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Abstract Windowing algorithms represent an important class of synchronization proto-
cols for parallel discrete event simulation. In these algorithms, a simulation window is
chosen such that all events within the window can be executed concurrently without the
possibility of a causality error. Using the terminology of Chand and Sherman (1989),
these are unconditional events. Windowing algorithms, as all non-aggressive algo-
rithms, have been criticized for not allowing a computation to proceed because there
“exists the possibility of a causality error. We are interested in the impact of extending
the simulation window in order to allow the computation of conditional events, that is,
those events that may cause an error. In this paper we develop a model to investigate
the benefits of extending the simulation window to admit conditional events into the
computation stream. Using this model we demonstrate significant performance gains as
a result of aggressive processing. Also we prove that our approach is scalable: Perfor-
mance is not significantly degraded as the number of LPs approaches infinity. We vali-
date these results with empirical studies.
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1. Introduction

The sheer magnitude of many simulation problems makes the use of conventional sequential tech-
niques impractical. For this reason researchers have wrned to the use of multiprocessor architectures ©
provide the power necessary to simulate these large systems. In a paraflel discrete event simulation
(PDES) the physical system is partitioned into a set of physical processes (PP) and each PP is modeled by
a corresponding logical process (LP). Logical processes communicate through the use of timestamped
messages where each message represents a change 1o the state of the system being simulated. The times-

tamp of the message represents the lime the system state is changed.

Parallel discrete event simulation poses very difficult synchronization problems due to the underly-
ing sense of logical time. Each LP maintains its own logical clock representing the time up to which the
corresponding PP has been simulated. The fundamental synchronization problem in PDES is in the deter-
mination of when it is permissible for an LP to advance its logical clock. If an LP advances its logical
clock too far ahead of any other LP in the system it may receive a message with a timestamp in its logical
past, When an LP receives a message with a timestarop in its logical past it is termed a causality error or

fault and may lead to incorrect results.

Most of the protocols developed for paraliel discrete event simulation fall into two basic categories.
One category (using the terminology developed by Reynolds 1988) is protocols that are accurate, non-
aggressive and without risk (also known as "eonservative” protocols, e.g. Chandy and Misra 1979,
Lubachevsky 1988, Nicol 1991 and Peacock, Manning and Wong 1978). The second category is proto-
cols that are accurate, aggressive and with risk, also known as "optimistic”, ¢.g. Time Warp (Jefferson
1985). Protocols that are non-aggressive and without risk do not allow an LP to process a message with
timestamp ¢ if it is possible that it will receive another message with a tmestamp less than { at some
point in the futare. Protocols that are aggressive allow an LP to process any event it receives, and any

causality errors that result from this aggressive processing are corrected through a rollback mechanism,

Non-aggressive protocols are criticized for not allowing a computation to proceed because there
exits the possibility of a causality error. Thus computations that can possibly result in an error, but gen-

erally do not, will not be allowed to proceed. Aggressive protocols are criticized for the high overhead



costs associated with state saving and rolfback and because of the possibility of cascading roltbacks.

At least two researchers are investigating the benefits of adding aggressiveness 1o existing non-
aggressive protocol (Lubachevsky 1989, Dickens and Reynolds 1990, Dickens and Reynolds 1991). This
investigation seeks to maximize the benefits and minimize the costs of both approaches. A very impor-
tant class of non-aggressive protocols to consider for this new approach is the synchronous windowing
algorithms. These algorithms are important because they are the only class of protocols for which impor-

tant scalability properties have been theoretically demonstrated (Lubachevsky 19894, Nicol 1991).

In a previous paper (Dickens and Reynolds 1991) we describe our basic approach of adding
aggressiveness to synchronous windowing algorithms, Also we develop a preliminary analytic model 10
study its performance. There are two problems with the model as developed. First, the model gives
excellent predictions for the behavior of a single LP bul provides only a loose upper bound on system
performance. Second, we make some restrictive assumplions. In a queueing system we assume each LP
has infinite servers. Also, our model cannot handle limited aggressive processing and assumes an LP

processes all of its messages as soon as they are received.

The model presented in this paper represents a significant improvemeni over our earlier model. We
have relaxed our restrictive assumptions and now allow queueing and limited aggressive processing.
Further, we demonstrate analytically and empirically significant performance gaing realized by our
approach. Also we prove the scalability of our approach: performance does not degrade as the number of

LPs in the system approaches infinity.

The rest of the paper is organized as follows. In section 2 we give a brief description of non-
aggressive Synchronous Windowing Algorithms and discuss the modifications required to make them
aggressive. In section 3 .we develop our model to evaluate the performance of our approach. In section
four we prove the scalability of our approach and in section 5 we give some empirical results to validate

our model. In section 6 we give our conclusions and directions for future research.



2. Aggressive Synchronous Windowing Algorithms

The windowing protocols under discussion generally proceed in three phases. [n the first phase, the
LPs cooperatively determine the synchronization window. The floor of the window is the minimum
timestamp over all unprocessed messages in the system. The ceiling of the window is chosen such that
all messages within the window can be executed concurrently without any possibility of a causality error.
We term this simulation window defined by the protocol the Lookahead window. In the second phase,
each LP executes all of its messages with timestamps falling within the Lookahead window. In the third
phase, the events generated as a result of execution within the Lookahead window are exchanged. Each
phase is separated by a barrier synchronization. The primary difference among the various windowing
protocols is the mechanism used to determine the Lookahead window. Note that only those messages
with timestamps falling within the Lookahead window {where there is no possibility of a causality error)

are considered for execution,

Our modified algorithm extends the simulation window past the Lookahead window established by
the non-aggressive protocol. Assume the system is synchronized at logical time T where T is the current
window floor. The non-aggressive windowing algorithm defines the Lookahead window from logical
time T to logical time T+L, where L is the length of the Lookahead window. Our modified algorithm
defines an extended simulation window from the upper bound of the Lookahead window (logical time
T+L) to logical time T+L+A. We term this extension (0 the Lookahead window the aggressive window
and note that it has a length of A logical time units. In our aggressive algorithm we allow messages with
timestamps falling within the aggressive window (0 be processed as well as those messages with times-

tamps falling within the Lookahead window. This is shown in Figure 1.

As noted all processing within the Lookahead window is guaranteed to be correct. Processing
within the aggressive window (we term this aggressive processing) may lead to causality errors, If errors
do occur as a result of aggressive processing therc must be some mechanism to correct the errors,

Aggressive processing that does not result in 2 causality error is termed successful aggressive processing.
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3. Performance Measurements

We are interested in the improvement in performance as a result of extending the Lookahead win-
dow to allow aggressive processing. We define the performance of the non-aggressive protocol as the
expected number of messages processed within the Lookahead window. We define the performance of
our aggressive protocol as the expected number of messages successfully processed in the aggressive
window plus the expected number of messages processed in the Lookahead. The expected improvement
in performance is the ratio of these two quantities. We are interested in the expected improvement as a

function of the aggressive window size.

Another measurement of interest is the probability of a causality error as we begin to process out-

side of the Lookahead window. We are interested in this error probability as a function of the size of the

aggressive window.

4, Model

Our model is closely related to the one developed by Nicol (1991) although he is not investigating
processing outside of the Lookahead window. Also his model is more general than the one presented
here in that his captures general timestamp increment distributions, Our model is also closely related to
the models developed by Akyildiz er. al. (1992) and Gupta et. al. (1991), and uses the same assumptions.
Akyildiz and Gupta however are investigating the behavior of Thne Warp which does not limit aggres-

sive processing as we are proposing.

We model our protocol as collection of servers where activities OCCur. There are N LPs, one server

per LP and one LP per processor. The assumption of one LP per processor can be modified without



difficulty, An activity begins, ends and upon its completion causes other activites. In our model each
completion causes exactly one other activity, We assume the completion causes an activity at a server
that is picked at random where each server is equally likely to be chosen. Note that this equally likely
assumption is a common assumption in the paraliel simulation community and is used to make the

analysis tractable (Felderman and Kleinrock 1992, Gupta et. al. 1998, Nicol 1991, Akyildiz er. al. 1991).

The delay in simulation time between when an activity begins and ends is called the duration of the

activity. We assume each server chooses the duration of an activity from independent, identically distri-
buted exponential distribution with mean i Note that our assumption of one server per LP implies that
each LP will impose some queneing discipline.

The model presented in this paper assumes a closed queueing system. Also we assume the system
is heavily loaded such that the probability of a server being idle is very close to zero. In another paper we

relax the assumption of a closed system and model an open system with external Poisson arrival streams.

The width of the Lookahead window (L) at a given iteration of the protocol is a random variable.
We state without explanation that in Nicol’s protocol L is the minimum of N gamma distributed random

variables, where each gamma is the sum of twe independent, identically distributed exponential random
variables with mean -;: In the analysis to follow we treat L as a constant rather than as a random vari-

able. In particular, we use the expected value of L in our analysis. This expected value can be obtained
analytically or through sample simulation runs, Below we demonstrale analytically why using the
expected value of L in our equations is very reasonable. Simuiation studies validate that using the

expected value of L in our model provides excellent results.

As discussed above, there are two primary resulis in which we are interested. First, we seek the
probability of a fanlt as a function of the aggressive window size. Second, we seek the expected increase

in performance due to aggressive processing as a function of the size of the aggressive window.

In order 10 obtain the results of interest there are several steps that need to be accomplished. First,
we need to determine the distribution for the number of messages in the aggressive window at the syn-

chronization point (logical time T). This is the number of messages that can be processed aggressively.



Second, we need to determine the distribution for the number of messages in the Lookahead window at
logical time T. This determines the number of messages processed in the non-aggressive version of the
algorithm, Third, we need the distribution for the number of messages that subsequently arrive in the
aggressive window. These messages are important because they can potentially cause a fault. Fourth, we
need the distribution for the timestamps of the messages that are in the aggressive window at logical ime
T. Finally, we need the distribution for the timestamps of messages that subsequently arrive in the aggres-
sive window. The last two items (ogether delermine the probability that an arrival message invalidates a
message processed aggressively. In the following sections we determine the distributions for each of

these items.

4.1. Number of Messages in Aggressive Window at Logical Time T

At this point we briefy describe one aspect of Nicol’s windowing algorithm that is critical to our
analysis. In Nicol's algorithm, each LP "pre-sends” its completion messages. That is, the completion
time of an activity, and the LP to receive the activity upon its completion, are both calculated at the time
the activity begins. The LP to subsequently receive the activity is notified of this reception at the time the
activity begins. Note that this assumes powerful lookahead capabilities. In particular, it assumes non-
preemptive service and that the routing of the activity is unaffected by the load on the network at service

completion.

For our analysis, the important aspect of this pre-sending of completion messages is that there will
be one "pre-sent” message for every LP that is busy. Further, if the system is synchronized at some time
fogical time T, each such "pre-sent” message will have a timestamp of at teast T. This is because Nicol's
algorithm (as all non-aggressive algorithms) guarantees that once the system reaches time logical time T,

there are no messages in the system with timestamp less than T.

Our first task in determining the distribution for the number of messages in the aggressive window
at logical time T is to determnine the probability that a particular LP receives K "pre-sent” completion
messages. Recall the assumption that the probabitity of an idle server is very low. This implies that with

high probability each LP will have "pre-sent” a completion message to some LP in the system. This pre-



sent completion message represents the completion time of the activity currently receiving service.
Further note that the probability of a given LP receiving K of these "pre-sent” completion messages s

binomially distributed due to the assumption of equally likely routing.

(N-1) )N"" N1
N

P(K)= (LN ( KT

(B

In Equation (1) there is a large number of independent trials (N) and the probability of success (F)
at any trial is small (I/N). Let Ay = NP = 1, the probability of success at any trial times the number of tri-
als. As shown by Breiman (1986), the Binomial distribution is approximated very closely by the Poisson
distribution (with rate A, = NP) in the case where P is small and N is large. This is the case in Equation
(1) and we conclude that the probability of a given LP recefving K pre-sent completion messages is
closely approximated by the Poisson distribution with rate A=1.

e—l
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Now consider the distribution of the timestamp for a "pre-sent” completion message received by a
given LP at logical time T. It is known that the service time distribution for such a message is exponen-
tially distributed, and that ail such messages will have timestamps greater than T. Due to the memoryless
property of the exponential distribution, the residual service time of the activity is also exponentially dis-
tributed. Thus the distribution of the timestamp of a "pre-sent” completion message, given that the times-
tamp is greater than logical time T, is also exponentiaily distributed. Thus we can view the system as
probabilistically restarting at logical time T. For this reason in the equations that follow we define the
aggressive window as falling between logical times L and L+A rather than as falling between logical

times T+L and T+L+A.

Given the distribution of the timestamps for pre-seat completion messages, and the dismibution for
the number of such messages received, we can compute the distribution for the number of messages with
timestamps falling within the aggressive window (L.L+A). Consider the probability that exactly one of
the K “pre-sent” completion messages received by an LP falls within the aggressive window. In order for
this to occur, exactly one of the K messages received by the LP must have a timestamnp within the aggres-

sive window, and all of the other K-1 messages must have timestamps outside of the aggressive window,



Given that we know the timestamp distribution for "pre-sent" completion messages we can calculate the
probability that such a message falls within the aggressive window.
P(tin AW)y=e™ — g M) 3)
The probability of a timestamp being outside of the aggressive window is one minus the proability that it
falls within the window.
Pt not in AW) = 1-( e Mg M) )
The probability that i (independent) messages fall within the aggressive window given that K messages

are received is:

K1
HE-DE

In Equation (5), the (¢ e &Y erm is the probability of i independent messages falling

P (1 ;K) - (e-—?uL__.ew?'.(L-f-A})i (1we—7\.L+ew?\.(L+A))K—i

)

within the aggressive window. The (1— ™ +e &+ ™ 1erm js the probability that the other K'—i mes-

i
sages fall outside of the aggressive window. The ngﬁr term is the number of combinations of i mes-

sages out of X total messages that can fall within the aggressive window.
Equation (5) gives the probability of i messages falling within the aggressive window given that K
messages are received. In order to uncondition, we need to sum over all possible values of K times the

probability of K:

N -1
4 ; - K
Pl = L oMM LAHATY 1~ “7‘-[4+ ~AL+A K : .
)= X Gy (@ ey Qe e i T ©)

We can rewrite Equation (6) in the following way.

g) (lme—?LL_i_e-—?L(L’&'A))K—E
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P (e ) 3 &) @

Let j = K—i and rewrite the summation.

N—i (1__8-3.{. + e-w?\,(L»M))j

ZT)

)]
Recall the following identity.
oo xj .
-7 =€
Eo J!

Thus as N goes to infinity (and i<V), Equation (8) becomes
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We use this result as an approximation.
The approximation of Equation (8) given in Equation (9) is very good for reasonable size N, To see

o o f
this note that —JE—— converges o ¢ very quickly when x<1. This is because the numerator gets small
jt &
j=0 1

and the denominator gets large very quickly as j increases. Thus the coniribution to the summation gets
small very quickly as j increases. In Equation (8) 1—¢ *+¢™¢*) is less than one as it represents the pro-

bability of an exponential random variable being outside of a given range.
Rewrite Equation (7) using the approximation given in Equation(9).

( e-«lL__e—?\.(L+A))i

P (1) - 7] e—(e‘u»«e"?ﬂ-m)) (10)

We conclude that a very reasonable approximation of the probability distribution for the number of mes-

sages in the aggressive window at time T is the Poisson distribution with parameter oM g ML)

If we let L = 0 and A = L in Equation (10) we see that the number of messages in the Lookahead

window at time T is also Poisson distributed with parameter 1--¢ -

YN ¢ ’
PK) = ﬂ:eE:L_)m ot~ &) (1)

4,1.1. Compfetion Message

Before leaving this section we need to say another word about the probability of processing K mes-
sages in the aggressive window. In the sections above we derived the probability distribution for the
number of "pre-sent” completion messages in the aggressive window at time T. In addition to pre-
sending the completion message to the receiving LP, an LP also schedules a completion message on its
own event Hst. The processing of this completion message consists of giving service to the next
scheduled activity as well as any statistics gathering required for the simulation. Thus for every server
that is busy there is one "pre-sent” completion message and one completion message scheduled on the

server’s event list. We term this second type of completion message the "complete_service™ message.

Consider the "complete_service" message. If this message falls within the aggressive window it

affects the number of messages processed aggressively, If it falls within the Lookahead window it affects
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the number of unconditional messages processed. Due to the relatively small number of messages pro-

cessed per window it is imporant to consider the effects of the "complete_service” message.

Recall our assumption that the probability of an idle server is very low. Therefore it is with high
probability that each LP will always have a "complete_service" message on its event list. Our analysis
assumes this will always be the case. This assumpiion can be modified to reflect the probability of a

"complete_service" message (not equal o one} without difficulty.

The "complete_service" message will have a distance from the synchronization point T that is
'exponentially distributed. Thus the probability that the "complete_service" message falls within the Loo-
kahead window is 1~e = and the probability that it falls within the aggressive window is e Mg ML)
Given this, we can recompute the probability of K messages within the aggressive window at the syn-

chronization point.

In order to have K=0 messages in the aggressive window the LP must have no “pre-sent” comple-
tion messages and the "complete_service” message must fail outside of the aggressive window. We give
this probability below.

PR=0)=P (M=0,8) = 7" (g Mo D), . (12)
In Equation (12) the P (M =0) term is the probability of having zero "pre-sent” completion messages in
the aggressive window (this probability is given in Equation (10)). The C term is the probability of the

"complete_service” message falling outside of the aggressive window.

Now consider the probability of K1 message within the aggressive window, One way this can
occur is for the LP to have K "pre-sent” compietion messages and not have the “complete_service" mes-
sage fall within the aggressive window. Alternatively, K ~1 "pre-sent” completion messages and the

"complete_service” message may fall within the aggressive window. This probability is given below.

P(K.K>0)=P{M=K-1,C)+P(M=K,C)= .
(e_m_e~k(L+A))K—l (Mg MLAAYy g'M“—e"MLM)
K-11
- (L
.\ (e M_;l( +A})K e__(e_uw(w,m))(iwewu__e—1(L+A})'

In Equation (13) M is the number of “pre-sent” completion messages within the aggressive window and C
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is the probability that the "complete_service" message falls within the aggressive window,
Similar arguments show that the probability of K'=0 messages in the Lookahead window is:

PK=0)=e™1™ (1-¢ ), (14)
The probability of K =1 messages in the Lookahead window is:

TN X TN = i
Pkl = Il i oy (o d— ot (e, (1s)

4.2. Arrival Distribution

Before determining the arrival distribution we briefly review the modified windowing protocol. In
the first phase of the protocol the LPs cooperatively determine the simulation window. The floor of the
window (the synchronization poine) is the minimum unprocessed timestamp in the system (we have been
denoting this timestamp logical time T). The ceiling of the simulation window is determined such that all
messages within the window can be processed concurrently without possibility of an error. We term this
window the Lookahead window and note that it has a width of L logical units. In our modified algorithm
we extend the simulation window from logical time T+L to T+L+A. We term the extended simulation
window the aggressive window and note that it has a width of A logical units. In the second phase of the
protocol all messages with timestamps failing within the Lookahead and the aggressive window are pro-
cessed. In the third phase, all messages generated as a result of the processing in the second phase are

exchanged.

In the non-aggressive algorithm it is guaranteed thal no messages with timestamps falling between
T and T+L will be received as a result of processing within the Lookahead window. That is, no message
processed within the Lookahead window will generate {or cause) 2 message with a timestamp that also
falls within the Lookahead window. It is quite possible however that messages processed within the Loo-
kahead window will generate messages with timestamps that fall within the aggressive window. It is also
possible that messages processed within the aggressive window will generate messages with timestamps
that again fall within the aggressive window. In either case, messages that arrive in the aggressive win-
dow as a result of processing in the second phase of the algorithm are termed arrival messages. Itis also

possible to have arrival message that are generated in subsequent ierations of the algorithm. This is
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dependent upon the size of aggressive window. We now determine the distribution for the number of

arrival messages.

The duration of an activity at a server is exponentially distribuied with mean WJIC Due to our

assumption of a heavily loaded system we know that the output rate of activities at a given server is Pois-
son distributed with rate Az. Due o the independence of the N servers in the system, the system output
will be the merging of N independent Poisson streams. Thus the sysiem oulput rate will be Poisson dis-
wibuted with tate NAL As each LP is equally likely to receive an activity upon completion the system

output stream forks into N independent Poisson streams. The input rate to any given LP is therefore Pois-

son with rate —I\%{ = AL,

We now have enough information to determine the probability distribution for the number of
arrival messages. As discussed above, the total input rate into 2 given LP is Poisson with rate Az. The
aggressive window has a width of A logical time units and its total input rate will therefore be Poisson
distributed with rate M. We break this total input rate into two component rates. First, the rate for the
number of messages in the aggressive window at the synchronization point (logical time T), and second,
the rate of the arrival messages. In Equation (10) we derived the rate for the Poisson distribution govern-
ing the number of messages in the aggressive window at the synchronization point (e e MEHAY We
term the rate for the Poisson distribution governing the number of arrival messages Arrival- BElOW we
show the relationship between these component rates.

MA = ?\'Arrivaf + (e —‘M"ﬁe ﬁML-Wl)) (16}

We now solve for Amnar

?\'Arrival = ?\' A~[6_M”€ _?L(L+A}§ (17)

We conclude that the distribution for the number of arrival messages is Poisson with rate

D A=(e Mg LAY,

- LA
{(AA~(e M_ (Lm)))f( e-(M-(e"M*“é'w'w)
K1

P{K)= (18)
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4.3. Distribution of Timestamps

We seek the distribution for the timestamps of the "pre-sent” completion messages that are within
the aggressive window at logical time T. Recall that these messages represent the completion times of

activities currently receiving service at some LP. Further recall that all service times are iid exponential

. . 1 , . .
random variables with mean X Due to the memoryless property of the exponential the residual service

time will also be exponential. Thus the timestamps of the "pre-sent” completion messages falling within
the aggressive window will be exponentiafly distributed, but conditioned on the fact that they are within

the aggressive window. This distribution is given below.

~Ax
pdf (x | L sx sL+A)= ;T%:XE;A—) (19)

Equation (19) is obtained from the definition of conditional probability. The numerator is the
exponential density function, and the denominator is the probability that an exponentially distributed ran-
dom variable falls within the aggressive window (given that it is greater than the synchronization point
).

The distribution for timestamps of arrival messages is much more difficult to determine. Recall that
arrival messages may be caused by the processing of a message within the Lookahead window or the pro-
cessing of a message within the aggressive window. An arrival message caused by the processing of a
message within the aggressive window is termed a second generation message. Clearly there can be
higher order generation messages as well. The probability of a second (or higher order) generation is
dependent upon the size of the aggressive window. It is very difficult to determine the timestamyp distri-
bution of arrival messages since it is not known whether these messages are a result of processing within

the Lookahead window or the aggressive window,

We can however constrain the aggressive window size such that the probability of a second or
higher order generation message is small. Given a particular aggressive window size A, we can deter-
mine the probability that a message received within A is a second generation message. We can then res-
trict A such that the probability of a second generation message is €, for some predetermined e. This is

discussed further below.
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Given an aggressive window size A such that there is a low probability that an arrival message isa
second generation message we can determine the timestamp distribution for arrival messages. Without
considering second (or higher) generation messages, the arrival messages will be those caused by pro-
cessing within the Lookahead window. By the definition of the protocol we know that no message pro-
cessed within the Lookahead window will generate a message with a timestamp that again falls within the
Lookahead window. Thus all such messages will have timestamps greater than or equat to L. Also we
know these timestamps are exponentially disuibuted. Given this we again have the case where these
timestamps are exponentially distributed and greater than L. The messages that fall within the aggressive
window will therefore also be exponential, conditioned on the fact that they land within the aggressive
window. We conclude that the distribution for arrival messages, given that we restrict the the size of the
aggressive window to exclude second or higher order generation messages, is the same distribution as
given in Equation (19),

Since we cannot strictly guaranice no second generation messages (given an aggressive window
size greater than zero), we note that Bquation (19) is an approximation for the timestamp distribution of
arrival messages. The larger the aggressive window the higher the probability of a second generation

message and the worse the approximation becomes. For this reason it seems unreasonable to consider

aggressive window sizes that are greater than e the mean of the service distribution. For the remainder

of this analysis we assume 0 $ A s—i—.

4.3.1. Error of Timestamp Distribution Approximation
Given our assumption of no second generation messages we would like to quantify the error of this

assumption as a function of the aggressive window size. That is, we would like to determine the probabit-

ity of a second generation message as a function of the aggressive window size.

We seek the probability that a message generated as a result of the processing of a message within
the aggressive window will have a timestamp that again falls within the aggressive window. Recall that
the processing of a message consists of adding an exponential increment to the current timestamp of the

message. Given a message with timestamp S=s within the aggressive window, we seek the probability
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that an exponential increment from § is less than A, For a particular S=s this probability is shown below.
P (exponential increment <A 1§5=s)= 1—g A

In order to uncondition we integrate this probability over ail possible values of S=s multiplied by the pro-

bability of S=s. As shown in Equation (15}, the distribution for S is exponential conditioned on being

within the aggressive window.

A
hesys AT 1-Qde™ + ™)
P 2nd generation) = [(1-e MA) ds =
(2nd generation) l( e ){Iwe"M) Y

(20)

As shown in Equation (20), the probability of a second generation message is relatively smail for
reasonable size A. For example, with A=1 and A = .1 the probability of a second generation message is

less than 5%.

Given some probability that a second generation message does occur we need 1o determine the way
in which this affects our analysis. Recall that aggressive messages are exponentially distributed within
the aggressive window. This implies that aggressive messages are weighted towards the front of the
aggressive window. As shown above, arrival messages caused by processing within the Lookahead win-
dow have the same timestamp distribution as the aggressive messages. Thus they will also be weighted
towards the front of the aggressive window. Second generation messages will clearly be weighted more
towards the back of the aggressive window than first generation messages. For this reason the probability
of a second generation message causing a fault will be somewhat less than the probability of a first gen-
eration message causing a fault. Since our model does not differentiate between first and second gencra-
tion arrival messages it will over predict the probability of a fault if there a significant probability of

second generation messages.

4.4. Using the Expected Value for L

We have now obtained all of the distributions necessary to determine the probability of a fault and
the expected improvement due to aggressive processing. Note that all of our equations have treated L, the
size of the Lookahead window, as a constant. Recall that L is the minimum of N gamma distributed ran-
dom variables, where each gamma is the sum of two exponentially distributed random variables. Thus

the value of L is a random variable rather than a constant. In this section we show that it is very
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reasonable to treat L as a constant, and to use the expected vatue of L in our equations, when AL <1, For

now we note that AL, <<1 for N2 25. We prove this in the following sections.

Recall the following identity.

g ME LS
AL S D
e™™ = I-AL+ 5 e
When AL <<1 a good approximation for e ™ is

e = 1-AL.

The most common term in our equations involving L is e —e ™4 In this section we show why it is
reasonable o use the expected value of 1. in this particular expression. Similar arguments can be made

for other expressions involving L.

Rewrite

oM oMLY oL (1M,

AL

Substituting our approximation for ¢~ we have

¢ Mg MEHAY = (1ALY(1-e™™)
= (1-¢ M- Mi-e L.

Note that for fixed A this is a linear function of L.

(1~ (1—¢ ™)L = b + al.
Now take the expected value of the expression.
E(1-e™)y - Mi-e™)L]=FE[b + aL]

=h +a E[L]

= (1= - A(1~eE L]

= (I-e™)(1- A E[L)).
Again using our approximation that ¢ ™ = - for small x we rewrite 1-LE[L] as ¢ L} (again noting

that E{L] <1).

(I—KE [L D (i__e-M) ~ e—lE[L] (I_e-—M) - e—MZ{L} . e—?»(E{L]+A}

This shows that using the expected value of L in our equations is very reasonable when AL <1.
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5. Probability of a Fault

In order to fault an LP must process at least one message aggressively and subsequently receive an
arrival message with a timestamp in its past. There are many ways this can occur. For example, an LP
can process one aggressive message and receive one arrival message with a timestamp in its past. Or an
LP can process one aggressive message and receive lwo arrival messages where one or both messages
have timestamps in its past. Theoretically there are an infinite number of ways a fault can occur, In prac-

tice however only a few such combinations have any significant associated probability.

Before enumerating the significant terms of the probability of a fault we note that one message in
the system needs special consideration. We state without elaboration that as a consequence of processing
in the Lookahead window exactly one LP will receive a pre-sent completion message with a timestamp of
L. We term this message the Lookahead message. Recall that L is the floor of the aggressive window.
For this reason the LP that receives the Lookahead message will fault if it has processed any messages

aggressively.
Due to the assumption of equally likely routing of messages, the probability of a particular LP

receiving the Lookahead message is % The probability of any LP processing at least one aggressive

message is 1 - P(K=0), where P(K=0) is given in Equation (10). Thus the probability of a given LP fault-

ing due to the Lockahead message is —]—i{— (1P (K=0)).

Below we enumerate the significant terms of the probability of a fault. In this equation P(K) is the
probability of processing K aggressive messages and is given in Equation (10). The P(Ar) term is the pro-

bability of receiving Ar arrival messages and is given in Equation (18).

P(Fy= UN(-P{K=0) + P(K=1,Ar=1) 5+ P{K=2,Ar=1} .75+ @b
P(K=3,Ar=1) (}-5%)+ P (K=1,4r=2) 75 +
P(K=1,Ar=3) (1-.5% + P(K=2,Ar=2) 25% .........
In Equation (21), the second ferm is the probability of processing one message aggressively
(P(K=1)) times the probability of one arrival message (P(Ar=1)) times the probability that the timestamp

of the arrival message is less than the timestamp of the aggressive message (.5). Note that this assumes
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both messages have the same timestamp distribution as discussed above. The other terms are similarly

derived.

6. Number of Messages Successfully Completed

The second primary goal of this research is to capture analytically the improvement in performance
made possible by aggressive processing. We measure performance gains by comparing the number of
messages processed in the non-aggressive algorithm versus the number of messages processed saccess-
fully by adding aggressiveness. Recall that the number of messages processed in the non-aggressive
algorithm is the number of messages processed in the Lookahead window. The number of messages pro-
cessed in the aggressive algorithm is the number of messages processed in the Lookahead window plus
the number of messages processed successfully in the aggressive window. By processed successfully we
mearn processiﬁg that is not later found to be invalid. The improvement in performance is the ratio of
these two quantities. We begin by computing the expected number of messages processed successfully in

the aggressive window.

Note that the improvement in performance calculated as described above is an upper bound on the
improvement that can be attained in practice. This is because our model does not account for the correc-
tion of any errors that do occur. 1t may be the cage that some valid processing is reprocessed in order
correct errors. Our model gives the expected improvement in performance given that all successful
aggressive processing is maintained. It therefore should be viewed as an upper bound on performance
improvement. The given correction mechanism will determine how much of this potential improvement

is realized.

Given the distributions for the number of messages in the aggressive window at the synchroniza-
tion point and the number of arrival messages into the aggressive window it is possible to determine the
number of aggressive messages processed successfully. Consider the ways in which an LP can process
one aggressive message successfully. First, the LP can process one aggressive message and subsequently
receive no arrival messages. In this case the aggressive processing cannot be invalidated. Second, the

LP can process one aggressive message and receive one arrival message that does not invalidate the pro-
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cessing. Third, the LP can process two aggressive messages and receive one arrival message that invali-
dates one, but not both, aggressive messages. Clearly there are infinite combinations of events that could
be considered. There are only a few such combinations however with any significant associated probabil-
ity.

Below we give the significant terms for the probability of successfully processing M=1 messages.
In this equation P(K) is the probability of processing K aggressive messages. The P(Ar) term is the pro-

bability of receiving Ar arrival messages.

P(M=1y=P(K=1,Ar=0) + P(K=1,Ar=1) 5 +P (K=1,Ar=2} .23 (22)
+P (K =1,Ar=3) 5°+P (K =2,Ar=1) 5+ P (K=2,Ar=2) 375
4+ P (K=3,Ar=1) 375+ F(K=3,Ar=2} 5.......

The first term in Equation (22) is the probability of processing one aggressive message and receiv-
ing no arrival messages (P(K=1,Ar=0)). The second term is the probability of processing one aggressive
message (K=1), receiving one arrival message (Ar=1), and the arrival message not causing a fault (.5).
Note that the probability of the arrival message not causing a fault is the probability of the arrival mes-
sage having a timestamp greater than the aggressive message. Since the timestamps of both messages

have the same distribution this probability is .5.

Equation (23) gives the significant terms for processing two aggressive messages successfully.

P(M=2)=P(K=2,Ar=0)+ P(K=2,Ar=1) .25 + P(K=2,Ar=2) 25% 23
+ P(K=3,Ar=1) 375+ P (K=3,Ar=2) .04568
Finally we present the most important terms for the probability of processing three aggressive mes-

sages successfully. We note that the probability of processing four or more aggressive messages success-

fully is negligible for aggressive window sizes in the range of 0sA S%.

P(M=3)=P(K=3,4r=0) + P (K=3,Ar=1).5*+ P (K =3,Ar=2).0156 24)
+ P (K =4,Ar=1)25
We now have all of the equations necessary to derive the expected number of aggressive messages

successfully processed. In Equation (25) below M is the number of messages processed successfully
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within the aggressive window.

E{M =1%P (M =1) + 2*P (M =2) + 3*P (M =3).....c0c0nnn, (25)
Similarly the expected number of messages processed in the Lookahead window i

ELM] = 1¥P (LM =1)+2%P (LM =2+3%P (LM =3)........ (26)
Recall that the probability of processing K messages in the Lookahead window (P(LM=K)} is given in

Equation (11), The expected improvement in performance due to aggressive processing is therefore:

E{LM+E[M]

EU ==

@7

We calculate this expected improvement in performance for various window sizes below,

7. Scalability of Protocol

A very important issue in parallel discrete event simulation is how well a particular protocol scales
as the number of LPs increases. As discussed by Lubachevsky (1989) both Time Warp and the Null Mes-
sage protocol have the potential for explosive overhead costs as the size of the simalation grows. The
overhead associated with Time Warp can significantly increase due to large state saving costs and the
posstbility of cascading rollbacks. The Null Message protocol can have significant overhead costs due o
the proliferation of null messages. To date only Nicol (1991) and Lubachevsky (1989) have proven the

scalability of their respective protocols.

It order to study the scalability of our approach we examine the probability of a fault as the size of
the simulation grows. In this section we show that the upper bound on the probability of a fault at a given
LP is approximately 25% as the number of LPs in the system approaches infinity. Further, we show that
the probability of a fault reaches this maximum value for some particular value of N (the number of LPs
in the systemn). That is, there is some particular value of N = N* such that once the number of LPs in the
system is greater then N™ the more LPs in the system the less the probability of a fault

(N* <Ny <Ny —> P{F N, > P(F Ny, Inthis section we identify this value of N*.
)]

Note that our equations do not directly reflect N, the number of L.Ps in the system. Rather this is
reflected in L, the expecied value of the Lookahead window. Recall that L is the minimum completion

time of the next job to receive service taken over all LPs in the system. Further recall that our model
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assumes one server per LP, and that the probability of a server being idle is very low. The completion
time of the next job to receive service at a given LP will thus be the sum of a) the residual service time of
the job currenily receiving service and b) the service requirements of the next job to receive service. As
all service times are iid exponentials, and because of the memoryless property of the exponential, the
completion time of the next job to receive service will the sum of two exponentials, The Lookahead value
for the system will therefore be the minimum of N gamma distributed random variables where N is the

number of LPs in the systent.

In order to fault an LP must process at least one aggressive message and receive at least one arrival
message. Note that both of these events are a necessary, but not sufficient condition for a fault. Thus the

probability of both events occurring gives an upper bound on the probability of a fault.

The probability of processing at least one aggressive event is (1-P (K=0)} where the P(K=0} is
given in Equation (10). The probability of receiving at least one arrival event is (1--P (Ar=())) where
P(Ar=0) is given in Equation (14). Noting the independence of these events, the probability of both

evernits occurring is given below.,

PF = K21,Ar21) = (1=[e @ e (1 (g Mg ML) (JmgmPAnleime00)y (28)

In Figure 2 we plot Equation (28) as a function of AL, Note that A is set to 31:, the maximum

aggressive window size considered. Further note that AL can only take on values between O and 2. This

is because the expected value for a gamma which is the sum of two exponentials is % Clearly the max-

imum value of L, the expected value of the minimum of N such gamma distributed random variables,

cannot exceed —?2: Also note that as N—eo AL -0,

As can be seen from Figure 2 the maximum probability of fault (approximately 27%) is reached
when AL = 0.29. It can also be seen that after this maximum value the probability of a fault decreases
shightly as AL~0 (N—»e2). The probability of a fault when AL = ( is approximately 24.7%. Thus we have
the very powerful result that the probability of a fault decreases as the number of LPs in the system

approaches infinity.
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It can also be seen from Figure 2 that the probability of a fault rises sharply for .20 AL <2, It
would be desirable to either a) reduce this steep rise in the probability of a fault b) show that the number
of LPs (N} in the system for .29 <AL <2 is sufficiently small such that this steep rise is not critically
important. We could reduce the slope of the fault curve by adjusting the size of the aggressive window.
The approach we choose is to demonstrate that the number of LPs in the system for AL = .29 (N™) is

sufficiently small such that 1 €N SN is not of critical importance.

We begin by noting it is clear that the expected value of the minimum of N gamma distributed ran-

dom variable is a decreasing function of N. Without going through the derivation we note that the

expected value of the minimum of N gamma distributed random variables (cach with mean —i—) is:

L= [ NAy2(14a)® 0 ey, (29)
0

Let & = Ay and d€ = Ady. Rewrite Equation (29) using this variable transformation.

L= »71; JNERAE Ve Nogt (0)
0

Note that the integral is a function of N only. Rewrite Equation (30).
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= f ) G

Because L is a decreasing function of N, f(N) in Equation (31) is also a decreasing function of N,

As shown in Figure 2, AL = .29 when the maximum probability of a fault is reached. Rewrite this

as follows:
=L 29 32)
= 2.

Thus we see that f{(N) = 29 when the maximum probability of a fault is reached. Since f(N} is a decreas-

ing function of N there is only cne value of N, NV *, for which Equation (32) is true.

In order to find N we set A = | and numerically determine the number of gamma distributed ran-
dom variables (with mean 2) for which the expected value of the minimum of this number is approxi-
mately .29, We foond this number o be between twenty three and twenty four. Then we ran many simuo-
lation studies to validate that the expected value of the minimum of twenty four gamma distributed ran-
dom variables (each composed of the sum of two exponentials with mean 1) is approximately .29. We
conclude that N™ =24, This demonstrates the very important property that if there are more than twenty

four LPs in the system that adding more LPs (o the system will decrease the probability of a fauit.
Tn this section we have investigated the upper bound on the probability of a fault given that the size
of the aggressive window is set to its maximum value (%), We used the upper bound of a fault, and the

maximum aggressive window size, in order to o demonstrate the scalability of the approach under the
worst possible conditions. It is important 1o note that the results obtained under these conditions are
much higher than the resulis obtained using our explicit estimate of a fault given in Equation (21). In
Table 1 we use Equation (21) to derive the maximum probability of a fault, the minimum probability of a

fault (obtained when AL=0), and N for various aggressive window sizes.

8. Preliminary Empirical Results

We have developed a model! 0 investigate the improvement in performance made possible by
adding aggressiveness to an existing non-aggressive protocol. In order 10 test the validity of the model

we Tan a series of simulations using a simple FCFS queueing model. The queueing model met the basic
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A P(F) Max | P{Fi Min | N

A o2 RilEE] 5

3 02 .009 7

5 053 035 10

J 08 077 15
Table 1.

assumptions of our analysis including an exponential service time distribution, a heavily loaded system

and each LP having an equal probability of receiving a given message. We ran a series of simulations

‘-1-=

with 1500 LPs, a mean service time of 3

1 and various aggressive window sizes. Then we compared

the empirical results with the predictions of our model. Note that the value of L used in our equations was

the expected value of the width of the Lookahead window obtained from sample simulation runs.

In Figure 4 we plot the predicted versus observed probability of a fault for various aggressive win-
dow sizes. As can be seen, our equations give very accurate predictions. Our equations begin to slightly
over predict the probability of a fault when the aggressive window size becomes greater than 40% of the
mean service time. Recall t,h.at our model over predicts the probability of a fault if there is a significant
probability of a second generation message. For aggressive window sizes greater than or equal to 40% of

the mean service time the probability of a second generation message becomes large enough such that

our model does slightly over predict the probability of a fault.

In Figure 5 we plot the predicted versus observed expected improvement for various aggressive
window sizes. Recall that we measure expected improvement as the ratio of the number of messages pro-
cessed in the aggressive version and the number of messages processed in the non-aggressive version.
As can be seen there is no discernable difference between our predicted and the observed upper bound on
the increase in performance. It can also be seen that there is significant potential for increased perfor-

mangce using our approach.



085

.050

045

040

038
.030
.025
P(Fault)
020
018

010

005

3 i i i ] I
0.1 0.2 0.3 0.4 0.5 0.6

Aggressive Window Size (lambda =1, N=1500)
Figure 3.

25



26

1860 —
1700 —~
1600 ——
1500 -
1400 —
1300 —
1200 —
Expected 1100 -~
Improvement 1000 —-
(Percentage) 900 T
800 -
700 T
600 T
500
400 717
300
200 7
100 7

; | ) | }
i f | 1 I

02 03 04 o5 06
Aggressive Window Size

{Percentage of mean service time)

p__
ok

Figure 4.
9, Conclusions

In this paper we developed a model wo study the effects of adding aggressiveness o an existing
non-aggressive protocol. We have three very significant results from this work. First, we are able
predict the probability of a fault as a function of the level of aggressiveness. This is the first time this has
been accomplished. Second, we have been able to demonstrate both theoretically and empirically the
significant potential for improvement in performance made possible by adding aggressiveness o a non-
aggressive approach. Third, we have theoretically demonstrated the very imporiant property that our
approach is scalable. We have shown that the probability of a fault does not increase as the number of
LPs approaches infinity. Also, we have identified the number of LPs, N*, such that N” <N ; <N, implies
that the probability of a fault in a system with N5 LPs in less than the probability of a fault in a system

with Ny LPs.

We are currently in the process of conducting a sensitivity analysis of our model. In particular, we

are interested in the predictive ability of the model given communication patterns other than the equally
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likely pattern used in our model. Also, we are in the process of developing a protocol to take advantage

of the potential increase in performance made possible by this approach.
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