on cost-benefit analysis relied on hints about prefetching that were
supplied by the program, though other research has considered the more general case of programs without
hints. In this paper, we revisit previous research on cost-benefit analysis without hints, present new
estimators for the costs and benefits of prefetching under a system model without hints, and generalize the
system model to consider probability trees that may have the same block lie along multiple paths of the
tree. We present a distinction between absolute and marginal cost-benefit analysis, two different
approaches to file prefetching that previous researchers have used. The difference between the two is a
subtlety that has not been previously noted or investigated. Our new estimators are based on absolute
cost-benefit analysis, with modifications to address observed weaknesses in the absolute approach.

1 Introduction

File prefetching is a method to reduce the effect of disk and/or network latency on program execution
time. The reduction is accomplished by requesting files before they are actually needed by the program.
The gaps between processor speeds, memory speeds and disk speeds continue to increase, and it has
become increasingly beneficial to prefetch files from the disk in order to alleviate disk latency. File
prefetching is particularly advantageous when disk access costs are high, for example in many on-line
programs.

As researchers have analyzed file prefetching, they have developed algorithms far more complex than
one-block lookahead. Cost-benefit analysis, introduced by Patterson [Pat95], is one approach that has
been shown to be quite successful. A cost is incurred when a buffer is re-allocated to hold a different
block. The cost is weighed against the benefit (reduction in service time) that the program would receive
from using the buffer for the new purpose. Cost-benefit analysis is very promising because it attempts to
optimize the utilization of every single buffer. If every single buffer makes its maximum possible
reduction in I/O service time, then the system overall will experience the greatest reduction in I/O service
time.

Patterson’s approach was originally applied to systems that depend on hints, but has been extended to
those that do not [Vel99]. This extension is important because not all programs provide hints, and in
some cases it is not feasible to have the program supply hints. Without hints, the prefetch decisions must
be probabilistic, and the possibility of mispredictions becomes a serious concern because a misprediction
takes a buffer away from the LRU cache. The cost-benefit approach seeks to find the correct balance so
that the more tentative predictions will not be prefetched and harm performance but the more reliable
predictions will be prefetched.

In this paper, we revisit the work from [Vel99] and present new estimators for the system model where
file access hints are not provided by the program. We also generalize the system model to consider
probability trees that may have the same block lying along multiple paths. We explain the difference



between absolute and marginal cost-benefit analysis, which are two different approaches to cost-benefit
analysis that previous researchers have employed without noted appreciation for the differences in the
approaches. We base our estimators on the absolute approach, but introduce modifications to address
limitations that the absolute approach exhibits, calling the modified algorithm quasi-absolute.

2 Cost-Benefit Analysis

The system model of Patterson, et al [Pat95] assumes hinting programs. Programs give hints to disclose
some of the blocks that they will access. It is guaranteed that if a hint is given for a particular block, then
the block will indeed be accessed. Between hinted blocks, there may be demand (unhinted) accesses.
Patterson assumes that there is no congestion at the disk (i.e. infinite disk parallelism).

The file cache is divided into two portions, the hinted cache and the LRU cache. The hinted cache
contains file blocks that have been prefetched but not yet accessed. The LRU cache is just that: LRU.
Conceptually, a file block may be part of both portions of the cache at the same time, if it is one of the
most recently used blocks and a hint has also been issued that indicates the block will be accessed again
in the future. (If it is conceptually in both portions of the cache, it only occupies one physical buffer.)
Four estimators express the cost of ejecting a block from the LRU cache, the cost of ejecting a block from
the hinted cache, the benefit of prefetching a block and the benefit of fetching a demand request. The
estimators are expressed in terms of the common currency, which takes two factors (program execution
time and cache buffer usage) and expresses them as one number that can be compared for all potential
blocks. If the benefit of initiating a fetch ever exceeds the cost of ejecting a block currently in the cache,
a fetch is initiated.

Vellanki and Chervenak [Vel99] base their model on the Patterson model, however they do not assume
hinting processes. Instead, they assume a tree representing tallied accesses of the process. The past
history is then used as a predictor of future accesses. This alternative has an effect on the estimators, and
Vellanki derives new values for those estimators. We explore the no-hints system model, and present
new results.

2.1 System model

Our system model is essentially the same as that presented in [Vel99]. We assume a program consisting
of Nyo file accesses, with a constant amount of processing time between accesses, Tcpy. The time needed
to satisfy a file access from the file cache is Ty If the file block must be fetched from the disk, it
requires Tgriver CPU time to prepare the fetch, and Ty to wait for the fetch to be completed. Ty is the
time the processor spends waiting for the file block; it is equal to T if the block is not prefetched or
cached, but it may be less if it is prefetched or cached.

We assume the existence of a probability tree that dynamically represents sequences of potential future
accesses. We associate block names with nodes in the tree. For now we assume that a block will have
only one node. We do not yet consider the question of what to do if a block appears at multiple positions
in the probability tree, but we will address that question in Section 2.4.3.1. We assume the tree is
accurate but incomplete. By accurate, we mean that when an edge is labeled with a probability, that
probability corresponds to the actual probability of following the edge at that time. We assume this
accuracy for simplicity of analysis. In a real system, such probabilities will be estimates with some
degree of error. The impact of the inaccuracy of the probability tree is left as an open problem. By
incomplete, we mean that the sum of the probabilities on the outbound edges of a given node do not
necessarily sum to one, though the sums are always less than or equal to one, as the accuracy condition
implies. A node is a candidate node if the blocks of all of the node’s ancestors have already been
prefetched. A block is a candidate block if it has a candidate node. (The distinction between candidate
nodes and candidate blocks is only relevant in the replicated case introduced in Section 2.4.3.2.) A block,



b, has two major attributes: its depth dy, which is the number of edges that must be followed to reach the
block’s node in the tree; and its probability py, which is the probability of following the path to the node
(i.e. the product of the probabilities associated with edges between the root of the tree and block b’s
node).

An access period consists of a prefetch decision (which we assume to be zero-cost), Tg;ye, for each
prefetch, and then Ty (if any), Ty and Tepy for the current access. After Tepy, there is another file
access and then the next access period begins.

If an access is made that is not reflected in the tree then the access sequence is following a path that could
not have been predicted with any confidence. All pending prefetches were incorrect, and the probability
tree occurring after the demand access may be very different from the one before the demand access.

2.2 Buffer costs and prefetching benefits

In [Vel99], an estimator is given for the benefit of prefetching a particular block b that has parent block x.
AT (b, dy) is defined as the amount of time saved by prefetching block b at depth d;,, compared to the
time required to fetch b on demand. If the probability of accessing parent block x is py then the benefit is

B(b) = puAT(b, dy) — pATp(x, dy — 1) (1)

We address two assumptions in the derivation. The first relates to buffer usage (or bufferage). The unit
for bufferage is buffer-access, which is defined as the occupation of one buffer for one access-period for
the purpose of a possible future access to the block. The buffer usage is taken to be one buffer-access in
the above estimator. We argue the bufferage should actually be one buffer per access period. The buffer
will likely be held for more than one access period, so the bufferage is more than just one buffer-access.
Second, the second term of equation 1 is meant to indicate that part of the benefit of prefetching block b is
already realized by prefetching the predecessor, block x. This is true, in a sense, because block x should
always be prefetched before block b is prefetched. However, the benefit of prefetching block b is in the
context of all of b’s ancestor blocks and not only dependent on
its immediate parent block.

Consider the following example (see Figure 1). Assume there
are six file blocks: n, X, y, z, a and b. The next three blocks
accessed will be either (n, x, y) with 45% likelihood, (n, X, z)
with 45% likelihood or (n, a, b) with 10% likelihood. Then the
probabilities of accessing the individual blocks are p, =1, p, =
0.10, p, = 0.10, px = 0.90, py = 0.45 and p, = 0.45. Assume that
blocks n, a, x and z are already cached and there is one
additional cache buffer available for prefetching. We must then
decide to prefetch either block y or block b. Clearly, block y is
more than four times more likely to be accessed than block b,
and it is difficult to imagine why block b should be prefetched
instead of block y, but equation 1 determines that block b should
be prefetched. In that approach, a block is very likely to be
taken if the probability of accessing the block is close to the
probability of accessing its predecessor, even if that probability
is very low. (Notice that p, = p, but p, > py.) Even when the

Figure 1: prefetching overhead is taken into account, to compensate for
Prefetch block b or block y? the penalty of prefetching blocks that are not accessed, the
choice of block b over block y is not changed in [Vel99].




These observations led us to revisit this system model. We describe interesting results, as we first draw a
distinction between absolute and marginal cost-benefit analysis, described in Section 2.3, and then present
new estimators in Section 2.4.

2.3 Absolute vs. marginal cost-benefit analysis

Patterson [Pat95] introduced the concept of common currency, which is defined as “the magnitude of the
change in I/O service time per buffer-access”. This concept permits a comparison between two potential
prefetch blocks when they are expected to occupy a buffer for different amounts of time. When an
estimator is expressed in the common currency, the numerator is the expected change in I/O service time
and the denominator is the expected change in bufferage. In both the numerator and denominator,
“expected change” refers to the delta between two possible scenarios. The numerator and the
denominator for a single estimator must be consistent and refer to the same two scenarios.

The two scenarios could be prefetching a block now and not prefetching the block at all. That is, the
numerator could express the time saved by prefetching now versus not prefetching at all, and the
denominator the extra bufferage needed to prefetch now versus not prefetching at all. That is not the
approach Patterson takes in his cost estimator for ejecting from the prefetch cache. For that estimator, the
first scenario is not ejecting the block. The second is ejecting a block now and then prefetching the block
back later at some unknown time. The numerator, then, is the extra time required because the block was
ejected (assuming it would be prefetched back later). The denominator is the bufferage freed by ejecting
the block (assuming it would be prefetched back later). Both approaches just described are consistent, but
they are derived in different ways. We refer to the first as absolute cost-benefit analysis and the second as
marginal cost-benefit analysis.

In absolute cost-benefit analysis, no assumptions are made about future actions when calculating the
estimators. That is, future fetches are not taken into account and it is assumed that any block that is not
currently in the cache will be fetched on demand. In essence, absolute cost-benefit analysis compares the
effect of using the cache for a certain purpose and the effect of not using the cache at all.

In marginal cost-benefit analysis, guesses or assumptions are made about future fetches in order to
possibly take actions that are more time critical. This is Patterson’s approach in his cost estimator for
ejecting from the prefetch cache. When considering whether or not to eject a block in this case, it is
known that the block will have to be fetched back at some point and so it makes sense to take into
consideration the fact that the ejected block may not stall for the entire Ty. In essence, marginal cost-
benefit analysis compares the effect of taking an action and the effect of taking the action at a later point
in time.

Marginal cost-benefit analysis is a broad term, referring to any approach that compares between using the
cache now and using it later. We note two special types of marginal cost-benefit analysis. If the two
scenarios in question are using the cache now and using it at the next opportunity, we call this pure
marginal cost-benefit analysis, since it is considering the smallest margin for comparison. If the two
scenarios being compared are taking the action now and taking the action at the “best” future time, we
call this optimistic marginal cost-benefit analysis. For example, Patterson’s simulator handles the cost
estimator for ejecting from the prefetch cache with an optimistic approach. It assumes that an ejected
block will be prefetched back just in time to suffer no stall.

There are cases where using marginal cost-benefit analysis can lead to good decisions that absolute cost-
benefit analysis would not make. For instance, if a block can be ejected and then refetched and still not
suffer a stall, then the buffer could be used for another purpose for a period of time. If the block is sure to
be accessed eventually, then absolute cost-benefit analysis may give a high value to retaining that block
and not allow the buffer to be used for another purpose.



There are also cases where use of marginal cost-benefit analysis can incur risks that do not pay off.
Certain amount of guessing about future actions is incorporated in marginal cost-benefit analysis, and if
those guesses are incorrect then the strategy represented by marginal cost-benefit analysis may perform
worse than the absolute cost-benefit analysis approach. Figure 2 presents an example where use of
optimistic marginal and absolute CBA leads to different decisions. Using the optimistic marginal CBA
method would result in a prefetch while using the absolute CBA approach would not.

We focus first on absolute cost-benefit analysis. When constructing his own approach, Patterson
recognized that it is difficult to dynamically compute when a block would be refetched. We agree.
Furthermore, our system model does not assume a hinted stream of accesses, further complicating the
already difficult issue of guessing about future prefetch actions.

Marginal vs Absolute Cost-Benefit Analysis
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Figure 2: Assume that block a, which is in the cache, will be accessed 9 time units in the future; that
block b, if it is accessed, will be accessed 5 time units in the future; and that the benefit of
prefetching block b is 3/5. That is, the expected time savings is 3 time units and expected bufferage
is 5 buffer-accesses. Absolute CBA: We assume that block a will not be refetched until it is needed,
so the cost of ejecting it is 6/9. (A buffer is freed for 9 time units, and 6 time units will be added to
the total I/O time, 2 units for Ty, and 4 units for Ty + Tyy). In this case, block b will not be
prefetched in place of block a because the cost is greater than the benefit. Optimistic marginal CBA:
We assume block a will be refetched at ts, so the cost of ejection is 2/5. (A buffer is freed for 5 time
units, and 2 time units for Ty are added to the total I/O time. Block a is refetched early enough to
avoid any stall.) Here, block b will be prefetched into block a’s place because the benefit is greater
than the cost. In this case, marginal CBA can save time over absolute CBA because neither block b
nor block a experience stall if the marginal CBA guess is correct. However, if the marginal CBA
guess was incorrect and block a is not able to be refetched until time 9, then the marginal CBA
would perform worse than absolute CBA.




2.4 Deriving estimators

In this section we derive absolute cost-benefit estimators under the system model described in Section
2.1. The benefit for a demand fetch is infinite, as described in [Pat95].

2.4.1 Totaly time: the metric
The total running time of a program is

T=Nyo(Tcpu + Tro)

Tyo is the average amount of time spent on I/O per file access. Our objective is to minimize the value T.
We assume that the number of I/O accesses, Ny, and the amount of time spent computing between
accesses, Tcpy, have predetermined values and we focus on the minimization of I/O time. The total
amount of time the program spends on I/O is

Totalyo = (Nyo)(Tyo)

This is the metric we seek to minimize. As Cao demonstrated [Ca096], it is impossible to always
minimize the value for Ty,o without perfect knowledge of the access sequence, so our approach is
probabilistic.

2.4.2 Calculating bufferage

One important factor in figuring the cost or benefit of ejecting or prefetching a block is the amount of
bufferage. Here we calculate the expected bufferage for any node in the probability tree.

If block b occupies a buffer (or is being prefetched) then we define bufy,(d) as the expected amount of
bufferage block b will use when its node in the tree is at depth d. Block b will release the buffer either
after the block is accessed or after it is determined that the block will not be accessed. To calculate
bufy,(d), mark block b’s node and mark each node n if n is not an ancestor of block b’s node, but n’s
parent is an ancestor of block b’s node. (Figure 3 illustrates the marked nodes for a more general case.)

bUfb(d) = Zn = marked nodes dnpn

2.4.3 Selecting which block to prefetch

In choosing a block, we apply a greedy approach to minimizing the value for Totalyo. In order to select
the best block we utilize the common currency.

One option that will always be available is to not prefetch anything. An unused buffer will not reduce the
program running time, but neither will it increase the running time. In reality, the buffer will contain
some other data, but even if the buffer were empty there would be zero effect on the I/O service time. (A
misprediction, on the other hand, could actually harm performance due to the overhead of initiating the
fetch.)

Prefetching decisions are made at the beginning of each access period. The expected benefit in the
common currency is calculated for each block. This requires calculating the expected change in I/O
service time divided by the expected time that the block will occupy a buffer. For each block, py is the
probability that the edges that are followed in the tree lead to block b. In other words, py, is the product of
the probabilities of all the edges leading to block b’s node from the current (root) node. Recall that dy, is
the number of accesses in the future that block b would be accessed if the path would indeed be taken.
That is, d, is the depth in the tree of block b.



We have already calculated the expected bufferage in Section 2.4.2. For I/O time, there are two cases: if
the prefetch is correct and if it is incorrect. For each case, the expected impact on I/O time needs to be
determined.

If the prefetched block is not used, then Ty Overhead processing time is added to the program’s total
I/O time, as compared to the value if no prefetching was performed. There is a (1-py,) chance that when
block b is prefetched it will not be accessed. If it is prefetched but not used then Ty processing time is
added to Totalyo.

If the prefetched block is accessed, then the total amount of time spent on I/O in the program is reduced.
If the block is prefetched at depth zero, the access will stall for the entire disk access time, Ty For
simplicity, we assume Ty 1S constant, in keeping with the assumptions of [Pat95] and [Vel99]. If the
block is prefetched at a depth d, > 0, then the processor will stall for less time. During each access
period, the processor is busy processing (Tcpy), busy reading a hit from the disk cache (Ty;) and busy
issuing, on average, s new prefetches (sTqiver). In addition, any stall that occurs before block b is
accessed will mask part of the stall for block b. We must also bound Tj,;; below by zero, since negative
stalls cannot occur. Thus, a block b that is prefetched at a depth d, causes a stall of

Tslall(db) = max (Tdisk - [db(TCPU + Thit + STdriver) + (Zm = b’s direct ancestors Tstall(m))], 0)

In the equation above, Ty,;(m) is zero if block m is cached, is Tg if block m is neither cached nor being
prefetched, and is the stall value that was calculated when block m was prefetched, if block m is currently
being prefetched.

The expected change in stall time for block b (if it is accessed), is then
ATan(b) = Tean(dp) — Taik =

max (Taisk — [do(Tepu + Thic + STariver) + (m = s direct ancestors Tstan(M))], 0) = T =
max (= dp(Tepy + Thic + STariver) = (X = bs direct ancestors Tstan(M)), =T aisk)

The change in stall time is the only effect the prefetch will have on Totaly if the block is accessed.
Expressed in the common currency, the overall benefit of prefetching block b (called B(b)) is

B(b) = E[ATotaly,] / E[buffer-usage] = (2)
{pb[max (_ db(’TCPU + Thit + STdriver) - (Zm: b’s direct ancestors Tstall(m))a _Tdisk)] + (l'pb) [Tdriver]} / {bufb(db)}

This equation expresses expected change in I/O service time divided by expected buffer usage. The block
that produces the most negative value for B is the block that should be prefetched (if any block is
prefetched). If no block produces a benefit greater than the benefit of retaining the blocks in the cache,
then the option to fetch no block at all is the best option and therefore no block should be prefetched.

Note that bufy,(0) is zero, indicating an undefined benefit for prefetching at depth zero. Since a prefetch at
depth zero is equivalent to a demand fetch, the benefit should be infinite.

2.4.3.1 Anomaly for absolute cost-benefit analysis

In the previous section, we derived a benefit estimator for absolute cost-benefit analysis. Previous work
has limited the pool of blocks under consideration to those that meet the definition of a candidate block: a
block is a candidate block if every block in the tree that is a direct ancestor of that block has already been
accessed or has already been prefetched. Is there any reason to assume this condition under the model of
absolute cost-benefit analysis? The reason to limit the number of blocks under consideration is that a
descendant block will only be accessed after its ancestor blocks. A prefetch for the descendant block can
then be initiated after initiating the fetches for the ancestors, since all of the fetches for the ancestors must
complete before the descendant is accessed. However, absolute cost-benefit analysis assumes that blocks



not in the cache will be fetched on demand. Restricting the pool of candidates implicitly assumes a
condition that is only consistent with marginal cost-benefit analysis, since the motivation there is that the
descendant can be prefetched later. Therefore, an absolute cost-benefit approach should not make the
restriction.

If every block is always considered for prefetching, an interesting anomaly occurs. If there are two
blocks under consideration and their relationship in the probability tree is parent-child, under absolute
cost-benefit analysis it is more advantageous to prefetch the child block. If the child block is prefetched,
all of its stall will be masked by the demand fetch of the parent block, but if the parent block is
prefetched, only part of its stall will be masked (by the compute time that comes before it is accessed). In
this case, the child block could also be prefetched while the parent block is being prefetched, but absolute
cost-benefit analysis does not take this into consideration.

We conclude that some sort of marginal consideration needs to be included in order to make good
prefetch decisions. We define the approach quasi-absolute, in which the only blocks under consideration
are those that meet the definition of a candidate block.

2.4.3.2 Replication of a block within the probability tree

The benefit estimator expressed in equation 2 evaluates the benefit of a prefetch for each node of the
probability tree, where each node represents a particular file block. However, a particular file block may
appear at more than one node in the probability tree. We call these blocks replicated blocks. It may be
the case that the best block to prefetch is one that appears along several paths in the probability tree, even
though none of the paths is particularly likely to be followed. The estimator in equation 2 does not take
this into account.

If a block occurs twice along the same path, then the block would be fetched into the cache at the first
occurrence, and would then already be in the cache for the second occurrence. As Patterson noted
[Pat95], “it only takes one disk I/O to fetch a block no matter how many times the block is accessed
thereafter.” For this reason, we ignore nodes for replicated blocks when the node has an ancestor node
that is also for the same block.

Equation 2 includes three attributes of a potential block: py, d, and bufy(d,). In order to find the benefit
estimator for prefetching a block that is replicated along multiple paths, we need to determine the
bufferage and expected impact on I/O time if this block is prefetched.

We consider the bufferage for a block that
appears more than once in the tree, where
the block’s set of nodes is Ny, = {ny;, nyy,
...}. The bufferage with multiple
occurrences of a block in the tree is an
extension of bufferage for the non-
replicated case (Section 2.4.2). The buffer
can be released either after the block is
read or after it can be determined that the
block was mispredicted. Mark each node
n of the tree if it is either one of block b’s
nodes or the node does not have any of
block b’s nodes as descendants, butn’s
parent node does have a block b node as a
descendant. Figure 3 illustrates which
nodes should be marked. Then the
expected bufferage for the replicated

Figure 3: Shaded nodes indicate which ones to mark
when calculating bufferage for a replicated block b




block b is
bllfb(Nb) = Zn = marked nodes dnpn

Note that the expected bufferage for multiple nodes is always greater than or equal to the expected
bufferage for any subset of those nodes, because adding more nodes of the same block can only extend
how long a buffer is held.

If a replicated block b is prefetched the expected change in I/O time is a weighted sum over the block’s
nodes, plus the potential overhead. This formula is derived by considering the probability of following
each branch of the tree, and the impact on I/O time that is realized if that branch is followed. Finally, the
impacts on I/O time for the different branches are summed.

E[ATOtaII/O] = {Zn = nodes for b Pn[maX (_ dn(TCPU + Thjt + STdriver) - (zm =n’s direct ancestors Tstall(m))a _Tdisk)] } + (1
- Zn =nodes for b pn) [Tdriver]

Adding instances of a block can only improve the impact on total I/O time. This is because when a node
is added to the set the probability of a misprediction is being reduced and the probability of a correct and
timesaving prefetch is being increased.

Define A(n) as the set of nodes that are direct ancestors of node n. The benefit of prefetching a block
under absolute cost-benefit analysis, considering all of the nodes in the set Ny, is

B(Nb) = E[ATOtalI/o] /bUfb(Nb) =

{ {Zn= Nb Polmax (— du(Tepy + Thic + STariver) — (Xm= Am) Tstan(m)), —Taig)]} + (1 - Zn=Nb P Tasiver] } /
{buf,(Ny) }

Though not immediately obvious, it may be the case that a candidate
node at a deep depth but a low probability actually harms the overall
benefit for the block. This can happen because including the block in the
set might slightly improve the expected change in I/O time, but greatly
increase the expected bufferage (see Figure 4). In order to handle this
anomaly, we recognize that the block can be prefetched but then ejected
early, even if the path that is followed leads toward the deep but low
probability node. Essentially, we can ignore the deep but low probability

Block a ® ' node to reduce the expected bufferage. However, there may be other
Block b deep nodes that are beneficial, so a node should not be excluded based
0 solely on its depth in the probability tree.

With this observation, the benefit estimator for prefetching block b is
modified so that some of the nodes can be selectively excluded from
consideration. The estimator is then the maximum value of B(J) where J
Figure 4: Block a appears is any subset of Ny

in 3 nodes. If we consider
the two nodes of block a B(b) = max {B(J) where J LI Ny }

nearest the root node, then | The anomaly noted in Section 2.4.3.1 also applies to the replicated case.

B(a;, a;) > B(b). If we If we include any non-candidate nodes in a set Ny, then absolute cost-
also consider the third benefit analysis will heavily favor them. The quasi-absolute approach
node at the bottom of the for the replicated case, therefore, excludes the non-candidate nodes from
figure, then consideration. Block b’s non-candidate nodes should actually have some
B(ai, a, a;) < B(b), since positive impact on the benefit estimator, but not to the extent that

a’s third node increases absolute cost-benefit analysis gives them.

the expected bufferage to
the extent that it appears
more beneficial to
prefetch block b.




2.4.4 Benefit of retaining a block already in the cache

[Pat95] and [Vel99] balanced costs against benefits. The cost of ejecting a block is essentially the loss of
the benefit that would have been experienced if the block was retained. Since the cost of ejection is the
same as the benefit of retention, it is valid to speak in terms of “benefit vs. benefit” rather than “cost vs.
benefit”. We prefer the former in our analytic model because then the benefit of each block can be ranked
and those blocks with the best benefits can be selected to be in the cache, regardless of whether they are
already in a buffer or not. The benefit is simply calculated differently if the block is already in the cache.

If a block already in the cache is accessed, then the total I/O time is reduced by (Tgisk + Tasiver), relative to
the total I/O time if there was no cache. This is true whether the block is part of the LRU list, appears in
the probability tree or both. In this section, we only consider blocks that appear in the probability tree. In
Section 2.4.4.1 we describe how the LRU list can be reflected in the probability tree.

The benefit of retaining a block is the expected change in I/O service time divided by the expected change
in buffer usage. For a block that appears in only a single node, the bufferage is the same as derived
earlier and the expected change in I/O time is

E[ATotalyo] = po[-(Taisk + Tariver)]

If we are considering the benefit of retaining a block that is replicated in the tree in the nodes Ny, = {ny,,
Ny, ...}, the situation is very similar to Section 2.4.3.1.

E[ATotalyo] = (Xnenb Po)[-(Taisk + Tariver)]

The bufferage and overall benefit of retaining a replicated block is calculated as described in Section
2.4.3.1. For each block b that has a set of nodes Ny, the benefit of retaining block b, considering all of its
nodes, is

B(N,;) = E[ATotaly,o] / buf, (N}) =
(2 P)[-(Taisk + Tariver)] / buf, (Np)

The anomaly with deep, low probability nodes still exists, so the benefit of retaining block b is the
maximum value of B(J) where J is any subset of Ny. There is no need to restrict the blocks considered for
retention to only the candidate blocks, since all retained blocks experience zero stall. The absolute and
quasi-absolute approaches have the same estimator for the benefit of retaining a block.

B(b) = max{B(J) where J I N}

2.4.4.1 The effect of the LRU cache

In our system model, we have assumed that at any point we have an accurate but incomplete probability
tree that reflects potential future accesses. Up to this point, we have not addressed the list of most recent
file accesses because it is possible to have the list reflected in the probability tree. For our analytic model
we assume the existence of the probability tree and zero-cost analysis. Because we assume zero-cost
analysis, we can take the time to do a transformation so that the LRU list is reflected in the probability
tree. We now describe how to have the LRU list reflected in the probability tree.

As described in [Pat95], the probability that the nth least recently used block will be accessed is H(n) —
H(n-1), where H(x) is the demand cache-hit ratio when x buffers are in use in the demand cache. Since
both the block and the probability of it being accessed are known, an explicit node in the tree for this
block can be added, with the appropriate probability. If the block was already reflected in the tree due to
a prediction, then the probabilities can simply be summed. In this way, the information from the LRU list
is reflected in the probability tree and the LRU list does not need to be included as part of the analytic
model. We recognize that for simulations and real-world performance, the LRU list is an important
factor, but our focus here is on making the best selection based on zero-cost analysis and an accurate but



incomplete probability tree. In this model, the LRU list does not need to be taken into consideration
explicitly because its impact can be completely reflected in the assumed probability tree.

2.5 Integrated algorithm

We have developed two estimators under absolute cost-benefit analysis — one for fetching a block and one
for retaining a block. The estimator for retaining a block addresses any block that is in the file cache,
regardless of its initial reason for being fetched. The estimator for fetching addresses prefetches, but
implicitly handles demand requests as prefetches of depth zero. The integrated algorithm computes for
each block under consideration, after each access request, the benefit of fetching the block or retaining the
block. Those blocks with the lowest benefit of retention will be ejected in favor of the blocks with the
highest benefit of fetching, so long as the benefit of the fetch is higher than the benefit of retention.

The quasi-absolute algorithm restricts the set of blocks considered for prefetching to those blocks that
meet the definition of a candidate block.

3 Related work

Prefetching remains an area of active research, though much of the recent research in prefetching has
moved away from typical file prefetching to web prefetching [Mal99][IbrO0]. Some recent work in file
prefetching includes [Kri94], [Alb98] and [Ca096]. These papers describe research on prefetching
problems where the entire access sequence is known in advance.

Other researchers have addressed the problem of predicting future file accesses. The idea of compiler-
inserted prefetching hints has been presented by Mowry [Mow96]. Chang transforms binaries so that
they will have a speculative thread. The speculative thread runs ahead to see what the future accesses are
and issues (possibly incorrect) hints [Cha99].

Many other approaches to predicting future file accesses fall into the category of history based
prefetching methods. The various history-based approaches can be distinguished from one another in a
number of ways.. The various approaches assume differing amounts of historical knowledge. They also
have different interpretations about what “current context” means. For example, some are whole file
prefetching schemes, and the context is determined by the sequence of files that are touched, while others
are file block prefetching schemes. The most significant differences arise in how they interpret the data to
decide exactly what to prefetch.

Some of the history based methods include the Markov predictor of [Bar99], the data compression
predictors (LZ, PPM, FOM) of [Cur93], hidden Markov models [Mad97], partitioned context model
[Kro96], the path-based target prediction scheme presented in [Whi00], the analytic approach of [Lei97],
and the graph-based approach of [Gri94].

Krishnan and Vitter use the LZ data compression predictor, and then make a randomization of what to
prefetch in order to optimize for the worst-case scenario [Kri94]. This is because a random algorithm is
necessary to optimize for the worst case [Cov67].

As we have mentioned throughout the paper, the work closest to our own is Patterson’s initial work on
cost-benefit analysis [Pat95] and Vellanki’s previous work in the area of predictive cost-benefit analysis
[Vel99]. Tomkins investigated cost-benefit analysis without assuming infinite disk parallelism, but
maintaining the assumption of a hinted stream [Tom97].



4 Future work

We have investigated absolute cost-benefit analysis and identified weaknesses that demonstrate the need
for marginal considerations. We addressed the weaknesses by placing restrictions on the set of blocks
under consideration, but we plan to more fully explore the potential of marginal cost-benefit analysis.

The work we have presented here is based on a particular system model. In the future we will generalize
this approach to system models that do not assume infinite disk parallelism and do not assume a constant
time between file accesses. We will also explore the impact of attempting to impose a maximum stall
time on the system in order to provide a more consistent level of service (even if the overall program time
increases). We will address the practical implications of our results at greater length in future work.

5 Conclusion

In this paper, we drew a distinction between two approaches to cost-benefit analysis that have appeared in
the literature previously, and termed those approaches absolute and marginal cost-benefit analysis. We
presented absolute cost-benefit estimators under a specific system model and demonstrated weaknesses in
the estimators. We then presented quasi-absolute, a cost-benefit approach that is based on absolute cost-
benefit analysis principles but addresses the weaknesses we noted. Quasi-absolute does have limitations.
In particular, it does not take into consideration the effect of non-candidate nodes of replicated blocks.
Our work has demonstrated insights into making cost-benefit decisions and paved the way for thorough
investigation of marginal cost-benefit analysis.

Our system model is similar to that of [Vel99] because we are using a predictive approach rather than
relying on hints. We presented an improvement to the concept of bufferage presented in that paper, and at
the same time analyzed a more general system that takes into account the situation when the same block
lies along multiple paths of the probability tree. Finally, we described how, for our predictive analytic
model, the LRU list does not need separate analysis since it can be completely represented in the
probability tree.
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